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Abstract
Population protocols (Angluin et al. in PODC, 2004) are a model of distributed computation in which indistinguishable, finite-
state agents interact in pairs to decide if their initial configuration, i.e., the initial number of agents in each state, satisfies a
given property. In a seminal paper Angluin et al. classified population protocols according to their communicationmechanism,
and conducted an exhaustive study of the expressive power of each class, that is, of the properties they can decide (Angluin
et al. in Distrib Comput 20(4):279–304, 2007). In this paper we study the correctness problem for population protocols, i.e.,
whether a given protocol decides a given property. A previous paper (Esparza et al. in Acta Inform 54(2):191–215, 2017) has
shown that the problem is decidable for the main population protocol model, but at least as hard as the reachability problem
for Petri nets, which has recently been proved to have non-elementary complexity. Motivated by this result, we study the
computational complexity of the correctness problem for all other classes introduced by Angluin et al., some of which are less
powerful than the main model. Our main results show that for the class of observation models the complexity of the problem
is much lower, ranging from Π

p
2 to PSPACE.

Keywords Reachability analysis · Parameterized verification · Population protocols · Distributed computing

1 Introduction

Population protocols are a theoretical model for the study
of ad hoc networks of tiny computing devices without
any infrastructure [5,6]. The model postulates a “soup” of
indistinguishable, finite-state agents that behave identically.
Agents repeatedly interact in pairs, changing their states
according to a joint transition function. A global fairness
condition ensures that every global configuration that is
reachable infinitely often is also reached infinitely often.
The purpose of a population protocol is to allow agents to
collectively compute some information about their initial
configuration, defined as the function that assigns to each
local state the number of agents that initially occupy it. For
example, assume that initially each agent picks a boolean
value by choosing, say, q0 or q1 as its initial state. The (many)
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majority protocols described in the literature allow the agents
to eventually reach a stable consensus on the value chosen by
a majority of the agents. More formally, let x0 and x1 denote
the initial numbers of agents in states q0 and q1; majority
protocols compute the predicate ϕ(x0, x1) : N×N → {0, 1}
given by ϕ(x0, x1) = (x1 ≥ x0). Throughout the paper, we
use the term“predicate” as an abbreviation for “function from
N
k to {0, 1} for some k”.
The expressive power of population protocols (that is,

which predicates they can compute), and their efficiency
(how fast they can compute them) have been both extensively
studied (see e.g. [2–4,28]). In a seminal paper [7], Angluin
et al. showed that population protocols can compute exactly
the predicates definable in Presburger arithmetic. In the same
publication, they observed that while the two-way communi-
cation discipline of the standard population protocol model
is adequate for natural computing applications, where agents
represent molecules or cells that communicate by means of
physical encounters, it is less so when agents represent elec-
tronic devices, where communication usually takes place by
asynchronous message-passing, and information flows only
from the sender to the receiver. For this reason, they also con-
ducted a thorough investigation of the expressive power of
the population protocol model when two-way communica-
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tion is replaced by one-way communication. They classified
one-way communication models into transmission models,
where the sender is allowed to change its state as a result
of sending a message, and observation models, where it is
not. Intuitively, in observation models the receiver observes
the state of the sender, who may not even be aware that it is
being observed. Further, they distinguished between immedi-
ate deliverymodels,where a send event and its corresponding
receive event occur simultaneously, delayed delivery mod-
els, where delivery may take time, but receivers are always
willing to receive any message, and queued deliverymodels,
where delivery may take time, and receivers may choose to
postpone incoming messages until they have sent a message
themselves. This results in five one-way models: immediate
and delayed observation, immediate and delayed transmis-
sion, and queued transmission. Angluin et al. showed that no
one-way model is more expressive than the two-way model,
and some of them are strictly less expressive. In fact, they
characterized the expressive power of each model in terms
of natural classes of Presburger predicates.

In this paper we investigate the correctness problem for
population protocols, that is, the problem of deciding if
a given protocol computes a given Presburger predicate.
For each possible input, deciding if the protocol reaches a
consensus only requires to inspect one of these finite transi-
tion systems, and can be done automatically using a model
checker. This approach has been followed in [19,21,45,49],
but it only proves the correctness of a protocol for a finite
number of (typically small) inputs. The question whether the
protocol reaches the right consensus for all inputs remained
open until 2015, when Esparza et al. showed that the problem
is decidable [32].However, in the samepaper theyproved that
the correctness problem is at least as hard as the reachability
problem for Petri nets. This problem, which was known to
be EXPSPACE-hard since the 1970s [42], has recently been
shown to be TOWER-hard [24], where TOWER is the union
of the classes of problems solvable in k-EXPTIME for every
k ≥ 0. Motivated by this high complexity of the two-way
model, we examine the complexity of the problem for the
one-way models studied in [7]. We show that, very satis-
factorily, for observation models the complexity decreases
dramatically. In our two main positive results, we prove
that correctness is Π

p
2 -complete for the delayed observation

model, and PSPACE-complete for the immediate observation
model, when predicates are specified as quantifier-free for-
mulas of Presburger arithmetic1. Surprisingly, we show that
this is also the complexity of checking that the protocol is
correct for one single given input. So, loosely speaking, in
observation models checking correctness for one input and

1 Since Presburger arithmetic admits quantifier elimination, the
quantifier-free fragment is as expressive as the full language, if one
adds divisibility predicates with constant divisor.

for all infinitely many possible inputs has the same complex-
ity.

In the second part of the paper we present negative results
on the transmission models: In all of them, correctness is
at least as hard as the reachability problem for Petri nets,
and thus TOWER-hard. Further, for the delayed delivery
and queued delivery models the single input case is already
TOWER-hard, while for the immediate transmission model
the single-input problem is PSPACE-complete. On the posi-
tive side, we show that the decidability proof of [32] can be
easily extended to the immediate and delayed transmission
models, but not to the queued transmission model. In fact,
for the queued transmission model we leave the decidability
of the correctness problem as an open question. However, we
also show that this question is less relevant for queuedmodels
than for the others. Indeed, in this model the fairness condi-
tion of [7] bears no immediate relation to the probabilistic
interpretation of population protocols used in the literature in
order to study their efficiency. Table 1 summarizes the results
and shows their places in the paper.

The paper is organized as follows. Section 2 recalls the
protocol models introduced in [7]. Section 3 presents our
lower bounds for observation models. Sections 4, 5 and 6,
the most involved part of the paper, prove the results lead-
ing to the upper bounds for observation models. Section 7
contains the decidability and TOWER-hardness results for
transmission-based models. Section 8 gives a brief overview
of the most closely related models and approaches that we
are aware of.

Previous versions of some of the results of this paper were
published in [33] and [34].

2 Protocol models

After some preliminaries (Sect. 2.1), we recall the definitions
of the models introduced by Angluin et al. in [7] (Sects. 2.2
to 2.4), formalize the correctness problem (Sect. 2.5), and
rephrase it in two different ways as a reachability problem
(Sect. 2.6).

2.1 Multisets and populations

A multiset on a finite set E is a mapping C : E → N, i.e.
C(e) denotes the number of occurrences of an element e ∈ E
in C . Operations on N are extended to multisets by defin-
ing them componentwise on each element of E . We define
in this way the sum C1 + C2, comparison C1 ≤ C2, or
maximum max{C1,C2} of two multisets C1,C2. Subtrac-
tion, denoted C1 − C2, is allowed only if C1 ≥ C2. We let

|C | def= ∑
e∈E C(e) denote the total number of occurrences of

elements in C , also called the size of C . We sometimes write
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Table 1 Decidability and complexity results

Communication Model Single-input corr. All-inputs corr.

One-way Observation Immediate PSPACE-complete PSPACE-complete

Delayed Π
p
2 -complete Π

p
2 -complete

Transmission Immediate PSPACE-complete TOWER-hard, decidable

Delayed TOWER-hard, decidable TOWER-hard, decidable

Queued TOWER-hard TOWER-hard

Two-way Transmission Immediate PSPACE-complete [32] TOWER-hard, decidable [32]

multisets using set-like notation. For example, both �a, 2 ·b�
and �a, b, b� denote the multiset C such that C(a) = 1,
C(b) = 2 and C(e) = 0 for every e ∈ E \ {a, b}. Sometimes
we use yet another representation, by assuming a total order
e1 ≺ e2 ≺ · · · ≺ en on E , and representing a multiset C by
the vector (C(e1), . . . ,C(en)) ∈ N

n .
A population P is a multiset on a finite set E with at least

two elements, i.e. P(E) ≥ 2. The set of all populations on
E is denoted Pop(E).

2.2 A unifiedmodel

We recall the unified framework for protocols introduced
by Angluin et al. in [7], which allows us to give a generic
definition of the predicate computed by a protocol.

Definition 2.1 A generalized protocol is a quintuple P =
(Conf,Σ, Step, I , O) where

– Conf is a countable set of configurations.
– Σ is a finite alphabet of input symbols. The elements of

Pop(Σ) are called inputs.
– Step ⊆ Conf×Conf is a reflexive step relation, capturing
when a first configuration can reach another one in one
step.

– I : Pop(Σ) → Conf is an input function that assigns to
every input an initial configuration.

– O : Conf → {0, 1} is a partial output function that assigns
an output to each configuration on which it is defined.

We write C −→ C ′ and C
∗−→ C ′ to denote (C,C ′) ∈ Step

and (C,C ′) ∈ Step∗, respectively. We say C ′ is reachable
from C if C

∗−→ C ′. An execution ofP is a (finite or infinite)
sequence of configurationsC0,C1, . . . such thatC j −→ C j+1

for every j ≥ 0. Observe that, since we assume that the step
relation is reflexive, all maximal executions (i.e., all execu-
tions that cannot be extended) are infinite.

An execution C0,C1, . . . is fair if for every C ∈ Conf
the following property holds: If there exist infinitely many

indices i ≥ 0 such that Ci
∗−→ C , then there exist infinitely

many indices j ≥ 0 such that C j = C . In words, in

fair sequences every configuration which can be reached
infinitely often is reached infinitely often.

A fair execution C0,C1, . . . converges to b ∈ {0, 1} if
there exists an index m ≥ 0 such that for all j ≥ m the
output function is defined on C j and O(C j ) = b. A protocol
outputs b ∈ {0, 1} for input a ∈ Pop(Σ) if every fair exe-
cution starting at I (a) converges to b. A protocol computes
a predicate ϕ : Pop(Σ) → {0, 1} if it outputs ϕ(a) for every
input a ∈ Pop(Σ).

The correctness problem for a class of protocols consists
of deciding for a given protocol P in the class, and a given
predicate ϕ : Pop(Σ) → {0, 1}, where Σ is the alphabet of
P , whether P computes ϕ. The goal of this paper is to
determine the decidability and complexity of the correctness
problem for the classes of protocols introduced by Angluin
et al. in [7].

In the rest of the section we formally define the six pro-
tocol classes studied by Angluin et al., and summarize the
results of [7] that characterize the predicates they can com-
pute. Angluin et al. distinguish between models in which
agents interact directly with each other, with zero-delay, and
models in which agents interact through messages with pos-
sibly non-zero transit time. We describe them in Sects. 2.3
and 2.4, respectively.

2.3 Immediate delivery models

In immediate interaction models, a configuration only needs
to specify the current state of each agent. In delayed models,
the configuration must also specify which messages are in
transit. Angluin et al. study three immediate deliverymodels.

Standard Population Protocols (PP). Population protocols
describe the evolution of a population of finite-state agents.
Agents are indistinguishable, and interaction is two-way.
When two agents meet, they exchange full information about
their current states, and update their states in reaction to this
information.

Definition 2.2 A standard population protocol is a quintu-
ple P = (Q, δ,Σ, ι, o) where Q is a finite set of states,
δ : Q2 → Q2 is the transition function, Σ is a finite set of
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input symbols, ι : Σ → Q is the initial state mapping, and
o : Q → {0, 1} is the state output mapping.

Observe that δ is a total function, and so we assume that
every pair of agents can interact, although the result of the
interaction can be that the agents do not change their states.
Every standard population protocol determines a protocol
in the sense of Definition 2.1 as follows, where C,C ′ ∈
Pop(Q), D ∈ Pop(Σ), and b ∈ {0, 1}:

– the configurations are the populations over Q, that is,
Conf = Pop(Q);

– (C,C ′) ∈ Step if there exist states q1, q2, q3, q4 ∈ Q
such that δ(q1, q2) = (q3, q4), C ≥ �q1, q2�, and C ′ =
C−�q1, q2�+�q3, q4�. The inequality cannot be omitted
because some of the states can coincide.

– I (D) = ∑
σ∈Σ D(σ )ι(σ ); in other words, if the input D

contains k copies of σ ∈ Σ , then the configuration I (D)

places k agents in the state ι(σ );
– O(C) = b if o(q) = b for all q ∈ Q such that C(q) >

0; in other words, O(C) = b if in the configuration C
all agents are in states with output b. We often call a
configuration C satisfying this property a b-consensus.

The two other models with immediate delivery are one-
way. They are defined as subclasses of the standard popula-
tion protocol model.

Immediate Transmission Protocols (IT). In these protocols,
at each step an agent (the sender) sends its state to another
agent (the receiver). Communication is immediate, that is,
sending and receiving happen in one atomic step. The new
state of the receiver depends on both its old state and the old
state of the sender, but the new state of the sender depends
only on its own old state, and not on the old state of the
receiver. Formally:

Definition 2.3 A standard population protocol P = (Q, δ,

Σ, ι, o) is an immediate transmission protocol if there exist
two functions δ1 : Q → Q, δ2 : Q2 → Q satisfying
δ(q1, q2) = (δ1(q1), δ2(q1, q2)) for every q1, q2 ∈ Q.

Immediate Observation Protocol (IO). In these protocols,
the state of a first agent can be observed by a second agent,
which updates its state using this information. Unlike in the
immediate transmissionmodel, thefirst agent does not update
its state (intuitively, it may not even know that it has been
observed). Formally:

Definition 2.4 A standard population protocol P = (Q, δ,

Σ, ι, o) is an immediate observation protocol if there
exists a function δ2 : Q2 → Q satisfying δ(q1, q2) =
(q1, δ2(q1, q2)) for every q1, q2 ∈ Q.

Notation. We sometimes write q1, q2 → q3, q4 for
δ(q1, q2) = (q3, q4). In the case of IO protocols we some-

times write q2
q1−→ q4 for δ(q1, q2) = (q1, q4), and say that

the agent moves from q2 to q4 by observing q1.

2.4 Delayed delivery models

In delayed delivery models agents communicate by send-
ing and receiving messages. The set of messages that can
be sent (and received) is finite. Messages are sent to and
received from one single pool of messages; in particular, the
sender does not choose the recipient of the message. The
pool can contain an unbounded number of copies of a mes-
sage. Agents update their state after sending or receiving a
message. Angluin et al. define the following three delayed
delivery models.

Queued Transmission Protocols (QT). The set of messages
an agent is willing to receive depends on its current state.
In particular, in some states the agent may not be willing to
receive any message.

Definition 2.5 A queued transmission protocol is a septuple
P = (Q, M, δs, δr ,Σ, ι, o) where Q is a finite set of states,
M is a finite set of messages, δs : Q → M × Q is the partial
send function, δr : Q×M⇀Q is the partial receive function,
Σ is a finite set of input symbols, ι : Σ → Q is the initial state
mapping, and o : Q → {0, 1} is the state output mapping.

Every queued transmission protocol determines a protocol
in the sense of Definition 2.1 as follows, where C,C ′ ∈
Pop(Q), D ∈ Pop(Σ), and b ∈ {0, 1}:

– the configurations are the populations over Q ∪ M , that
is, Conf = Pop(Q ∪ M);

– (C,C ′) ∈ Step if there exist states q1, q2 and a message
m such that

– δs(q1) = (m, q2), C ≥ �q1�, and C ′ = C − �q1� +
�m, q2�; or

– δr (q1,m) = q2, C ≥ �q1,m�, and C = C ′ −
�q1,m� + �q2�.

– I (D) = ∑
σ∈Σ C(σ )ι(σ ); notice that since ι does not

map symbols of Σ to M , the configuration I (D) has no
messages;

– O(C) = b if o(q) = b for all q ∈ Q such that C(q) > 0.

Delayed Transmission Protocols (DT). DT protocols are the
subclass of QT protocols in which, loosely speaking, agents
can never refuse to receive a message. This is modeled by
requiring the receive transition function to be total.
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Definition 2.6 A queued transmission protocol P is a
delayed transmission protocol if its receive function δr is
a total function.

Delayed Observation Protocols (DO). Intuitively, DO proto-
cols are the subclass of DT-protocols in which “sender” and
“receiver” actually means “observee” and “observer”. This
is modeled by forbidding the sender to change its state when
it sends a message (since the observee many not even know
it is being observed).

Definition 2.7 LetP = (Q, M, δs, δr ,Σ, ι, o) be a queued
transmision protocol.P is a delayed observation protocol if
δr is a total function and for every q ∈ Q the send funtion δs
satisfies δs(q) = (m, q) for some m ∈ M .

Notation. We write q1
m+−−→ q2 when δs(q1) = (m, q2), and

q1
m−−−→ q2 when δr (q1,m) = q2, denoting that the message

m is added to or removed from the pool of messages. In the

case of DO protocols, we sometimes write simply q1
m+−−→.

The following fact follows immediately from the defini-
tions, but is very important.

Fact. In immediate delivery protocols (PP, IT, IO), if C
∗−→

C ′ then |C | = |C ′|. Indeed, in these models configurations
are elements of Pop(Q), and so the size of a configuration
is the total number of agents, which does not change when
transitions occur. In particular, for every configuration C the
number of configurations reachable from C is finite.

In delayed delivery protocols (QT, DT, DO), configura-
tions are elements of Pop(Q ∪ M), and so the size of a
configurations is the number of agents plus the number of
messages sent but not yet received. Since transitions can
increase or decrease the number of messages, the number
of configurations reachable from a given configuration can
be infinite.

Table 2 summarizes the different transition functions and
restrictions of the models.

2.5 Expressive power and correctness problem

Let Σ = {σ1, . . . , σn} be a finite alphabet. We introduce
the class of predicates ϕ : Pop(Σ) → {0, 1} definable in
Presburger arithmetic, the first-order theory of addition.

A population P ∈ Pop(Σ) is completely characterized by
the number ki of occurrences of each input symbol σi in P ,
and sowe can identify P with the vector (k1, . . . , kn). A pred-
icateϕ : Pop(Σ) → {0, 1} is a threshold predicate if there are
coefficients a1, . . . , an, b ∈ Z such that ϕ(k1, . . . , kn) = 1
iff

∑n
i=1 ai ·ki < b. The class of Presburger predicates is the

closure of the threshold predicates under boolean operations
and existential quantification. By the well-known result that
Presburger arithmetic has a quantifier elimination procedure,
a predicate is Presburger iff it is a boolean combination of
threshold andmodulo predicates, defined as the predicates of
the form

∑n
i=1 ai ·ki ≡c b (see e.g. [22]). Abusing language,

we call a boolean combination of threshold andmodulo terms
a quantifier-free Presburger predicate.

In [7], Angluin et al. characterize the predicates com-
putable by the six models of protocols we have introduced.
Remarkably, all the classes compute only Presburger predi-
cates. More precisely:

– DO computes the boolean combinations of predicates of
the form x ≥ 1, where x is an input symbol. This is the
class of predicates that depend only on the presence or
absence of each input symbol.

– IO computes the boolean combinations of predicates of
the form x ≥ c, where x is an input symbol and c ∈ N.

– IT and DT compute the Presburger predicates that are
similar to a boolean combination of modulo predicates
for sufficiently large inputs; for the exact definition of
similarity we refer the reader to [7].

– PP and QT compute exactly the Presburger predicates.

The results of [7] are important in order to define the cor-
rectness problem. The inputs to the problem are a protocol

Table 2 Transition functions and restrictions of the five models

Standard Population Protocol (PP) P = (Q, δ,Σ, ι, o) δ : Q2 → Q2

Immediate Transmission (IT) P = (Q, δ,Σ, ι, o) ∃δ1, δ2 such that ∀q1, q2 ∈ Q, δ(q1, q2) = (δ1(q1), δ2(q1, q2))

New sender state does not depend on receiver state

Immediate Observation (IO) P = (Q, δ,Σ, ι, o) ∃δ2 such that ∀q1, q2 ∈ Q, δ(q1, q2) = (q1, δ2(q1, q2))

Sender state does not change

Queued Transmission (QT) P = (Q, M, δs , δr ,Σ, ι, o) δs : Q → M × Q, δr : Q × M⇀Q

An agent can send a message, or receive one. The set of messages it can receive depends on its state.

Delayed Transmission (DT) P = (Q, M, δs , δr ,Σ, ι, o) δs : Q → M × Q, δr : Q × M → Q

Each agent can receive every message

Delayed Observation (DO) P = (Q, M, δs , δr ,Σ, ι, o) δs : Q → M × Q, δr : Q × M → Q ∀q ∈ Q, δs(q) = (m, q) for some m ∈ M

Each agent can receive every message and the sender state does not change
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and a predicate. The protocol is represented by giving its
sets of places, transitions, etc. However, we still need a finite
representation for Presburger predicates. There are three pos-
sible candidates: full Presburger arithmetic, quantifier-free
Presburger arithmetic, and semilinear sets. Semilinear sets
are difficult to parse by humans, and no paper on population
protocols uses them to describe predicates. Full Presburger
arithmetic is very succinct, but its satisfiability problem lies
between 2-NEXP and 2-EXPSPACE [10,35,37]. Since the sat-
isfiability problem can be easily reduced to the correctness
problem, choosing full Presburger arithmetic would “mask”
the complexity of the correctness problem in the size of the
protocol for several protocol classes. This leaves quantifier-
free Presburger arithmetic, which also has several advantages
of its own. First, standard predicates studied in the litera-
ture (like majority, threshold, or remainder predicates) are
naturally expressed without quantifiers. Second, there is a
synthesis algorithm for population protocols that takes a
quantifier-free Presburger predicate as input and outputs a
population protocol (not necessarily efficient or succinct) that
computes it [5,6]; a recent, more involved algorithm even
outputs a protocol with polynomially many states in the size
of the predicate [13]. Third, the satisfiability problem for
quantifier-free Presburger predicates is “only” NP-complete,
and, as we shall see, the complexity in the size of the protocol
will always be higher for all protocol classes.

Taking these considerations into account, we formally
define the correctness problem as follows:

Correctness problem
Given: A protocol P over an alphabet Σ , belonging
to one of the six classes PP, DO, IO, DT, IT, QT; a
quantifier-free Presburger predicate ϕ over Σ .
Decide:DoesP compute the predicate represented by
ϕ?

We also study the correctness problem over a single input.
We refer to it as the single-instance correctness problem and
define it in the following way:

Single-instance correctness problem
Given: A protocolP over an alphabet Σ and with ini-
tial state mapping ι, belonging to one of the six classes
PP, DO, IO, DT, IT, QT; an input D ∈ Pop(Σ), and a
boolean b.
Decide: Do all fair executions of P starting at I (D)

converge to b ?

2.6 Correctness as a reachability problem

In the coming sections we will obtain matching upper and
lower bounds on the complexity of the correctness problem
for different protocol classes. The upper bounds are obtained
by reducing the correctness problem to two different reach-

ability problems. The reductions require the protocols to be
well behaved. We first define well-behaved protocols, and
then present the two reductions.

Well-behaved protocols. Let P be a generalized protocol.

A configurationC ofP is a bottom configuration ifC
∗−→ C ′

implies C ′ ∗−→ C for every configuration C ′. In other words,
C is a bottom configuration if it belongs to a bottom strongly
connected component (SCC) of the configuration graph of
the protocol.

Definition 2.8 A generalized protocol is well-behaved if
every fair execution contains a bottom configuration.

We show that all our protocols are well behaved, with the
exception of queued-transmission protocols. Essentially, this
is the reason why the decidability of the correctness problem
for QT is still open.

Lemma 2.9 Standardpopulationprotocols (PP)anddelayed-
transmission protocols (DT) are well behaved.

Proof In standard population protocols, if C
∗−→ C ′ then

|C | = |C ′|. It follows that for every configuration C ∈ Conf
the set of configurations reachable from C is finite. So every
fair execution eventually visits a bottom configuration.

In delayed-transmision protocols, the size of a configu-
ration is equal to the number of agents plus the number of
messages in transit. So there is no bound on the size of the
configurations reachable from a given configuration C , and
in particular the set of configurations reachable from C can
be infinite. However, since agents can always receive any
message, for every configurationC there is at least one reach-
able configuration Z without any message in transit. Since
the number of such configurations with a given number of
agents is finite, for every fair execution π = C0,C1, . . .

there is a configuration Z without messages in transit such
that Ci = Z for infinitely many i . By fairness, every config-
uration C ′ reachable from Z also appears infinitely often in
π , and so every configuration C ′ reachable from Z verifies

C ′ ∗−→ Z . So Z is a bottom configuration. ��
Since IT and IO are subclasses of PP and DO is a subclass

of DT, the proof is valid for IT, IO, and DT as well. The fol-
lowing example shows that queued-transmission protocols
are not necessarily well-behaved.

Example 2.10 Consider a queued-transmission protocol in
which an agent in state q can send a messagem, staying in q.
Assume further that no agent can ever receive a message m
(because, for example, there are no receiving transitions for
it). Then any execution in which the agent in state q sends
the message m infinitely often and never receives any mes-
sages is fair: Indeed, after k steps the system can only reach
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configurations with at least k messages, and so no configura-
tion is reachable from infinitely many configurations in the
execution. Since this fair execution does not visit any bottom
configuration, the protocol is not well-behaved. Moreover,
if q is the only state of the protocol, there are no bottom
configurations at all.

Characterizing correctness of well-behaved protocols. We
start with a useful lemma valid for arbitrary protocols.

Lemma 2.11 ([7]) Every finite execution of a generalized
protocol can be extended to a fair execution.

