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Abstract

In the stabilizing consensus problem, each agent of a networked system has an input value
and is repeatedly writing an output value; it is required that eventually all the output values
stabilize to the same value which, moreover, must be one of the input values. We study this
problem for a synchronous model with identical and anonymous agents that are connected by a
time-varying topology. Our main result is a generic MinMax algorithm that solves the stabilizing
consensus problem in this model when, in each sufficiently long but bounded period of time,
there is an agent, called a root, that can send messages, possibly indirectly, to all the agents.
Such topologies are highly dynamic (in particular, roots may change arbitrarily over time) and
enforce no strong connectivity property (an agent may be never a root). Our distributed MinMax
algorithms require neither central control (e.g., synchronous starts) nor any global information
(eg.,on the size of the network), and are quite efficient in terms of message size and storage
requirements.

1 Introduction

There has been much recent interest in distributed control and coordination of networks consisting
of multiple mobile agents. This is motivated by the emergence of large scale networks with no
central control and time-varying topology. The algorithms deployed in such networks ought to
be completely distributed, using only local information, and robust against unexpected changes in
topology, despite the lack of global coordination like synchronous starts.

A canonical problem in distributed control is the stabilizing consensus problem [2, 13, 3]: each
agent u starts with some initial value and repeatedly updates an output variable yu which even-
tually stabilizes on the same input value. The stabilizing consensus problem arises in a number
of applications including eventual consistency in replicated databases (see eg., [20]), motion of au-
tonomous agents [19], and blockchain agreement [17, 6]. Similarly, the stable computation of a
predicate in the model of population protocols [1] may be seen as a variant of stabilizing consensus,
in which the stabilized output value is the truth value of some predicate of the multiset of initial
values.

A stronger form of agreement is captured by the classical consensus problem which differs from
stabilizing consensus in the fact that all the output variables yu are write-once: when the agent u is
aware that agreement has been reached on some initial value µ, it writes µ in yu, in which case u is
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said to decide on µ. Hence the discrepancy between stabilizing consensus and consensus typically
lies in this additional requirement of irrevocable decisions.

On the other side, asymptotic consensus is a classical weakening of stabilizing consensus: in the
case of initial values that are real numbers, agents are only required to compute the same outcome
asymptotically. In other words, the condition of eventual stability on the variables yu is replaced
by the weaker one of convergence. Moreover the limit value is only required to be in the range of
the initial values, which prevents the applicability of asymptotic consensus to the class of problems
where the limit value must be one of the initial values.

Although there is a plethora of papers on agreement problems in multi-agent systems, few
are specifically devoted to stabilizing consensus. To the best of our knowledge, the problem has
been first investigated by Angluin, Fischer, and Jiang [2]. They studied solvabilty of stabilizing
consensus in an asynchronous totally connected system where agents have distinct identifiers and
may experience various type of faults, focusing on Byzantine faults. This problem has been studied
later in [13, 3] in the synchronous gossip model. These papers propose randomized stabilizing
consensus algorithms with convergence times that are functions of the number of possible input
values.

The original consensus problem, with irrevocable decisions, has been the subject of much more
study, specifically in the context of fault-tolerance and a fixed topology. There is also a large body of
previous work on consensus in dynamic networks. In the latter works, agents are supposed to start
synchronously, to share global informations on the network, and to have distinct identifiers [12].
Moreover, topology changes are dramatically restricted [4], or communication graphs are supposed
to be permanently bidirectional and connected [15].

The asymptotic consensus problem has been also extensively studied as it arises in a large variety
of applications in automatic control or for the modeling of natural phenomenas [19]. Averaging
algorithms, in which every agent repeatedly takes a weighted average of its own value and values
received from its neighbors, are the natural and widely studied algorithms for this problem. One
central result by Cao, Morse, and Anderson [7] is that every safe averaging algorithm – that is,
an averaging algorithm where positive weights are uniformly bounded away from zero – solves this
problem with a continually rooted, time-varying topology, even if the set of roots and links change
arbitrarily.
Contribution. The primary goal of this paper is the design of stabilizing consensus algorithms for
synchronous, fault free networks of identical and anonymous agents connected by a time-varying
topology without any guarantee of strong connectivity. It should be noted that while stabilizing
consensus is trivially solved by a gossip algorithm when the time-varying topology is eventually
strongly connected, in the sense that for every pair of agents u and v there always exists a time
consistent path from u to v, there is no obvious solution in the case some nodes cannot receive
information from part of the network. In the absence of such a connectivity property, synchronous
starts cannot be simulated [10], and hence tolerating asynchronous starts makes the problem even
more challenging.

We start by introducing the notion of kernel that models the set of root agents able at any
time to send messages, possibly indirectly, to all other agents. If this can be achieved in at most T
communication steps, then the topology is said to be rooted with delay T . A time-varying topology
with a non-empty kernel is thus rooted with finite but a priori unbounded delays. We first prove
that stabilizing consensus is not solvable in the case of an empty kernel. Then we show that in
the case of a time-varying topology that is rooted with bounded delay, the stabilizing consensus
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problem is solvable, even if the bound is unknown.
For that, we introduce the MinMax update rules for the output variables yu, and then provide

a distributed implementation of these update rules that is efficient, both in terms of message size
and storage requirements. The resulting distributed algorithms, called MinMax algorithms, require
no leader, no agent identifiers, and assume no global knowledge of the network structure or size.
Moreover, they tolerate that agents join the system asynchronously. We define the subclass of
safe MinMax algorithms, and show that any such algorithm achieves stabilizing consensus if the
topology is rooted with bounded delay. As a corollary, we get that stabilizing consensus is solvable
in any asynchronous and completely connected network and a minority of faulty agents that crash or
commit send omissions. Finally, we show that using safe MinMax algorithms, stabilizing consensus
is not solvable under the sole assumption of a non-empty kernel, i.e., the topology is rooted with
finite but unbounded delays.

