
Distributed Bare-Bones Communication in Wireless Networks ∗

Bogdan S. Chlebus † Dariusz R. Kowalski ‡ Shailesh Vaya §

Abstract

We consider wireless networks operating under the SINR model of interference. Nodes have
limited individual knowledge and capabilities: they do not know their positions in a coordinate
system in the plane, further they do not know their neighborhoods, nor do they know the size of
the network n, and finally they cannot sense collisions resulting from simultaneous transmissions
by at least two neighbors. Each node is equipped with a unique integer name, where N as an
upper bound on the a range of names. We refer as a backbone to a subnetwork induced by
a diameter-preserving dominating set of nodes. Let ∆ denote a maximum number of nodes
that can successfully receive a message transmitted by a node when no other nodes transmit
concurrently. We study distributed algorithms for communication problems in three settings.
In the single-node-start case, when one node starts an execution and other nodes are awoken by
receiving messages from already awoken nodes, we present a randomized broadcast algorithm
that wakes up all nodes in O(n log2N) rounds with high probability. For the synchronized-
start case, when all nodes start an execution simultaneously, we give a randomized algorithm
computing a backbone in O(∆ log7N) rounds with high probability. In the partly-coordinated-
start case, when a number of nodes start an execution together and other nodes are awoken
by receiving messages from the already awoken nodes, we develop an algorithm that creates a
backbone in time O(n log2N + ∆ log7N) with high probability.

Key words: wireless network; signal-to-interference-plus-noise ratio; broadcast; backbone

∗A preliminary version of this paper appeared as [6].
†School of Computer and Cyber Sciences, Augusta University, Augusta, Georgia, USA. Work partly supported by

the NSF Grant 1016847.
‡School of Computer and Cyber Sciences, Augusta University, Augusta, Georgia, USA.
§Xerox Research Centre India, Bangalore, India.

ar
X

iv
:1

51
0.

07
35

7v
3

 [
cs

.D
C

]
 1

3
Ju

n
20

21

1 Introduction

We consider wireless networks in which the effects of interference are determined by the signal-

to-interference-plus-noise ratio (SINR) model. The extent to which such networks can support

distributed communication depends on nodes’ capabilities, like the ability to detect signals’ collisions

(caused by two or more neighbors transmitting simultaneously), and on the information that can

be used in codes of algorithms, such as coordinates of nodes in a Cartesian coordinate system in a

plane. We demonstrate that efficient distributed communication can be carried out by a wireless

network whose nodes have severely limited power.

We assume that the nodes of a wireless network are positioned in a two-dimensional Euclidean

space. This is abstracted into an associated graph structure called the communication graph of the

network. The nodes of the network serve as vertices of the communication graph. A pair of such

vertices (u,w) makes an edge in the communication graph if w can successfully receive a message

transmitted by u when no other node transmits simultaneously, and vice versa. We use ∆ to denote

a maximum node-degree in a communication graph, and D to denote a diameter of this graph.

We want to distinguish certain vertices of a communication graph such that they together make

a backbone of the graph. We call these vertices backbone vertices. Backbone vertices induce a

subgraph of a constant degree in the communication graph that has its diameter asymptotically

equal to that of the whole communication graph and such that every node outside the backbone is

connected to some backbone vertex.

Nodes of a wireless network communicate directly subject to restrictions on the signal-to-

interference-plus-noise ratio (SINR). A transmission is successfully received by a node depend-

ing on a ratio of the signal strength to the strength of other signals plus ambient noise, when

evaluated at a receiver. Let T be a set of nodes that transmit together at a round, and let

two nodes v and u be such that v ∈ T and u /∈ T . The signal strength of v’s transmission

as reaching u is determined as P(v, u) = Pv · dist(v, u)−α, where dist(v, u) is the distance be-

tween u and v, quantity pv is the transmission strength, and α > 2 is a path loss. The in-

terference at u means I(v, u, T) =
∑

w∈T \{v} P(w, u). The quantity SINR (v, u, T) is defined as

SINR(v, u, T) = P(v, u)/(N + I(v, u, T)), where N > 0 is the ambient noise. For a node u to

successfully receive a transmission by node v, it is necessary for the inequality SINR(v, u, T) ≥ β to

hold, where β > 0 is some threshold. We work with a SINR model that combines weak-connectivity

assumptions, as formulated by Daum et al. [9], with weak-sensitivity (weak devices) assumptions,

as formulated by Jurdziński et al. [26], see also Jurdziński and Kowalski [21]. In a weak-sensitivity

setting, a node can never successfully receive a transmission from the borderline of its transmission

range, while weak connectivity means that all links that could successfully transfer a message in

a suitably favorable scenario are included as links of a network, see Section 2 for details. We also

assume that nodes cannot detect collisions produced by interfering transmissions from at least two

neighbors.