Proof Let Conf be the set of configurations of the proto-
col, and let π be a finite execution. Fix an infinite sequence
ρ = C0,C1, . . . of configurations such that every config-
uration of Conf appears infinitely often in ρ. Define the
infinite execution π0 π1 π2 . . . and the infinite subsequence
Ci0 ,Ci1 ,Ci2 . . . of ρ inductively as follows. For i = 0, let
π0 := π and Ci0 := C0. For every j ≥ 0, let π0 . . . π j π j+1

be any execution leading to the first configuration of ρ after
Ci j that is reachable from the last configuration of π0 . . . π j .
It is easy to see that π0 π1 π2 . . . is fair. ��
Now we introduce some notations. Let P = (Conf,Σ,

Step, I , O) be a generalized protocol, and let ϕ be a predi-
cate.

– The sets of predecessors and successors of a set M of
configurations of P are defined as follows:

pre∗(M )
def= {C ′ ∈ Conf | ∃C ∈ M .C ′ ∗−→ C}

post∗(M )
def= {C ∈ Conf | ∃C ′ ∈ M .C ′ ∗−→ C}

– For every b ∈ {0, 1}, we define Conb
def= O−1(b), the set

of configurations with output b. We call Conb the set of
b-consensus configurations.

– For every b ∈ {0, 1}, we let Stb denote the set of config-
urations C such that every configuration reachable from
C (including C itself) has output b. St stands for stable
output. It follows easily from the definitions of pre∗ and
post∗ that

Stb = pre∗ (
Conb

)
,

where M
def= Conf \ M for every set of configurations

M ⊆ Conf. Indeed, the equation states that a configura-
tion belongs to Stb iff it cannot reach any configuration
with output 1 − b, or with no output.

– For every b ∈ {0, 1}, we define Ib
def= {I (D) | D ∈

Pop(Σ) ∧ ϕ(D) = b}. In other words, Ib is the set of
initial configurations for which P should output b in
order to compute ϕ.

Proposition 2.12 LetP = (Conf,Σ, Step, I , O) be a well-
behaved generalized protocol and let ϕ be a predicate. P
computes ϕ iff

post∗(Ib) ⊆ pre∗(Stb)

holds for every b ∈ {0, 1}.

Proof Assume that post∗(Ib) ⊆ pre∗(Stb) holds for b ∈
{0, 1}. Let π = C0,C1, . . . be a fair execution with C0 ∈ Ib
for some b ∈ {0, 1}. We show that π converges to b. Proto-
colP is well-behaved, so π contains a bottom configuration
C of a bottom SCC B ⊆ B. By assumption, we know that
Stb is reachable from C , so there exists C ′ ∈ Stb such that
C

∗−→ C ′. This entails C ′ ∈ B. Since for all D ∈ Stb, if
D

∗−→ D′ then D′ ∈ Stb, we obtain that B ⊆ Stb. Every
configuration of Stb is a b-consensus so π converges to b.

Assume thatP computes ϕ, i.e. that every fair execution
starting in Ib converges to b for b ∈ {0, 1}. Let us show that
post∗(Ib) ⊆ pre∗(Stb) holds. ConsiderC ∈ post∗(Ib). There
exists C0 ∈ Ib such that C0

∗−→ C and, by Lemma 2.11, this
finite execution can be extended to a fair infinite execution π .
Since P is well-behaved, the execution contains a bottom
configuration C ′ of a bottom SCC B ⊆ B. If B ⊆ Stb
then C ∈ pre∗(Stb) and our proof is done. Suppose this is
not the case, i.e. B ∩ Stb �= ∅. This means that there is a
configuration Ĉ /∈ Conb that is in B. It is thus reachable
from any configuration of π and so by fairness it is reached
infinitely often. Thus π does not converge to b, contradicting
the correctness assumption. ��

A second characterization. Proposition 2.12 is useful when
it is possible to compute adequate finite representations of
the sets post∗(Ib) and pre∗(Stb). We will later see that this
is the case for IO and DO protocols. Unfortunately, such
finite representations have not yet been found for PP or for
transmission protocols. For this reason, our results for these
classes will be based on a second characterization.

Let P = (Conf,Σ, Step, I , O) be a well-behaved gen-
eralized protocol, and let B denote the set of bottom
configurations of P . Further, for every b ∈ {0, 1}, let Bb

denote the set of configurations C ∈ B such that every
configuration C ′ reachable from C satisfies O(C ′) = b.

Equivalently, Bb
def= B ∩ Stb.

Observe that every fair execution of a well-behaved pro-
tocol eventually gets trapped in a bottom strongly-connected
component of the configuration graph and, by fairness, visits
all its configurations infinitely often. Further, if any configu-
ration of the SCC belongs to Bb, then all of them belong to
Bb. This occurs independently of whether the SCC contains
finitely or infinitely many configurations.
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Proposition 2.13 LetP be a well-behaved generalized pro-
tocol and let ϕ be a predicate. P computes ϕ iff for every
b ∈ {0, 1} the set B \ Bb is not reachable from Ib.

Proof Assume thatB\Bb is reachable fromϕ−1(b) for some
b ∈ {0, 1}. Then there exists an input a ∈ Pop(Σ) and an
execution C0,C1, . . . ,Ci such that ϕ(a) = b, I (a) = C0,
and Ci ∈ B \ Bb. By Lemma 2.11 the execution can be

extended to a fair execution C0,C1, . . .. Since Ci+k
∗−→ Ci

for every k ≥ 0, the execution visits Ci and all its succes-
sors infinitely often. Since Ci /∈ Bb, the execution does not
converge to b. So P does not compute ϕ.

Assume thatP does not compute ϕ. Then there exists an
input a ∈ Pop(Σ), a boolean b ∈ {0, 1}, and a fair execution
π = C0,C1, . . . such that ϕ(a) = b and I (a) = C0, but π

does not converge to b. SinceP is well-behaved, π contains
a configuration Ci ∈ B. Since π does not converge to b,
there is j > i such that O(C j ) is undefined, or defined but
different from b. Since C j belongs to the same SCC as Ci ,
we have Ci /∈ Bb. ��

3 Lower bounds for observationmodels

We prove that the correctness problem is PSPACE-hard for
IO protocols and Π

p
2 -hard for DO protocols, and that these

results also hold for the single-instance problem.

3.1 Correctness of IO protocols is PSPACE-hard

Weprove that the single-instance correctness and correctness
problems for IO protocols are PSPACE-hard by reduc-
tion from the acceptance problem for bounded-tape Turing
machines. We show that the standard simulation of bounded-
tape Turing machines by 1-safe Petri nets, as described for
example in [20,29], can be modified to produce an IO pro-
tocol. This can be done for IO protocols but not for DO
protocols: the simulation of the Turing machine relies on the
fact that a transition will only occur in an IO protocol if an
agent observes another agent in a certain state at the present
moment.

We fix a deterministic Turing machine M with set of con-
trol states Q, alphabet Σ containing the empty symbol ,
and partial transition function δ : Q × Σ → Q × Σ × D
(D = {−1,+1}). Let K denote an upper bound on the num-
ber of tape cells visited by the computation of M on empty
tape. We assume that K is provided with M in unary encod-
ing.

The implementation of M is the IO protocol PM

described below. Strictly speaking, PM is not a complete
protocol, only two sets of states and transitions. The rest of
the protocol,which is slightly different for the single-instance

correctness and the correctness problems, is described in the
proofs.
States of PM . The protocol PM contains two sets of cell
states and head statesmodeling the state of the tape cells and
the head, respectively. The cell states are:

– off[σ, n] for each σ ∈ Σ and 1 ≤ n ≤ K . An agent in
off[σ, n] denotes that cell n contains symbol σ , and the
cell is “off”, i.e., the head is not on it.

– on[σ, n] for each σ ∈ Σ and 1 ≤ n ≤ K , with analogous
intended meaning.

The head states are:

– at[q, n] for each q ∈ Q and 1 ≤ n ≤ K . An agent in
at[q, n] denotes that the head is in control state q and at
cell n.

– move[q, σ, n, d] for each q ∈ Q, σ ∈ Σ , 1 ≤ n ≤ K
and every d ∈ D such that 1 ≤ n + d ≤ K . An agent in
move[q, σ, n, d] denotes that head is in control state q,
has left cell n afterwriting symbolσ on it, and is currently
moving in the direction given by d.

Finally, the protocol also contains two special states observer
and success. Intuitively,PM uses them to detect that M has
accepted.
Transitions of PM . Intuitively, the implementation of M
contains a set of cell transitions in which a cell observes
the head and changes its state, a set of head transitions in
which the head observes a cell. Each of these sets contains
transitions of two types. The set of cell transitions contains:

– Type 1a: A transition off[σ, n] at[q,n]−−−−→ on[σ, n] for every
state q ∈ Q, symbol σ ∈ Σ , and cell 1 ≤ n ≤ K .
The n-th cell, currently off, observes that the head is on
it, and switches itself on.

– Type 1b: A transition on[σ, n] move[q,σ ′,n,d]−−−−−−−−→ off[σ ′, n]
for every q ∈ Q, σ ∈ Σ , and 1 ≤ n ≤ K such that
1 ≤ n + d ≤ K .
The n-th cell, currently on, observes that the head has
left after writing σ ′, and switches itself off (accepting
the character the head intended to write).

The set of head transitions contains:

– Type 2a: A transition

at[q, n] on[σ,n]−−−−→ move[δQ(q, σ ), δΣ(q, σ ), n, δD(q, σ )]

for every q ∈ Q, σ ∈ Σ , and 1 ≤ n ≤ K such that
1 ≤ n + δD(q, σ ) ≤ K .
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off[1,n]

off[0,n]

on[1,n]

on[0,n]

off[1,n+1]

off[0,n+1]

on[1,n+1]

on[0,n+1]

at[q,n]

at[q’,n]

at[q,n+1]

at[q’,n+1]move[q’,1,n,1]

Fig. 1 Some of the states and transitions involved inmodelling a Turing
machine

The head, currently on cell n, observes that the cell is on,
writes the new symbol on it, and leaves.

– Type 2b: A transition move[q, σ, n, d] off[σ,n]−−−−→ at[q, n +
d] for every q ∈ Q, σ ∈ Σ , and 1 ≤ n ≤ K such that
1 ≤ n + d ≤ K .
The head, currently moving, observes that the old cell
has turned off, and places itself on the new cell.

Figure 1 graphically represents some of the states and
transitions ofPM ; the double arcs indicates the states being
observed. We define the configuration of PM that corre-
sponds to a given configuration of the Turing machine.

Definition 3.1 Given a configuration c of M with control
state q, tape content σ1σ2 · · · σK , and head on cell n ≤ K ,
let Cc be the configuration that puts one agent in off[σi , i]
for each 1 ≤ i ≤ K , one agent in at[q, n], and no agents
elsewhere.

Theorem 3.2 below formalizes the relation between the
Turing machine M and its implementation PM .

Theorem 3.2 For every two configurations c, c′ of M that

write at most K cells: c −→ c′ iff Cc
t1t2t3t4−−−−→ Cc′ in PM for

some transitions t1, t2, t3, t4 of types 1a, 2a, 1b, 2b, respec-
tively.

Proof ByLemmaA.3, for all c there is either zero or one pos-
sibility for the sequence t1, t2, t3, t4 starting in Cc. It is easy
to see from the definition of steps configurationmove[·, ·, ·, ·]
states that if such a sequence exists, it results in c′ such that
c −→ c′. If such a sequence doesn’t exist, the failure must
occur when trying to populate a move[·, ·, ·, ·] state. In that
case the configuration c must be blocked, either by the tran-
sition being undefined or by going out of bounds. ��

Now we can finally prove the PSPACE lower bound.

Theorem 3.3 The single-instance correctness and correct-
ness problems for IO protocols are PSPACE-hard.

Proof By reduction from the following problem: Given a
polynomially space-bounded deterministic Turing machine

M with two distinguished states qacc, qrej , such that the com-
putation of M on empty tape ends when the head enters for
the first time qacc or qrej (and one of the two occurs), decide
whether M accepts, i.e., whether the computation on empty
tape reaches qacc. The problem is known to be PSPACE-hard.

Single-instance correctness.Weconstruct a protocolP and
an input D0 such that M accepts on empty tape iff all fair
executions ofP starting at the configuration I (D0) converge
to 1.

Definition of P . LetPM be the IO protocol implementation
ofM .We add two states toPM , called observer and success.
We also add transitions allowing an agent in state observer
to move to success by observing any agent in a state of the
form at[qacc, i], as well as transitions allowing an agent in
success to “attract” agents in all other states to success:

(i) observer
at[qacc,i]−−−−−→ success for every 1 ≤ i ≤ K , and

(ii) q
success−−−−→ success for every q �= success.

Further, we set the output function to 1 for the state success,
and to 0 for all other states. Finally, we choose the alphabet of
input symbols ofP as {1, 2, . . . , K+2}, and define the input
function as follows: ι(i) = off[ , i] for every 1 ≤ i ≤ K ;
ι(K + 1) = at[q0, 0]; and ι(K + 2) = observer.

Definition of D0. We choose D0 as the input satisfying
D0(i) = 1 for every input symbol of P . It follows that
I (D0) is the configuration ofP corresponding to the initial
configuration of M on empty tape. By Theorem 3.2, the fair
executions ofP from I (D0) simulate the execution of M on
empty tape.

Correctness of the reduction. If M accepts, then, since P
simulates the execution of M on empty tape, every fair exe-
cution of P starting at I (D0) eventually puts an agent in a
state of the form at[qacc, i]. This agent stays there until the
agent in state observer eventually moves to success (transi-
tions of (i)), after which all agents are eventually attracted
to success (transitions of (ii)). So all fair computations ofP
starting at I (D0) converge to 1. If M rejects, then no com-
putation of P starting at I (D0) (fair or not) ever puts an
agent in success. Since all other states have output 0, all fair
computations of P starting at I (D0) converge to 0.

Correctness. Notice that the hardness proof for single-
instance correctness establishes PSPACE-hardness already
for restricted instances (P, D) satisfying D(q) ∈ {0, 1}
for every state q. Call this restricted variant the 0/1-single-
instance correctness problem for IO. We claim that the 0/1-
single-instance correctness problem for IO is polynomial-
time reducible to the correctness problem for IO. By
PSPACE-hardness of the 0/1-single-instance correctness
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problem for IO, the claim entails PSPACE-hardness for the
latter.

Let us now show the claim. Given an IO protocol P and
some configuration D for the 0/1-instance-correctness prob-
lem, we provide a polynomial-time construction of an IO
protocol P ′ such that P ′ computes the constant predicate
ϕ(x) = 0 if and only if every fair run ofP starting in D sta-
bilizes to 0. It is well known that, given two protocolsP1 and
P2 with n1 and n2 states and computing two predicates ϕ1

and ϕ2, it is possible to construct a third protocol computing
ϕ1 ∧ ϕ2, often called the synchronous product, whose states
are pair of states ofP1 andP2, and has therefore O(n1 ·n2)
states (see e.g. [6]).We defineP ′ as the synchronous product
of P with a protocol PD that computes whether the input
is equal to D. The output function of P ′ maps the product
state (q1, q2) to 1 if and only if both q1 and q2 map to output
1 in their respective protocols. Thus, a fair run of P ′ stabi-
lizes to 1 if and only if the input configuration equals D and
P stabilizes to 1 for input D, which is precisely the case
if (P, D) is a positive instance for the 0/1-single-instance
problem.

It remains to show that PD is polynomial-time con-
structible. Such a protocol is well-known, but we repeat
the definition. Let D = (d1, . . . , dm) with di ∈ {0, 1},
and let i1 ≤ i2 ≤ . . . ≤ ik be the maximal sequence of
indices satisfying di j = 1 for every j . Since every pop-
ulation has at least two agents, we have k ≥ 2. We first
construct an IO protocol Pψ that computes the predicate
ψ = di1 ≥ 1 ∧ di2 ≥ 1 ∧ . . . ∧ dik ≥ 1, using m + k − 1
states: The states ofPψ are QP � {2, . . . , k} where QP is
the set of states of P . The input mapping of Pψ is identi-
cal to the input mapping of P . Let qi j denote the state that
corresponds to the entry di j in D. The transitions ofPψ are
given by

qi2
qi1−→ 2

qi j
j−1−−→ j for every 1 < j ≤ k,

q
k−→ k for every state q.

All states except k shall map to output 0. It is readily seen that
Pψ computes ψ . Further notice that the predicate x = D is
equivalent to ψ ∧ |x| ≤ k. Moreover, it is well-known that
the right conjunct |x| ≤ k is computable with k states in an
immediate observation protocol (see e.g. [6]), and thus we
can define PD as the synchronous product of the protocol
Pψ with the protocol that computes |x| ≤ k, using poly(k)
states. This completes the proof. ��

3.2 Correctness of DO protocols is5p
2-hard

We show that the single-instance correctness and the cor-
rectness problems are Π

p
2 -hard for DO protocols, where

Π
p
2 = coNPcoNP is one of the two classes at the second

level of the polynomial hierarchy [48]. Consider the natural
complete problem for Σ

p
2 : Given a boolean circuit Γ with

inputs x = (x1, . . . , xn) and y = (y1, . . . , ym), is there a
valuation of x such that for every valuation of y the circuit
outputs 1?We call the inputs of x and y existential and univer-
sal, respectively. Given Γ with inputs x and y, we construct
in polynomial time a DO protocol PΓ with input symbols
{x1, . . . , xn} that computes the false predicate, i.e., the pred-
icate answering 0 for all inputs, iff Γ does not satisfy the
property above. This shows that the correctness problem for
DO protocols is Π

p
2 -hard. A little modification of the proof

shows that single-instance correctness is also Π
p
2 -hard.

The section is divided in several parts. We first introduce
basic notations about boolean circuits. Thenwe sketch a con-
struction that, given a boolean circuit Γ , returns a circuit
evaluation protocol P̂Γ that nondeterministically chooses
values for the input nodes, and simulates an execution of Γ

on these inputs. In a third step we add some states and tran-
sitions to P̂Γ to produce the final DO protocol PΓ . The
fourth and final step proves the correctness of the reduction.

Boolean circuits. A boolean circuit Γ is a directed acyclic
graph. The nodes of Γ are either input nodes, which have no
incoming edges, or gates, which have at least one incoming
edge. A gate with k incoming edges is labeled by a boolean
operation of arity k. We assume that k is bounded by some
constant. This assumption is innocuous since it is well known
that every boolean function can be implemented using a com-
bination of gates of constant arity. The nodes with outgoing
edges leading to a a gate g are called the arguments of g.
There is a distinguished output gate go without outgoing
edges. We assume that every node is connected to the output
gate by at least one path.

A circuit configuration assigns to each input node a
boolean value, 0 or 1, and to each gate a value, 0, 1, or �,
where�denotes that the value has not yet been computed and
so it is still unknown. A configuration is initial if it assigns
� to all gates. The step relation between circuit configura-
tions is defined as usual: a gate can change its value to the
result of applying the boolean operation to the arguments; if
at least one of the arguments has value �, then by definition
the result of the boolean operation is also �.

The protocol P̂Γ . Given a circuit Γ with output node
go, we define the circuit evaluation protocol P̂Γ =
(Q, M, δs, δr ,Σ, ι, o). As mentioned above, P̂Γ nondeter-
ministically chooses input values for Γ , and simulates an
execution on them.

States. The set Q of states contains all tuples (n, vn, arg, vo),
where:
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– n is a node of Γ (either an input node or a gate);
– vn ∈ {0, 1,�} represents the current opinion of the agent

about the value of n;
– arg ∈ {0, 1,�}k , where k is the number of arguments of
n, represents the current opinion of the agent about the
values of the arguments of n (if n is an input node then
arg is the empty tuple);

– vo ∈ {0, 1,�} represents the current opinion of the agent
about the value of the output gate go.

Alphabet, input and output functions. The set Σ of input
symbols is the set of nodes of Γ . The initial state mapping ι

maps each node n to the state ι(n) := (n,�, (�, . . . ,�),�),
i.e., to the statewith node n, andwith all values still unknown.
The output function is defined by

o(n, vn, arg, vo) := if vo �= � then vo else 0 .

Intuitively, agents have opinion 1 if they think the circuit
outputs 1, and 0 if they think the circuit outputs 0 or has not
yet produced an output.

Messages. The set M of messages contains all pairs (n, v),
where n is a node, and v ∈ {0, 1,�} is a value.
Transitions. An agent in state (n, vn, arg, vo) can

– Send the message (n, vn), i.e., an agent can send its node
and its current opinion on the value of the node.

– Receive amessage (m, vm), afterwhich the agent updates
its state as follows:

(1) If n is an input node and vn = �, then if m = n
the agent moves to state (n, 0, arg, vo), i.e., updates
its value to 0, and if m = go it moves to state
(n, 1, arg, vo), i.e., updates its value to 1. Intu-
itively, this is an artificial but simple way of ensuring
that each input node nondeterministically chooses a
value, 0, or 1, depending on whether it first receives
a message from itself, or from the output node. 2

(2) If n is a gate andm is an argument of n, then the agent
moves to (n, v′

n, arg
′, vo), where arg′ is the result of

updating the value of m in arg to vm , and v′
n is the

result of applying the boolean operation of the gate
to arg.

(3) If n is any node,m = go, and vm �= �, then the agent
moves to (n, 0, arg, vm), i.e., it updates its opinion of
the output of the circuit to vm .

2 Alternatively, one could include an explicit rule for this non-
deterministic behavior. We choose to model it this way to preserve the
deterministic definition of the DO model introduced by Angluin et al.
in [7].

Notice that if an agent is initially in state ι(n), then it remains
forever in states having n as node. So it makes sense to speak
of the node of an agent.

Let us examine the behaviour of P̂Γ from the initial con-
figurationC0 that puts exactly one agent in state ι(n) for every
node n. The executions of P̂Γ from C0 exactly simulate the
executions of the circuit. Indeed, the transitions of (1) ensure
that each input agent (i.e., every agent whose node is an input
node) eventually chooses a value, 0 or 1. The transitions of
(2) simulate the computations of the gates. Finally, the tran-
sitions of (3) ensure that every node eventually updates its
opinion of the value of go to the value computed by Γ for the
chosen input. The following lemma, proved in the “Appendix
B”, formalizes this.

Lemma 3.4 Let Γ be a circuit and let P̂Γ be its evaluation
protocol. Let C0 be the initial configuration that puts exactly
one agent in state ι(n) for every node n. A fair execution
starting at C0 eventually reaches a configuration C where
each input agent is in a state with value 0 or 1, and these
values do not change afterwards. The tail of the execution
starting at C converges to a stable consensus equal to the
output of Γ on these assigned inputs.

Observe, however, that P̂Γ also has initial configurations
whose executions may not simulate any execution of Γ . For
example, this is the case of an initial configuration that puts
two agents in state ι(n) for some node n, and the executions in
which one of these agents chooses input 0 for n, and the other
input 1. It is also the case of an initial configuration that puts
zero agents in state ι(n) for some node n. Observe further
that P̂Γ can only select values for the inputs, and simulate
an execution of Γ . We need a protocol that selects values for
the existential inputs, and can then repeatedly simulate the
circuit for different values of the universal inputs. These two
problems are solved by appropriately extending P̂Γ with
new states and transitions.

The protocolP0. We add a new state and some transitions
to P̂Γ in order to obtain the final protocol P̂Γ .

– Add a new failure state ⊥ with o(⊥) = 0 to the set of
states Q, and a new message m⊥ to the set of messages
M .

– Add the following send and receive transitions:

(4) An agent in state ⊥ can send the message m⊥.
(5) An agent in state ⊥ that receives any message

(including m⊥) stays in state ⊥; an agent (in any
state, including ⊥) that receives m⊥ moves to state
⊥.
(In particular, if some agent ever reaches state⊥, then
all agents eventually reach state⊥ and stay there, and
so the protocol converges to 0.)
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(6) If an agent in state (n, vn, arg, vo), where n is an exis-
tential input node and vn �= �, receives a message
(n, v′

n) such that vn �= v′
n �= �, then the agent moves

to state ⊥.
(Intuitively, if an agent discovers that another agent
has chosen a different value for the same existen-
tial input, then the agent moves to ⊥, and so, by the
observation above, the protocol converges to 0.)

(7) If an agent in state (n, vn, arg, vo), where n is a
universal input node and vn �= �, receives a mes-
sage (go, 1), then the agent moves to state (n, 1 −
vn, arg, vo).
(Intuitively, this allows the protocol to flip the val-
ues of any universal inputs whenever the output gate
takes value 1.)

Proof of the reduction. We claim thatPΓ does not compute
the false predicate (i.e., the predicate that answers 0 for every
input) iff ∃x∀yΓ (x, y) = 1, that is, if there is a valuation of
the existential inputs of Γ such that, for every valuation of
the universal inputs, Γ returns 1. Let us sketch the proof of
the claim. We consider two cases:

∃x∀yΓ (x, y) = 1 is true. Let C0 be the initial configuration
that puts exactly one agent in state ι(n) for every node n. We
show that not every fair execution from C0 converges to 0,
and so that PΓ does not compute the 0 predicate.

Let x0 be a valuation of x such that ∀yΓ (x0, y) = 1.
The execution proceeds as follows: first, the agents for the
inputs of x receive messages, sent either by themselves or
by the output node, that make them choose the values of
x0. An inspection of the transitions of PΓ shows that these
values cannot change anymore. Let C be the configuration
reached after the agents have received the messages. Since
Γ (x0, y) = 1 holds for every y, by Lemma 3.4 every con-
figuration C ′ reachable from C can reach a consensus of 1.
Indeed, it suffices to first let the agents receive all messages
of C ′ (which does not change the values of the existential
inputs), then let the agents for y that still have value � pick a
boolean value (nondeterministically), and then let all agents
simulate the circuit. Since Γ (x0, y) = 1 holds for every y,
after the simulation the node for go has value 1. Finally, we
let all agents move to states satisfying vo = 1.