Another contribution of this work is the introduction of new notions that capture global prop-
erties of dynamic graphs, like the kernel, the integral, the limit superior of a dynamic graph, which
we believe to be useful for investigating other distributed problems in networked systems with
time-varying topologies.

2 Preliminaries

2.1 The computational model

We consider a networked system with a fixed set V of n agents. Our algorithms assume anonymous
networks in which agents have no identifiers and do not know the network size n.

We assume a round-based computational model in the spirit of the Heard-Of model [11]. Point-
to-point communications are organized into synchronized rounds: each agent can send messages to
all agents and can receive messages sent by some of the agents. Rounds are communication closed
in the sense that no agent receives messages in round t that are sent in a round different from t.
The collection of possible communications (which agents can communicate to which agents) at each
round t is modelled by a directed graph (digraph) with one node per agent. The digraph at round t
is denoted G(t) = (V,Et), and is called the communication graph et round t. When dealing with
just graph notions, we will use the term node rather than the one of agent for an element of V . We
assume a self-loop at each node in all these digraphs since every agent can communicate with itself
instantaneously. The sequence of digraphs G = (G(t))

t∈N
is called a dynamic graph [8]. A network

model is any non-empty set of dynamic graphs.
In every run of an algorithm, each agent u is initially passive: it neither sends nor receives

messages, and do not change its state. Then it either becomes active at the beginning of some
round su > 1, or remains passive forever – in which case we let su =∞. A run is active if all agents
are eventually active.

At the beginning of its starting round su, the agent u sets up its local variables and starts
executing its program. In round t > su, u sends messages to all agents, receives messages from
all its incoming neighbors in the digraph G(t) that are active, and finally goes to its next state
applying a deterministic transition rule. Then the agent u proceeds to round t+1. The number of
the current round is not assumed to be provided to the agents.

The value of a local variable xu of u at the end of round t > su is denoted by xu(t). By
convention, the value of xu(t) for t < su is defined as the initial value of xu.
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Since each agent is deterministic, a run is entirely determined by the initial state of the network,
the dynamic graph G, and the collection of the starting rounds. For each run, Ga(t) = (V,Ea

t )
denotes the digraph where Ea

t ⊆ Et is the set of edges that are either self-loops1 or connecting two
agents that are active in round t. The sets of u’s incoming neighbors (in-neighbors) in the digraphs
G(t) and Ga(t) are denoted by Inu(t) and Inau(t), respectively.

2.2 Limits and integrals of dynamic graphs

Let us first recall that the product of two digraphs G1 = (V,E1) and G2 = (V,E2), denoted G1 ◦G2,
is the digraph with the set of nodes V and with an edge (u, v) if there exists w ∈ V such that
(u,w) ∈ E1 and (w, v) ∈ E2. For any dynamic graph G and any integers t′ > t > 1, we let
G(t : t′) = G(t) ◦ · · · ◦ G(t′). By convention, G(t : t) = G(t), and when 0 6 t′ < t, G(t : t′) is the
digraph with only a self-loop at each node.

Given any dynamic graph G and any scheduling of starts, the sets of u’s incoming neighbors
(or in-neighbors for short) in G(t : t′) and in Ga(t : t′) are denoted by Inu(t : t

′) and Inau(t : t
′),

respectively, and simply by Inu(t) and Inau(t) when t′ = t. Because of the self-loops, all these sets
contain the node u. If t′ < t, then Inu(t : t

′) = Inau(t : t
′) = {u}.

If t 6 t′, then a v∼u path in the interval [t, t′] is any finite sequence w0 = v,w1, . . . , wm = u
with m = t′ − t+ 1 and (wk, wk+1) is an edge of G(t + k) for each k = 0, . . . ,m − 1. Hence there
exists a v∼u path in the interval [t, t′] if and only if (v, u) is an edge of G(t : t′), or equivalently
v ∈ Inu(t : t

′).
By extension over the infinite interval [t,∞), we define the digraphs

G(t :∞) =
(

V,∪t′>tE(G(t : t′))
)

, G
a(t :∞) =

(

V,∪t′>tE(Ga(t : t′))
)

,

and denote by Inu(t :∞) and Inau(t :∞) the sets of u’s in-neighbors in these two digraphs, i.e.,

Inu(t :∞) = ∪t′>tInu(t : t
′), Inau(t :∞) = ∪t′>tIn

a
u(t : t

′).

The dynamic graph G, defined by G(t) = G(t :∞), is called the integral of G.
The limit superior of G, denoted by G(∞), is defined as the digraph G(∞) = (V,E∞), where

E∞ is the set of edges that appear in an infinite number of digraphs G(t), namely,

E∞ = {(u, v) ∈ V × V : ∀t,∃t′ > t, (u, v) ∈ E(G(t′))}.