Algorithms are restricted in what information can be used in their codes. A network is said to

be bare-bones when it is subject to a specific set of such restrictions, which are used in this paper

and can be summarized as follows. Each node among the n nodes in a network has a unique name

in the range {1, . . . , N}, for some positive integer N ≥ n. Each node knows its name and the

number N . Nodes do not know their neighbors in the communication graph but they know the

parameter ∆.

1

We consider distributed algorithms to synchronize and organize a wireless network. The way

a communication task is initiated impacts how a communication algorithm may be designed. We

consider the following natural modes of initialization of communication tasks. If all the nodes begin

an execution together in the same round, then such an execution is said to be performed from a

synchronized start. Executing algorithms from an single-node start means that just a single node is

awoken at the beginning of an execution, while all the other nodes do not send messages until they

hear a message. A case of multiple-nodes synchronized start means that a group of nodes start an

execution together, while the remaining nodes wait to be awoken by hearing messages. Synchronized

start is a global configuration of a network that facilitates executing a communication algorithm

with all nodes starting at the same time.

We consider implementations of three communication primitives useful in developing distributed

algorithms. One primitive is to prepare a synchronized-start configuration from a single-node start.

This means to make all nodes reach a“start”global state from which to begin in unison an execution

of some algorithm. Another primitive is to synchronize start from a multiple-nodes synchronized

start, which has a similar goal but subject to the stated different initial conditions. These two tasks

can be accomplished by a broadcast with a wake-up functionality, like coordinating round numbers

at nodes. The third primitive is to build a backbone of the communication graph of a network,

provided that a synchronized-start configuration has already been reached.

Next, we briefly summarize the results presented in this paper, and put them in the context of

previous and related work.

A summary of the results. We develop randomized distributed algorithms implementing certain

communication primitives in wireless networks operating under the SINR regime of interferences

among concurrent transmissions. Each of them has the property that a node uses only O(log3N)

random bits in an execution. The model is of weak-sensitivity and weak-connectivity.

We begin by developing a randomized distributed algorithm to perform a broadcast from a

single-node start in O(n log2N) expected time, where it is the source that starts as an activated

node. Once an execution is completed, every node will have been activated and all the nodes have

their round numbers synchronized. This may be used as a preparation to begin an execution of a

distributed communication algorithm from a synchronized start.

We present two randomized algorithms to build a backbone. One of them completes the task

from a synchronized start in O(∆ log7N) rounds with high probability. The other one creates

a backbone from multiple-nodes coordinated-start in O(n log2N + ∆ log7N) rounds with high

probability.

There are known lower bounds Ω(n logN) and Ω(D∆) on time to broadcast from a single-node

start, given by Jurdziński et al. [26]. These lower bounds hold for randomized algorithms and when

nodes know their coordinates in a system of coordinates, so these lower bounds apply to our less

demanding settings as well. Therefore the time performance of our broadcast algorithm misses a

lower bound Ω(n logN) by a factor of O(log n).

Building a backbone from a single-node start could proceed by way of first coordinating all

the nodes such that they can start simultaneously an execution of a distributed communication

algorithm to build a backbone. For D = ∆ = Θ(
√
n), both constructing a backbone and performing

broadcast could be performed in O(∆ polylog N) = O(
√
n polylog N) rounds, while they may need

as much as Ω(D∆) = Ω(n) rounds for a single-node start. The performance of our algorithm for

2

building a backbone from a synchronized start implies that having all the nodes of a network

synchronized, so that they can start an execution simultaneously, makes it possible to perform

some distributed tasks faster than otherwise, in that building a virtual backbone network is among

such tasks.

Our work extends the results of Jurdziński and Kowalski [20] and Jurdziński et al. [26], whose

solutions rely on the knowledge of coordinates of nodes in a coordinate system in a plane, to a setting

where such knowledge is not available. These are the first algorithms with performance bounds

close to optimal in the model of weak sensitivity and weak connectivity of wireless networks, in

view of the lower bounds in the settings considered in Jurdziński et al [26] that apply to the setting

of this paper as well.