∃x∀yΓ (x, y) = 1 is false. This case requires a finer analy-
sis. We have to show that PΓ computes the false predicate,
i.e., that every fair execution from every initial configura-
tion converges to 0. By fairness, it suffices to show that for
every initial configuration C0 and for every configuration C
reachable from C0, it is possible to reach from C a stable
consensus of 0.

Thanks to the⊥ state,which is introduced for this purpose,
configurations C in which two agents for the same existen-

tial input node choose inconsistent values eventually reach
the configuration with all agents in state ⊥, which is a stable
consensus of 0. Thanks to the assumption that every node is
connected to the output gate by at least one path, configura-
tions C in which there are no agents for some node cannot
reach any configuration in which some agent populates a
state with vo = 1, and so C itself is a stable consensus of 0.
So, loosely speaking, configurations in which the agents pick
more than one value, or can pick no value at all, for some
existential input eventually reach a stable consensus of 0.

Consider the case in which, for every node n, the config-
uration C has at least one agent in a state with node n. By
fairness, C eventually reaches a configuration C ′ at which
each agent for an existential input has chosen a boolean value,
and we can assume that all agents for the same input choose
the same value. This fixes a valuation x0 of the existential
inputs. Recall that this valuation cannot change any more,
since the protocol has no transitions for that. By assump-
tion, there is y0 such that Γ (x0, y0) = 0. We sketch how to
reach a stable consensus of 0 from C ′. First, let the agents
consume all messages of C ′, and let C ′′ be the resulting con-
figuration. If C ′′ cannot reach any configuration with circuit
output 1, then the configuration reached after informing each
agent about the value of go is a stable consensus of 0, and we
are done. Otherwise, starting from such a configuration with
output 1, let the agents send and receive the appropriate mes-
sages so that all agents for y choose the values of y0. After
that, let the agent for go consume all remaining messages, if
any, and let the protocol simulate Γ on x0, y0. Notice that the
simulation can be carried out even if there aremultiple agents
for the same gate g. Indeed, in this case, for every argument
g′ of g, we let at least one of the agents corresponding to
g′ send the message with the correct value for g′ to all the
agents for n. Since Γ (x0, y0) = 0 by assumption, the agents
for go eventually update their value to 0, and eventually all
agents change their opinion about the output of the circuit
to 0. Let C ′′′ be the configuration so reached. We claim that
C ′′′ is a stable consensus of 0. Indeed, the state of a gate can-
not change without a change in the argument values or the
output gate go. Therefore it is enough to prove that the input
values cannot change. Since no transition can change x0, this
can only happen by changing the values y0 of the universal
inputs. But these values can only change by the transitions
of (7), which require the agent to receive a message (go, 1).
This is not possible because the current value of go is 0, and
the claim is proved.

This concludes the reduction to the correctness problem
for DO protocols. We can easily transform it into a reduction
to the single-instance correctness problem. Indeed, it suffices
to observe that the executions of the circuit Γ correspond to
the fair executions ofPΓ from the unique initial configura-
tion C0 with exactly one agent in state ι(n) for every node n.
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So PΓ computes 0 from C0 iff ∃x∀yΓ (x, y) = 1, and we
are done. So we have:

Theorem 3.5 The single-instance correctness and correct-
ness problems for DO protocols are Π

p
2 -hard.

4 Reachability in observationmodels: the
pruning and shortening theorems

In the next three sections we prove that the correctness prob-
lem is PSPACE-complete for IO protocols and Π

p
2 -complete

for DO protocols. These are the most involved results of this
paper. They can only be obtained after a detailed study of
the reachability problem of IO and DO protocols, which we
believe to be of independent interest. The roadmap for the
three sections is as follows.

Section 4. Section 4.1 introduces message-free delayed-
observation protocols (MFDO), an auxiliary model very
close to DO protocols, but technically more convenient. As
its name indicates, agents ofMFDOprotocols do not commu-
nicate bymessages. Instead, they directly observe the current
or past states of other agents. As a consequence, a config-
uration of an MFDO protocol is completely determined by
the states of its agents, which has technical advantages. At
the same time, MFDO and DO protocols are very close, in
the following sense. We call a configuration of a DO proto-
col a zero-message configuration if all messages sent by the
agents have already been received. Given a DO protocol P
we can construct an MFDO protocol P̂ , with the same set
of states, such that for any two zero-message configurations

Z , Z ′ of P , we have Z
∗−→ Z ′ in P iff Z

∗−→ Z ′ in P̂ .
(Observe that, sinceP and P̂ have the same set of states, a
zero-message configuration of P is also a configuration of
P̂ .) So, any question about the reachability relation between
zero-message configurations ofP canbe “transferred” toP̂ ,
and answered there.

The rest of the section is devoted to the Pruning and
Shortening Theorems. Say that a configuration C is cov-
erable from C ′ if there exists a configuration C ′′ such that

C ′ ∗−→ C ′′ ≥ C . The Pruning Theorems state that if a con-
figuration C of a protocol with n states is coverable from
C ′, then it is also coverable from a “small” configuration
D ≤ C ′, where small means |D| ≤ |C | + f (n) for a low-
degree polynomial f . The Shortening Theorem states that

every execution C
∗−→ C ′ can be “shortened” to an execution

C
ξ−→ C ′, where ξ = tk11 tk22 . . . tkmm and m ≤ f (n) for some

low-degree polynomial f that depends only on n, not on C
or C ′. Intuitively, if we assume that the ki occurrences of ti
are executed synchronously in one step, then the execution
only takes m steps.

Section 5. This section applies the Pruning and Shortening
Theorems to the reachability problem between counting sets
of configurations. Intuitively, a counting set of configurations
is a union of cubes, and a cube is the set of all configurationsC
lying between a lower bound configuration L and an upper
bound configuration U with possibly infinite components.
Observe that counting sets may be infinite, but always have a
finite representation. The reachability problem for counting
sets asks, given two counting sets C and C ′, whether some
configuration of C ′ is reachable from some configuration of
C ′. The section proves two very powerful Closure Theorems
for IO and DO. The Closure Theorems state that for every
counting set C , the set post∗(C ) of all configurations reach-
able from C is also a counting set; further, the same holds
for the set pre∗(C ) of all configurations from which C can
be reached. So, loosely speaking, counting sets are closed
under reachability. Furthermore, the section shows that if C
has a representation with “small” cubes, in a sense to be
determined, then so do pre∗(C ) and post∗(C ).

Section 6. This section applies the Pruning, Shortening,
and Closure Theorems to prove the PSPACE and Π

p
2 upper

bounds for the correctness problems of IO and DO protocols,
respectively. The section shows that this is also the complex-
ity of the single-instance correctness problems.

Notation. Throughout these sections, the last three compo-
nents of the tuples describing protocols (input symbol set
Σ , initial set mapping ι, and output mapping o) play no role.
Therefore we represent a DO protocol by the simplified tuple
(Q, M, δs, δr ), and an IO protocol as just a pair (Q, δ).

Section 4.2 proves the Pruning Theorems for IO and
MFDO protocols. Section 4.3 proves the Shortening Theo-
rem for MFDO protocols. Finally, making use of the tight
connection between MFDO and DO protocols, Sect. 4.4
proves the Pruning and Shortening Theorems for DO pro-
tocols.

4.1 An auxiliary model: message-free
delayed-observation protocols

Immediate observation and delayed observation protocols
present similarities. Essentially, in an immediate observa-
tion protocol an agent updates its state when it observes that
another agent is currently in a certain state q, while in a
delayed observation protocol the agent observes that another
agent was in a certain state q, provided that agent emitted a
message when it was in q. In a message-free delayed obser-
vation protocol we assume that a sufficient amount of such
messages is always emitted by default; this allows us to dis-
pense with the message, and directly postulate that an agent
can observe whether another agent went through a given
state in the past. So the model is message-free, and, since
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agents can observe events that happened in the past, we call
it “message-free delayed observation”.

Definition 4.1 Amessage-free delayed observation (MFDO)
protocol is a pairP = (Q, δ), where Q is a set of states and
δ : Q2 → Q is a transition function. Considering δ as a set of
transitions, we write q

o−→ q ′ for ((q, o), q ′) ∈ δ. The set of
finite executions ofP is the set of finite sequences of config-
urations defined inductively as follows. Every configuration
C0 is a finite execution. A finite execution C0,C1, . . . ,Ci

enables a transition q
o−→ q ′ if Ci (q) ≥ 1 and there exists

j ≤ i such that C j (o) ≥ 1. (We say the agent of Ci at state
q observes that there was an agent in state o at C j .) If Ci

enables q
o−→ q ′, then C0,C1, . . . ,Ci ,Ci+1 is also a finite

execution of P , where Ci+1 = Ci − �q� + �q ′�. An infi-
nite sequence of configurations is an execution of P if all
its finite prefixes are finite executions.

We assign to every DO protocol an MFDO protocol.

Definition 4.2 LetPDO = (Q, M, δr , δs) be a DO protocol.
The MFDO protocol corresponding to PDO is PMFDO =
(Q, δ), where δ is the set of transitions q

o−→ q ′ such that
q ′ = δr (q,m) for some message m ∈ M , and o is a state
satisfying δs(o) = (m, o).

Notice that if Q has multiple states o1, . . . , ok such that
δs(oi ) = (m, oi ) for every 1 ≤ i ≤ k, thenPMFDO contains

a transition q
oi−→ q ′ for every 1 ≤ i ≤ k.

Example 4.3 Consider the DO protocol PDO = (Q, M,

δr , δs)where Q = M = {a, b, ab} andΣ = {a, b}. The send
transitions are given by δs(q) = (q, q) for all q ∈ Q, i.e.,
every state can send a message with its own identity to itself,

denoted q
q+−→ q. The receive transitions are δr (a, b) = ab

and δr (b, a) = ab, denoted a
b−−→ ab and b

a−−→ ab.
The corresponding MFDO protocol isPMFDO = (Q, δ),

where δ contains the transitions a
b−→ ab and b

a−→ ab.

Notice that an agent of a DO protocol can “choose” not
to send a message when it goes through a state, and thus
not enable a future transition that consumes such a message.
This does not happen in MFDO protocols. In particular, if a
configuration C of an MFDO protocol enables a transition
q

o−→ q, then the transition remains enabled forever, and in
particular Cω is an execution. This is not the case for a tran-

sition q
o−−→ q ′ of a DO protocol, because each occurrence

of the transition consumes onemessage, and eventually there
are no messages left.

Despite this difference, a DO protocol and its corre-
sponding MFDO protocol are equivalent with respect to
reachability questions in the following sense. Observe that
a configuration of PDO with zero messages is also a con-
figuration of PMFDO. From now on, given a DO protocol,

we denote by Z the set of its zero-message configurations.
For every Z ∈ Z , we overload the notation Z by also using
it to denote the configuration of the corresponding MFDO
protocol which is the restriction of Z to a multiset over Q.
The following lemma shows that for any two configurations
Z and Z ′ with zeromessages, Z ′ is reachable from Z inPDO

iff it is reachable in PMFDO.

Lemma 4.4 Let PDO = (Q, M, δs, δr ) be a DO protocol,
and let PMFDO = (Q, δ) be its corresponding MFDO pro-
tocol. Let Z , Z ′ ∈ Z be two zero-message configurations.

Then Z
∗−→ Z ′ inPDO if and only if Z

∗−→ Z ′ inPMFDO.

Proof DO to MFDO. Let Z
ξ−→ Z ′ be an execution of

PDO with Z , Z ′ ∈ Z . Let ξ = t1t2 · · · tn , and let
C0,C1,C2, . . . ,Cn be the configurations describing the
number of agents in each state along ξ . In particular,C0 = Z
and Cn = Z ′. Define the sequence τ as follows. For every
transition ti :

– If ti is a send transition (i.e., if ti = q
m+−−→ q for some q

and m), then delete ti .
Observe that, since the occurrence of ti does not change
the state of any agent, we have Ci = Ci+1, and so in
particular Ci

ε−→ Ci+1 inPMFDO.

– If ti is a receive transition, i.e., if ti = q
m−−−→ q ′ for some

q, q ′, and m, then replace it by the transition q
o−→ q ′,

where o is any state satisfying t j = o
m+−−→ o for some

index j ≤ i .
Observe that the transition t j must exist, because every
message received has been sent. Further, since both ti and

q
o−→ q ′ move an agent from q to q ′, we haveCi

ui−→ Ci+1

inPMFDO for ui = q
o−→ q ′.

The result follows from the fact that in both cases we have
Ci

∗−→ Ci+1 inPMFDO.
MFDO to DO. Let Z

τ−→ Z ′ be an execution ofPMFDO, and
let τ = u1u2 · · · un , where ui = qi

oi−→ qi+1. We define the

sequence ξ , such that Z ′ ξ−→ Z , in two steps as follows.

1. First replace every transition ui by qi
m−−−→ qi+1 for a

message m ∈ M such that δs(oi ) = (m, oi ). Transition

qi
m−−−→ qi+1 exists in PDO by construction of PMFDO.

2. For eachmessagem ∈ M in ξ , denote by qm the state such
that δs(qm) = (m, qm) and let #(m, ξ) denote the number
of times m is consumed along ξ . If there are multiple
states with such property, we choose the state that occurs
earliest in the original execution.Add#(m, ξ) iterations of

qm
m+−−→ qm at the first configuration along ξ inwhich state

qm is populated. This ensures that the messages that the
agents need to move from qi to qi+1 are always available
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to be received and that all the messages will be consumed
at the end of the execution.

Thus ξ is enabled and goes from Z ′ to Z . ��

4.2 Pruning theorems for IO andMFDO protocols

The Pruning Theorems for IO and MFDO protocols are

proved in the same way. Given an execution C ′′ ξ−→ C ′ ≥ C ,
we examine the trajectories of the different agents during the
execution of ξ . For this, we assign trajectories to the agents
in an arbitrary way, but consistent with the configurations
reached during the execution. For example, consider a proto-
col with states q1, q2, q, q ′

1, q
′
2 in which two agents, initially

in states q1 and q2, first move to q, after which one of them
moves to q ′

1 and the other to q ′
2. Since the two agents are

indistinguishable, we can choose to assume that their trajec-
tories were q1, q, q ′

1 and q2, q, q ′
2, or that they were q1, q, q ′

2
and q2, q, q ′

1. After “splitting” the execution into a multiset
of trajectories, one for each agent, we “prune” the multiset,
keeping only those trajectories that are “necessary” to cover
C . This yields a smaller multiset, which we then “transform
back” into an execution.

4.2.1 Pruning theorem for IO protocols

Definition 4.5 A trajectory of an IO protocol P = (Q, δ)

is a sequence τ = q1 . . . qn of states. We let τ(i) denote the
i-th state of τ . The i -th step of τ is the pair τ(i)τ (i + 1) of
adjacent states.

A history is a multiset of trajectories of the same length.
The length of a history is the common length of its trajecto-
ries. Given a history H of length n and index 1 ≤ i ≤ n, the
i -th configuration of H , denoted Ci

H , is defined as follows:
for every state p, Ci

H (q) is the number of trajectories τ ∈ H
such that τ(i) = q. The configurationsC1

H andCn
H are called

the initial and final configurations of H .

Example 4.6 Let P = (Q, δ) be the IO protocol with Q =
{q1, q2, q3} and δ = {t1, t2, t3, t4}, where

t1 = q1
q1−→ q2 t3 = q1

q3−→ q3
t2 = q2

q2−→ q3 t4 = q2
q3−→ q3

We use this protocol as running example throuhout the sec-
tion. Histories ofP can be graphically represented. Figure 2
shows a history H of length 7. It consists of five trajectories:
one trajectory from q3 to q3 passing only through q3, and
four trajectories from q1 to q3 which follow different state
sequences. The first configuration of H is C1

H = (4, 0, 1)
and the seventh and last configuration is C7

H = (0, 0, 5).

Fig. 2 Realizable history in IO protocol with three states

Definition 4.7 A history H of length n ≥ 1 is realizable in
an IO protocolP if there exist transitions t1, . . . , tn−1 ofP
and numbers k1, . . . , kn−1 ≥ 0 such that

C1
H

t
k1
1−→ C2

H · · ·Cn−1
H

t
kn−1
n−1−−−→ Cn

H ,

where for every transition t we define C
t0−→ C ′ iff C = C ′.

Remark 4.8 Notice that histories of length 1 are always
realizable. Observe also that there may be more than one
realizable history corresponding to afiring sequence, because
the firing sequence does not keep track of which agent visits
which states, while the history does.

Example 4.9 The history H of Fig. 2 is realizable in P .

Indeed, we have C1
H

t3 t21 t3 t2 t4−−−−−−→ C7
H .

We introduce well structured histories. Intuitively, they
are the histories in which at every step all agents that move
execute the same transition, and so there are states q, q ′ such
that all the agents move from q to q ′.

Definition 4.10 A step τ(i)τ (i + 1) of a trajectory τ is hor-
izontal if τ(i) = τ(i + 1), and non-horizontal otherwise.

A history H of length n is well structured if for every
1 ≤ i ≤ n − 1 one of the two following conditions hold:

(i) For every trajectory τ ∈ H , the i-th step of τ is hori-
zontal.

(ii) For every two trajectories τ1, τ2 ∈ H , if the i-th steps
of τ1 and τ2 are non-horizontal, then they are equal.

Example 4.11 The history of Fig. 2 is well structured. The
third step of all five trajectories is horizontal. The second
step is horizontal for three trajectories, and non-horizontal
for the other two; the two non-horizontal steps are equal,
namely q1 q2.

Characterizing histories. We show that the set of exe-
cutions of an IO protocol is completely determined by its
well-structured and realizable histories. The proof is purely
technical, and can be found in the “Appendix C”.

Lemma 4.12 Let P be an IO protocol. For every configu-

ration C,C ′ the following holds: C
∗−→ C ′ iff there exists a
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well-structured and realizable history in P with C and C ′
as initial and final configurations.

We now proceed to give a syntactic characterization of the
well-structured and realizable histories.

Definition 4.13 A history H is compatible with an IO pro-
tocol P if for every trajectory τ of H and for every
non-horizontal step τ(i)τ (i + 1) of τ , the protocol P con-
tains a transition τ(i)

o−→ τ(i + 1) for a state o such that H
contains a trajectory τ ′ with τ ′(i) = τ ′(i + 1) = o.

Intuitively, a history is compatible with a protocol if for
every non-horizontal step from, say, q to q ′, the protocol has
a transition of the form q

o−→ q ′ for some observed state o.
Since the transition can only happen if an agent in q observes
o, there must be another agent in state o (the one with trajec-
tory τ ′).

Example 4.14 The history of Fig. 2 is compatible with the
IO protocol of Example 4.6. Consider for example the tra-
jectory τ = q1 q1 q2 q2 q2 q3 q3. It has two non-horizontal
steps, namely τ(2)τ (3) = q1 q2 and τ(5)τ (6) = q2 q3. The

corresponding transitions are q1
q1−→ q2 and q2

q2−→ q3.

Lemma 4.15 Let P be an IO protocol. A well-structured
history is realizable inP iff it is compatible withP .

Pruning. We introduce bunches of trajectories, and present
a lemma about pruning bunches. Then, we prove the Pruning
Theorem for IO protocols.

Definition 4.16 A bunch is a multiset of trajectories of the
same length and with the same initial and final states.

Example 4.17 The history of Fig. 2 consists of a trajectory
from q3 to q3 (which can be considered a bunch of size 1),
and a bunch of four trajectories with initial state q1 and final
state q3.

We show that every well-structured and realizable his-
tory containing a bunch of more than |Q| trajectories can
be “pruned”, meaning that the bunch can be replaced by a
smaller one, while keeping the history well-structured and
realizable.

Lemma 4.18 Let P = (Q, δ) be an IO protocol. Let H be
a well-structured and realizable history of P containing a
bunch B ⊆ H of size larger than |Q|. There exists a nonempty
bunch B ′ of size at most |Q|, of the same length and with
the same initial and final states as B, such that the history

H ′ def= H − B + B ′ (where + and − denote multiset addition
andmultiset subtraction, respectively) is alsowell-structured
and realizable.

Proof Let QB be a set of all states visited by at least one
trajectory in the bunch B. For every q ∈ QB , let f (q) and
l(q) be the earliest and the latest moment in time at which q is
visited by any of the trajectories (the first and last occurrences
can belong to different trajectories).

For every q ∈ QB , let τq = τq,1τq,2τq,3, where τq,1 is
a prefix of length f (q) − 1 of some trajectory of B with q
at the moment f (q); τq,2 = ql(q)− f (q); and τq,3 is a suffix
of some trajectory of B with the state q at the moment l(q),
starting at the moment l(q). The prefix and the suffix exist
by the definition of f (q) and l(q).

Let B ′ = {τq | q ∈ QB}, and let H ′ = H − B + B ′.
We prove that H ′ is well structured and compatible withP .
By Lemma 4.15, this proves that H ′ is well structured and
realizable inP .

Let us first show that H ′ is well structured. Notice that
every trajectory of B ′ is the concatenation of a prefix of a
trajectory of B, a sequence of horizontal steps, and a suffix
of another trajectory of B. Hence, if B ′ contains a trajectory
whose i-th step is non-horizontal, then the same holds for B.
It follows:

– If the i-th step of H satisfies condition (i) of Definition
4.10, then so does the i-th step of H ′.

– If the i-th step of H satisfies condition (ii), then all its
non-horizontal i-th steps are equal. So all non-horizontal
i-th steps of H ′ are also equal, which implies that the i-th
step of H ′ also satisfies condition (ii).

Let us now show that H ′ is compatible withP . Let τ ′ be a
trajectory of H ′, and let τ ′(i)τ ′(i+1)be a non-horizontal step

of τ ′. We show that P has a transition τ ′(i) o′−→ τ ′(i + 1),
where the state o′ satisfies that some trajectory τ ′′ ∈ H ′
satisfies τ ′′(i) = τ ′′(i + 1) = o′.

Since τ ′(i)τ ′(i + 1) is a non-horizontal step, by the argu-
ment above H contains a trajectory τ such that τ(i)τ (i+1) =
τ ′(i)τ ′(i + 1). Further, H is realizable in P by assump-
tion, and so by Lemma 4.15 H is compatible with P . So
P has a transition τ(i)

o−→ τ(i + 1), and H has a trajec-
tory τ̃ such that τ̃ (i) = τ̃ (i + 1) = o. Choose o′ := o. Since

τ(i)τ (i+1) = τ ′(i)τ ′(i+1), we have that τ ′(i) o′−→ τ ′(i+1)
is a transition of P . It remains to show that some trajectory
τ ′′ ∈ H ′ satisfies τ ′′(i) = τ ′′(i + 1) = o′. Consider two
cases:

• τ̃ /∈ B. Then τ̃ ∈ H ′. Since τ̃ (i) = τ̃ (i + 1) = o, we can
choose τ ′′ := τ̃ .

• τ̃ ∈ B. Then, since τ̃ (i) = τ̃ (i + 1) = o, we have
o ∈ QB . So f (o) ≤ i < i + 1 ≤ l(o). By the definition
of B ′, the history H ′ contains a trajectory τo for the state
o, which stays at state o from time f (o) to time l(o). So
we have τo(i)τo(i+1) = o, and we can choose τ ′′ := τo.

��
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Fig. 3 History H of Fig. 2 after pruning

Example 4.19 Consider the well-structured and realizable
history of Fig. 2. It leads from configuration (4, 0, 1) to
(0, 0, 5). The bunch B from q1 to q3 is of size four, and
so bigger than |Q| = 3. The set QB of states visited by
trajectories of B is equal to Q.

Figure 3 shows for every state q ∈ QB the first and last
moments f (q) and l(q). Lemma 4.18 shows that we can
replace B in H by the smaller bunch B ′ consisting of the tra-
jectories τq1, τq2 , τq3 , drawn in dashed lines in Fig. 3. Notice
that the non-horizontal 5-th step in H does not appear in the
newwell-structured and realizable history H ′ = H−B+B ′.
The history H ′ satisfies C1

H ′ = (3, 0, 1)
t3t1t3t4−−−−→ (0, 0, 4) =

C7
H ′ .

Using Lemma 4.18 we can now prove the Pruning Theo-
rem for IO protocols:

Theorem 4.20 (IO Pruning) LetP = (Q, δ) be an IO proto-

col, let L ′ and L be multisets of states ofP , and let C ′ ∗−→ C
be an execution of P such that L ′ ≤ C ′ and C ≥ L. There
exist configurations D′ and D such that

C ′ ∗−−−→C

≥ ≥
D′ ∗−−−→D

≥ ≥
L ′ L

and |D′| = |D| ≤ |L| + |L ′| + |Q|3.
Remark 4.21 We will often use the theorem when L ′ or L is
empty, which is why we call them multisets of states instead
of configurations.

Proof Let L ′ ≤ C ′ ∗−→ C ≥ L . By Lemma 4.12, there is a
well-structured realizable history H with C ′ and C as initial
and final configurations, respectively. Let HL ⊆ H be an
arbitrary sub(multi)set of H with themultiset of final states L ,
and HL ′ be a sub(multi)set of H with multiset of initial states
L ′. Define H0 as their union (maximum)max(HL , HL ′), and
let H ′ = H − H0. Further, for every p, p′ ∈ Q, let H ′

p,p′
be the bunch of all trajectories of H ′ with p and p′ as initial
and final states, respectively. We have

H ′ =
∑

p,p′∈Q
H ′

p,p′

So H ′ is the union of |Q|2 (possibly empty) bunches.
Applying Lemma 4.18 to each bunch of H ′ with more than
|Q| trajectories yields a new history

H ′′ =
∑

p,p′∈p

H ′′
p,p′

where the sum represents multiset addition, such that
|H ′′

p,p′ | ≤ |Q| for every p, p′ ∈ Q, and such that the history
H ′′ + H0 is well structured and realizable.

Let D′ and D be the initial andfinal configurations of H ′′+
H0. We show that D′ and D satisfy the required properties:

– D′ ∗−→ D, because H ′′ + H0 is well structured and real-
izable.