In particular, the digraph G(∞) is the limit superior of G.

Proposition 1. If G is a dynamic graph with a permanent self-loop at each node, then G eventually
stabilizes to G(∞), i.e., there is a positive integer s such that

∀t > s, G(t) = G(∞).

Proof. Because of the self-loops, every edge of G(t + 1) is an edge of G(t). Hence the dynamic
graph G eventually stabilizes to some digraph G(s), i.e., there is a positive integer s such that

∀t > s, G(t) = G(s).

Hence all edges in G(s) are edges of G(∞).
Conversely, by definition of the limit superior, any edge of G(∞) appears in some digraph G(t)

with t > s, and since G(t) = G(s), is also an edge of G(s).

1To allow for simple notation, there are self-loops at all nodes of G
a(t), including those corresponding to the

passive agents at round t.
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Let us recall that a digraph G is transitively closed if any edge of G ◦G is an edge of G. In the
case G has a self-loop at each node, this is equivalent to G ◦ G = G. The transitive closure of G,
denoted by G+, is the minimal transitively closed digraph that contains all edges of G.

Theorem 2. If G is a dynamic graph with permanently a self-loop at each node, then G(∞) is the
transitive closure of G(∞), namely,

G(∞) = [G(∞)]+.

Proof. First we prove that G(∞) is transitively closed. Since every edge of G(∞) is also an edge of
G(∞), this will show that [G(∞)]+ ⊆ G(∞). For that, let s be the index from which G stabilizes
(cf. Proposition 1), and let (u, v) and (v,w) be two edges of G(∞). Since G(∞) = G(s), there
exists an index t > s such that (u, v) is an edge in G(s : t). Since G(∞) = G(t+1), there exists an
index t′ > t such that (v,w) is an edge in G(t+1 : t′). It follows that (u,w) is an edge in G(s : t′),
and hence (u,w) is an edge in G(s) = G(∞).

We now prove the reverse inclusion; let (u, v) be an edge of G(∞). Since there are finitely many
edges that appear finitely many times in G, there is an index r such that for all t > r, any edge in
G(t) is an edge in G(∞). Let t = max(s, r). By Proposition 1, (u, v) is an edge of G(t) = G(∞),
i.e., there exists an index t′ > t such that (u, v) is an edge of G(t : t′). In other words, there is a
u ∼ v path in the interval [t, t′]; let w0 = u,w1, w2, . . . , wt′−t+1 = v be such a path. Since t > r,
each edge in this path is an edge in G(∞), which shows that (u, v) is an edge of the transitive
closure of G(∞), namely [G(∞)]+.

2.3 Roots, central roots, and kernels

A node u is a root of the digraph G = (V,E) if for every node v ∈ V , there is a path from u to
v in G, and G is said to be rooted if it has at least one root. Node u is a central root of G if for
every node v ∈ V , (u, v) is an edge of G. The set of G’s roots and the set of G’s central roots are
denoted by Roots(G) and CRoots(G), respectively.

The kernel of a dynamic graph G, denoted by Ker(G), is defined as

Ker(G) =
{

u ∈ V | ∀t > 1,∀v ∈ V,∃t′ > t : (u, v) ∈ E(G(t : t′))
}

or equivalently,
Ker(G) = ∩t>1CRoots(G(t)).

Proposition 3. If G is a dynamic graph with permanently a self-loop at each node, then

Ker(G) = CRoots
(

G(∞)
)

= Roots (G(∞)) .

Proof. Because of the self-loops, CRoots
(

G(t+ 1)
)

⊆ CRoots
(

G(t)
)

, which by Proposition 1 im-
plies that

Ker(G) = ∩t>1CRoots(G(t)) = CRoots
(

G(∞)
)

.

By Theorem 2, the digraph G(∞) is the transitive closure of G(∞), and so

Roots(G(∞)) = CRoots(G(∞))

which completes the proof.

The dynamic graph G is said to be infinitely connected if Ker(G) = V , or equivalently, by
Proposition 3, if G(∞) is strongly connected.
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2.4 Bounded delay rootedness

A dynamic graph G is said to be permanently rooted if all the digraphs G(t) are rooted. This notion
naturally extends as follows:

Definition 4. A dynamic graph G is rooted with delay T if for every positive integer t, G(t :
t + T − 1) is rooted. G is rooted with a bounded delay if it is rooted with delay T for some fixed
positive integer T .

Any dynamic graph that is rooted with a bounded delay has a non-empty kernel, i.e., there are
nodes that are central roots of all the digraphs G(t). Proposition 5 below shows that these nodes
are actually central roots over bounded length intervals.

Proposition 5. If G is a dynamic graph that is rooted with delay T , then there exists a positive
integer s such that

∀t > s,∀u ∈ V, Inu
(

t : t+ T (n− |Ker(G)|)
)

∩Ker(G) 6= ∅.

Proof. For simplicity, we assume that T = 1; the general case can be easily reduced to the case
T = 1 by considering the dynamic graph GT defined by GT (t) = G

(

(t−1)T +1 : tT
)

that is rooted
with delay one.

Let s be a positive integer such that for all t > s, every edge of G(t) is also an edge of the
digraph G(∞), i.e., Et ⊆ E∞. Then we have that

∀t > s, Roots(G(t)) ⊆ Ker(G). (1)

For any non-negative integer i, let us now introduce the set Ui of nodes that are outgoing
neighbors in the digraph G(t : t+ i) of some of the nodes in Ker(G) . Because of the self-loops, we
have that Ker(G) ⊆ U0 and Ui ⊆ Ui+1. We now show that either Ui = V or Ui ( Ui+1.