We introduce a novel approach to collision avoidance, based on strongly selective families with

specifically chosen parameters, in order to compensate for lack of node coordinates in a system of

coordinates in the plane. We combine them with a number of graph-related and geometry-related

algorithmic techniques to synchronize and build a backbone sub-network.

Previous work. Communication algorithms in SINR wireless networks known in the literature have

been designed under various assumptions regarding the underlying models. Such specifications are

sometimes mutually exclusive so that the respective algorithms cannot be directly compared. To

put our work in a proper context, we first clarify the relevant aspects of wireless networks and then

concentrate on the broadcasting primitive.

We categorize communication models of SINR wireless networks following a methodology popu-

larized by Jurdziński and Kowalski [21]. This methodology is based to the following two independent

criteria. One pertains to weak versus strong “sensitivity,” which is also known as weak versus strong

“devices,” according to the terminology used by Jurdziński et al. [26]. The other relates to weak

versus strong “links” in reachability graphs, according to the terminology introduced by Daum et

al. [9]. These assumptions together determine four different settings, which we explain in detail in

Section 2. Intuitively, weak-sensitivity makes it impossible for a node to ever receive a transmission

from the borderline of its transmission range, while strong sensitivity determines a success of a

transmission entirely by a suitable magnitude of the SINR ratio. Weak connectivity means that

all links that could possibly transfer a message under favorable circumstances are considered as

valid links, unlike strong connectivity, in which borderline neighbors are not connected by links.

Along with these stipulations, additional assumptions determine which parameters of a network

are known to the nodes, so that they can be used in codes of algorithms.

The weak-sensitivity and weak-connectivity model, which is used in this work, was considered

by Jurdziński et al. [26]. They proved the lower bounds Ω(n logN) and Ω(D∆) on time to broad-

cast from a single-node start. These lower bounds hold for randomized algorithms even when

the nodes know their coordinates in the plane. They also developed a deterministic algorithm

that accomplishes broadcast in time O(min{D∆ log2N,n logN}). For this model, Jurdziński and

Kowalski [20] gave a deterministic distributed algorithms building a backbone from a synchronized

start in O(∆ polylog n) rounds. The algorithms presented in Jurdziński and Kowalski [20] and

Jurdziński et al. [26] rely on nodes knowing their position in a coordinate system.

For the model of weak sensitivity and strong connectivity, Yu et al. [35] gave broadcast algorithms

operating in times O(D+ log2 n) and O(D log2 n) with high probability, where the bound depends

on how broadcast is initiated. These algorithms additionally resort to a power-control mechanism.

This approach applies to broadcasting multiple messages and was generalized by Yu et al. [36] to

3

strong connectivity: weak connectivity:
bounds εc > εs εc = εs

strong sensitivity: lower Ω(D) † Ω(n) [9]

εs = 0 upper O(D log n logα+1Rs) [9]; O(D log2 n) [23] O(n log2 n) ‡ [9]

weak sensitivity: lower Ω(D) † Ω(min{D∆, n}) [26]

εs > 0 upper O(D log2 n) ∗ [35] O(n log2 n) this paper

Table 1: Time performance bounds on randomized broadcasting for the four sensitivity and
connectivity settings. The following parameters occur in the bounds: ∆ denotes the maximum
node degree in a communication graph, D is the diameter of this graph, α is the path loss, and Rs
is the maximum ratio between distances of neighbors in communication graph. It is assumed that
nodes’ names are in a range [1, N] such that N = O(n) and N is known to all nodes. The lower
bounds marked with the dagger † follow by a distance argument. The algorithm giving an upper
bound marked with the asterisk ∗ requires a power control mechanism and assumes εc = 2/3. The
algorithm giving an upper bound marked with ‡ requires Ω(n log3N) random bits per node.

a scenario when nodes are activated in arbitrary rounds. The model of wireless networks used in

the papers Yu et al. [35] and Yu et al. [36] incorporates additional parameters, with the suitable

assumptions on these parameters on which efficiency of the algorithms depends; one could expect

that in such environments even more involved communication tasks might have solutions with

running time proportional to D, with other parameters contributing sub-linear factors.

For the model of strong sensitivity and weak connectivity, Daum et al. [9] gave a randomized

broadcast algorithm operating in time O(n log2 n). Compared to the algorithm in this paper, the

algorithm in [9] uses nearly exponentially more, namely Ω(n log3N), random bits per node. They

showed a lower bound Ω(n), which holds in networks of diameter 2.