– D′ ≥ L ′ and D ≥ L , because H0 ≤ H ′′ + H0.
– |D′| ≤ |L ′| + |L| + |Q|3 because |H ′′ + H0| =

∑
p′,p |H ′′

p,p′ | + |H0| ≤ |Q|2 · |Q| + |HL ′ | + |HL | =
|L ′| + |L| + |Q|3.

This concludes the proof. ��
Remark 4.22 Aslightmodificationof our construction allows
one to prove Theorem 4.20 (but not Lemma 4.18) with
2|Q|2 overhead instead of |Q|3. We provide more details
in the “Appendix C”. However, since some results of Sect. 5
explicitly rely on Lemma 4.18, we prove Theorem 4.20 as a
consequence of Lemma 4.18 for simplicity.

4.2.2 Pruning theorem for MFDO protocols

The proof of the Pruning Theorem for MFDO protocols
is similar to the one for IO protocols. It follows the same
sequence of steps, but with some differences.

Trajectories and histories of MFDO protocols are defined
as for DO protocols. Well-structured and realizable histories
also have the same definition, and Lemma 4.12 holds, with
the same proof. Let us see an example:

Example 4.23 Recall the MFDO protocol PMFDO = (Q, δ)

of Example 4.3, with Q = {a, b, ab} and δ = {t1, t2}, where
t1 = a

b−→ ab and t2 = b
a−→ ab. Figure 4 shows a graphical

representation of a history H of PMFDO. It consists of five
trajectories: one trajectory from a to ab, and four trajecto-
ries from b to ab, following different state sequences. The
first configuration of H is C1

H = (1, 4, 0), and the fourth
and last configuration is C4

H = (0, 0, 5). The history is well
structured and realizable. In particular, we have

C1
H

t2 t1 t32−−−→ C4
H .
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Fig. 4 Realizable history in PMFDO of Example 4.3

For MFDO-protocols we also need the notion of the sets
of states visited along a history.

Definition 4.24 Let H be a history of an MFDO protocol of
length n. The set of states visited in the first i steps of H is
S i

H := {τ( j) | τ ∈ H , j ≤ i}. The set of states visited by
H is denoted SH and defined by SH := S n

H .

Example 4.25 Let H be the history of Fig. 4. We have
S 1

H = {a, b}, S i
H = {a, b, ab} for i = 2, 3, 4, and

SH = {a, b, ab}.

Characterizing Histories. As for IO protocols, we introduce
a notion of compatibility.

Definition 4.26 A history H is compatible with an MFDO
protocolP if for every trajectory τ of H and for every non-
horizontal step τ(i)τ (i + 1) of τ , the protocolP contains a
transition τ(i)

o−→ τ(i + 1) such that o ∈ S i
H , i.e., such that

o has been visited by time i .

Remark 4.27 Notice the difference with IO protocols. In the
IO case, compatibility requires that some agent visits o
exactly at time i , a requirement captured by the condition
τ ′(i) = τ ′(i + 1) = o. In the MFDO case, compatibility
requires that some agent visits state o at time i or earlier,
captured by the condition o ∈ S i

H .

Lemma 4.28 LetP beanMFDOprotocol. Awell-structured
history is realizable inP iff it is compatible withP .

Example 4.29 The history H of Fig. 4 is well structured, real-
izable, and compatible with the MFDO protocol of Example
4.23.

Pruning. We prove that the construction of the Pruning The-
orem for IO protocols yields the same results for MFDO
protocols.

Theorem 4.30 [ (MFDO Pruning) Let P = (Q, δ) be an
MFDO protocol, let L ′ and L be multisets of states of P ,

and let C ′ ∗−→ C be an execution ofP such that L ′ ≤ C ′ and
C ≥ L. There exist configurations D′ and D such that

C ′ ∗−−−→C

≥ ≥
D′ ∗−−−→D

≥ ≥
L ′ L

and |D′| = |D| ≤ |L| + |L ′| + |Q|3.
Proof Let H be a well-structured and realizable history for

the execution L ′ ≤ C ′ ∗−→ C ≥ L . Let H ′ be the result
of pruning H using the construction of theorem 4.20. We
already know that H ′ is well-structured and covers L ′ and
L by its initial and final configuration. Let us show that it
is compatible with P . By the definition of compatibility
(Definition 4.26), and since H ′ ⊆ H , it suffices to show that
S i

H = S i
H ′ holds for every i . But this follows from the fact

that, by the definition of H ′, each state is first visited in H ′
at the same moment that it is first visited in H . ��
Remark 4.31 For MFDO protocols we can also obtain a lin-
ear bound. Intuitively, the reason is that in order to construct
the smaller history H ′ from H we no longer need to con-
catenate prefixes and suffixes of trajectories of H , but just
pick an adequate subset of them. We provide more details in
the “Appendix C”. One can apply the improved bound to the
results of Sect. 5, but some technical special cases arise in
the proofs, therefore we use theorem 4.30 for simplicity and
uniformity.

4.3 Shortening theorem for MFDO protocols

We introduce a new measure of the length of executions, the
aggregated length of an execution.

Definition 4.32 Let P = (Q, δ) be an MFDO protocol,
and let ξ be a nonempty sequence of transitions of P . Let
(k1, . . . , km) be the unique tuple of positive natural num-
bers such that ξ = tk11 tk22 . . . tkmm and ti �= ti+1 for every
i = 1, . . . ,m − 1. We say that ξ has aggregated length m,
and let |ξ |a denote the aggregated length of ξ .

The Shortening Theorem states that we can replace “long”
executions of an MFDO protocol with shorter executions in
terms of aggregated length.

Theorem 4.33 (MFDO Shortening) Let P = (Q, δ) be an

MFDO protocol, and let C
∗−→ C ′ be an execution of P .

There exists a sequence ξ such thatC
ξ−→ C ′ and |ξ |a ≤ |Q|4.

Proof Let H be a well-structured and realizable history for

the executionC
∗−→ C ′, and let n be the length of H . We have

S 1
H ⊆ S 2

H ⊆ · · · ⊆ S n
H . Since H is well structured, for
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every 1 ≤ i ≤ n − 1 either S i
H = S i+1

H , or S i+1
H contains

exactly one more state than S i
H .

Let T0 = 1, let T1, T2, . . . , Tk−1 be the time moments
immediately before the set of visited states increases, that is,
the set of indices satisfying S Ti

H ⊂ S
Ti+1
H , and let Tk = n.

Observe that k ≤ |Q|.
For every 0 ≤ j ≤ k, let Hj be the initial segment of H of

length Tj . We prove by induction over j that there is a well-
formed and realizable history H ′

j satisfying the following
conditions:

(i) SHj = SH ′
j
, that is, Hj and H ′

j visit the same states;
(ii) there exists a bijection b between the trajectories of H

and H ′
j such that the Tj -th state of τ and the last state

of b(τ ) coincide; and
(iii) H ′

j has length at most j(|Q|(|Q| − 1)2 + 1).

The theorem then follows from the fact that, since H ′
k has

length at most |Q|(|Q|(|Q| − 1)2 + 1) < |Q|4 and is realiz-
able, it can be realized by an execution of aggregated length
at most |Q|4.

The base case of the induction is j = 0. Since T0 = 1,

we can set H ′
0

def= H0. For the induction step, assume we
have already constructed H ′

j satisfying conditions (i)-(iii).
We construct H ′

j+1 by extending each trajectory of H ′
j . We

illustrate how to perform the extensions on the example of
Fig. 5.

Example 4.34 Figure 5 shows at the top the fragment of a
history H between times Tj and Tj+1 = Tj + 6. The his-
tory H consists of three trajectories τ1, τ2, τ3. We assume

that S
Tj
H = {q1, q2, q4, q5}, i.e., up to time Tj the three

trajectories have visited all states but q3. We then have

S
Tj+1
H = {q1, . . . , q5}.
Let τ be an arbitrary trajectory of H , and for every 0 ≤ i ≤

j let τi be the prefix of τ of length Ti . By condition (ii), there

exists a bijection b that assigns to τ a trajectory τ ′
j
def= b(τ ) of

H ′
j . Further, τ j and τ ′

j have the same initial and final states.
We describe an algorithm that extends the history H ′

j to H
′
j+1

with the same final configuration as Hj+1.
The algorithm initializes a variable τ̃ := τ ′

j for each
trajectory τ ∈ H . In a first step, the algorithm sets τ̃ :=
τ ′
jτ(Tj + 1). In our example, the three trajectories of H ′

j are
extended as shown in the bottom part of Fig. 5.

Let H ′+
j be the history obtained after applying this first

step. It is easy to see that, since Hj and H ′
j satisfy conditions

(i)-(iii), so do H ′+
j and the prefix of H of length Tj + 1.

The algorithm now proceeds to execute a loop. Let
B[q, q ′, j] be the bunch of trajectories τ ∈ H such that
τ(Tj + 1) = q and τ(Tj+1) = q ′, and let E be be an arbi-
trary but fixed enumeration of the pairs (q, q ′) of states such

Fig. 5 Illustration of the proof of Theorem 4.33

that B[q, q ′, j] is nonempty. The algorithm loops through
every pair (q, q ′) ∈ E , extending each τ̃ in a way to be
described later. After the loop, the algorithm sets τ ′

j+1 to the
final value of τ̃ . Observe that each variable τ̃ gets extended
|Q|(|Q| − 1) times.

Example 4.35 The history at the top of Fig. 5 has two
nonempty bunches, namely B[q3, q1, j] = {τ1, τ2}, and
B[q5, q3, j] = {τ3}. In what follows we assume that E =
(q3, q1) (q5, q3).

Before describing the body of the loop for a given pair
(q, q ′) of states, we need to state and prove a claim.
Claim. For every (q, q ′) ∈ E there exists a sequence
sh(q, q ′) (where sh stands for “short”) leading from q to
q ′ and satisfying the following properties:

– each state in sh(q, q ′) is inS Tj
H ;

– each step in sh(q, q ′) corresponds to a protocol transition
observing some state in S

Tj
H ;

– sh(q, q ′) has length |Q|.

To prove the claim, observe first that, by the definition of E ,
there exists at least one trajectory τ ∈ B[q, q ′, j]. Pick any
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such trajectory. The steps of τ between times Tj and Tj+1

form a path in the oriented graph of transitions of the protocol

enabled by the setS
Tj
H of visited states. Let sh(q, q ′) be the

result of removing all cycles from this path. By construction

only states from S
Tj
H are used, and only transitions enabled

by observing states from the same set are performed. Clearly,
we have |sh(q, q ′)| ≤ |Q|.
Example 4.36 In Fig. 5, the segment of τ1 between times Tj+
1 and Tj +6 = Tj+1 is the sequence q3q2q3q3q1q1 of states.
The trajectory sh(q3, q1) obtained from τ1 by “cutting out
the cycles” is q3q1.

For each pair (q, q ′) ∈ E , the algorithm picks an arbitrary
trajectory ofB[q, q ′, j], constructs the shortened trajectory
sh(q, q ′), and for every trajectory τ ∈ H it extends the cur-
rent trajectory τ̃ as follows:

(1) If τ ∈ B[q, q ′, j], then the algorithm extends τ̃ with
sh(q, q ′) (more precisely, with the result of dropping the
first state in sh(q, q ′)).

(2) Otherwise, the algorithmextends τ̃ by replicating its final
state |sh(q, q ′)| − 1 times. In other words, it extends τ̃

with |sh(q, q ′)| − 1 horizontal steps.

Observe that after each iteration of the loop all trajectories
have the same length. The histories consisting of all the tra-
jectories after the same iteration are well-formed (all added
non-horizontal steps are copies of the same one) and real-
izable (because of the second condition in the claim). In
particular, after the last iteration of the algorithm, we obtain
a wellformed and realizable history.

Example 4.37 Recall that E = (q3, q1) (q5, q3). Assume that
for (q, q ′) := (q3, q1) the algorithm picks τ1 (it could also
pick τ2). The algorithm sets sh(q3, q1) := q3q1, and in the
first iteration of the loop it extends τ̃1 and τ̃2 with q1, and τ̃3
with q5 (see the bottom of Fig. 5).

For (q, q ′) := (q5, q3) the algorithm necessarily picks τ3
and sets sh(q5, q3) := q5 q2 q3. In the second iteration of the
loop τ̃1 and τ̃2 are extended with horizontal steps q1q1, and
τ̃3 with q5 q2 q3.

Let us show that the realizable history H ′
j+1 constructed

by the algorithm satisfies properties (i)-(iii). Property (i) fol-
lows directly from the fact that the algorithm only extends
the trajectories of H ′

j with steps taken from the trajectories
of Hj+1. For property (ii), we observe that for every pair of
states (q, q ′), the bunchesB[q, q ′, j+1] andB′[q, q ′, j+1]
(defined as B[q, q ′, j + 1], but for the history H ′

j+1) have
the same size. So the bijection can be obtained as the union
of bijections between these bunches. Finally, let us prove
property (iii). Since the sequences sh(q, q ′) have length
at most |Q|, they consist of at most |Q| − 1 steps. Since

|E | ≤ |Q|(|Q| − 1), during the loop every trajectory gets
extended at most |Q|(|Q| − 1) times. So the trajectories of
H ′

j+1 have at most |Q|(|Q| − 1)2 + 1 more steps than the

trajectories of H ′
j , and at most ( j + 1)(|Q|(|Q| − 1)2 + 1)

steps. Since H ′
j+1 is well structured, its aggregated length is

bounded by the number of steps of its trajectories, and we
are done. ��
Remark 4.38 Anoptimisedversionof the construction allows
to obtain a quadratic bound for the aggregated length of the
history after shortening. We provide a rough outline in the
“Appendix C” in case the reader is interested in carrying out
such optimisation.

4.4 Pruning and shortening theorems for DO
protocols

In Sect. 4.1 we showed that reachability in MFDO and
zero-message reachability in DO are essentially equivalent
notions. Using this correspondence, we derive Pruning and
Shortening Theorems for DO protocols from the correspond-
ing results for MFDO protocols. Recall that we denote byZ
the set of zero-message configurations of a DO protocol, and
that a configuration Z ∈ Z can be seen both as aDOconfigu-
ration and (by abuse of notation) as an MFDO configuration.

Corollary 4.39 (DOPruning) let Z , Z ′ ∈ Z be zero-message
configurations of P , let L ′ and L be multisets of states of

P , and let Z ′ ∗−→ Z be an execution ofP such that L ′ ≤ Z ′
and Z ≥ L. There exist zero-message configurations Y ′ and
Y such that

Z ′ ∗−−−→Z

≥ ≥
Y ′ ∗−−−→Y

≥ ≥
L ′ L

and |Y ′| = |Y | ≤ |L| + |L ′| + |Q|3.
Proof By Lemma 4.4, if Z ′′ ∗−→ Z ′ ≥ Z in DO protocol P ,

then Z ′′ ∗−→ Z ′ ≥ Z in the corresponding MFDO protocol

(see Definition 4.2). By applying Theorem 4.30 to Z ′′ ∗−→
Z ′ ≥ Z in the MFDO protocol, there exist Y ′′ and Y ′ such
that

Z ′ ∗−−−→Z

≥ ≥
Y ′ ∗−−−→Y

≥ ≥
L ′ L
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and |Y | ≤ |L|+ |L ′| + |Q|3. By Lemma 4.4, Y ′ ∗−→ Y is also
valid in our DO protocol with Y ′,Y ∈ Z . ��

Corollary 4.40 (DO Shortening) LetP = (Q, M, δs, δr ) be
a DO protocol, let Z and Z ′ be zero-message configurations
of P , and let Z

∗−→ Z ′ be an execution of P . There exists a

sequence ξ such that Z
ξ−→ Z ′ and |ξ |a ≤ |Q|4 + |Q|.

Proof By Lemma 4.4, if Z
∗−→ Z ′ in DO protocol P , then

Z
∗−→ Z ′ in the corresponding MFDO protocol. By applying

Theorem 4.33 to Z
∗−→ Z ′, there exists ξ such that Z

ξ−→ Z ′
in the corresponding MFDO protocol and |ξ |a ≤ |Q|4.

Following the construction of a DO sequence from an
MFDO sequence described in the proof of Lemma 4.4, we

show thatwe can construct a sequence ξ ′ inP such that Z
ξ ′
−→

Z ′ and |ξ ′|a ≤ |ξ |a+|M |. In the first step of the construction,
we replace each transition of ξ by a corresponding receive
transition inP . Then for each message m ∈ M that appears
in these receive transitions, we add a sequence of identical

send transitions qm
m+−−→ qm the first time that state qm that

can send m is reached. Thus the constructed DO sequence
ξ ′ has an aggregated length of at most |ξ |a + |M |, and since
|ξ |a ≤ |Q|4 and |M | ≤ |Q| we get our result. ��

5 Set reachability in observationmodels: the
closure theorems

We introduce counting sets, a class of possibly infinite sets
of configurations with a finite representation in terms of
so-called counting constraints. We then prove the Closure
Theorems for IO and MFDO, stating that the sets of prede-
cessors and successors of a counting set are also counting
sets. Further, we show that if the original counting set has a
representation with “small” cubes, then the sets of predeces-
sors and successors also have succinct representations.

Counting constraints and counting sets. LetP be an IO or
MFDO protocol with set of states Q. A set C of configura-
tions ofP is a cube if there exist mappings L : Q → N and
U : Q → N∪{∞} such thatC ∈ C iff L ≤ C ≤ U . (Observe
that the components of U may be equal to ∞, and that both
L and U are unique.) We call L and U the lower bound and
upper bound of C , respectively, and call the pair (L,U ) the
representation of C . Given two mappings L : Q → N and
U : Q → N∪{∞}, the cube represented by (L,U ) is denoted
�L,U�.

A counting constraint is a finite set Γ = {(L1,U1), . . . ,

(Ln,Un)} of representations of cubes. We say that Γ repre-

sents the set �Γ �
def= �L1,U1� ∪ · · · ∪ �Ln,Un�. A set S is

a counting set ifS = �Γ � for some counting constraint Γ .

Observe that, while a cube has a unique representation,
the same counting set may be represented by more than
one counting constraint. For example, consider a protocol
with just one state. The counting constraints {(1, 3), (2, 4)},
{(1, 2), (3, 4)}, and {(1, 4)} define the same counting set,
namely the cube �1, 4�.

Measures of counting constraints. We introduce two mea-
sures of the size of a counting constraint. Let C be a cube
with representation (L,U ). The l-norm of C , denoted ‖C ‖l ,
is the sum of the components of L . The u-norm ofC , denoted
‖C ‖u , is the sum of the components of U that are not equal
to ∞, if there are any, and 0 otherwise.

The l-norm and u-norm of a counting constraint Γ =
{C1, . . . ,Cm} are defined by

‖Γ ‖l def= max
i∈[1,m]{‖Ci‖l} and ‖Γ ‖u def= max

i∈[1,m]{‖Ci‖u}.

The l-norm (respectively u-norm) of a counting set S
is the smallest l-norm (respectively u-norm) of a counting
constraint representing S , that is

‖S ‖l def= min
S=�Γ �

{‖Γ ‖l} and ‖S ‖u def= min
S=�Γ �

{‖Γ ‖u}.

Example 5.1 Cube C with representation (1, 4) has l-norm 1
and u-norm 4. The counting constraint Γ = {(2, 4), (3, 5)}
has l-norm 3 and u-norm 5.

The following proposition, whose proof is given in the
“Appendix D”, shows that a Boolean combination of count-
ing sets is still a counting set and bounds the size of the
counting constraints representing such combinations.

Proposition 5.2 ([33], Proposition 5) Let Γ1, Γ2 be counting
constraints.

– There exists a counting constraint Γ with �Γ � = �Γ1� ∪
�Γ2� such that ‖Γ ‖u ≤ max{‖Γ1‖u, ‖Γ2‖u} and ‖Γ ‖l ≤
max{‖Γ1‖l , ‖Γ2‖l}.

– There exists a counting constraint Γ with �Γ � = �Γ1� ∩
�Γ2� such that ‖Γ ‖u ≤ ‖Γ1‖u + ‖Γ2‖u and ‖Γ ‖l ≤
‖Γ1‖l + ‖Γ2‖l .

– There exists a counting constraint Γ with �Γ � = N
n \

�Γ1� such that ‖Γ ‖u ≤ n‖Γ1‖l and ‖Γ ‖l ≤ n‖Γ1‖u +n.

Loosely speaking, Proposition 5.2 shows that applying
boolean operations to counting sets does not increase much
the size of its representation. Nowwe prove the Closure The-
orem, showing that this is also the case for the operations of
computing the set of successors or predecessors of a counting
set.
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Closure Theorem for IO protocols. TheClosure Theorem for
IO protocols is an easy consequence of the following lemma:

Lemma 5.3 LetP be an IO protocol with state set Q and let
C ⊆ Pop(Q) be a cube. For all C ′ ∈ pre∗(C ), there exists a
cube C ′ such that

1. C ′ ∈ C ′ ⊆ pre∗(C ), and
2. ‖C ′‖l ≤ ‖C ‖l + |Q|3 and ‖C ′‖u ≤ ‖C ‖u.

Proof Let L,U be mappings such that C = �L,U�. Let C ′
be a configuration of pre∗(C ). There exists a configuration
C ∈ C such that C ′ −→ C , and C ≥ L . By the Pruning
Theorem there exist configurations D′ and D such that

C ′ ∗−−−→C ≥L

≥ ≥
D′ ∗−−−→D≥ L

and |D′| ≤ |L| + |Q|3. Since C ∈ C , we have U ≥ C ≥
D ≥ L . So D ∈ C , and therefore D′ ∈ pre∗(C ).

We find a cube C ′ satisfying conditions (1) and (2). For
this, we choose appropriate lower and upper bounds L ′,U ′,
and set C ′ = �L ′,U ′�. First, we set L ′ def= D′. For the defini-
tion of U ′, we use the tools of the Pruning Theorem section,
in which the movements of the agents are de-anonymized
into trajectories. Let HC ′ be a well-structured realizable his-
tory of P leading from C ′ to C , and let q be a state of Q.
We define U ′(q) as follows:

(i) If some trajectory of HC ′ starting at q leads to a state r

such that U (r) = ∞, then set U ′(q)
def= ∞.

(ii) If every trajectory of HC ′ starting at q leads to states r
such that U (r) < ∞, then set U ′(q) = C ′(q).

We prove that C ′ def= �L ′,U ′� satisfies the conditions of the
lemma.
Property 1: C ′ ∈ C ′ ⊆ pre∗(C ).

Since C ′ def= �L ′,U ′�, we first prove L ′ ≤ C ′ ≤ U ′. The
inequality L ′ ≤ C ′ follows from C ′ ≥ D′ (see the diagram
above) and L ′ def= D′. Let us now show that C ′(q) ≤ U ′(q)

holds for every stateq. IfU ′(q) = ∞ there is nothing to show.
If U ′(q) is finite, i.e., if Case 2 above holds, then U ′(q) =
C ′(q), and we are done.

It remains to prove �L ′,U ′� ⊆ pre∗(C ), which requires
more effort. We show that for every configuration R′ ∈
�L ′,U ′� there exists a history HR′ leading from R′ to a
configuration R ∈ C , i.e., to a configuration R satisfying

L ≤ R ≤ U . Since R′ ∈ �L ′,U ′� and L ′ def= D′, we have
R′ ≥ D′. So we construct HR′ by adding trajectories to HD′ :
Since HD′ leads to D, this guarantees that HR′ leads to a
configuration R such that R ≥ D ≥ L (see Fig. 6). Further,

Fig. 6 Construction of the proof of Lemma 5.3

to ensure that HR′ starts at R′, for every q ∈ Q we add to HD′
exactly (R′(q) − D′(q)) trajectories starting at q. It remains
to choose these trajectories in such a way that R ≤ U holds.

We add trajectories so that R(q) ≤ C(q) holds, which,
since C(q) ≤ U (q) (see Fig. 6), ensures R(q) ≤ U (q).

We add trajectories to HD′ by replication, i.e., we only add
copies of trajectories already present in HD′ . Recall that for
every state q ∈ Qwehave to add (R′(q)−D′(q)) trajectories
starting at q. We decide which trajectories to add according
to two cases, very similar to the cases (i) and (ii) above:

(i′) HD′ contains a trajectory τ leading from q to a state
r such that U (r) = ∞.
In this case we add (R′(q) − D′(q)) copies of τ .
(ii′) Every trajectory of HD′ leading from q to some state
r satisfies U (r) < ∞.
In this case, by the definition of U ′ (see (ii) above),
we have U ′(q) = C ′(q). Since R′ ≤ U ′ by hypothe-
sis, we get D′(q) ≤ R′(q) ≤ C ′(q), and so (R′(q) −
D′(q)) ≤ (C ′(q) − D′(q)), i.e., we need to add at most
C ′(q) − D′(q) trajectories.
For each state r ∈ Q, let nC ′ [q, r ] and nD′ [q, r ] be the
sizes of the bunches of trajectories of HC ′ and HD′ lead-
ing from q to r , respectively. By this definition, and the
definition of the pruning operation, we have

(a) C ′(q) − D′(q) = ∑
r∈Q (nC ′ [q, r ] − nD′ [q, r ]).

(b) For every r ∈ Q: nC ′ [q, r ] ≥ nD′ [q, r ], and
(c) For every r ∈ Q: nC ′ [q, r ] ≥ 1 implies
nD′ [q, r ] ≥ 1.

We add trajectories as follows: we loop through the states
r such that nC ′ [q, r ] ≥ 1. We take any trajectory of HD′
leading from q to r (which exists by (c)), and replicate
it nC ′ [q, r ] − nD′ [q, r ] times or less, until the quota of
R′(q) − D′(q) trajectories has been reached. The quota
is eventually reached by (a).