For that, assume that Ui 6= V . Let u /∈ Ui, and let v be a root of the digraph G(t+ i+1); hence
there exists a path from v to u in G(t+ i+ 1). From (1) and the above inclusions, we derive that

v ∈ Roots(G(t+ i+ 1)) ⊆ Ker(G) ⊆ U0 ⊆ Ui.

Thereby, there are two consecutive nodes x and y in the v∼u path such that x ∈ Ui and y /∈ Ui.
By construction, y is an outgoing neighbor of v ∈ Ker(G) in the digraph G(t : t+ i+ 1), and thus
y ∈ Ui+1. In conclusion, y ∈ Ui+1 \ Ui, which shows that Ui 6= Ui+1.

It follows that |Ui| > min(n, k + i) where k = |Ker(G)|, and hence Un−k = V . Thus for every
node u ∈ V , it holds that Inu

(

t : t+ T (n− k)
)

∩Ker(G) 6= ∅, as required.

3 The Stabilizing Consensus Problem

Let V be a totally ordered set and let A be an algorithm in which each agent u has an input value
µu ∈ V and an output variable yu initialized to µu. The algorithm A achieves stabilizing consensus
in an active run with the initial values (µu)u∈V if the following properties hold:

Validity. At every round t and for each agent u, there exists some agent v such that yu(t) = µv.
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Eventual agreement. There exists some round s such that

∀t > s, ∀u, v ∈ V, yv(t) = yu(s).

The common limit value of the variables yu is called the consensus value. The algorithm A is said
to solve the stabilizing consensus problem in a network model G if it achieves stabilizing consensus
in each of its active runs with a dynamic graph in G.

4 A Necessary Condition for Stabilizing Consensus

Next we show a necessary condition for the stabilizing consensus problem to be solvable.

Theorem 6. There is no algorithm that solves stabilizing consensus in a network model containing
a dynamic graph with an empty kernel.

Proof. Let G be any dynamic graph with an empty kernel, and let s be an index such that for
every t > s, we have Et ⊆ E∞. Let us consider the acyclic digraph formed with the strongly
connected components of G(∞), called the condensation graph of G(∞), and let us recall that
the condensation graph of a non-rooted digraph contains at least two source nodes, i.e., two nodes
with no incoming edges (see e.g. [14]). From Propositions 3, we derive that the condensation
graph of G(∞) has at least two source nodes U0 and U1. Hence from round s, none of the agents
corresponding to the nodes in U0 (resp. U1) are reachable from the agents corresponding to the
nodes in U1 (resp. U0).

For the sake of contradiction, assume that there exists an algorithm A that achieves stabilizing
consensus in all the runs with the dynamic graph G. Consider now any run of the algorithm A
in which all agents start at round s, and all agents of the strongly connected components U0 and
U1 have the input values 0 and 1, respectively. Because of the validity property, all the agents in
U0 must set their output values permanently to 0. Similarly, all the agents in U1 must set their
outputs permanently to 1, which shows that the eventual agreement property is violated in this
run.

5 MinMax Algorithms

In this section, we define the class of MinMax algorithms by the type of update rules for the
variables yu. The way MinMax algorithms can be implemented in our computing model will be
addressed in Section 7.

We start with an informal description of these algorithms. As a first step, consider the Min
algorithm, in which each agent u has an output variable xu which is repeatedly set to the minimum
input value u has heard of. It is easy to see that on dynamic graphs that are infinitely connected,
the values of all xu variables eventually stabilize on the minimum input value.

When the Min algorithm is applied on an arbitrary dynamic graph, xu eventually stabilizes on
the minimum input value received by u, to be denoted by m∗

u:

m∗

u

def
= min

v∈Ina
u
(1:∞)

(

µv

)

.
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Hence there is an integer θ such that for every round t > θ and every agent u, it holds that
xu(t) = m∗

u. As shown below in Lemma 7, if u is in Ker(G), then m∗

u = m∗, where

m∗ def
= max

v∈V

(

m∗

v

)

.

If the integer θ is given, then the following simple two phase scheme can solve stabilizing
consensus on a dynamic graph with a non-empty kernel: The first phase consists of the first θ
rounds in which the Min algorithm is applied. This allows for each agent u to compute the value
m∗

u in the variable xu. In the second phase starting at round θ + 1, for each agent u the variable
yu is repeatedly set to the maximal m∗

v value u has heard of.
Since θ is not given, we implement the above scheme by assigning to each agent u at each round

t an integer θu(t) 6 t, and by computing the value yu(t), with the first phase consisting of the
interval [1, θu(t)].

For this procedure to be correct, we need that eventually θu(t) > θ for each agent u ∈ V . This
is the case if limt→∞ θu(t) = ∞. Assuming that each agent v has computed the value of m∗

v by
round θu(t), we also need that each agent u hears of some agent in the kernel during the round
interval [θu(t) + 1, t]. In conclusion, θu(t) must be chosen (1) large enough to ensure that each
agent v has computed m∗

v by round θu(t) and (2) small enough to guarantee that u hears of some
agent in the kernel during the period [θu(t) + 1, t].