Finally, for the model of strong sensitivity and strong connectivity, Jurdziński et al. [22] gave

a broadcast algorithm working in time O(D log n + log2 n) with high probability, which relies on

nodes knowing their coordinates. Jurdziński et al. [23] gave another algorithm that works in time

O(D log2 n) with high probability. The latter algorithm does not rely on nodes knowing their

coordinates, improving the performance of algorithms for this model given by Daum et al. [9]

for a suitable range of model parameters. A solution in Jurdziński et al. [23] was generalized to

the wake-up problem with non-synchronized start-ups by Jurdziński et al. [24]. For this model of

strong sensitivity and strong connectivity, Jurdziński et al. [25] studied deterministic solutions for

the single-broadcast problem when nodes know their own coordinates in the plane and those of

their neighbors. Their deterministic algorithm for a single-node start operates in time O(D log2 n),

and another deterministic algorithm for a synchronized start operates in time O(D + log2 n). No

deterministic algorithms for this model are known that do not rely on the knowledge of coordinates

of nodes in a coordinate system in the plane and that are of comparable time performance.

We summarize known lower and upper bounds on time performance of randomized broadcasting

in Table 1 and building backbone in Table 2.

Broadcasting can be considered with a limited goal to inform only the neighbors in the com-

munication graph. Such local broadcasting in wireless networks was studied by Barenboim and

4

strong connectivity: weak connectivity:
bounds εc > εs εc = εs

strong sensitivity: lower Ω(log n) † [29] Ω(∆) ‡ [20]

εs = 0 upper Õ(log2 n) [18] O(N∆) �

weak sensitivity: lower Ω(log n) † [29] Ω(∆) ‡ [20]

εs > 0 upper O(log n) ∗ [38, 40] O(∆ log7 n) this paper

Table 2: Time performance bounds to build a backbone in a randomized manner for four sensitivity
and connectivity settings, with spontaneous wake-up. The lower bounds marked with the dagger †
hold in the model of radio networks, which represents interference through neighborhoods of nodes
in graphs of arbitrary topology. The upper bound marked with the asterisk ∗ requires knowing
the coordinates in the plane and the ability to exchange them in messages and assumes that the
parameter εc is greater than some absolute positive constant. The lower bounds marked with ‡
holds even with known node coordinates. The algorithm giving the upper bound marked with the
diamond � consists of executing single-node transmissions in a round-robin manner O(∆) times.

Peleg [2], Goussevskaia et al. [14], Kesselheim and Vöcking [27], Yu et al. [37], Halldórsson et

al. [16], Halldórsson and Mitra [17] and Fuchs and Wagner [12]. Halldórsson et al. [19] studied

broadcasting in dynamic wireless networks. Centralized algorithms for the SINR model were sur-

veyed by Goussevskaia et al. [15].

Broadcasting of multiple messages was considered by Reddy et al. [31, 32] and Yu et al. [35, 36].

Chlebus et al. [5] considered multi-communication primitives for radio networks; that paper also

used breadth-then-depth trees, similarly as the broadcast algorithm in Section 4. Derbel and

Talbi [11] showed how to estimate node degrees in radio networks with nodes initially not knowing

their neighbors.

Scheideler et al. [33] gave an algorithm to find a dominating set in time O(log n). That algo-

rithm relies on manipulating thresholds in physical carrier sensing. Halldórsson and Tonoyan [18]

demonstrated how nodes in wireless networks can leverage indirect information received during col-

lisions to infer neighborhoods and construct backbones; building on this, they showed applications

of backbones to various communication problems in wireless networks. Moses and Vaya [30] de-

veloped deterministic algorithms for multi-broadcast and building backbones in wireless networks.

Yu et al. [38] considered distributed algorithms to construct dominating sets in dynamic wireless

networks. Zou et al. [40] studied building backbones in wireless networks subject to adversarial

jamming. Constructions and applications of virtual backbones and dominating sets in wireless

networks were surveyed by Yu et al. [39].

There has been a great variety of approaches to signal strength and geometric decay in repre-

sentations of wireless networks. Some authors have sought to specialize SINR-like settings to the

Euclidean space, in order to leverage its specific topological properties, as for example, Avin et

al. [1] in their work on the SINR diagrams. Others have sought to abstract from the coordinates in

a plane but maintain a metric space of bounded growth that defines distances, like in the papers

of Daum et al. [9] and Jurdziński et al. [23]. Still others, like Bodlaender and Halldórsson [3] and

Halldórsson et al. [19], attempted to abstract the geometry even further and consider models that

relax the properties of distance as represented by metric spaces.