We claim that this procedure produces a history HR′ such
that nR′ [q, r ] ≤ nC ′ [q, r ] for every q, r ∈ Q such that
U (r) < ∞. Indeed, fix r such that U (r) < ∞. If q sat-
isfies (i′), then no trajectory from q to r is replicated, i.e.,
nR′ [q, r ] = nC ′ [q, r ]. If q satisfies (ii′), then nR′ [q, r ] ≤
nC ′ [q, r ]. By the claim, R(r) ≤ C(r) for every state r such
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that U (r) < ∞. Since C ≤ U , we have R ≤ U , and we are
done.
Property 2: ‖C ′‖l ≤ ‖C ‖l + |Q|3 and ‖C ′‖u ≤ ‖C ‖u .
For the l-norm, recall that L ′ def= D′. Since HD′ leads from D′
to D, we have |L ′| = |D′| = |D|. By the Pruning Theorem

‖(L ′,U ′)‖l ≤ |L| + |Q|3 = ‖(L,U )‖l + |Q|3 .

For the u-norm, notice that by (i) and (ii), every trajectory
of HC ′ starting at a state q satisfying U ′(q) < ∞ leads to a
state r satsfying U (r) < ∞. Using this observation, we get:

‖(L ′,U ′)‖u
=

∑

q|U ′(q)<∞
U ′(q)

=
∑

q∈Q|U ′(q)<∞
C ′(q)

(
Def. of U ′)

=
∑

q∈Q|U ′(q)<∞

∑

r∈Q
nC ′ [q, r ] (

Def. of nC ′ [q, r ])

≤
∑

q∈Q

∑

r∈Q|U (r)<∞
nC ′ [q, r ] (Observation)

=
∑

r∈Q|U (r)<∞

∑

q∈Q
nC ′ [q, r ] (Algebra)

=
∑

r∈Q|U (r)<∞
C(r) (HC ′ leads to C)

≤
∑

r∈Q|U (r)<∞
U (r) (C ≤ U )

= ‖(L,U )‖u
��

Theorem 5.4 (IO Closure) Let P be an IO protocol with a
set Q of states, and letS be a counting set of configurations
ofP represented by a counting constraint Γ . Then pre∗(S )

is also a counting set, and there exists a counting constraint
Γ ′ satisfying �Γ ′� = pre∗(S ) and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗.

Proof By the definition of a counting set, there exist
cubes C1, . . . ,Ck such that S = ⋃k

i=1 Ci , and therefore
pre∗(S ) = ⋃k

i=1 pre
∗(Ci ) By Lemma 5.3, for every config-

uration C ′ ∈ pre∗(S ) there is a cube C ′ such that C ′ ∈ C ′,
C ′ ⊆ pre∗(S ), and ‖C ′‖l ≤ ‖Ci‖l + |Q|3, and ‖C ′‖u ≤
‖Ci‖u for some 1 ≤ i ≤ k. So pre∗(S ) = ⋃

C ′∈pre∗(S ) C
′.

Since there are only finitely many cubes C ′ with a given
bound on their lower and upper norms, pre∗(S ) = ⋃k′

i=1 C
′
i

for some k′, and so a counting set.
Let Γ and Γ ′ be the counting constraint defined as the

set of the representations of {C1, . . . ,Ck} and {C ′
1, . . . ,C

′
k′ },

respectively. By the definition of the norm of a counting con-
straint, we have ‖C ′

i ‖l ≤ ‖Γ ‖l + |Q|3 and ‖C ′
i ‖u ≤ ‖Γ ‖u

for every 1 ≤ i ≤ k′. So ‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤
‖Γ ‖l + |Q|3.

The result for post∗(S ) can be proven in the exact same
way, as the pruning theorem is symmetric. ��

Closure Theorem for MFDO protocols. The Closure Theo-
rem for MFDO protocols can be proved in the same way as
for IO protocols.

Lemma 5.5 LetC be a cube of anMFDOprotocolP of with
state set Q. For all C ′ ∈ pre∗(C ), there exists a cubeC ′ such
that

1. C ′ ∈ C ′ ⊆ pre∗(C ), and
2. ‖C ′‖l ≤ ‖C ‖l + |Q|3 and ‖C ′‖u ≤ ‖C ‖u.

Theorem 5.6 (MFDOClosure) LetP be anMFDOprotocol
with a set Q of states, and letS be a counting set defined by
a counting constraintΓ . Then pre∗(S ) is also a counting set
and there exists a counting constraint Γ ′ satisfying �Γ ′� =
pre∗(S ), and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗.

The Closure Theorem for MFDO protocols yields a Clo-
sure Theorem for DO protocols. In DO protocols, counting
constraints are still defined as bounds associated to elements
of Q, and thus they define counting sets which are sets of
zero-message configurations. To express the following result
we need operators on zero-message configurations.

Zero-messagepredecessors and successors. LetP be aDO
protocol, and letZ be the set of its zero-message configura-
tions. For every set M ⊆ Z , we respectively define the set
of zero-message predecessors and the set of zero-message
successors as

pre∗
z (M ) = pre∗(M ) ∩ Z

post∗z (M ) = post∗(M ) ∩ Z .

Corollary 5.7 (DO Closure) Let P be a DO protocol with
a set Q of states, and let S be a counting set of zero-
message configurations defined by a counting constraint Γ .
Then pre∗

z (S ) is also a counting set and there exists a count-
ing constraint Γ ′ satisfying �Γ ′� = pre∗

z (S ), and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗z .
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6 Upper bounds for observationmodels

We use the Pruning, Shortening, and Closure Theorems
proved in the past sections to prove that the correctness prob-
lem for IO protocols is in PSPACE, and that the correctness
problem for DO protocols is in Π

p
2 . These upper bounds

match the lower bounds proved in Theorem 3.3 and Theo-
rem 3.5.

For the following results, we need the predicatesϕ we con-
sider to be describable by counting constraints. A predicate
ϕ : Nk → {0, 1} isdescribable by counting constraint if there
is a counting constraintΓ such thatϕ(v) = 1 iff v satisfiesΓ .
If ϕ is a predicate over Pop(Σ) that is describable by count-
ing constraint, k is the dimension of the symbol alphabet Σ ,
and populations D ∈ Pop(Σ) are seen as vectors v ∈ N

k .
Fortunately, as mentioned in Sect. 2.5, Angluin et al. show in
[7] that IO protocols compute exactly the predicates repre-
sentable by counting constraints, and DO protocols compute
a subset of these.

Lemma 6.1 Let P be an IO or DO protocol with Q its set
of states, and let ϕ be a predicate describable by a counting
constraint Γ . Then Ib|Q and Conb|Q, the restrictions of Ib
and Conb to their components over Q, are describable by
counting constraints for b ∈ {0, 1}. Moreover, the norms of
these counting constraints are bounded in the norms of the
counting constraint associated to ϕ and in n = |Q|:

‖I0|Q‖l ≤ n‖Γ ‖u + n ‖I0|Q‖u ≤ n‖Γ ‖l
‖I1|Q‖l = ‖Γ ‖l ‖I1|Q‖u = ‖Γ ‖u
‖C0|Q‖l = ‖C1|Q‖l = 0 ‖C0|Q‖u = ‖C1|Q‖u = 0

Proof Let P be an IO or DO protocol over an alphabet Σ

with initial statemapping ι, and Q its set of states. Predicateϕ

is a predicate describable by counting constraint Γ which is
over Pop(Σ), i.e. the bounds of the cubes of Γ are mappings
Σ to N. We extend this to a counting constraint over agent
configurations of P by having the bounds of the cubes be
mappings from Q to N: states of ι(Σ) map to N as before,
and states to which no input symbols are mapped by ι have
upper and lower bounds equal to 0.Without loss of generality
we assume that each symbol ofΣ is mapped to one state, i.e.
ι is injective. Notice that the norms of this extension of Γ

are still equal to ‖Γ ‖l and ‖Γ ‖u . We abusively also note this
extension Γ .

Recall that Ib = I (ϕ−1(b)) in the generalized protocol
notation. In the IO or DO notation,

Ib|Q = {ι(D)|∃D ∈ Pop(Σ) . ϕ(D) = b}

where ι(D) is the agent configuration
∑

σ∈Σ D(σ )ι(σ ).
Then Ib|Q is describable by the counting constraint Γ for

b = 1 and by the counting constraint corresponding to 1−ϕ

for b = 0. The bounds on the norm of I0|Q are a consequence
of Proposition 5.2.

The setConb|Q is given by the cube of upper bound equal
to 0 on all states q with output 1 − b and ∞ otherwise, and
the lower bound equal to 0 everywhere. This cube is of upper
and lower norm 0. ��
Remark 6.2 Initial configurations are zero-message in all
protocol models, so Ib|Q is exactly Ib. For P an IO pro-
tocol, Conb|Q is exactly Conb for b ∈ {0, 1}.

6.1 Correctness of IO protocols is in PSPACE

Since IO protocols are well-behaved protocols (by Lemma
2.9),we can apply the reformulation of correctness as a reach-
ability problem of Proposition 2.12. An IO protocol P is
correct for a predicate ϕ if and only if

post∗(Ib) ⊆ pre∗(Stb) (1)

for b ∈ {0, 1}. By Theorem 5.4, Propostion 5.2 and Lemma
6.1 above, Stb is a counting set of norms ‖Stb‖l ≤ n ∈
O(n), ‖Stb‖u ≤ n3 + n2 ∈ O(n3), with n

def= |Q|.
Thus Equation (1) formulates the problem of correctness

of an IO protocol as a predicate with boolean and reachability
operators over counting sets. We use the results of Sect. 5 to
show that we only need to examine “small” configurations to
verify such predicates, thus yielding a PSPACE algorithm for
checking correctness. We start by giving a lemma for gen-
eral predicates with boolean and reachability operators over
counting sets, then apply it to the predicate for correctness.

Lemma 6.3 Let S1 and S2 be two functions that take as
arguments an IO protocol P and a counting constraint X,
and return counting setsS1(P, X) andS2(P, X) respec-
tively.

Assume that S1(P, X) and S2(P, X) have norms
at most exponential in the size of the (P, X), as well
as PSPACE-decidable membership (given input (C,P, X),
decide whether C ∈ Si (P, X)).

Then the same is true about the counting setsS1(P, X)∩
S2(P, X), S1(P, X) ∪ S2(P, X), S1(P, X), pre∗
(S1(P, X)), and post∗(S1(P, X)). Furthermore, givenP
and X, the emptiness problem for these sets is in PSPACE.

Proof The exponential bounds for the norms follow imme-
diately from Proposition 5.2 and Theorem 5.4. The member-
ship complexity for union, intersection and complement is
easy to see. Without loss of generality it suffices to prove
that membership in post∗(S1(P, X)) is in PSPACE.

By Savitch’s Theorem NPSPACE=PSPACE, so we provide
a nondeterministic algorithm. Given (C,P, X), we want to
decide whether C ∈ post∗(S1(P, X)). The algorithm first
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guesses a configuration C0 ∈ S1(P, X) of the same size as
C , verifies thatC0 belongs toS1(P, X), and then guesses an
execution starting atC0, step by step, checking after each step
if the reached configuration isC . Notice that all intermediate
configurations of such an execution have the same size as
C . At any moment in time the algorithm only stores three
configurations, the current one, the next configuration in the
execution, and the input one.

We can now observe that the emptiness problem is in
PSPACE for any counting set with exponentially bounded
norm and PSPACE-decidablemembership.We again use Sav-
itch’s Theorem. If the counting set is nonempty, it has an
element of size equal to the l-norm of the set. Such an ele-
ment can be described in polynomial space. Therefore we
can guess it and verify the set membership. ��
Theorem 6.4 The correctness problem for IO protocols is in
PSPACE.

Proof Let P = (Q, δ,Σ, ι, o) be an IO protocol, and ϕ a
predicate over Pop(Σ). According to Proposition 2.12, P
computes ϕ if and only if

post∗(Ib) ∩ pre∗(Stb) = ∅. (2)

for b ∈ {0, 1}. By Lemma 6.1, Ib and Conb are counting sets
of polynomial norm.

By repeated application of Lemma 6.3, we observe that
membership in post∗(Ib), pre∗(Stb), pre∗(Stb), and finally
post∗(Ib) ∩ pre∗(Stb) is in PSPACE; furthermore, emptiness
of post∗(Ib)∩pre∗(Stb) is in PSPACE as a problemwith input
P and ϕ. ��

6.2 Correctness of DO protocols is in5p
2

We show that both the single-instance correctness and the
correctness problem for DO protocols are in Π

p
2 .

Throughout the section we use the symbol Z , possibly
with accents or subscripts, to denote zero-message con-
figurations. As before we denote the set of zero-message
configurations by Z .

We start with a characterization of non-correctness of a
protocol for a given input.

Lemma 6.5 LetP be a DO protocol with input alphabet Σ ,
let ϕ be a predicate over Pop(Σ), and let D ∈ Pop(Σ) be an
input to P . P does not compute ϕ(D) on input D iff there
exist zero-message configurations Z , Znc such that

(i) I (D)
∗−→ Z

∗−→ Znc;
(ii) Znc is not a ϕ(D)-consensus; and
(iii) for every Z ′ reachable from Z there exists C such that

Z ′ ∗−→ C and C |Q = Z.

Proof (⇐) Assume that there exist Z , Znc satisfying (i)-(iii).
We show that no configuration reachable from Z is a stable
ϕ(D)-consensus, which implies that P does not compute
ϕ(D). Let C̃ be an arbitrary configuration reachable from
Z . By consuming all messages of C̃ , the protocol can move
from C̃ to some zero-message configuration Z̃ and, by (iii),
to a configuration C such that C |Q = Z . By (i), there exists

a transition sequence ξ such that Z
ξ−→ Znc. Since C |Q = Z ,

we have C
ξ−→ Cnc for some configuration Cnc such that

Cnc|Q = Znc (the sequence just “ignores” the messages of
C). Summarizing, we have

Z
∗−→ C̃

∗−→ Z̃
∗−→ C

∗−→ Cnc

and so in particular C̃
∗−→ Cnc. By (ii) and Cnc|Q = Znc, the

configuration Cnc is not a ϕ(D)-consensus, and so C̃ is not
a stable ϕ(D)-consensus.
(⇒) Assume thatP does not compute ϕ(D) on input D. Let
B be a bottom configuration reachable from I (D) with no
stable consensus reachable from it. Let Z be an arbitrary zero-
message configuration reachable from B. By the assumption
that B cannot reach a stable consensus, there is a configu-

ration Z
∗−→ Cnc which contains an agent with the output

1 − ϕ(D). Recall that we always have at least two agents,
because configurations of our protocol models are defined
as the populations over Q or Q ∪ M , and populations are
multisets with at least two elements. Given a configuration
C ∈ Conϕ(D), we can keep one agent of C “aside” that
has output 1 − ϕ(D) and let the other agents of C consume
all the messages. This method applied to C = Cnc yields a

zero-message configuration Znc such that Z
∗−→ Cnc

∗−→ Znc

which is not a ϕ(D)-consensus. This proves properties (i)
and (ii). To prove the property (iii) observe that B was a bot-

tom configuration and therefore for every Z
∗−→ Z ′ we have

B
∗−→ Z

∗−→ Z ′ and therefore Z ′ ∗−→ B
∗−→ Z . We can now

define C = Z . ��
Theorem 6.6 Single-instance correctness of DO protocols is
in Π

p
2 .

Proof Let P = (Q, M, δr , δs,Σ, ι, o) be a DO protocol,
let ϕ a predicate over Pop(Σ), and let D ∈ Pop(Σ) be an
input to P . We show that the problem of checking whether
P with input D computes ϕ(D) lies in Π

p
2 .

It suffices to show that the problem of checking the exis-
tence of Z and Znc satisfying conditions (i)-(iii) of Lemma
6.5 is in Σ

p
2 . By the Shortening Theorem for DO protocols

(Corollary 4.40), we can guess two configurations Z and Znc

satisfying (i) and (ii) in polynomial time, by nondeterminis-
tically traversing a computation of polynomial length (recall
that all configurations reachable from I (D) have the same
size as I (D)), and checking in linear time that Znc is not a
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ϕ(D)-consensus. The rest of the proof shows that checking
(iii) is in co-NP. We proceed in three steps:

– Wedefine the saturation of a zero-message configuration.
– We replace condition (iii) by an equivalent condition (iv)
on the saturation of Z ′ (see Claim 2 below)

– We show that checking (iv) is in co-NP.

Saturation. Let Z be an arbitrary zero-message configura-
tion, and let |Z | be the number of agents of Z . For every state
q ∈ Q such that Z(q) > 0, let one of the agents in q send
|Z ||Q| + |Q|2 messages δs(q). As long as there are reach-
able states q that have not yet sent |Z ||Q| + |Q|2 messages,
let an agent go to q by a shortest path (which is of length at
most |Q| − 1, see proof of Theorem 4.33) and let the agent
send |Z ||Q| + |Q|2 messages δs(q). The resulting config-
uration S(Z), called the saturation of Z , has the following
properties:

(a) Z
∗−→ S(Z).

By definition.
(b) For every message-typem, either S(Z) has no messages

of type m, or it has at least |Z ||Q| of them.
Indeed at most |Q| messages are consumed in the addi-
tion of a new message-type, as a shortest path has length
at most |Q|−1 with at most one message consumed per
step. And at most |Q| message-types can be added (as
each state sends only one type ofmessage), and therefore
eachmessage-type has at most |Q|2 messages consumed

in Z
∗−→ S(Z).

(c) For every configuration C , if S(Z)
∗−→ C then S(Z)

ξ−→
C ′ for some configuration C ′ such that C ′|Q = C |Q ,
and some sequence ξ that does not send any messages.
Indeed, no new message types can be added to S(Z)

because otherwise we would have added them during
the saturation step. There are enough messages of each
type for |Z | agents to move to new states by less than
|Q| steps (along the shortest paths), so no new messages
are needed to reach C .

From condition (iii) to condition (iv). We claim:

Claim 1 Let Z be a zero-message configuration. Condition
(iii) of Lemma 6.5 is equivalent to:

(iv) for every Z ′ reachable from Z there exists C such that

S(Z ′) ∗−→ C and C |Q = Z .

To show that (iv) implies (iii), let Z ′ be reachable from Z .

By (iv), there exists C such that S(Z ′) ∗−→ C and C |Q = Z .

Since Z ′ ∗−→ S(Z ′), we have Z ′ ∗−→ C . So (iii) holds. To

prove that (iii) implies (iv), let Z ′ be reachable from Z . Since

Z ′ ∗−→ S(Z ′), we have Z
∗−→ S(Z ′). By (iii), there exists C

such that S(Z ′) ∗−→ C and C |Q = Z , and we are done.

Checking (iv) is in co- NP. Condition (iv) states that every Z ′
reachable from Z satisfies P(Z , Z ′), where

P(Z , Z ′) def= ∃C . S(Z ′) ∗−→ C ∧ C |Q = Z .

We prove that the negation of (iv), i.e., the existence of Z ′
reachable from Z satisfying ¬P(Z , Z ′), is in NP. By the
Shortening Theorem (Corollary 4.40), Z ′ can be guessed in
polynomial time. So it suffices to prove the second and final
claim:

Claim 2 For every zero-message configuration Z ′, we can
check in deterministic polynomial time whether P(Z , Z ′)
holds.

By property (c) of the saturation S(Z ′) of Z ′, checking
P(Z , Z ′) reduces to deciding if there is a history of length
|Q|−1whose trajectories transfer the agents from their states
in S(Z ′) to their states in Z , while sending no messages, and
consuming only messages in S(Z ′). We reduce this question
to an integer max-flow problem, which can be solved in poly-
nomial time by e.g. Edmonds-Karp algorithm. Consider the
following directed graph GZ ,Z ′ with capacities:

– The nodes of GZ ,Z ′ are |Q| copies of Q, written
q(1), q(2), . . . q(|Q|) for each q ∈ Q, plus a source node
s, and a target node t .

– GZ ,Z ′ has edges from s to each q(1) with capacity
S(Z ′)(q), and from each q(|Q|) to t with capacity Z(q).

– For each i = 1, . . . , |Q|−1,GZ ,Z ′ has an edge from q(i)

to q ′(i+1) whenever the protocol has a receive transition
from q to q ′ that consumes a message of S(Z ′), or when
q = q ′. These edges have infinite capacity.

A flow value in this graph cannot exceed
∑

q∈Q S(Z ′)(q)

= |Z |. Integer flows of value |Z | naturally correspond to his-
tories of length |Q|−1 leading from S(Z ′) to a configuration
C such that C |Q = Z , and vice versa. The flow through an
edge (q(i), q ′(i+1)) gives the number of trajectories τ of H
such that τ(i)τ (i + 1) = q q ′. So we have: P(Z , Z ′) holds
iff the maximum integer flow of GZ ,Z ′ is equal to |Z |. ��

We formulate a new characterization of DO correctness,
which considers only the reachability of zero-message con-
figurations.

Proposition 6.7 A DO protocolP is correct for a predicate
ϕ iff the following holds for b ∈ {0, 1}:

post∗z (Ib) ⊆ pre∗
z (St

Z
b )
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where St Zb is the set of zero-message configurations Z such
that every zero-message configuration reachable from Z has
output b.

Proof Notice that post∗z (Ib) is well-defined because DO ini-
tial configurations are always zero-message. By definition,
St Zb is the set of zero-message configurations described by

pre∗
z

(
Conb ∩ Z

) ∩ Z . We prove the following claim
Claim. The set equality St Zb = Stb ∩ Z holds.

This can be rewritten as

pre∗
z

(
Conb ∩ Z

) ∩ Z = pre∗(Conb) ∩ Z .

Consider a configuration Z in pre∗
z

(
Conb ∩ Z

) ∩ Z . We

assume that Z /∈ pre∗(Conb) ∩ Z , i.e. Z /∈ pre∗(Conb),

and derive a contradiction. Since Z /∈ pre∗(Conb), from Z
we can reach a configuration of Conb. We show that we
can also reach a configuration of Conb ∩ Z . We again use
that a configuration contains at least two agents. Given a
configurationC ∈ Conb, we can keep one agent ofC “aside”
that has output 1−b and let the other agents ofC consume all
the messages. This is possible because δr is a total function,
and thus everyC ∈ Conb can reach a configuration ofConb∩
Z , thus amounting to a contradiction for Z .

Conversely, let Z ∈ pre∗(Conb) ∩ Z , and assume

Z /∈ pre∗
z

(
Conb ∩ Z

)
. Then Z can reach a configuration

of Conb ∩Z , which is also a configuration of Conb. This is
a contradiction, and so the claim is proved.

Recall the characterization of correctness in Proposition
2.12 which states that a DO protocolP is correct for a pred-
icate ϕ if and only if

post∗(Ib) ⊆ pre∗(Stb) (3)

for b ∈ {0, 1}. We use the claim above to show that
post∗z (Ib) ⊆ pre∗

z (St
Z
b ) holds if and only if (3) holds.

Suppose (3) holds. Let Z be a configuration of post∗z (Ib).
Since post∗z (Ib) ⊆ post∗(Ib), there exists some C ∈ Stb
such that Z

∗−→ C . Because δr is a total function, we can let
the agents of C consume all the messages so that C

∗−→ Z ′
for some zero-message configuration Z ′. All configurations
reachable from Stb are still in Stb so Z ′ ∈ Stb ∩ Z = St Zb
by the claim, and we are done.

Supposepost∗z (Ib) ⊆ pre∗
z (St

Z
b )holds. LetC be a configu-

ration of post∗(Ib). As before we let the agents ofC consume

all its messages so that C
∗−→ Z for some zero-message

configuration Z that is thus in post∗z (Ib). By assumption,

there exists some Z ′ ∈ St Zb such that Z
∗−→ Z ′. Since

St Zb = Stb ∩ Z ⊆ Stb, we are done. ��
Theorem 6.8 The correctness problem for DO protocols is
in Π

p
2 .

Proof We prove that the non-correctness problem for DO
protocols is in Σ

p
2 . Let P be a DO protocol and let ϕ be a

predicate. By definition, P is not correct if there exists an
input D ∈ Pop(Σ) such that P does not compute ϕ(D) on
input D. (Observe that, by the definition of DO protocols, the
initial configuration I (D) is a zero-message configuration.)
We start with a claim:
Claim. If such an input D exists, then it can be chosen of
polynomial size inP and ϕ.

By Proposition 6.7, P computes ϕ if and only if

post∗z (Ib) ∩ pre∗
z (St

Z
b ) = ∅. (4)

We show that if (4) does not hold, then post∗z (Ib)∩pre∗
z (St

Z
b )

contains a configuration, say Z , with a polynomial number
of agents in P and ϕ. Since transitions do not change the
number of agents of a configuration, there exist an input D

such that I (D)
∗−→ Z and |D| = |I (D)| = |Z |, proving the

claim.
By Lemma 6.1, Conb|Q and Ib|Q are counting sets with

norms of linear size in the size ofP and ϕ. SetsConb|Q and
Ib|Q are the projections onto N

Q of the sets Conb ∩ Z and
Ib, respectively. Thus, by Proposition 5.2 and Corollary 5.7,

the set post∗z (Ib) ∩ pre∗
z (St

Z
b ) is represented by a counting

constraint Γ whose l-norm is polynomial inP and ϕ. More
precisely, we have

‖Γ ‖l ≤ |Q|4 + |Q|3 + |Q|3 ∈ O(|Q|4) .

So if (4) does not hold, then the set post∗z (Ib) ∩ pre∗
z (St

Z
b )

contains a a zero-message configuration with ‖Γ ‖l agents,
and the claim is proved.

By Lemma 6.5 and the claim, P does not compute ϕ iff
there exist an input D of polynomial size in P and ϕ, such
that there exist zero-message configurations Z , Znc satisfy-
ing conditions (i)-(iii) of the lemma.

By Theorem 6.6, checking the existence of Z and Znc for
a given input D lies inΣ

p
2 . Since the input D and the boolean

b ∈ {0, 1} can be guessed in polynomial time in P and ϕ,
checking that P does not compute ϕ also lies in Σ

p
2 . ��

7 Hardness and decidability of correctness
for transmission-basedmodels

7.1 Correctness of transmission-basedmodels is
TOWER-hard

In this section we establish lower bounds for the complex-
ity of the correctness problem of the different variants of
transmission protocols. We show that deciding correctness
for delayed and queued transmission protocols is TOWER-
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hard, even in the single-instance case, and that the general
correctness problem is TOWER-hard for the three variants
(immediate, delayed, queued) of transmission protocols.