A MinMax rule for the variable yu is an update rule of the form

yu(t) = max
v∈Ina

u
(θu(t)+1:t)

(

min
w∈Ina

v
(1:θu(t))

(yw(0))

)

(2)

where θu(t) is any integer in the interval [0, t]. A MinMax algorithm is an algorithm in which for
each agent u and each round t, the value of yu is updated by a MinMax rule. It is determined by
the way the integer-valued functions θu, called cut-off functions, are chosen.

We now prove the basic property on which our strategy relies.

Lemma 7. In any active run, if u is in Ker(G), then for every agent v it holds that Inau(1 :∞) ⊆
Inav(1 :∞), and m∗

u = m∗.

Proof. Let w be an arbitrary agent in Inau(1 : ∞), and let t0 ∈ N be such that w ∈ Inau(1 : t0)
and all agents are active at round t0. Since u is in Ker(G), there is some round t1 > t0 such that
u ∈ Inv(t0 + 1 : t1) = Inav(t0 + 1 : t1). This implies that (w, v) is an edge of Ga(1 : t1), and hence
w ∈ Inav(1 :∞).

From the definition of m∗

u, it follows that m
∗

u > m∗

v for every agent v, and hence m∗

u > m∗. By
definition of m∗, it holds that m∗

u 6 m∗. Therefore we have that m∗

u = m∗ as required.

6 Safe MinMax Algorithms for Stabilizing Consensus

We now define the subclass of safe MinMax algorithms, and present properties of dynamic graphs
guaranteeing that safe MinMax algorithms always stabilize on the value m∗.
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6.1 Definition of safe MinMax algorithms

Let mu(t) be the minimal input value that u has heard of by round t, i.e.,

mu(t)
def
= min

v∈Ina
u
(1:t)

(µv).

Using this notation, the update rule (2) can then be rewritten into

yu(t) = max
v∈Ina

u
(θu(t)+1:t)

(mv(θu(t))) . (3)

By definition, the sequence
(

mu(t)
)

t>1
is non-increasing and lower-bounded by m∗

u. Thus it

stabilizes to some limit value at some round denoted tu. We let t∗ = max{tv : v ∈ V }.

Lemma 8. For each agent u, limt→∞mu(t) = m∗

u.

Proof. By definition of m∗

u, there exist some agent v and some round t such that v ∈ Inau(1 : t) and
m∗

u = µv. Hence, we get mu(t) 6 µv, and so mu(t) 6 m∗

u. Since Inau(1 : t) ⊆ Inau(1 : ∞), we have
mu(t) > m∗

u, and the lemma follows.

Now consider an arbitrary agent u. Our goal is to set restrictions on the cut-off function θu
enforcing that eventually yu(t) = m∗. The first restriction is that for all large enough t,

∀v ∈ V, mv(θu(t)) = m∗

v. (4)

Because the sequence
(

mu(t)
)

t>1
is stationary and by Lemma 8, the condition (4) is satisfied for

all large enough t if limt→∞ θu(t) =∞.
Assuming that (4) holds for some t ∈ N, we use Lemma 7 to show that if Inau(θu(t) + 1 : t)

contains an agent from Ker(G) then yu(t) = m∗ as needed. In a large class of dynamic graphs
with non-empty kernels, the latter condition is satisfied whenever t − θ(t) is larger than some
constant (which may depend on the given dynamic graph). So our second restriction is that
limt→∞ t− θu(t) =∞.

The above discussion leads to the following definition: A MinMax algorithm is safe if in each
of its active runs, it holds that

∀u ∈ V, lim
t→∞

θu(t) = lim
t→∞

t− θu(t) =∞. (5)

Theorem 9. Any active run of a safe MinMax algorithm on a dynamic graph G achieves stabilizing
consensus if there is a positive integer s such that

∀t > s,∀u ∈ V, Inu

(

θu(t) + 1 : t
)

∩Ker(G) 6= ∅. (6)

Proof. Without loss of generality, assume that s > t∗ and s > maxv∈V (sv). Let us consider an
arbitrary agent u. Since the algorithm is safe, there is a positive integer t0 such that θu(t) > s for
all t > t0. Then for t > t0, Equation (3) can be rewritten into

yu(t) = max
v∈Inu(θu(t)+1:t)

(m∗

v) . (7)

This immediately implies that yu(t) 6 m∗.
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We also obtain from (7) that for every agent v ∈ Inu(θu(t) + 1 : t), it holds that yu(t) > m∗

v.
By (6), the set Inu(θu(t) + 1 : t) contains at least one agent v in Ker(G). Lemma 7 implies that
m∗

v = m∗, and so yu(t) > m∗.
We conclude that for all t > t0, it holds that yu(t) = m∗, i.e., the run achieves stabilizing

consensus on m∗.

As observed, the Min (or Max) algorithm solves stabilizing consensus in any infinitely con-
nected dynamic graph. Simple examples show that this is not the case for some MinMax algorithms.
However, as a direct consequence of Theorem 9, we obtain the following result.

Corollary 10. Every safe MinMax algorithm solves the stabilizing consensus problem in the net-
work model of infinitely connected dynamic graphs.

As for dynamic graphs that are rooted with a bounded delay, the combination of Proposition 5
and Theorem 9 yields the following corollary.