5

2 Technical Preliminaries

Executions of algorithms are synchronous, in that they are structured as sequences of rounds of

equal duration. The size of messages transmitted by nodes is scaled to the length of a round, so

that one message can be transmitted and received in a round. We do not assume the existence of

a global clock giving the same consecutive round numbers to each node.

There are n nodes in a network. Nodes have unique names assigned to them. Each node’s

name is an integer in the range [1, N], for some positive N . We treat the numbers n and N as

independent parameters in formulas, subject only to the assumption that N ≥ n.

A broadcast algorithm disseminates some contents throughout the network; this contents is

referred to as a rumor. Rumors and messages are also mutually scaled to each other such that

a message consists of at most one rumor. A message may contain a sequence of control bits,

whenever needed, to help nodes coordinate their concurrent actions. This set of restrictions on

communication is often referred to in the literature as of separate or bounded messages, which

comes from the interpretation that multiple rumors require multiple messages, a separate message

per each rumor. The number of control bits per message in our algorithms is always O(logN).

Models of wireless communication. Networks are embedded in a two-dimensional Euclidean space.

Each node can be identified by its coordinates in a Cartesian coordinate system. These coordinates

determine the Euclidean distance dist(x, y) between any pair of points x and y.

The SINR interference model involves the following parameters: path loss α > 2, ambient

noise N > 0, transmission success threshold β > 0, sensitivity εs and connectivity εc such that

0 ≤ εs ≤ εc < 1. The transmission strength of a node v is a positive real number denoted by Pv.

If node v transmits and u is a different node then the signal strength of v’s transmission as

reaching u is denoted by P(v, u) and is defined as follows:

P(v, u) = Pv · dist(v, u)−α . (1)

We will consider only uniform networks in which all transmission strengths of nodes are equal, and

denoted as P .

Let T be a set of nodes that transmit together in a round. For any two nodes v and u, where

v ∈ T and u /∈ T , the interference at u of this configuration is denoted by I(v, u, T) and is defined

as follows:

I(v, u, T) =
∑

w∈T \{v}

P(w, u) . (2)

Observe that I(v, u, T) = 0 if and only if T = {v}. The signal-to-interference-plus-noise ratio in

this configuration is denoted by SINR (v, u, T) and is defined as follows:

SINR(v, u, T) =
P(v, u)

N + I(v, u, T)
. (3)

We say that node u hears node v in a round when the following holds: (1) v transmits in this

round, (2) u does not transmit in this round, and (3) u successfully receives the message transmitted

by v. A node u is in the hearing range of node v if u can hear a message transmitted by v in a round

in which v is the only node in the network that transmits. Nodes execute algorithms driven by the

6

following two kinds of events only: either hearing a whole message from a node or not hearing a

whole message from a node. Nodes do not react to any other medium-sensing feedback from the

wireless network.

Next, we explain the categorization of models with respect of sensitivity, which determines

when nodes can hear transmitted messages. Again, let a set of nodes T consist of these nodes that

transmit in a round, and let nodes v and u be such that v ∈ T and u /∈ T .

In the model of strong sensitivity, a node u hears node v in this round when the inequality

SINR(v, u, T) ≥ β holds, where parameter β > 0 is a transmission success threshold. This condition

determines the hearing range of v as a distance from v, which can be determined as follows. A

distance d from which a message transmitted by a node v can be heard by u is determined by the

formula (3) and satisfies the inequality

P · d−α

N + I(v, u, T)
≥ β . (4)

The maximum magnitude of such a distance d can be found as follows. The ambient noise N is a

fixed part of the left-hand side of (4), but the interference part (2) can vary and it is minimized

when I(v, u, T) = 0, which holds when T = {v}. It follows that the maximum d attainable in (4)

is determined by setting I(v, u, T) to 0 and equals (P/(Nβ))1/α; we call this quantity the network

radius and denote by r. For the strong-sensitivity model, the meaning of the network radius r is

such that a node u is in the hearing range of v if and only if d(v, u) ≤ r. In uniform networks, the

network radius is a number determined by a network that does not depend on a transmitting node,

while acting as a single transmitter, nor on listening nodes.