In order to establish these lower bounds, we make use
of the fact that the reachability problem for VASS (vector
addition systems with states) is TOWER-hard [24]. A VASS
of some fixed dimension k ∈ N can be described as a pair
(Q, T )where Q is a finite set of states, and T ⊆ Q×Z

k×Q is
a transition relation.Wewriteq

v−→ r whenever (q, v, r) ∈ T .
Furthermore, for two vectors w,w′ ∈ N

k and states q, q ′ ∈
Q, wewrite (q,w) −→ (q ′,w′)whenever there exists a vector
v such that q

v−→ q ′ and w′ = w + v. As usual, by
∗−→ we

denote the reflexive-transitive closure of−→. The reachability
problem for VASS is the following problem: Given vectors
v,w ∈ N

k in the dimension k of a given VASS, and given

states q, r , does (q, v)
∗−→ (r ,w) hold?

We call a VASS (Q, T ) a ±1-VASS, if every transition

q
v−→ q ′ in T satisfy that all components of v but one are

equal to 0, and this component has value 1 or−1. For a given
±1-VASS N of some dimension k, and 1 ≤ m ≤ k, we

write q
m++−−−→ q ′ whenever q v−→N q ′ holds for some v, q, q ′

such that vm = 1. Likewise, we write q
m−−−−−→ q ′ whenever

q
v−→N q ′ holds for some v, q, q ′ such that vm = −1. The

following proposition holds:

Proposition 7.1 For everyunary-encodedVASSN = (Q, T )

and unary-encoded configurations (q0, v0), (q, v), one can
construct in polynomial time a ±1-VASS N ′ = (Q′, T ′)
with distinct states r0, r ∈ Q′ such that

(q0, v0)
∗−→N (q, v) ⇐⇒ (r0, 0)

∗−→N ′ (r , 0) .

Proof The reduction is rather straightforward; details can be
found in the “Appendix E”. ��

To simplify the coming proofs, we introduce nondeter-
ministic delayed-transmission protocols. The definition of
the nondeterministic version is identical to the determinis-
tic version except that δs now maps to sets of message/state
pairs, δr maps to a non-empty set of states, and the scheduler
must choose nondeterministically from these sets whenever
a message is sent or received.

Nondeterminism adds no expressive power to delayed-
transmission protocols, as the following proposition shows:

Proposition 7.2 For every nondeterministic DT protocol P
there exists a deterministic DT protocol P ′ that computes
the same predicate asP . Moreover,P ′ can be constructed
in polynomial time.

Proof Let P = (Q, M, δs, δr ,Σ, ι, o). In order to simu-
late the nondeterminism of P in P ′, each state q ∈ Q
is annotated with a round counter i ranging from 1 to n,

where n is the maximal number of nondeterministic choices
per state. When an agent sends/receives a message from M ,
the counter i determines the choice to be made. Additionally,
agentsmay send and receive a specialmessageincrement.
Whenever an agent receives the message increment,
its round counter is incremented by one, that is, i is set
to (i modulo n) + 1. To ensure full simulation of nonde-
terminism, we must ensure that there are always enough
incrementmessages in circulation.We achieve this by let-
ting every agent emit an incrementmessage at the start of
the computation, and enforcing re-emission of increment
messages after receiving an incrementmessage. Whether
an agent must send an increment message is governed
by an additional bit, which the agent stores in its state. We
provide the full construction in the “Appendix E”. ��

We show:

Proposition 7.3 Let N = (QN , TN ) be a ±1-VASS and
let r0, r ∈ QN . It is possible to construct in polynomial time
a (nondeterministic) DT protocol P and an initial configu-

ration C0 of P such that (r0, 0)
∗−→ (r , 0) holds if and only

ifP does not converge to 1 for the initial configuration C0.

Proof Intuitively, the protocolP simulates the ±1-VASS in
a population of size 1, with the current control state of N
being stored in the state of the single agent, and the current
counting vector represented in the message pool by mes-
sages denoted 1, . . . , k. For example, if the configuration of
the machine is q, (6, 4), then the agent is in state q, and the
message pool contains 6 messages denoted by 1, and 4 mes-
sages denoted by 2. Decrementing/incrementing a counter is
implemented by sending/receiving messages.

When the agent reaches state r , it can nondeterministically
guess that the current vector is 0, and then alternate indefi-
nitely between a false and a true state, say r⊥ and r�, which
constitutes a non-stabilizing fair execution in the case where

r0, 0
∗−→ r , 0 holds. If the agent makes a wrong guess, then

the message pool is non-empty at that time, and by fairness
the agent eventually receives a message which lets the the
agent turn to a permanent true state, say,�. This ensures that
every fair execution converges to 1 in the case where .

Let us now define P formally. Given the ±1-VASS N
of some dimension k and the states r0, r , the protocol P =
(Q, M, δs, δr ,Σ, ι, o) is constructed as follows:

– Q
def= QN ∪ {r�, r⊥,�}

– M
def= {1, . . . , k} ∪ {ε}
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– δs is given by:

δs(r)
def= {(q ′,m) | r m++−−−→ q ′} ∪ {(r⊥, ε)}

δs(r⊥)
def= {(r�, ε)}

δs(r�)
def= {(r⊥, ε)}

δs(q)
def= {(q ′,m) | q m++−−−→ q ′} for every q ∈ QN \{r}.

– δr is given by:

δr (r�, ε) = δr (r⊥, ε)
def= {r�}

δr (q,m)
def= {q ′ | q m−−−−−→ q ′} if q

m−−−−−→ q ′ for some q ′

δr (q,m)
def= {�} in all remaining cases.

– Σ
def= {r0}

– ι = id
– o(r⊥)

def= 0 and o(q ′) def= 1 for every q ′ �= r⊥.

We define the initial configuration by setting C0
def= �r0�.

We associate a configurationC ∈ Pop({1, . . . , k})with its
corresponding vector in N

k via the bijection ϕ : Pop(Q) →
N
k given by ϕ(C)

def= (C(1), . . . ,C(k)). By construction,
for every sequence of states q1, . . . , qm ∈ QN , and every
sequence of vectors v1, . . . , vm ∈ N

k we have:

(r0, 0) −→ (q1, v1) −→ (q2, v2) −→ . . . −→ (qm, vm)

⇐⇒
�r0� −→

(
�q1� + ϕ−1(v1)

)
−→ . . . −→

(
�qm� + ϕ−1(vm)

)
.

It remains to prove thatP does not converge to 1 forC0 =
�r0� if and only if r0, 0

∗−→ r , 0. We only prove the direction

(⇐); the converse direction is similar. Assume r0, 0
∗−→ r , 0

holds. Then by the previous consideration we have: C0
∗−→

�r�. Thus we obtain:

C0
∗−→ �r� −→ �r⊥, ε� −→ �r�� −→ �r⊥, ε� −→ �r�� −→ . . .

The above execution is fair, but does not converge to a con-
sensus, as o(r�) �= o(r⊥). Hence P does not converge to 1
for C0, which concludes the proof for this direction.

Formally, the population should have at least two agents.
One of the ways to resolve this problem is to say that we have
an extra state ⊥ with output 0, and an extra agent starting in
the state ⊥. It never sends messages, and if it ever receives
a message, it switches to �. We can let � send a special
message m� turning the other agent into �. If there is a
finite execution producing r⊥ and leaving no messages, it
can happen despite existence of the extra ⊥ agent; otherwise
we reach � like we did before. ��

Combining the previously established propositions, we
obtain:

Theorem 7.4 The single-instance correctness problem is
TOWER-hard for DT and QT protocols.

Proof Since delayed-transmission protocols are a subclass of
queued-transmission protocols, it suffices to show the claim
for delayed-transmission protocols.

By propositions 7.1 and 7.3, the TOWER-hard reacha-
bility problem for VASS is polynomially Turing-reducible
to 1-instance correctness of delayed-transmission protocols.
This shows the theorem. ��

We establish the same hardness result for the general cor-
rectness problem:

Theorem 7.5 The correctness problem for DT and QT pro-
tocols is TOWER-hard.

Proof Since delayed-transmission protocols are a subclass
of queued-transmission protocols, we only need to prove
the theorem for delayed-transmission protocols. In the
“Appendix E”, we prove the following claim: For every
delayed-transmission protocol P = (Q, M, δr , δs,Σ, ι, o)
and every initial configuration C ∈ Pop(I ), one can con-
struct in polynomial time a delayed-transmission protocol
P ′ = (Q′, M ′, δ′

r , δ
′
s,Σ, ι′, o′) such thatP ′ computes con-

stant 1 if and only ifP converges to 1 for the single instance
C . By Theorem 7.4, the claim entails Theorem 7.5, and we
are done. ��

Perhaps surprisingly, even in the restricted setting of
immediate-transmission protocols, the general correctness
problem remains TOWER-hard:

Theorem 7.6 The correctness problem for IT protocols is
TOWER-hard.

Proof LetN = (Q, T ) be a±1-VASS and let q, r ∈ Q. We
claim thatwe can construct in polynomial time an immediate-
transmission protocolP that computes constant 1 if and only

ifq, 0
∗−→ r , 0 does not hold. The claim entails the theoremby

Proposition 7.1 andTOWER-hardness ofVASS-reachability.
In the “Appendix E” we provide a construction that shows
the claim. ��

On the other hand, the single-instance correctness problem
for immediate transmission protocols is not TOWER-hard.
It is in fact PSPACE-complete.

Theorem 7.7 The single-instance correctness problem for IT
protocols is PSPACE-complete.

Proof Let P = (Q, δ,Σ, ι, o) be an IT protocol, ϕ a pred-
icate over Pop(Σ) and C0 a configuration. We reuse the
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notation of Sect. 6, and let C0 be a configuration in Ib for
b ∈ {0, 1}, i.e. a fair execution starting in C0 must converge
to b if the protocol is correct. The proof is the same as for
single-instance correctness of IO protocols in Theorem 6.4:
using the correctness characterization of Proposition 2.12,
we guess a configuration C of size |C0| and check that it
is in the intersection post∗(Ib) ∩ pre∗(Stb) using NPSPACE
procedures. The only difference with the IO proof lies in the
step relation, which remains checkable in polynomial time.

PSPACE-hardness follows from the fact that IO protocols
are IT protocols, and the hardness result of Theorem 3.3. ��

7.2 Decidability of correctness for PP and DT
protocols

We present a generic result showing that the correctness
problem is decidable for a class of protocols satisfying cer-
tain properties. All protocol models considered in the paper,
with the exception of QT, satisfy the properties. The proof
follows closely the one of [32] for standard population proto-
cols. However, the presentation emphasizes the role played
by each of the properties, allowing us to pinpoint why the
proof of [32] can be generalized to DT protocols, but not to
QT protocols. While we leave the decidabililty of correct-
ness for QT open, we also argue that the notion of fairness
chosen in [7], and also used in our paper, is questionable for
QT, making the correctness problem for QT less interesting
than for the other five models.

Recall the property defined in Sect. 2.6: a protocol is
well-behaved if every fair execution contains a bottom con-
figuration.We introduce some further properties of protocols:

Definition 7.8 A protocol P = (Conf,Σ, Step, I , O) is

– finitely generated if Conf ⊆ N
k for some k ≥ 0, and

there is a finite set Δ ⊆ Z
k such that (C,C ′) ∈ Step iff

C ′ − C ∈ Δ; we say that Step is generated by Δ.
– input-Presburger if for every effectively Presburger set

L ⊆ Pop(Σ) of inputs the set I (L) ⊆ Pop(Q) is an
effectively computable Presburger set of configurations.

– output-Presburger if O−1(0) and O−1(1) are effectively
Presburger sets of configurations.

We call a protocol that is well-behaved, finitely generated,
and input/output-Presburger a WFP-protocol.

Recall the characterizationof correctness forwell-behaved
protocols that we obtained in Proposition 2.13.

Proposition 7.9 Let P be a well-behaved generalized pro-
tocol and let ϕ be a predicate. P computes ϕ iff for every
b ∈ {0, 1} the set B \ Bb is not reachable from Ib.

We show that this reachability condition is decidable for
WFP-protocols. Observe that a finitely generated protocol

P = (Conf,Σ, Step, I , O) can be easily represented as a
VAS. Indeed, if Conf ⊆ N

k and Step is generated by Δ, then
the VAS has dimension k and has Δ as set of transitions.
Using this fact, and the powerful result stating the decidabil-
ity of the reachability problem in a VAS between effectively
Presburger sets of configurations, we obtain:

Proposition 7.10 ([32]) Let C ,C ′ be two effectively Pres-
burger sets of configurations of a finitely generated protocol.
It is decidable if some of configuration of C ′ is reachable
from some configuration of C .

By Proposition 7.10, in order to prove the decidability of
correctness it suffices to show that the sets I (ϕ−1(b)) and
B \ Bb of a WFP-protocol are effectively Presburger sets.
I (ϕ−1(b)) holds by the definition of WFP-protocols (recall
that ϕ−1(b) is always a Presburger set). It remains to show
thatB \Bb is effectively Presburger. Since effectively Pres-
burger sets are closed under boolean operations, it suffices
to show that B and Bb are effectively Presburger. This is a
nontrivial result, but already proved in [32]:

Proposition 7.11 ([32], Proposition 14) There is an algo-
rithm that takes as input a finitely generated, output-
Presburger protocol, and returns Presburger predicates
denoting the setsB, B0, and B1.

So we finally obtain:

Theorem 7.12 The correctness problem is decidable for
WFP-protocols.

Applying Theorem 7.12 we can easily prove that the cor-
rectness problem is decidable for PP and DT. Indeed, PP
protocols andDTprotocols areWFPas they arewell-behaved
by Lemma 2.9, and finitely generated and input/output Pres-
burger by hypothesis. Since IT and IO are subclasses of PP
and DO is a subclass of DT, the proof is valid for them as
well.

Corollary 7.13 The correctness problem is decidable for PP,
DT, and their subclasses.

However, queued-transmission protocols are not neces-
sarily well-behaved (as shown in Example 2.10), and so not
necessarily WFP. Currently, to the best of our knowledge the
decidability of the well-specification and correctness prob-
lems for queued-transmission protocols is open. At the same
time, Example 2.10 shows that our fairness condition is
questionable for queued-transmission models: An execution
C0,C1, . . . in which only one agent acts, even if other agents
have enabled actions inCi for every i ≥ 0, can still be fair. Is
the fairness notion of [7] adequate for queued-transmission
protocols?

123



The complexity of verifying population protocols 163

7.3 Correctness in probabilistic models

In [7], Angluin et al. state that the fairness condition “may
be viewed as an attempt to capture useful probability 1
properties in a probability-free model”. Indeed, population
protocols are often introduced in a probabilistic setting,
which assigns a probability to the set of executions that con-
verge to a value. Once a probabilistic model is fixed, we have
two different definitions of when a protocol P computes a
predicate ϕ:

– P f-computes ϕ if for every input σ ∈ Pop(Σ), every
fair execution starting at I (σ ) converges to ϕ(σ).

– P p-computes ϕ if for every input σ ∈ Pop(Σ), the set
of all executions starting at I (σ ) that converge to ϕ(σ)

has probability 1.

The question whether the fairness condition is adequate
for a class of protocols can now be rephrased as: Do f-
computation and p-computation coincide for the class? In
this section we examine this question in some detail.

In order to formalize a probabilistic protocol model we
must specify the random experiment that determines the next
step carried out by the protocol. For standard population
protocols there is agreement in the literature on the exper-
iment: At each step two agents of the population are chosen
uniformly at random, and they interact. However, for the
delayed and queued-transmission models there is no canoni-
cal experiment. We consider the following family of random
experiments parameterized by a probability p.

Definition 7.14 LetP = (Q, M, δs, δr , I , O) be a queued-
transmission protocol, and let 0 < p < 1. For every state
q ∈ Q, let R(q) denote the set of messages that an agent can
receive in state q. The s:p/r:(1-p) probabilistic model 3 is
described by the following random experiment. Assume the
current configuration is C . First, choose an agent uniformly
at random, and let q be its current state; then:

– with probability p, let the agent send the message speci-
fied by the send function;

– with probability 1 − p: if R(q) �= ∅, choose a message
from the multiset

⋃
m∈R(q) C(m) uniformly at random,

and let the agent receive it; otherwise, the agent does
nothing.

Recall that in the delayed-transmission model we have
R(q) = M for every state q, i.e., agents can never refuse
receiving a message.

3 Short for “send with probability p, receive with probability (1− p)”.

In the rest of the section we examine the relation between
f-computation and p-computation for our protocol models,
and obtain the following results:

– For standard population protocols and their subclasses,
f-computation and p-computation coincide.

– For delayed-transmission protocols and s:p/r:(1-p) mod-
els, f-computation and p-computation coincide iff p ≤
1/2.

– For queued-transmission protocols, f-computation and
p-computation are incomparable notions under fairly
general conditions on probabilistic models. In particu-
lar, there are protocols that f-compute a predicate but do
not p-compute any predicate in any s:p/r:(1-p)model, and
vice-versa.

Standard population protocols. Recall that in the proba-
bilistic model at each step two agents are chosen uniformly
at random. We have:

Proposition 7.15 Let P be a standard population protocol,
and let ϕ be a predicate. P f-computes ϕ iffP p-computes
ϕ.

Proof By Proposition 2.13, P f-computes ϕ iff for every
input a the set B \ Bϕ(a) is not reachable from I (a). We
show that this is the case iffP p-computes ϕ.

Since every configuration of a standard population proto-
col has a finite number of successors, an execution starting
at I (a) almost surely visits a bottom configuration. So P
p-computes ϕ if the set of executions visitingBϕ(a) has prob-
ability 1. Since every finite execution leading from I (a) to a
configuration of B has positive probability, this is the case
iffB \ Bϕ(a) is not reachable from I (a). ��

Delayed-transmission protocols. We show that for delayed-
transmission protocols and s:p/r:(1-p)-models f-computation
and p-computation coincide iff p ≤ 1/2.

Lemma 7.16 Let P be a delayed-transmission protocol in
the s:p/r:(1-p) model with p ≤ 1/2. With probability 1, an
execution of P visits infinitely often configurations with no
messages in transit.

Proof We prove that the number k of messages in transit
behaves similarly to a random walk in which the probability
of reducing k is at least as high as the probability of increasing
it.

For a configuration C , let Pr(C) denote the probability
that an execution starting from C only visits configurations
with at least one message in transit. Further, let Pr(n, k) be
themaximumvalue of Pr(C) among all configurationswith n
agents and k messages in transit. Observe that Pr(n, 0) = 0,
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because in this case C itself has no messages in transit. We
prove that Pr(n, k) = 0 for every k ≥ 0, which is equivalent
to the statement of the lemma.

Let n and k > 0, and let Cmax be a configuration with
n agents and k messages satisfying Pr(Cmax ) = Pr(n, k).
A step from configuration Cmax consumes a message with
probability at least 1

2 (in a delayed transmission protocol
an agent can always receive any message), and produces a
message with probability 0 ≤ p ≤ 1

2 . So we have

Pr(n, k) = Pr(Cmax )

≤ 1

2
Pr(n, k − 1) + p Pr(n, k + 1)

+
(
1

2
− p

)

Pr(n, k)

which can be rewritten as

Pr(n, k) ≤
1
2 Pr(n, k − 1) + p Pr(n, k + 1)

1
2 + p

The right side is the weighted average of Pr(n, k − 1) and
Pr(n, k + 1), with weight p between 0 and 1

2 . It can be
bounded by the weighted average for one of the extremal
values of p, and so we have Pr(n, k) < Pr(n, k − 1) or
Pr(n, k) ≤ 1

2Pr(n, k − 1) + 1
2Pr(n, k + 1). Rewriting the

second case, we finally obtain that the following disjunction
holds for all n, k > 0:

Pr(n, k) < Pr(n, k − 1) or

Pr(n, k + 1) − Pr(n, k) ≥ Pr(n, k) − Pr(n, k − 1) .

Assume there is a smallest number z such that Pr(n, z) > 0
and Pr(n, z − 1) = 0. Then, by the disjunction above and
Pr(n, z) − Pr(n, z − 1) = Pr(n, z), we have Pr(n, z + i) ≥
(i + 1)Pr(n, z) for every i ≥ 0 (easy induction on i). This
contradicts that 1 ≥ Pr(n, z + i) holds for every i ≥ 0, and
so z does not exist. Since Pr(n, 0) = 0 by definition, we have
Pr(n, k) = 0 for every k ≥ 0. ��
Proposition 7.17 LetP be a delayed-transmission protocol
in a s:p/r:(1-p) model with p ≤ 1/2, and let ϕ be a predicate.
P f-computes ϕ iffP p-computes ϕ.

Proof AssumeP f-computes ϕ. We show that it p-computes
ϕ. For this it suffices to show that for every initial configura-
tionC0 the set of fair executions starting atC0 has probability
1, or, in other words, that an execution is fair with probability
1.

Fix an initial configuration C0, and let C be an arbitrary
configuration. Let Z be the set of configurations reachable
from C0 with zero messages in transit. Since the number of
agents remains constant,Z is finite. For each Z ∈ Z , either

C is unreachable from Z , or there is a shortest sequence of
transitions leading from Z to C (possibly not unique). Such
a sequence has a positive probability of occurring from Z .
Let pmin be the minimal probability of all the probabilities of
shortest paths from any Z ∈ Z to C , and � be the maximum
length of a shortest path.

By Lemma 7.16, an execution starting at C0 reaches
a configuration Z1 ∈ Z with probability 1. Either C is
unreachable from Z1, or the probability of reaching C in
at most � steps is at least pmin . If C is not reached in �

steps but remains reachable, with probability 1 we reach a
configuration Z2 ∈ Z from Z1. Iterating this reasoning, we
observe that the execution visits a sequence of configurations
Z1, Z2, . . . ∈ Z such that for every Zi , the probability that
in the next � steps C is reached or becomes unreachable is at
least pmin . Therefore, the event “C becomes unreachable or it
is reached infinitely often” has probability 1. So an execution
is fair with probability 1.

Assume P does not f-compute ϕ. We show that it does
not p-compute ϕ. Since P does not f-compute ϕ, there is a
fair execution π that does not converge to the value specified
by ϕ, call it b. Let C0 be the initial configuration of π and,
as above, let Z be the finite set of configurations reachable
from C0 with zero messages in transit. Further, let Rec(π)

be the set of configurations of Z that occur in π infinitely
often.

SinceP is a delayed-transmission protocol, every config-
uration of π can reach some configuration ofZ . Therefore,
by fairness and finiteness of Z , Rec(π) �= ∅, and Rec(π)

is closed under reachability. We claim that an execution that
reachesRec(π) converges to bwith probability 0. Since there
is a positive probability that a execution reaches Rec(π), it
follows that P does not p-compute ϕ. To prove the claim,
observe that, since π does not converge to b, some configu-
ration C reachable from Rec(π) is not a b-consensus. Since
Rec(π) is finite, there exists p > 0 such that C is reach-
able from every configuration of Rec(π) with probability at
least p. Therefore, an execution that reaches Rec(π) visits C
infinitely many times with probability 1, and so it converges
to b with probability 0. ��
Proposition 7.18 There is a delayed-transmission protocol
P that p-computes the value 0 on a certain input in every
s:p/r:(1-p) model with p > 1/2, but that does not f-compute
any value on the same input.

Proof Consider the protocol with states {q0, q1, q2}; output
function given by O(q0) = O(q1) = 0 and O(q2) = 1;
messages {a, b}; and transitions

q0
a+−→ q0 q1

b+−→ q0 q2
b+−→ q1

q0
a−−→ q0 q1

a−−→ q1 q2
a−−→ q2

q0
b−−→ q1 q1

b−−→ q2 q2
b−−→ q2
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Consider the input configuration �q2�.
For the sake of simplicity we allow configurations with

a single agent. The behaviour is qualitatively the same for
multiple agents (as required by the definition of population),
up to some technicalities in probablility calculations.

In each configuration of each execution the sum of the
index of the state and the number of messages of type b
is equal to 2. This protocol does not f-compute any value
on �q2� because the configuration �q2� with no messages is
reachable from each configuration in the execution, as well
as the configuration �q0, b, b� with 2 messages of type b.
These two configurations occur infinitely often in each fair
execution and have different output values.

The proof that an execution from �q2� converges with
probability 1 if p > 1

2 is based on the following observations.

– The number of messages changes independently of the
configuration change, so it is a biased random walk with
linear growth.

– The state q0 can always be reached with probability at
least 1/4, and so it is reached infinitely many times.

– Going from q0 to q2 requires receiving two bs without
sending in-between.

– The probability to receive two bs is proportional to 1/n2,
where n is the number of messages. Since the series∑∞

i=1 1/n
2 converges, so with probability 1 the state q2

is only observed a finite number of times.

We show that therefore q2 occurs only a finite number of
times with probability 1, and that the protocol p-computes
value 0. The rest of the proof presents this argument in detail;
it is purely technical and can be found in the “Appendix F”.

��

Queued-transmission protocols. Unfortunately, in queued-
transmission protocols there is no useful relation between
f-computation and p-computation. We show this with the
help of two examples. The first one computes a predicate in
every model from a general class, but does not f-compute
any predicate. The second f-computes a predicate, but does
not compute a predicate in any probabilistic model from the
same general class.

Definition 7.19 A probabilistic model of execution for que-
ued-transmission protocols is

– positive if for every configuration C every step C → C ′
has positive probability.

– markovian if for every configuration C the probability of
a step C → C ′ is independent of the previous history.

– bounded if for everyn ≥ 1 andα > 0 there is c(n, α) > 0
with the following property. Consider any configuration
with n agents and at least one message in transit. If the

fraction of messages receivable by at least one agent is
larger than α, the probability of receiving a message is at
least c(n, α).

– uniform if for every configuration C and agent a, every
message in transit that can be received by a at C is
received with the same probability.