Corollary 11. Every safe MinMax algorithm solves the stabilizing consensus problem in the net-
work model of dynamic graphs that are rooted with a bounded delay.

Interestingly, Corollaries 10 and 11 are the analogs for stabilizing consensus and MinMax algo-
rithms of the fundamental solvability results by Moreau [16] and by Cao, Morse, and Anderson [7]
for asymptotic consensus and averaging algorithms. Observe, however, that Corollary 10 holds for
all infinitely connected dynamic graphs while the Moreau’s theorem requires the communication
graph to be bidirectional at every round.

6.2 A limitation of safe MinMax algorithms

A natural question raised by Theorem 9 is whether safe MinMax algorithms solve stabilizing con-
sensus for every dynamic graph with a non-empty kernel. We show that this is not the case, and
first establish the following property of safe MinMax algorithms.

Lemma 12. In any run of a safe MinMax algorithm in which stabilizing consensus is achieved,
the stabilizing consensus value is equal to m∗.

Proof. Let ỹ be the stabilizing consensus value, and consider a agent u such that m∗

u = m∗. Observe
that for all rounds t it holds that yu(t) > mu(t), and for all large enough t we have yu(t) = ỹ and
mu(t) = m∗. Thus we get that ỹ = yu(t) > mu(t) = m∗ for all large enough t, and hence ỹ > m∗.

Conversely, let us consider an arbitrary agent u. Since the algorithm is safe, θu(t) > t∗ if t is
large enough. For each such t, by (3), we have yu(t) = maxv∈Ina

u
(θu(t)+1:t) (m

∗

v), which implies that
yu(t) 6 m∗. The value of yu stabilizes to ỹ, which shows that ỹ 6 m∗.

It follows that ỹ = m∗, as claimed.

Theorem 13. There is no safe MinMax algorithm that solves stabilizing consensus in the network
model of dynamic graphs with non-empty kernels.

Proof. The argument is by contradiction: suppose that there is a safe MinMax algorithm A that
solves stabilizing consensus in the network model Gnek of dynamic graphs over a fixed set V of
n > 2 nodes and with non-empty kernels. Let us denote V = {u, v1, . . . , vn−1}, and consider the
following two digraphs G and H with the set of nodes V :
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1. G is the directed chain u, v1, . . . , vn−1;

2. H is the directed chain v1, . . . , vn−1, u.

We consider the active runs of A in which all the nodes start at round 1 and where all the input
values are equal to 0, except the input value of the node u that is equal to 1.

First, we consider the dynamic graph G0 in which G0(t) = G at all rounds t. Clearly, we
have that Ker(G0) = {u}, and the corresponding maximal value m∗

0 is 1. By Lemma 12 the
consensus value in this run is equal to 1, i.e., there exists some positive integer t0 such that for each
round t > t0 and each node w, it holds that yw(t) = 1. In particular, yv1(t0) = 1.

We now consider the dynamic graph G1 such that G1(t) = G for 1 6 t 6 t0 and G1(t) = H
for t > t0. Clearly Ker(G1) = {v1}, and for the corresponding run of A, we have m∗

1 = 0. By
Lemma 12, the consensus value in this run is 0, i.e., there exists some positive integer t1 such that
for each round t > t0 + t1 and each node w, it holds that yw(t) = 0. In particular, yv1(t0 + t1) = 0.

By repeating the above construction, we determine an infinite sequence of positive integers (tk)k∈N
and the dynamic graph G∞ defined by

G∞(t) =

{

G if 1 6 t 6 t0 or t0 + · · ·+ t2k−1 + 1 6 t 6 t0 + · · ·+ t2k
H if t0 + · · ·+ t2k + 1 6 t 6 t0 + · · · + t2k+1.

We easily check that Ker
(

G∞

)

= {u, v1}, and for the corresponding run of A, it holds that

yv1(t) =

{

1 if t = t0 + · · · + t2k
0 if t = t0 + · · · + t2k+1.

In this run with a non-empty kernel, the sequence (yv1(t)) is not convergent, which violates the
eventual agreement property.

Extending the analogy above pointed out, we may observe that a similar impossibility result for
averaging algorithms and asymptotic consensus is proved in [5] with a different collection of three
node dynamic graphs.

6.3 Convergence time of safe MinMax algorithms

Contrary to safe averaging algorithms that converge in at most an exponential (in the size n of the
network) number of rounds with dynamic graphs that are permanently rooted [7, 9], the convergence
time of safe MinMax algorithms with such dynamic graphs may be arbitrarily large: For instance,
inserting the complete digraph at one round t > t∗ may result in changing the value m∗, and so
may require the MinMax algorithm to stabilize again.

Thus MinMax algorithms are highly unstable with respect to – even sporadic – topology changes.
However, if we restrict our analysis to a dynamic graph G formed with a fixed rooted digraph, safe
MinMax algorithms converge much faster than safe averaging algorithms. To see that, assume all
nodes start at round one, and let K = Ker(G). It is not hard to see that within less than |K|
rounds, each mv with v ∈ K stabilizes to m∗. Proposition 5 states that for each node u and each
round t it holds that

K ∩ Inu(t : t+ n− |K|) 6= ∅.

It follows that if |K| 6 θu(t) + 1 6 t− (n− |K|), then yu(t) = m∗.
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Since limt→∞ θu(t) = limt→∞ t − θu(t) = ∞, there exists a positive integer αu such that if
t > αu, then it holds that

θu(t) > |K| − 1 and t− θu(t) > n− |K|+ 1.