We may remark that if SINR(v, u, T) ≥ β then also

P(v, u) > β · I(v, u, T) = β ·
∑

w∈T \{v}

P(w, u) ,

because N > 0. It follows that, in the model of strong sensitivity, if β ≥ 1 and a node u /∈ T hears

a node v then node u cannot hear any other node in T . In this paper we assume only that β > 0.

In the model of weak sensitivity, a node u hears another node v in a round when v transmits

and SINR(v, u, T) ≥ β and dist(v, u) ≤ (1 − εs) · r, where r = (P/(Nβ))1/α is the network radius

again. We use the notation R = (1− εs) · r and call R the hearing radius.

The categorization of models into two classes of weak and strong sensitivities (devices) was

introduced by Jurdziński et al. [26]. Weak sensitivity may be justified by the fact that it is often

too costly for wireless devices to perform signal acquisition continuously, due to the constraints of

the technology of wireless communication, see Goldsmith and Wicker [13]. An alternative is to wait

for an energy spike, as represented by the condition SINR (v, u, T) ≥ β. Once nodes experience it,

they may start sampling and correlating to synchronize and acquire a potential packet preamble,

see Schmid and Wattenhofer [34]. After that they can detect signals as determined by the formulas

of weak sensitivity. Observe that if a node wants to transmit to a distance of the network’s radius r,

then this node needs to be the only transmitting one in a network, but when a range of desired

transmission is restricted to (1−εs)·r, then several nodes may succeed in transmitting concurrently.

In this paper, we use the model of weak sensitivity.

There is a natural algorithmic interpretation of weak sensitivity for wireless networks operating

under the SINR regime. Namely, such a network could be understood as a unit disc graph with

7

transmission range R, where R is the hearing radius, which is further restricted by the property

that only a “dominating” signal from a station within the transmission range can be heard. One

may observe that algorithms for weak-sensitivity wireless networks could employ techniques similar

to the ones used in unit disc graphs to develop transmission schemes relying on sets of transmitters

positioned relatively“sparsely”throughout the network. Guided by this observation, we use strongly

selective families with suitably chosen parameters to implement message exchanges among the

nodes.

Graphs. Let G = (V,E) be a simple graph. A set of vertices M ⊆ V is independent when no

two vertices in M are connected by an edge in E. An independent set of vertices of G is maximal

independent (or is a MIS) when it is maximal in the sense of inclusion among all independent sets.

A set of vertices B ⊆ V is dominating in G when every vertex not in B is adjacent to at least one

vertex of B. A dominating set in minimal dominating when it is minimal in the sense of inclusion

among all dominating sets. A maximal independent set in G is also a minimal dominating set of G.

We consider the length of a path to be the number of hops, so the length of each edge is 1.

A shortest path connecting two members of a maximal independent set that does not include at

least one other member of the maximal independent set has length at most three, and the number

three is smallest as such a bound in general. In other words, if there are at least two members in

an independent set, then a vertex in this independent set is connected to some other member by a

path of length at most three.

Communication graphs. A wireless network differs from wireline ones by lacking physical links.

Wires used as links allow to interpret the network as a graph with nodes acting as vertices and links

serving as edges. Associating a graph with a network helps to interpret communication algorithms

as working in a clean abstract model of graphs, where information flows through edges. A similar

benefit could be obtained for wireless networks by associating graphs with them. Such graphs

are called “communication graphs” in this paper. The nodes serve the purpose to be vertices of

communication graphs, but what determines edges is less apparent.

The communication graph of a wireless network is defined as follows: all the network’s nodes are

its vertices, and for any two nodes u and v, they are connected by an edge in the communication

graph when the inequality dist(u, v) ≤ (1 − εc) · r holds, where r is the network’s radius and a

connectivity coefficient εc satisfies 0 ≤ εs ≤ εc < 1. We say that nodes u and v are k-hops away

from each other, or are k-hop neighbors, when k is the length of a shortest path connecting u to v

in the communication graph. A simultaneous transmission of two or more neighbors of a node v

is called a collision at this node v. A collision at v does not produce any special medium-sensing

feedback at v, but results in no message successfully received, for β ≥ 1/2 + 1/N .

If εc = εs then the model is of weak connectivity, and if εc > εs then the model is of strong

connectivity. In the model of weak connectivity, any two nodes u and v are connected by an edge

in the communication graph if the inequality dist(u, v) ≤ R holds, where R is the hearing radius.

