Skip to main content
Log in

Search on a line with faulty robots

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

We consider the problem of searching on a line using n mobile robots, of which at most f are faulty, and the remaining are reliable. The robots start at the same location and move in parallel along the line with the same speed. There is a target placed on the line at a location unknown to the robots. Reliable robots can find the target when they reach its location, but faulty robots cannot detect the target. Our goal is to design a parallel algorithm minimizing the competitive ratio, represented by the worst case ratio between the time of arrival of the first reliable robot at the target, and the distance from the source to the target. If \(n \ge 2f+2\), there is a simple algorithm with a competitive ratio of 1. For \(f< n < 2f+2\) we develop a new class of algorithms, called proportional schedule algorithms. For any given (nf), we give a proportional schedule algorithm A(nf), whose competitive ratio is

$$\begin{aligned} \left( \frac{4f+4}{n} \right) ^{\frac{2f+2}{n}} \left( \frac{4f+4}{n} -2 \right) ^{1-\frac{2f+2}{n}} + 1. \end{aligned}$$

Setting \(a=n/f\) as a constant, the asymptotic competitive ratio is \(\left( 4/a \right) ^{2/a} \left( 4/a -2\right) ^{1-2/a } + 1\). Our search algorithm is easily seen to be optimal for the case \(n=f+1\). We also show that as n tends to \(\infty \) the competitive ratio of our algorithm for the case \(n = 2f+1\) approaches 3 and this is optimal. More precisely, we show that asymptotically (after excluding small order terms), the competitive ratio of our proportional schedule algorithm \(A(2f+1,f)\) is at most \(3 + \frac{4\ln n}{n}\), while any search algorithm has a lower bound \(3 + \frac{2\ln n}{n}\) on its competitive ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. By symmetry the same result applies for negative turning points.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  Google Scholar 

  3. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)

    Article  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Alphen aan den Rijn (2002)

    MATH  Google Scholar 

  5. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search theory: a game-theoretic perspective. Springer Science & Business Media, Berlin (2014)

    MATH  Google Scholar 

  6. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  7. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. 5(3), 143–154 (1995)

    Article  MathSciNet  Google Scholar 

  8. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  9. Beck, A., Newman, D.: Yet more on the linear search problem. Isr. J. Math. 8(4), 419–429 (1970)

    Article  MathSciNet  Google Scholar 

  10. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

    Article  Google Scholar 

  11. Bose, P., De Carufel, J.L., Durocher, S.: Revisiting the problem of searching on a line. In: 21st European Symposium on Algorithms (ESA 2013), LNCS, vol. 8125, pp. 205–216. Springer (2013)

  12. Bouzid, Z., Potop-Butucaru, M., Tixeuil, S.: Optimal byzantine-rezilient convergence in uni-dimensional robot network. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)

    Article  Google Scholar 

  13. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Tran. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  14. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) Ad-hoc, mobile, and wireless networks, LNCS, vol. 6811, pp. 346–359. Springer, Berlin (2011)

    Chapter  Google Scholar 

  15. Chrobak, M., Gasieniec, L., T., G., Martin, R.: Group search on the line. In: Proceedings of SOFSEM 2015, LNCS 8939, pp. 164–176. Springer (2015)

  16. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 41(1), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  17. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  Google Scholar 

  18. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: Monitoring a graph using faulty mobile robots. In: Algorithms and Computation—Proceedings of 26th International Symposium, ISAAC 2015, pp. 343–354 (2015)

  19. Défago, X., Gradinariu, M., Messika, S., Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. Proc. DISC 2006, 46–60 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  21. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of 32nd Annual Symposium on FOCS, pp. 298–303. IEEE Computer Society (1991)

  22. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  23. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM symposium on Principles of distributed computing, pp. 77–86. ACM (2012)

  24. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111, 1027–1031 (2011)

    Article  MathSciNet  Google Scholar 

  25. Gluss, B.: An alternative solution to the lost at sea problem. Naval Res. Logist. Quart. 8(1), 117–122 (1961)

    Article  MathSciNet  Google Scholar 

  26. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)

    Article  MathSciNet  Google Scholar 

  27. Hromkovič, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting & gossiping). In: Ding-Zhu, D., Hsu, F. (eds.) Combinatorial network theory, pp. 125–212. Springer, Berlin (1996)

    Chapter  Google Scholar 

  28. Isbell, J.R.: Pursuit around a hole. Naval Res. Logist. Quart. 14(4), 569–571 (1967)

    Article  Google Scholar 

  29. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  30. Kleinberg, J.: On-line search in a simple polygon. In: Proceedings of SODA, pp. 8–15. SIAM (1994)

  31. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the forty-second ACM symposium on Theory of computing, pp. 513–522. ACM (2010)

  32. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

    Article  Google Scholar 

  33. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

    MATH  Google Scholar 

  34. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  35. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Proceedings of ICALP, LNCS, vol. 372, pp. 610–620. Springer (1989)

  36. Schuierer, S.: Lower bounds in on-line geometric searching. Comput. Geom. 18(1), 37–53 (2001)

    Article  MathSciNet  Google Scholar 

  37. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. Principles of Distributed Systems pp. 333–349 (2006)

  38. Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  39. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of 2nd international conference on Autonomous agents, pp. 47–53. ACM (1998)

  40. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Krizanc.

Additional information

This research was supported in part by NSERC grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czyzowicz, J., Kranakis, E., Krizanc, D. et al. Search on a line with faulty robots. Distrib. Comput. 32, 493–504 (2019). https://doi.org/10.1007/s00446-017-0296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-017-0296-0

Keywords

Navigation