We conclude that the algorithm stabilizes by round maxu∈V (αu) rounds. In particular, setting
θu(t) = ⌊t/2⌋ guarantees convergence within 2n rounds.

The latter result can be interestingly compared with the exponential lower bound proved in [18,
9]: the convergence time of any safe averaging algorithm is exponential in n on the fixed rooted
topology of a Butterfly digraph.

7 Efficient Distributed Implementation of MinMax Algorithms

In this section, we discuss distributed implementations of MinMax algorithms in our computing
model. Figure 1 presents a general, efficient distributed scheme for this implementation, which is
applicable whenever the difference functions defined by

δu = t− θu

are locally computable. The exact nature of the δu functions is left unspecified (line 9).
Observe that the cut-off function θu satisfies the inequalities 0 6 θu(t) 6 t if and only if δu

satisfies the same inequalities. The inequalities 0 6 δu(t) 6 t can be easily enforced by having the
agent u implement the simple round counter Cu defined by Cu(t) = t− su. Indeed, the difference
function δu(t) = f

(

Cu(t)
)

satisfies these two inequalities when f is any integer-valued function
such that 0 6 f(t) 6 t. Besides we can choose f so that the difference function δu(t) = f

(

Cu(t)
)

provides a safe MinMax algorithm: for instance, we may set f(k) = ⌊k/2⌋ or f(k) = ⌊log k⌋.
A possible, but quite inefficient way for implementing MinMax algorithms consists in using a

full information protocol, in which at each round t each active agent sends its local view at round
t− 1 to all other agents; the local view of u at round t for t > su − 1 is a rooted tree with labeled
leaves, denoted Tu(t), defined inductively as follows: First, Tu(su− 1) is a single vertex labelled by
µu. Assume now that at round t, the agent u receives k messages with the trees T1, · · · , Tk. Then
Tu(t) is the tree consisting of a root with k children on which the trees T1, . . . Tk are hanged. Using
Tu(t), the agent u can then easily compute yu(t) corresponding to the cut-off point θu(t) = t−δu(t).

The point of our implementation is precisely to avoid the construction of the trees Tu(t). For
that, each agent u maintains, in addition to yu and δu, a variable xu with values in V. At each
round t, the agent u sets xu to the minimal input value it has heard of, i.e., xu(t) = mu(t).

We say that an input value µ is relevant for agent u at round t if there is an agent v ∈
Inau(t− δu(t) + 1 : t) such that xv(t− δu(t)) = µ. Thus, the agent u needs to set yu to its maximal
relevant value at each round, which is done as explained below.

Just to simplify notation, we assume that the set V of all the possible initial values is finite and
given. To determine the set of its relevant input values, the agent u maintains a vector of integers
AGEu such that for each µ ∈ V, AGEu[µ](t) is the minimal number of rounds, by u’s local view at
round t, that have passed since the last time some agent v had set xv to µ. Thus µ is relevant for
u at round t if and only if AGEu[µ](t) 6 δu(t).

Now we show that the algorithm corresponding to the difference functions δu is a MinMax
algorithm with the cut-off functions θu = t− δu. We start by two preliminary lemmas.
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Initialization:

1: xu ∈ V , initially µu ; yu ∈ V , initially µu ; δu ∈ N, initially 0 ; AGEu ∈ (N ∪∞)m, initially ∞m

2: AGEu[xu]← 0
3: while TRUE do

4: send AGEu to all agents
5: receive AGEv1 · · · ,AGEvℓ

6: for all µ ∈ V ,AGEu[µ]← 1 + min16i6ℓ(AGEvi [µ])
7: xu ← min{µ : AGEu[µ] <∞}
8: AGEu[xu]← 0
9: δu ← · · ·

10: yu ← max{µ : AGEu[µ] 6 δu}
11: end while

Figure 1: Distributed implementation of a MinMax algorithm with the cut-off functions θu = t−δu.

Lemma 14. For any agent u and any round t > 1, xu(t) = mu(t).

Proof. This is an immediate consequence of the initialization of the variable xu (line 1), of its
update rule (line 7), and the fact that if t < su then xu(t) = xu(su − 1).

Lemma 15. If the agent u is active at round t, then for each integer k ∈ {0, . . . , t},

AGEu[µ](t) 6 k ⇔ ∃v ∈ Inau(t− k + 1 : t), xv(t− k) = µ.

Proof. First, assume that there is an agent v ∈ Inau(t − k + 1 : t) such that xv(t− k) = µ, and let
t0 = max{t − k, sv − 1}. Since for t < sv, we have set xv(t) = xv(sv − 1), it always holds that
xv(t − k) = xv(t0) = µ. Moreover, we easily check that v is in Inau(t0 + 1 : t). Hence there exists
a v∼u path in the interval [t0 + 1, t] that we denote by v0 = v, v1, . . . , vt−t0 = u. Because of the
update rule of the vectors AGEw, we deduce step by step that

AGEv1 [µ](t0 + 1) 6 1, AGEv2 [µ](t0 + 2) 6 2, . . . , AGEu[µ](t) 6 t− t0.

The claim follows by observing that t− t0 6 k.
We now show by induction on k the following implication:

AGEu[µ](t) 6 k ⇒ ∃v ∈ Inau(t− k + 1 : t), xv(t− k) = µ.