The categorization of wireless networks with respect to weak and strong connectivity was in-

troduced by Daum et al. [9]. The problem of broadcasting allows to differentiate between the two

models. Strong connectivity allows to develop a broadcast algorithm of running time that depends

linearly on the diameter D while other parameters contribute sublinear factors, see Table 1. In

contrast to that, weak connectivity demand time that is either Ω(n) or Ω(min{D∆, n}), depending

on sensitivity.

8

1

2 3

4

567

8

9

10 11 12 13

14

15

16

1718192021

22

23

24

25

R

b

b

Figure 1: A depiction of a pivotal grid. The circle of radius R centered at the square dot point is
the hearing range of this point. The round dot point in box 1 belongs to the same box as the center
of the circle. The dot point in box 6 belongs to the 3 × 3 square centered at the box containing
the center of the circle. The dot point in box 23 belongs to the 5 × 5 square centered at the box
containing the center of the circle.

We assume the models of weak sensitivity and weak connectivity and use hearing and commu-

nication graphs as determined by these models. To simplify notations, we denote the parameter

εc = εs by ε.

Grids and boxes. Communication algorithms for wireless networks with nodes interpreted as

points in a Euclidean space may be designed to leverage the geometric properties of this space.

For a constant b > 0, we consider a grid of lines parallel to the coordinate axes that partition the

space into b × b disjoint boxes, and such that (0, 0) is an intersection of a horizontal line and a

vertical one; see Figure 1 for an illustration. Specifically, a box determined by its internal point

includes the points on its left side without the top endpoint and the points on its bottom side

without the rightmost endpoint, and the other points on the boundary are excluded. Two boxes

are adjacent when their interiors are separated by a line of the grid. Two boxes share a corner

when they share exactly one point on their boundaries. The grid distance between two boxes is

understood in the Manhattan-metric sense, in that it is a natural number equal to the minimum

number of hops between two adjacent boxes needed to move from one of them to the other. In

particular, adjacent boxes are of distance 1, and there are 4j boxes of grid distance j from any box.

If b = R/
√

2, where R = (1 − ε) · r is the hearing radius, then the grid is called pivotal. We

will use only the pivotal grid in this paper. Any two nodes in a box of the pivotal grid are within

the Euclidean distance R from each other. It follows that there are at most ∆ + 1 nodes in a

box, since all these nodes induce a clique and ∆ is an upper bound on the degree of a vertex in a

communication graph.

All the neighbors of a vertex v belong to 25 boxes in the “5× 5 square” of boxes centered at the

box of v. This is depicted in Figure 1, where the square dot represents such a vertex v. To verify

this, observe that one hop in horizontal direction from a vertical edge of a box covers distance at

9

most R, which is less than the width of two columns of boxes, because R <
√

2R = 2 · R√
2
, while

5 = 2 + 1 + 2.

All the vertices 2-hop away from a vertex v belong to 49 boxes in the “7 × 7 square” of boxes

centered at the box containing v. To verify this, observe that two hops in horizontal direction from

a vertical edge of a box covers distance at most 2R, which is less than the width of three columns

of boxes, because 2R < 3 · R√
2
, and we have 7 = 3 + 1 + 3.

All the vertices 3-hop away from a vertex v belong to 121 boxes in the “11×11 square” of boxes

centered at the box containing v. To see this, observe that three hops in horizontal direction from a

vertical edge of a box cover distance at most 3R, which is less than five columns of boxes, because

3R < 5 · R√
2
, and 11 = 5 + 1 + 5.

Backbones. A backbone of a network is a subnetwork that facilitates global communication tasks,

similarly as a spanning tree does. Given a communication graph G, its subgraph H that is a

backbone of G is required to be connected, similarly to a tree, but rather than spanning G it is

a dominating set of G. A backbone is required to have asymptotically the same diameter as that

of G, so that implementing broadcast of a rumor by flooding inside a backbone does not incur

an extra distance to cover. At the same time, degrees of nodes in a backbone are required to be

small, which facilitates collision resolution is wireless communication. The notion is more involved

though, because each node is additionally equipped with specialized algorithms that facilitate using

a backbone efficiently. A precise specification is as follows.

Consider a network with a communication graph G of diameter D. A subnetwork H of G is an

induced subgraph of G. Backbones are subnetworks that have the suitable topological properties

along with local algorithms associated with nodes. We say that a subnetwork H is a backbone of G

when it has the following topological properties:

1. The nodes of H form a connected dominating set of G.

2. Each node’s degree in H is O(1).

3. The diameter of H is O(D).

4. For each node v in G \H, there is exactly one neighbor w in H assigned to v; the node w is

called a representative of v and v is said to be associated with v.