Remark 7.20 Each s:p/r:(1-p) model is positive, markovian,
bounded, and uniform.

In the following constructions we again use single-agent
configurations. We implicitly assume that an agent in a spe-
cial state that can neither send nor receive is always added to
the configuration to obtain a valid population.

Proposition 7.21 There is a queued-transmission protocol
P that p-computes the value 1 on a certain input in all
positive, bounded, and markovian models, but that does not
f-compute any value on this input.

Proof Consider the protocol with states {q0, q1}; messages

M = {a}; transitions q0 a+−→ q0 and q0
a−−→ q1; and output

function given by O(q0) = O and O(q1) = 1. Consider the
input configuration �q0�.

In this protocol, the unique agent sends messages until it
receives a message and moves to q1. Note that all the mes-
sages are receivable by the agent in state q0. In any positive,
bounded markovian model the agent eventually reaches q1
with probability 1 and stays there. So theprotocol p-computes
the value 1 on input �q0�. We show that the protocol does
not f-compute any value on this input, because it has a fair
execution converging to 0 and fair executions converging to
1. The fair executions converging to 1 are those in which the
agent reaches q1. The unique fair execution converging to 0
is the one in which the agent stays in q0 forever. To prove
that this execution is fair observe that (a) along the execution
the number of messages grows continuously, and (b) every
configuration reachable from a configuration of the execu-
tion with m messages in transit has at least m − 1 messages
in transit. So no configuration of the protocol is reachable
from infinitely many configurations of the execution. ��
Proposition 7.22 There is a queued-transmission protocol
P that f-computes the value 1 on a certain input, but that
does not p-compute any value on this input in any positive,
markovian and uniform model.

Proof Consider the protocol with states {q0, q1, q2, q+
0 , q+

1 ,

q+
2 , q+

3 , q−, q}, messages M = {p,m, c}, and transitions

q0
p+−−→ q1 q1

m+−−→ q2

q2
p−−−→ q+

0 q2
m−−−→ q−

q+
0

c+−→ q+
1 q+

1
c+−→ q+

2 q+
2

c+−→ q+
3

q+
3

m−−−→ q q− p−−−→ q

q
c−−→ q0
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The output function maps q to 1 and all other states to 0.
Consider the input configuration �q0�.

In this protocol, starting from �q0�, every configuration
can reach the configuration �q� in which the unique agent is
in state q, and there are no messages in transit. So every fair
execution eventually reaches �q� and, since no message can
be sent from q, stays in it forever. Therefore, the protocol
f-computes the value 1 on input �q0�. We now show that the
protocol does not p-compute any value on the same input in
any positive, markovian, uniformmodel. Indeed, after reach-
ing the state q0 the execution must proceed to reach the state
q2 creating two messages of types p and m. The only way to
proceed is to receive either p orm, which in uniform models
is equally likely. Afterwards, both p and m are consumed,
and either three messages of type c or none are created. To
proceed, the agent needs to receive a message of type c. The
number of messages of type c follows a random walk with
possible changes +2 and −1 until it tries to go below zero.
There is a positive probability that it will never return to zero
and grow linearly. In this case all the states will be observed
infinitely many times, so the protocol does not compute any
value. ��

These propositions show that the correctness problem
for probabilistic queued-transmission protocols cannot be
reduced to the same problem for the fairness model. So in the
queued-transmission model fairness does not capture useful
probability 1 properties, which questions the interest of the
fairness-basedmodel in a probability-freemodel.At the same
time, it opens the question of the decidability of correctness
for probabilistic queued-transmission protocols. Cummings,
Doty and Soloveichik have recently proved that Chemical
Reaction Networks can compute with probability 1 a super-
set of the Turing-computable functions [23], and using this
result we can easily prove that correctness is undecidable.

Theorem 7.23 In any positive,markovian, and uniformprob-
abilistic model, the single-instance correctness problem for
queued-transmission protocols is undecidable.

Proof We only sketch the argument. According to [23],
binary chemical reaction networks with uniform rates can p-
compute all recursively enumerable predicates (in fact even
more, see [23]). In such a networkwe are initially given set of
chemical reactions, like e.g. A+B → 2C+D+E , amultiset
of molecules of different species (A, B, C,…). At every step,
two molecules are picked uniformly at random and allowed
to interact according to one of the reactions, which results in
an arbitrary number of product molecules. A binary chemical
reaction network can be modelled by a queued-transmision
protocol with a single agent. Molecules are modeled by mes-
sages. The agent sends an initial set of messages, which
corresponds to the initial multiset of molecules, andmoves to
a new state, from which it repeatedly receives two randomly

chosen messages, and sends the results of the reaction. At
each stop the agent can either only send or only receive,
and if it can receive it can receive any message. Uniformity
and Markov property guarantee that each pair of messages
is selected with equal probability regardless of the details
of the model, and positivity ensures that the protocol will
make progress in modelling the chemical reaction network.
As every binary reaction network can be modeled in such a
way, and the problem of checking whether a Turing machine
computes the constant true function is undecidable, the result
follows. ��

8 Relatedmodels and approaches

We have studied the correctness problem for the population
protocol models introduced by Angluin et al. in [7]. Section
2 of [7] presents a detailed comparison with other models,
focusing on expressivity questions. In this section we discuss
work on models that are related to those of [7], and moreover
address verification questions.

The IO and DO observation models of [7] are closely
related to Reconfigurable Broadcast Networks (RBN), intro-
duced by Delzanno et al. in [27], and further studied in
[11,26]. 4 In RBNs, networks of finite-state agents com-
municate through broadcast. The network is modeled as an
undirected graph G = (V , E), with an agent at each node of

V .An agent in stateq can execute a transitionq
a!!−→ q ′,which

broadcasts the message a to all neighbours, and updates the
state of the agent to q ′. All neighbours of the agent must
react to the message according to transitions of the form

r
a??−−→ r ′ for every state r . The crucial feature of RBNs

is that between any two broadcasts the network can non-
deterministically reconfigure itself into any other network
with the same set of nodes. This makes RBNs equivalent to
symmetric, fully connected networks in which agents non-
deterministically choose whether to react to a broadcast or
not. Symmetry makes the agents indistinguishable, and so
the configuration of an RBN is completely determined by
the number of agents in each state. As a consequence, given
an instance of an IO protocol with n agents, one can construct
an equivalent RBN as follows. The network has n nodes. For

every transition q1
q2−→ q3 of the IO protocol, we add to the

network transitions q2
a!!−→ q2, q1

a??−−→ q3, and q
a??−−→ q for

every q �= q1. So IO protocols are a special case of RBNs.
However, the analysis problems we study are more general
than the ones studied in [11,26,27]. The parameterized reach-
ability problem studied in [27] corresponds to the problem
whether a given counting set is reachable from a cube [L,U ]
such that L(q) = 0 andU (q) ∈ {0,∞} for every state q (i.e.,

4 We thank an anonymous reviewer for pointing this out.
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from configurations that can put arbitrarily many agents in
some states, and no agent in others). We solve the more gen-
eral problem of reachability between two arbitrary counting
sets. Further, our solution allows us to prove that counting
sets are closed under reachability, a question not considered
in [27]. The results of [11] on minimal length of covering
executions have the same flavour as our Shortening Theorem
for IO, but only consider the case in which the configuration
C to be covered satisfies C(q) ∈ {0, 1} for every state q. We
conjecture that at least some of our results extend to RBNs,
and leave this question for future research.

The standard population protocol model is closely related
toPetri nets andVectorAdditionSystems.The decidability of
correctness for PP is proved in [32] using results of Leroux
and others on reversible and cyclic Petri nets [39,40]. The
TOWER-hard lower bound is also proved in [32] by reduction
to the reachability problem for Petri nets, which is shown to
be TOWER-hard in [25]. Practical verification algorithms for
PP have been given in [14,15,17]. The complexity of other
verification problems beyond correctness is studied in [31].

Population protocols are also closely related to Chemical
Reaction Networks [47]. Our result on the undecidability
of correctness of queued-transmission protocols in positive,
markovian and uniform probabilistic models is based on the
results on the computational power of Chemical Reaction
Networks by Cummings et al. [23].

After Angluin et al. proved in [7] that population proto-
cols can only compute Presburger predicates, several models
have been proposed that increase the expressive power. These
include community protocols [36], passively mobile loga-
rithmic spacemachines (PALOMA)[18], mediated protocols
[44], clocked population protocols [8] and broadcast pop-
ulation protocols [16]. All these models can compute all
predicates Nk → {0, 1} in NSPACE(log n) or more, where
n is the number of agents. This makes the correctness prob-
lem for all these models undecidable. To prove this we can
for example reduce from the halting problem for Turing
machines started on empty tape. Indeed, given a machine
T , the predicate ϕT (n) that holds for n if the computation of
T on empty tape terminates and visits at most log n cells is a
symmetric predicate inNSPACE(log n), and so it can be com-
puted by a protocol. So T fails to terminate iff the protocol
computes the false predicate.

From a verification point of view, the correctness problem
for population protocols is a so-called parameterized veri-
fication problem, in which one has to show that a system
of identical agents satisfies a property independently of the
number of agents. Parameterized verification problems have
been intensely studied, and we refer the reader to [1,12,30]
for survey articles. Most work, however, concerns the ver-
ification of safety or liveness under adversarial schedulers;
in other words, the property must hold even if the scheduler
that selects which agents interact at each step tries to break

it. Correctness of population protocols is however a live-
ness property under stochastic schedulers, which choose the
agents at random. This distinguishes our work from recent
contributions to parameterized verification [38,41].

9 Conclusion

We have determined the computational complexity of the
correctness problem for population protocols with different
communicationmechanisms, completing a research program
initiated in [32]. We have followed the classification used by
Angluin et al. in [7] to study the expressive power of the
models.

Our main results concern the observation-based models
IO and DO. A first surprise is the fact that checking correct-
ness of a protocol for all inputs is not harder than checking
it for one input. Further, both problems have the same com-
plexity asmany standard verificationproblems for concurrent
systems, which are typically PSPACE-complete [46]. More-
over, our upper bounds are obtained by means of algorithms
that suggest clean verification procedures. In particular, they
show that the verification of properties of IO and DO pro-
tocols can be achieved by conducting symbolic state space
exploration with counting sets represented by counting con-
straints. This opens the door to efficient implementations
using SMT-solving technology [9].

Fromamore theoretical point of view,we have derived our
upper bounds froma number of fundamental results about the
dynamics of the IO and DO models. We have encapsulated
them in the Pruning, Shortening, and Closure Theorems,
which could be of independent interest. In particular, the
connection between IO protocols and models for enzymatic
reactions is intriguing [43].

The second surprise is the huge complexity gap between
observation-based and transmission-based models. Thanks
to the recent result byCzerwinski et al. [24],we can show that
the correctness problem isTOWER-hard for all transmission-
based models. This is in contrast with the limited computa-
tional power of the model, and raises the question whether
there exists a natural model of computation by indistin-
guishable agents which is able to compute all Presburger
predicates, and has a more manageable correctness problem.
Another important insight is the fact that for all delayed-
transmission models the problem is already TOWER-hard
in the single-instance case. This already makes the applica-
tion of model-checking technology to checking correctness
for a few instances very difficult, and suggests a number of
questions for further research.

Our investigation leaves one question open, namely
whether the correctness problem is decidable for queued-
transmission problems.Wehave explained that for thismodel
the fairness assumption used by Angluin et al. in [7] is
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questionable, since it can no longer be seen as an “over-
approximation” of the probabilistic behavior of the system.
However, settling the question can be relevant for stochastic
models with assumptions concerning the size of the pool of
messages.
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A Appendix for Sect. 3.1

The following definition and lemma are introduced to help
prove that our IO protocol implementation of a Turing
machine does indeed simulate its functioning. To recall the
notation, let us start with an illustration of transitions mod-
elling a single step of the Turing machine into the protocol.
The fragment of the protocol is represented as a diagramwith
some of the states and transitions of the IO protocol.

Figure 1 illustrates transitions involved inmodelling a sin-
gle step of a Turing machine that reads 0, writes 1, moves
head to the right and switches the control state from q to q ′.

Definition A.1 A configuration of PM is a modelling con-
figuration if the following conditions hold.

1. For every 1 ≤ n ≤ K exactly one of the 2|Σ | states
on[σ, n], off[σ, n] is populated, and it is populated with a
single agent.
(Intuitively: every cell is either on or off and contains
exactly one symbol.)

2. Exactly one of all the head states is populated (again, with
a single agent).

3. If a cell state on[σ, n] is populated, then a head state
at[q, n] ormove[q, σ ′, n, d] is populated for some σ ′ and
d.

4. If a head state move[q, σ, n, d] is populated, either
on[σ ′, n] is populated for some σ ′, of off[σ, n] is pop-
ulated.

Remark A.2 Note that for every configuration c of M the
configuration Cc described in Definition 3.1 is a modelling
configuration.

Lemma A.3 For every modelling configuration C ofPM:

(1) C enables at most one transition.
(2) If C enables no transitions, then it populates states

on[σ, n] and at[q, n] for some q ∈ Q, σ ∈ Σ , and
1 ≤ n ≤ K.

(3) If C −→ C ′, then C ′ is also a modelling configuration.

Proof (1) All possible transitions require agents at two
states, one of type on[·, n] or off[·, n] and one of type
at[·, n] or move[·, n, ·, ·], with the same n. But the mod-
elling condition requires that there can be at most one
such pair.

(2) If amove[·, ·, ·, ·] state is populated, a transition is always
possible by definition of the list of move[·, ·, ·, ·] states.
The same for the case where a at[·, ·] state is populated
but no on[·, ·] case is populated. If there are populated
states of types on[·, n] and at[·, n], the transition may
fail to exist if either the Turing machine halts or if it
goes outside the allocated space.

(3) Every transition consumes and produces one agent at
off[·, n] or on[·, n] state, and the new state has the same
n. Every transition consumes and produces one agent at
move[·, ·, ·, ·] or at[·, ·] state. If an on[·, n] state becomes
populated after a transition, it has the same n as the
populated at[·, n] state of both configurations (before
and after); if an on[·, n] state stays populated, the agent
is moved from a at[·, n] to a move[·, n, ·, ·] state with
the same n. When move[q, σ, n, d] becomes populated,
the transition needs a populated on[·, n] state. When
move[q, σ, n, d] stays populated, the transition popu-
lates a off[σ, n] state.

��

B Appendix for Sect. 3.2

Lemma B.1 Let Γ be a circuit and let P̂Γ be its evaluation
protocol. Let C0 be the initial configuration that puts exactly
one agent in state ι(n) for every node n. A fair execution
starting at C0 eventually reaches a configuration C where
each input agent is in a state with value 0 or 1, and these
values do not change afterwards. The tail of the execution
starting at C converges to a stable consensus equal to the
output of Γ on these assigned inputs.

Proof Every input node can change its own current value if
it is� and cannot otherwise; by fairness of the execution and
definition of how an input node can update its � value, the
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input nodes will eventually all change their values from �
and keep these afterwards.

By induction over the depth of an operation node, we can
see that the valueof eachoperationnode eventually converges
to the value of this node in circuit C , without ever holding
the opposite value; moreover, once a node adopts a value,
the value stays stable. Once the output value converges, each
node will eventually learn it.

Notice that since the transitions of the circuit evaluation
protocol always depend only on current values of nodes, the
DO protocol cannot have a problem with lack of old mes-
sages. ��

C Appendix for Sect. 4.2

Lemma C.1 Let P be an IO protocol. For every configura-

tion C,C ′ the following holds: C
∗−→ C ′ iff there exists a

well-structured and realizable history in P with C and C ′
as initial and final configurations.

Proof One direction is obvious by definition: if we have a
realizable history, it also describes an execution. Let us prove
the other direction.

Informally, we just implement the “de-anonymisation” of
the agents, that is the assignment of a trajectory to each agent
(in an arbitrary but consistent way). A formal proof can be
given by induction in the number of transitions in the execu-
tion.
Base case. If there are no transitions, we create a multiset
of trajectories of length one such that the initial states of
the trajectories are exactly the states (with multiplicity) of
the initial marking of the execution. This is well-structured
because there are no steps.
Induction step. Consider a sequence of transitions and a cor-
responding well-structured history. Now let us add a single
enabled transition. To build the new history, we choose an
arbitrary trajectory of the existing history such that this tra-
jectory ends in the state corresponding to the source state
of the added transition. Such a trajectory exists because the
transition is enabled and therefore its source state must be
populated (one agent at least must be in the source state). We
extend the chosen trajectory with a step from the source state
to the destination state of the added transition, and we extend
the rest of the trajectories with one horizontal step each. We
obtain a multiset of trajectories of same length, thus consti-
tuting a history. It is realizable using the considered sequence
of transitions followed by the new enabled transition. As we
add only a single non-horizontal step at that moment of time,
we do not break the well-structuring condition. ��
Lemma C.2 4 Let P be an IO protocol. A well-structured
history is realizable inP iff it is compatible withP .

Proof Let H be a well-structured history of P .
Assume that H is realizable. Let τ ∈ H , and let τ(i)τ (i +

1) = qq ′ be an arbitrary non-horizontal step of τ . Since H is
well-structured, for every trajectory τ ′, if τ ′(i)τ ′(i+1) is non-
horizontal then τ ′(i)τ ′(i + 1) = qq ′. Since H is realizable,
Ci
H enables a transition q

o−→ q ′ of P . So Ci
H (o) ≥ 1, and

therefore there is a trajectory τ ′ ∈ H such that τ ′(i) = o. By
the definition of step in IO protocols we have τ ′ �= τ . Since
H is well-structured, the i-th step of τ ′ is horizontal, and so
τ ′(i + 1) = o.

Now assume that H is compatible withP . We prove that
H is realizable by induction on the length n of H . If n = 1,
there is nothing to show. If n > 1, let H ′ be the result of
removing the last state from every trajectory of H . It follows
immediately from the definitions that H ′ is compatible with
P . So there exist transitions t1, . . . , tn−2 ofP and numbers
k1, . . . , kn−2 ≥ 0 such that

C1
H

t
k1
1−→ C2

H · · ·Cn−2
H

t
kn−2
n−2−−−→ Cn−1

H .

We show that there is a transition tn and kn ≥ 0 such that

Cn−1
H

t
kn−1
n−1−−−→ Cn

H . Consider the last steps of all trajectories
of H . If they are all horizontal, then Cn−1

H = Cn . So we
can choose tn as any transition of P , and kn := 0. If at
least one of them is non-horizontal, let s ≥ 1 be the num-
ber of non-horizontal steps. Since H is well-structured, all
non-horizontal steps are equal, say q q ′. Further, P has a
transition t = q

o−→ q ′ and a trajectory τ ′ �= τ such that
τ ′(i) = τ ′(i + 1) = o. So we can choose tn−1 := t and
kn−1 := s. ��
Theorem C.3 (Quadratic Pruning Theorem) LetP be an IO
protocol, let L ′ and L be multisets of states of P , and let

C ′ ∗−→ C be an execution of N such that C ′ ≥ L ′ and C ≥ L.
There exist configurations D′ and D such that

C ′ ∗−−−→C

≥ ≥
D′ ∗−−−→D

≥ ≥
L ′ L

and |D′| = |D| ≤ |L| + |L ′| + 2|Q|2.
Proof The proof is similar to the proofs of Lemma 4.18
and Theorem 4.20. The main difference is the following.
In Lemma 4.18 we keep trajectories that belong to small
bunches, and prune each large bunch separately. To prove the
quadratic lower boundwe keep trajectories from and to small
states, then prune all the remaining trajectories together. The
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state is called small if it has less than |Q| incoming or out-
going trajectories.

Let L ′ ≤ C ′ ∗−→ C ′ ≥ C . By Lemma 4.12, there is a
well-structured realizable history H with C ′ and C as initial
and final configurations, respectively. Let H0 ⊂ H be an
arbitrary minimal sub(multi)set of H with initial multiset of
states at least L ′ and final multiset of states at least L . Let
also H ′ = H − H0. We further reduce H ′ by repeatedly
removing all the trajectories with initial or final state having
less than |Q| trajectories still in H ′. We can perform at most
2|Q| steps like that, removing at most |Q| − 1 trajectories
per step. At the end, we will add back these trajectories as
well as those of H0.

Nowwe can define Q as the set of all states reached by the
remaining trajectories in H ′, and f (q) and l(q) for q ∈ Q
as the earliest and the latest moment in time when this state
has been used by any of the trajectories (possibly on different
trajectories, and possibly on trajectories with different initial
and final state).

We now build a trajectory for every q ∈ Q by reaching
it by the moment f (q) and leaving it after l(q). As all the
trajectories in H ′ have initial and final state with at least
|Q| trajectories in H ′, the set of trajectories that we build
will have the initial and final configurations covered by the
corresponding configurations of H ′.

The rest of the proof is identical to the proofs of
Lemma 4.18 and Theorem 4.20. ��
Lemma C.4 LetP be an MFDO protocol. A well-structured
history is realizable inP iff it is compatible withP .

Proof Let H be a well-structured history of P .
Assume that H is realizable. Let τ ∈ H , and let τ(i)τ (i +

1) = qq ′ be an arbitrary non-horizontal step of τ . Since H is
well-structured, for every trajectory τ ′, if τ ′(i)τ ′(i+1) is non-
horizontal then τ ′(i)τ ′(i + 1) = qq ′. Since H is realizable,
Ci
H enables a transition q

o−→ q ′ of P , and so o ∈ S i
H . So

H is compatible withP .
Now assume that H is compatible withP . We prove that

H is realizable by induction on the length n of H . If n = 1,
there is nothing to show. If n > 1, let H ′ be the result of
removing the last state from every trajectory of H . It follows
immediately from the definitions that H ′ is compatible with
P . So there exist transitions t1, . . . , tn−2 ofP and numbers
k1, . . . , kn−2 ≥ 0 such that

C1
H

t
k1
1−→ C2

H · · ·Cn−2
H

t
kn−2
n−2−−−→ Cn−1

H .

We show that there is a transition tn and kn ≥ 0 such that

Cn−1
H

t
kn−1
n−1−−−→ Cn

H . Consider the last steps of all trajectories
of H . If they are all horizontal, then Cn−1

H = Cn . So we
can choose tn as any transition of P , and kn := 0. If at

least one of them is non-horizontal, let s ≥ 1 be the number
of non-horizontal steps. Since H is well-structured, all non-
horizontal steps are equal, say q q ′, and P has a transition
t = q

o−→ q ′ such that o ∈ S n−1
H . Sowe can choose tn−1 := t

and kn−1 := s. ��
Theorem C.5 (Linear MFDO Pruning) Let P = (Q, δ) be
an MFDO protocol, let L ′ and L be multisets of states ofP ,

and let C ′ ∗−→ C be an execution ofP such that C ′ ≥ L ′ and
C ≥ L.

C ′ ∗−−−→C

≥ ≥
D′ ∗−−−→D

≥ ≥
L ′ L

and |D′| = |D| ≤ |L| + |L ′| + |Q|.
Proof Let H be a well-structured and realizable history for

the execution L ′ ≤ C ′ ∗−→ C ≥ L . For every q ∈ SH , let
f (q) be the smallest index i such that q ∈ S i

H , that is, f (q)

is the earliest moment at which q is visited. Pick a trajectory
τq of H such that q is reached by τq at moment f (q) (we
may pick the same trajectory for two different states).

Let H ′ be union of the set {τq | q ∈ SH } of trajectories,
and an arbitrary sub(multi)set of trajectories of H such that
the initial configuration of H ′ covers L ′ and the final config-
uration of H ′ covers L . We need at most |L| + |L ′| of these
additional trajectories.

It follows immediately from the definition that H ′ is a
history, covers L ′ and L by its initial and final configuration,
and has atmost |Q|+|L|+|L ′| trajectories. Let us show H ′ is
well structured and realizable. By Lemma 4.28 it suffices to
show that H ′ is well structured and compatible withP . It is
well-structured because H ′ ⊆ H , which is a well-structured
history. Let us show that it is compatible with P . By the
definition of compatibility (Definition 4.26), and since H ′ ⊆
H , it suffices to show thatS i

H = S i
H ′ holds for every i . But

this follows from the fact that, by the definition of H ′, each
state is first visited in H ′ at the same moment that it is first
visited in H . ��

Example C.6 Consider the well-structured and realizable
extended history of Fig. 4, leading from (1, 4, 0) to (0, 0, 5),
which covers configuration (0, 0, 2). The set of states visited
by the trajectories is equal to Q. Figure 7 is annotated with
the first moment f (q) for every q ∈ Q. We pick the trajec-
tories τa and τb drawn in dashed lines in Fig. 7, and choose

H ′ = {τa, τb}. We have C1
H ′ = (1, 1, 0)

t2t1−−→ (0, 0, 2) =
C4
H ′ and C4

H ′ ≥ (0, 0, 2).
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Theorem C.7 (Quadratic MFDO Shortening) Let P =
(Q, δ) be an MFDO protocol, and let C

∗−→ C ′ be an execu-
tion ofP . There exists a sequence ξ such that C

ξ−→ C ′ and
|ξ |a ≤ |Q|2.
Proof (Outline)We optimise separately the construction for
the last segment and for the other ones.

We require that:

(i) the trajectories of H ′
j are in bijective correspondence

with trajectories of H (and therefore Hj ),
(ii) the set of visited statesSH ′

j
is the same as the setSHj =

S
Tj
H of states visited by Hj , and

(iii) for each trajectory τ ′ ∈ H ′
j corresponding to τ ∈ Hj ,

there is a path from final state of τ ′ to final state of τ

visiting and observing only states inSH ′
j
.

In other words, instead of saying that the corresponding
trajectories reach the same states, we say that the correspond-
ing trajectories could reach the same states.

This can be maintained in the same way as in the proof
of theorem 4.33 with two changes. We extend only one tra-
jectory with the shortest path to the newly reachable state
(this is possible because if state q ′ is reached by τ ∈ Hj+1

starting from q at the moment Tj , the corresponding τ ′ ∈ H ′
j

can reach q and then q ′ from q). The remaining trajectories
are extended with horizontal steps, and the new reachability
requirement is also satisfied by transitivity of reachability.