Base case: AGEu[µ](t) = 0. By lines 6 and 8, we deduce that xu(t) = µ. Then the agent v = u is
in Inau(t+ 1 : t) with xv(t) = µ, as required.

Inductive step: Assume that the above implication holds for some non-negative integer k, and let
AGEu[µ](t) 6 k + 1. Then either (a) AGEu[µ](t) 6 k or (b) AGEu[µ](t) = k + 1.

(a) By inductive assumption, there is some agent w ∈ Inau(t−k+1 : t) such that xw(t−k) = µ.
Then we consider the two following cases:

1. If xw(t− k − 1) = xw(t− k), then we let v = w.
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2. Otherwise, xw(t− k − 1) 6= xw(t− k), which means that in round t− k, xw was set
to xv(t− k) for some agent v in Inaw(t− k) by executing line 7. Thus we have that
xw(t− k) = xv(t− k − 1) = µ.

In both cases, the proof of the claim in case (a) is completed by noting that since
Ga(t− k : t) = Ga(t− k) ◦Ga(t− k + 1 : t), we have that v ∈ Inau(t− k : t).

(b) By line 6, there is some agent w in Inau(t) such that AGEw[µ](t− 1) = k. The inductive
hypothesis implies that there exists some agent v in Inaw(t− k : t− 1) such that

xv(t− 1− k) = µ.

Since Ga(t−k : t) = Ga(t−k : t−1)◦Ga(t), it follows that v ∈ Inau(t−k : t) as required.

Theorem 16. Any instance of the scheme in Figure 1 is a MinMax algorithm, with cut-off functions
given at each round t by θu(t) = t− δu(t).

Proof. If the agent u is active at round t, then we have yu(t) = max {µ ∈ V : AGEu[µ] 6 δu(t)} (cf.
line 10). From Lemma 15, it follows that

yu(t) = max {µ ∈ V : ∃v ∈ Inau(θu + 1 : t), xv(θu) = µ} (8)

where θu = t− δu(t). By Lemma 14, it holds that

xv(θu) = min
w∈Ina

v
(1:θu)

(

µw

)

. (9)

By Equations (8) and (9), we get that, with θu = t− δu(t),

yu(t) = max
v∈Ina

u
(θu+1:t)

(

min
w∈Ina

v
(1:θu)

µw

)

.

The resulting MinMax algorithms share the same key features as averaging algorithms, namely
they assume no leader, do not use identifiers, and tolerate asynchronous starts. Unlike averaging
algorithms, they are not memoryless, but are space efficient in the sense that except the AGEu

counters, which are bounded by log(t), all other local variables are of bounded size. Actually,
the unbounded counters AGEu[µ] – which imply unbounded storage capacities and unbounded
bandwidth – are the discrete counterpart of the infinite precision required in averaging algorithms.

Stabilizing consensus with failures

In the light of Corollary 11 and Theorem 16, we now revisit the problem of stabilizing consensus
in the context of benign failures. In particular, we consider completely connected systems and the
failure model of crashes or the one of send omissions. Basically, the resulting communication graphs
are not strongly connected, and thus naive approaches (e.g., the Min algorithm) do not work.

To tackle this problem, we propose a strategy consisting first in emulating synchronized rounds
and then in using a safe MinMax algorithm on top of this emulation. Indeed, as demonstrated
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in [11], synchronized rounds with a dynamic communication graph can be easily emulated in any
such distributed system, be it synchronous or asynchronous, when the network size is given: syn-
chrony assumptions and failures are captured as a whole just by the connectivity properties of the
dynamic graph. Typically, synchronized rounds with a dynamic graph that is non-split 2 at each
round can be emulated if a minority of agents may crash or fail by send omissions. Since a non-split
digraph is rooted, any safe MinMax algorithm on top of this emulation solves stabilizing consensus
despite asynchrony and agent failures.

Corollary 17. The stabilizing consensus problem is solvable in an asynchronous system with a
complete topology, reliable links, and a minority of agents that crash or commit send ommissions.

8 Concluding Remarks

In this paper, we studied the stabilizing consensus problem for dynamic networks with very few
restrictions on the computing model and the network. In particular, we did not restrict link changes,
except for retaining a weak connectivity property, namely rootedness over sufficiently long periods
of time, captured by the condition of a non-empty kernel. First we showed that this property is
necessary for solving stabilizing consensus, and then proved that it is nearly a sufficient property,
in the sense that every safe MinMax algorithm solves stabilizing consensus if the dynamic graph
is rooted with a bounded delay. Our solvability results for stabilizing consensus and MinMax
algorithms are actually the analogs of the ones for asymptotic consensus and averaging algorithms.

Our work leaves open several questions. First, it would be interesting to study whether the
stabilizing consensus problem remains solvable when the dynamic graph is rooted with finite but
unbounded delays. That may lead to the design of algorithms, other than MinMax algorithms,
that solve stabilizing consensus with no strong connectivity. Another related question concerns
convergence time. As demonstrated in Section 6.3, the convergence time of any safe MinMax
algorithm is unbounded even for a dynamic graph that is permanently rooted, i.e., rooted with
delay one. This raises the following question: does there exist another class of stabilizing consensus
algorithms that reach consensus in bounded time – which might depend on the network size – for
this specific model of dynamic graphs?
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