There is a linear number of non-last segments, and each
will correspond to a linear-length replacement segment.
Therefore the aggregated length of all the segments (except
the last) together is quadratic.

In the last segment we need to make all the trajectories to
reach the final configuration of H from the final configura-
tion in H ′

n . Note that there is some feasible multiset of such
trajectories because of the condition (iii). Also observe that
as we don’t change the set of visited states, the steps of the
trajectories do not depend on each other.

Consider the multiset of trajectories leading from the final
configuration of H ′

n to the final configuration of H (maybe
violating the initial trajectory correspondence)with the short-

Fig. 7 History H of Fig. 4 after pruning

est total number of steps across the trajectories. In such a
multiset a union of all trajectories doesn’t contain any cycles,
as otherwise we would be able to cut and reconnect the tra-
jectories to remove the steps along the cycle. Therefore we
can consider topological ordering corresponding to the union
of these trajectories. As each trajectory traverses the states
in the ascending order according to the topological ordering,
running the steps in the lexicographic order of the source
and target states correctly traverses each trajectory. As all
the equal steps are ran at the same time, we obtain quadratic
aggregated length for the final segment. ��

DAppendix for Sect. 5

Proposition D.1 ([33], Proposition 5) Let Γ1, Γ2 be counting
constraints.

– There exists a counting constraint Γ with �Γ � = �Γ1� ∪
�Γ2� such that ‖Γ ‖u ≤ max{‖Γ1‖u, ‖Γ2‖u} and ‖Γ ‖l ≤
max{‖Γ1‖l , ‖Γ2‖l}.

– There exists a counting constraint Γ with �Γ � = �Γ1� ∩
�Γ2� such that ‖Γ ‖u ≤ ‖Γ1‖u + ‖Γ2‖u and ‖Γ ‖l ≤
‖Γ1‖l + ‖Γ2‖l .

– There exists a counting constraint Γ with �Γ � = N
n \

�Γ1� such that ‖Γ ‖u ≤ n‖Γ1‖l and ‖Γ ‖l ≤ n‖Γ1‖u +n.

Proof (Adapted from Proposition 5 of [33].)
Union. Let Γ be the union of the two counting constraints
Γ1, Γ2, i.e. the set of the cube representations ofΓ1 and ofΓ2.
It is still a counting constraint as a set of cube representations,
and the result follows from the definition of representation
and norms.

Intersection. For this proof, we consider a cube represen-
tation (L,U ) as a collection of constraints over n = |Q|
variables x1, . . . , xn of the form [li ≤ xi ] or [xi ≤ ui ] with
li ∈ N and ui ∈ N ∪ ∞. Each variable xi is associated to a
state qi ∈ Q, for an arbitrary ordering of Q, and it intuitively
denotes the number of agents in qi . A cube representation can
now be seen as a conjunction of such constraints, one lower
bound and one upper bound for each xi for i ∈ {1, . . . , n}.We
call such a 2n-conjunction a minterm. Counting constraints
Γ1, Γ2 are thus disjunctions ofminterms, noted γ1, γ2 respec-
tively. The intersection of Γ1, Γ2 is the conjunction γ1 ∧ γ2.

We rearrange this conjunction into a disjunction of
minterms by using the following steps: Put γ1 ∧ γ2 in dis-
junctive normal form. Remove conjunctions containing the
unsatisfiable constraints l ≤ xi ∧xi ≤ u with l > u. Remove
redundant constraints inside conjunctions, e.g., replace (l1 ≤
x ∧ l2 ≤ x) by max{l1, l2} ≤ x . If a conjunction does not
contain a lower bound (upper bound) for xi , add 0 ≤ xi
(xi ≤ ∞), thus making it a minterm. The disjunction of
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these minterms is the counting constraint Γ we are looking
for, and the norm bounds follow from the fact that the new
bounds are a mix of the old bounds.

Complement.Wereuse the constraint andminterm formalism
above. The complement is represented by the negation of the
disjunction of minterms. We rearrange it into a disjunction
of minterms using the rules above as well as �¬(xi ≤ c)� =
�xi ≥ c + 1�; and �¬(xi ≥ c)� = �xi ≤ c − 1� if c ∈ N\{0}
and remove the enclosing conjunction otherwise. We obtain
n-conjunctions with lower bounds of the form u + 1, with
u ≤ ‖Γ1‖u an upper bound in a minterm of the original
constraint. This yields ‖Γ ‖l ≤ n‖Γ1‖u+n and the reasoning
is similar for the u-norm. ��
Theorem 5.4 (IO Closure) Let P be an IO protocol with a
set Q of states, and letS be a counting set of configurations
ofP represented by a counting constraint Γ . Then pre∗(S )

is also a counting set, and there exists a counting constraint
Γ ′ satisfying �Γ ′� = pre∗(S ) and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗.

Proof Consider a finite decomposition into cubes S =
∪k
i=1Ci of counting set S , which exists by definition of a

counting set.
Lemma 5.3 states that for every cube C of this decom-

position, for every configuration C ′ in pre∗(C ), there is a
“small” cube C ′ such that C ′ ∈ C ′ and C ′ ⊆ pre∗(C ). So
pre∗(C ) = ∪C ′∈pre∗(C )C

′. By the norm restrictions on the
representation of C ′, there are only a finite number of such
“small” cubes. So pre∗(C ) is a finite union of cubes, and by
extension pre∗(S ) = ∪k

i=1pre
∗(Ci ) is too. Thus by defini-

tion, pre∗(S ) is a counting set.
Let Γ be the counting constraint defined as the set of the

representations of the Ci . Let Γ ′ be the counting constraint
defined as the set of the representations of the “small” cubes
whose unions equal the pre∗(Ci ). Then by the bounds in
Lemma 5.3 and by definition of the norms, ‖Γ ′‖u ≤ ‖Γ ‖u
and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3.

The results also hold for post∗(S ), as the pruning theorem
and our use of it are symmetric. ��
Lemma D.2 LetP be an IO protocol with state set Q and let
C ⊆ Pop(Q) be a cube. For all C ′ ∈ pre∗(C ), there exists a
cube C ′ such that

1. C ′ ∈ C ′ ⊆ pre∗(C ), and
2. ‖C ′‖l ≤ ‖C ‖l + |Q|3 and ‖C ′‖u ≤ ‖C ‖u.

Proof The proof is exactly the same as for Lemma 5.3, as
adding a copy of a trajectory into a well-structured realizable

history produces a realizable history for MFDO protocols as
well. ��
Theorem 5.6 (MFDOClosure) LetP be anMFDOprotocol
with a set Q of states, and letS be a counting set defined by
a counting constraintΓ . Then pre∗(S ) is also a counting set
and there exists a counting constraint Γ ′ satisfying �Γ ′� =
pre∗(S ), and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗.

Proof The proof is the same as for Theorem 5.4, except that
Lemma 5.5 is used instead of Lemma 5.3. ��
Corollary D.3 (DO Closure) Let P be a DO protocol with
a set Q of states, and let S be a counting set of zero-
message configurations defined by a counting constraint Γ .
Then pre∗

z (S ) is also a counting set and there exists a count-
ing constraint Γ ′ satisfying �Γ ′� = pre∗

z (S ), and

‖Γ ′‖u ≤ ‖Γ ‖u and ‖Γ ′‖l ≤ ‖Γ ‖l + |Q|3

The same holds for post∗z .

Proof The set pre∗
z (S ) is the set of zero-message configu-

rations Z ′ ∈ Z such that there exists Z ∈ S and Z ′ ∗−→ Z
in DO protocolP . By Lemma 4.4, Z ′ ∗−→ Z in DO protocol

P if and only if Z ′ ∗−→ Z in the corresponding MFDO pro-
tocol. Since S can also be seen as a counting set of MFDO
configurations (by our usual overloading of configurations of
Z ), pre∗

z (S ) inP is equal to pre∗(S ) in the corresponding
MFDO protocol. Thus we obtain the result by application of
Theorem 5.6.

The result for post∗z (S ) is proved in the same way. ��

E Appendix for Sect. 7.1

Proposition E.1 For everyunary-encodedVASSN = (Q, T )

and unary-encoded configurations (q0, v0), (q, v), one can
construct in polynomial time a ±1-VASS N ′ = (Q′, T ′)
with distinct states r0, r ∈ Q′ such that

(q0, v0)
∗−→N (q, v) ⇐⇒ (r0, 0)

∗−→N ′ (r , 0) .

Proof Let (Q, T ) have dimension k ∈ N. The ±1-VASS
(Q′, T ′) of the same dimension is constructed as follows:
add to Q new states r and r0, and add to T the transitions

r0
v0−→ q0 and q

−v−→ r . Then replace every transition of the

form q
(w1,...,wm )−−−−−−→ q ′ by

123



The complexity of verifying population protocols 173

q
(w1,0,...,0)−−−−−−→ qw1
(0,w2,0,...,0)−−−−−−−→ qw2

. . .
(0,...,0,wm−1,0)−−−−−−−−−→ qwm−1
(0,...,0,wm )−−−−−−→ q ′.

where qw1 , . . . , qwm−1 are newly added states. Then replace

every transition of the form q
0−→ q ′ by q

1++−−→ q ′′ 1−−−−→
q ′, where q ′′ is a newly added state. Finally, replace every

transition of the form q
w−→ q ′ where wm �= 0 for a fixed

m ∈ {1, . . . , k} by the following:

q
m++−−−→ q1

m++−−−→ q2
m++−−−→ . . .

m++−−−→ qwm−1
m++−−−→ q ′ if wi > 0,

q
m−−−−−→ q1

m−−−−−→ q2
m−−−−−→ . . .

m−−−−−→ qwm−1
m−−−−−→ q ′ otherwise,

where q1, . . . , qwm−1 are newly added states. The resulting
construction is a±1-VASS and clearly satisfies the properties
in our claim. ��
Proposition E.2 For every nondeterministic DT protocol P
there exists a deterministic DT protocol P ′ that computes
the same predicate asP . Moreover,P ′ can be constructed
in polynomial time.

Proof Fix some linear order < on Q ∪ (M × Q), and let

n
def= |Q × M |. We define the deterministic protocol P ′ =

(Q′, M ′, δ′
s, δ

′
r ,Σι′, o′) as follows:

– Q′ def= Q × {1, . . . , n} × {0, 1}. An agent in state
(q, i, b) ∈ Q′ simulates an agent from P in state q,
picks choice i to resolve nondeterminism, and may send
an increment message if and only if b = 1.

– M ′ def= M ∪ {increment}
– δ′

s is defined as follows:

– For every q ∈ Q such that δs(q) = {(m1, q1), . . . ,
(mk, qk)} for some (m1, q1) < . . . < (mk, qk),
define:

δ′
s((q, i, 0)

def= (m j , (q j , i, 0)) with j

= (i mod k) + 1 and j > 0.

This implements the resolution of nondeterminism
for outgoing messages from M .

– For every (q, i, 1) ∈ Q′, define:

δ′
s((q, i, 1))

def= (increment, (q, i, 0))

This enforces that whenever the last bit is set to 1,
an agent will send an increment message exactly
once.

– δ′
r is defined as follows:

– For every (q,m) ∈ Q × M such that δs((q,m)) =
{q1, . . . , qk} for some q1 < . . . < qk , and every i, b,
define:

δ′
r ((q, i, b),m)

def= (q j , i, b) with j = (i mod k) + 1

This resolves the nondeterminism for incoming mes-
sages from M .

– Define for every (q, i, b) ∈ Q′:

δ′
r ((q, i, b),increment)

def= (q, (i mod n) + 1, 1)

This implements the incrementation of the round
counter after receiving an increment message.
Moreover,b is set to 1, so that at least oneincrement
will eventually be put back into the message pool.

– ι′(a)
def= (ι(a), 1, 1) for every a ∈ Σ .

– o′((q, i, b)) = o(q) for every (q, i, b) ∈ Q′.

P ′ can be constructed in polynomial time. It remains to
prove that P and P ′ compute identical predicates. To this
end, fix some input X ∈ Pop(Σ) and let b ∈ {0, 1}. We
must show that every fair execution of P starting in I (X)

stabilizes to b if and only if every fair of P ′ starting in
I ′(X) stabilizes to b. Before we prove this equivalence, let
us introduce some notation. For every C ∈ Pop(Q′), we
define the projection π (C) ∈ Pop(Q) through

π (C) (q)
def=

∑

(i,b)∈{1,...,n}×{0,1}
C ((q, i, b)) .

For a given C ∈ Pop(Q′), we write C(b = 1) as shorthand
for

∑

(q,i,1)∈Q′
C ((q, i, b)) .

We make the following observations that easily follow from
the construction of P ′:

1. For every C,C ′ ∈ Pop(Q′) such that C(b = 1) > 0 ∨
C(increment) > 0 and C

∗−→ C ′, it must hold that
C ′(b = 1) > 0 ∨ C ′(increment) > 0.

2. For everyC ∈ Pop(Q′) and everyC ′ ∈ Pop(Q), we have:

If π(C)
∗−→ C ′ and C(b = 1) > 0 ∨ C(increment) >

0, then there exists some C ′′ ∈ Pop(Q′) satisfying

π(C ′′) = C ′ and C ∗−→ C ′.
3. For every C,C ′ ∈ Pop(Q′) such that C −→ C ′, we have

π(C)
∗−→ π(C ′).
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4. For every C ′ ∈ Pop(Q′) and every C ∈ Pop(Q), {C ′′ ∈
Pop(Q′) | C ′ ∗−→ C ′′ ∧ π

(
C ′′) = C} is finite.

Let us now prove the equivalence.
(⇐) LetC ′

0,C
′
1,C

′
2, . . . be a fair execution ofP

′ starting
in C ′

0 = I ′(X). By definition of ι′, we have C ′
0(b = 1) > 0.

By Observation 1, this gives

C ′
i (b = 1) > 0 ∨ C ′

i (increment) > 0 for every i . (5)

Now consider the sequence of configurationsC0,C1,C2, . . .

= π(C ′
0), π(C ′

1), π(C ′
2), . . ., and let î1 < î2 < î3 < . . . be

the maximal sequence of indices such that Cî1
= C0 and

Cî1
−→ Cî2

−→ . . .. By Observation 3, such a sequence of
indices exists.Moreoverρ = Cî1

Cî2
Cî3

. . . is a fair execution
ofP: By (5), Observation 2, and Observation 4, for every C
that can be reached from infinitely many configurations in ρ,
there exists a configurationC ′ ∈ π−1 (C) that can be reached
from C ′

i for infinitely many i . By fairness of C ′
0,C

′
1,C

′
2, . . .,

we thus obtain that every configuration which can be reached
infinitely often in ρ is reached infinitely often. Hence ρ is
fair. Moreover, by definition of o′, C ′

0,C
′
1,C

′
2, . . . and ρ

converge to the same consensus. This proves the direction
(⇐).

(⇒). The converse direction can be proven analogously.
��

We prove the claim made in the proof of Theorem 7.5.

Proposition E.3 For every delayed-transmission protocolP
and every initial configuration C ofP , one can construct in
polynomial time a delayed-transmission protocol P ′ such
that P ′ computes the constant predicate 1 if and only if P
stabilizes to 1 for the single instance C.

Proof Fix P = (Q, M, δr , δs,Σ, ι, o) and C . Let C
def=

{C ′ ∈ Pop(Q) | C ′ ≤ C}.
Each agent inP ′ carries a state ofP and simulates inter-

actions fromP . Moreover, each agent carries a boolean flag
b ∈ {0, 1}. The flag b indicates that the initial configuration
is ≥ C . Initially, b is set to 0 for every agent. If b is equal to
1 and the agent carries some state q ∈ Q, its opinion is equal
to o(q). If b = 0, the agent has opinion 1. This ensures that
the computation stabilizes to 1 if the initial configuration is
strictly smaller than C .

In order to be able to detect whether the initial configura-
tion is ≥ C , the agents additionally store configuration from
C. Initially, if an agent carries the state q from Q, it stores
the configuration �q�. Agents can transfer states from one
stored configuration to another agent through message pass-
ing. If the initial configuration is equal toC inP , by fairness
a single agent will eventually store C in the corresponding
execution of P ′, while all other agents store an empty con-
figuration. When an agent stores C , it knows that the initial

configuration must be ≥ C , and in this case it is allowed to
send a message that flips the flag b of any receiving agent to
1, and by fairness, eventually all agents have their flag b set
to 1. If the initial configuration is > C , then at some point
a state is transferred to an agent that already stores C . Such
an agent assumes an error state, say �, that maps to opin-
ion 1, and eats up all other states via message passing. This
ensures that every execution starting in a configuration > C
stabilizes to 1.

Formally, the delayed-transmission protocol P ′ =
(Q′, M ′, δ′

r , δ
′
s,Σ, ι′, o′) is constructed as follows:

– Q′ def= (Q × C × {0, 1}) ∪ {�}
– M ′ def= M ∪ {�,one} ∪ Q
– δ′

r is defined as follows:

– For every transition q
m−→ r in δ and every C ∈ C and

every b ∈ {0, 1}, add:

(q,C, b)
m−→ (r ,C, b)

– For every (q,C, b) ∈ Q × C × {0, 1}, add:

(q,C, b)
one−−→ (q,C, 1)

– For every m ∈ Q and every (q,C ′, b) ∈ Q × C ×
{0, 1} s.t. (C ′ + �q�

) ∈ C, add:

(q,C ′, b) m−→ (q,C ′ + �q�, b)

– All remaining transitions to be defined transition to
�.

– δ′
s is defined as follows:

– For every (q,C ′, b) ∈ Q × C × {0, 1} and every
q ′ ∈ Q such that �q ′� ≤ C ′, add:

(
q,C ′, b

) q ′
−→ (

q,C ′ − �q ′�, b
)

– For every q ∈ Q, and every b ∈ {0, 1}, add:

(q,C, b)
one−−→ (q,C, b)

– For every transition q
m−→ r in δs , and every C ′ ∈ C,

add:

(
q,C ′, 1

) m−→ (
r ,C ′, 1

)

– Further add:

� �−→ �
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– ι′(a)
def= (ι(a), �ι(a)�, 0) for every a ∈ Σ .

– Set o′(q,C, 1)
def= O(q) for every (q,C) ∈ Q × C,

and o′(q)
def= 1 for every other q. ��

We prove the claim made in the proof of Theorem 7.6.

Proposition E.4 Let N = (Q, T ) be a ±1-VASS and let
r0, r ∈ Q. It is possible to construct in polynomial time an
immediate-transmission protocolP that computes constant

1 if and only if (r0, 0)
∗−→ (r , 0) does not hold.

Proof Let the dimension of N = (Q, T ) be k. Like in the
proof of Proposition 7.3, we represent the control state of
N in a single agent. The remaining agents either represent
a reservoir of tokens by assuming states of the form freei
or tokeni for every vector component 1 ≤ i ≤ k, or they
are of the form t, t for any given t ∈ T , or in some additional
helper state. A configuration q, v of N is represented in a
configuration C of P satisfying

C(q) = 1,

C(q ′) = 0 for every q ′ ∈ Q \ {q},
C(tokeni ) = vi for every 1 ≤ i ≤ k.

The states freei , t, t for every t ∈ T , and other helper
states, may be populated by arbitrarily many agents. When
the control agent interacts with an agent of the form t,
a transition of N is simulated. For example, a transition

t ∈ T of the form q
i++−−→ q ′ is implemented in P by

a sequence of two transitions, namely (t, q) −→ (t, t) fol-
lowed by (t,freei ) −→ (q ′,tokeni ) Similarly, a transition

t ∈ T of the form q
i−−−−→ q ′ is implemented in P by

the sequence consisting of (t, q) −→ (t, t) followed by
(t,tokeni ) −→ (q ′,freei ). Thus, incrementation at posi-
tion i is implemented by turning freei into tokeni , and
symmetrically, decrementation is implementedby transform-
ing tokeni into freei . Initially, no agent is in a state of the
form tokeni , which reflects the fact that the initial vector
of N in the reachability query equals 0.

Moreover, there are states final and final. When the
agent representing the control state of N assumes r , it can
non-deterministically guess that the current vector is 0, and
signal this guess via transitioning to state final through
the step final, r −→ final,final. The state final is
the only state that maps to false. If the guess was right, then
the agent permanently remains in state final, and thus the
protocol does not compute constant 1. If the guesswaswrong,
then by fairness the agent eventually meets some agent in
state tokeni for some i , and then turns into some error state,
say �, that maps to true and that converts all other states to
�, thus ensuring that the protocol eventually stabilizes to 1.

Formally, we define P = (QP , δP , IP , OP ) as fol-
lows:

– We add the following states to QP :

– For every 1 ≤ i ≤ k, add states freei and tokeni .
– Add an “error” state �.
– Add “final” states final,final.
– For every state q ∈ Q, add q to QP .
– For every transition t ∈ T , add t and t.

– We define δP (x, y) = (δ1(x), δ2(x, y)) by adding the
following transitions:

– For every t : q1 −→ q2 ∈ T , add:

t, q1 −→ t, t .

– For every t : q1 i++−−→ q2, add:

t,freei −→ q2,tokeni .

– For every t : q1 i−−−−→ q2, add:

t,tokeni −→ q2,freei .

– Add:

final, r −→ final,final

– For every x ∈ QP , add:

�, x −→ �,�.

This ensures that the � eats up every other state.

– For every t : q1 i++−−→ q2, and every x �= freei , add:

t, x −→ q2,�.

– For every t : q1 i−−−−→ q2, and every x �= tokeni ,
add:

t, x −→ q2,�.

– For every 1 ≤ i ≤ k, add:

tokeni ,final −→ tokeni ,�.

This ensures that an agent only remains in final if
the current marking is 0, otherwise everyone is sent
to �.

– For every x, y ∈ Q ∪ T ∪ {final}, set:
δ2(x, y) = �.

This ensures that at most one agent is in a control
state of N, otherwise everyone is sent to �.

– In all remaining cases, set δ1(x) = x and δ2(x, y) =
y
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– I
def= {r0} ∪ {freei | 1 ≤ i ≤ k}

– O(final)
def= 0 and O(x) = 1 for every x �= final.��

F Appendix for Sect. 7.3

Proposition F.1 There is a delayed-transmission protocolP
that p-computes the value 0 on a certain input in every
s:p/r:(1-p) model with p > 1/2, but that does not f-compute
any value on the same input.

Proof Recall the given protocol with states {q0, q1, q2}; out-
put function given by O(q0) = O(q1) = 0 and O(q2) = 1;
messages {a, b}; transitions

q0
a+−→ q0 q1

b+−→ q0 q2
b+−→ q1

q0
a−−→ q0 q1

a−−→ q1 q2
a−−→ q2

q0
b−−→ q1 q1

b−−→ q2 q2
b−−→ q2

and the input configuration �q0�.
In each configuration of each execution the sum of the

index of the state and the number of messages of type b is
equal to 2. This protocol does not f-compute any value on
�q0� because the configuration with no messages and the
agent in the state q2 is reachable from each configuration in
the execution, as well as the configuration with 2messages of
type b and the agent in the state q0. These two configurations
occur infinitely often in each fair execution and have different
output values.

The proof that an execution from �q0� converges with
probability 1 if p > 1

2 is based on the following observations.

– The number of messages changes independently of the
configuration change, so it is a biased random walk with
linear growth.

– The state q0 can always be reached with probability at
least 1/4, and so it is reached infinitely many times.

– Going from q0 to q2 requires receiving two bs without
sending in-between.

– The probability to receive two bs is proportional to 1/n2,
where n is the number of messages. Since the series
∑∞

i=1 1/n
2 converges, so with probability 1 the state q2

is only observed a finite number of times.

Consider a step C → C ′. If C has no messages in tran-
sit, then the number or messages increases by 1; otherwise
there is probability p > 1

2 to increase the number of mes-
sages by 1 and probability 1 − p to decrease the number
of messages. This is a biased random walk. Let Xi be the
random variable equal to the number of messages at the
i-th step. The expected value of Xi is (2p − 1)i and the
standard deviation grows proportionally to

√
i , and so in

particular limc→+∞ Pr[∀i > c : Xi > (p − 1
2 )i] = 1.

For any given configuration the probability of reaching a
configuration with state q0 is 1 (it is enough to send a
message two times in a row which has probability larger
than 1

4 at each step), therefore state q0 occurs infinitely
often with probability 1. To reach state q2 from state q1
before reaching q0 the agent needs to receive messages with-
out transmitting until it receives the only message of type
b. The probability of reaching q2 from q1 before either
returning to q0 or getting below k messages is less than
∑∞

j=1(1 − p) j 1k <
∑∞

j=1

( 1
2

) j 1
k = 1

k . Note that proba-
bility of the transition from q0 to q1 with at least k messages
in transit is at most (1 − p) 2k < 1

k . Therefore the probabil-
ity of the agent starting at q0 and reaching q2 before either
returning to q2 or having fewer than k messages is at most
1
k2
.

Let N j
q0→q2 be the random variable equal to 1 if q2 is vis-

ited after the j-th visit to q0, before q0 is visited again, and
before the number ofmessages in transit goes below (p− 1

2 ) j

(and 0 otherwise). Let Nq0→q2 be the sum
∑∞

j=1 N
j
q0→q2 .We

have shown that E
(
N j
q0→q2

)
∈ O( 1

((p− 1
2 ) j)2

) and therefore

E
(
Nq0→q2

) = c·∑∞
j=0

1
((p− 1

2 ) j)2
for some constant c, which

is finite.
Consider executions that reach q2 after at least N different

returns to q0. Such an execution must either have the num-
ber of messages go below (p − 1

2 )i at the moment i > N
2 ,

or have the value Nq0→q2 to be at least N
2 . The probability

of either option tends to zero when N grows. Therefore q2
occurs only a finite number of times with probability 1, and
so the execution converges to 0. So the protocol computes
the value 0 on input �q0�. ��
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