The definition above is to mean a method of construction of backbones that has implicit constants

in the asymptotic notation that do not depend on the size of the communication graph G. Such a

method is also expected to assign representatives to neighbors of the obtained backbone in some

systematic manner.

There are two local algorithms IntraH and InterH that provide communication functionality

of a backbone H for a network G, that implement intra-backbone communication among the nodes

in the backbone and inter-backbone communication between nodes not in the backbone and their

representatives in the backbone, respectively. These algorithms have the following functionality:

Algorithm IntraH : It facilitates exchanging messages between each pair of neighbors

in H. In the process of executing InterH , each message received by a node v ∈ H
is also delivered to all the nodes in G associated with v, that is, to the nodes for

which v is a representative.

10

Algorithm InterH : It facilitates delivering a message from a node to its representative.

The notion of a backbone we use is defined similarly as in Jurdziński and Kowalski [20]. Backbones

can be used as a generic tool for many communication and computation tasks in the network, see

Halldórsson and Tonoyan [18], Jurdziński and Kowalski [20], and Yu et al. [39].

Bare-bones algorithms. The following restrictions on algorithms for wireless communication make

them bare-bones: each node knows only its name and the numbers N and ∆, and additionally the

size of messages is constrained such that a single message carries O(logN) bits. The motivation for

studying communication algorithms under bare-bones constraints is that the restrictions imposed on

the algorithms make them easily portable and the obtained performance bounds widely applicable.

Algorithms with similar bare-bones restrictions were considered by Jurdziński et al. [23] in

the case of strong-sensitivity and strong-connectivity of wireless networks, while we consider bare-

bones algorithms for a combination of weak sensitivity and weak connectivity of wireless networks.

The algorithms in Jurdziński and Kowalski [20] and Jurdziński et al. [26], being also for weak-

connectivity and weak-sensitivity of the wireless communication, were designed with the assumption

that nodes know their coordinates in a plane; in this work we develop efficient algorithms that do

not use this information.

Rooted spanning trees. Consider a simple connected graph G = (V,E) with a distinguished source

vertex. The source generates a token which traverses the graph and in the process builds a subgraph.

Here “traversal” means that the token hops from a visited vertex to its neighbor by traversing the

connecting edge. The specific manner of token traversal and constructing the subgraph that we use

is called breadth-then-depth and is described as follows.

The source generates a token, and so becomes a first vertex visited by the token. Vertices are

categorized into discovered and hidden. Initially, the source is discovered and every other vertex is

hidden. Suppose that the token visits a vertex v. If this is a first visit of the token then all the

neighbors of v that are still hidden become discovered and the edges connecting them to v become

added to the constructed subgraph; the newly added vertices become the children of v and vertex v

becomes their parent. The source vertex is considered to be its own parent and is a root. The

vertex v dispatches the token to one of its children that has not been visited by the token yet, if

such vertices exist. If the token comes back again to v and there are still children of v not visited

by the token then v dispatches the token to one of them, and otherwise sends the token back to

its parent. The traversal terminates when the source is about to send the token to itself. A tree

produced during a breadth-then-depth traversal of a graph is called a breadth-then-depth spanning

tree. Such a tree is rooted at the source.

Chlebus et al. [5] used breadth-then-depth trees in their distributed algorithms in radio networks.

Next, we summarize the relevant propertied of breadth-then-depth traversal as Fact 1.

Fact 1 The breadth-then-depth traversal of a simple connected graph creates a spanning tree of the

graph. The token visits the vertices by traversing the obtained spanning tree in a depth-first manner.

Proof: The vertices and edges that are added to the constructed graph belong to the original

traversed graph, so the constructed graph is a subgraph. We show next that the edges connecting

children to parents make a subgraph that is connected, has no cycles, and it includes all the vertices.

11

Connectivity follows from the fact that edges traversed by a token determine a walk, which

creates a path to the source vertex after being pruned of repetitions of edges. A cycle cannot occur

because an edge connects two vertices such that when one of them was first visited by the token

then it was already discovered while the other became its child because it was still hidden. Since

the created subgraph is connected and acyclic, it is a tree.

We show now that all vertices become discovered, and then they get connected as children to

their respective parents. If there is only one vertex then it is the source and it belongs to the tree;

otherwise let w be a vertex different from the source. Let v1, . . . , vk be the children of the source,

in the order in which the source sends the token to them. Observe that if a token is sent by the

source to its child then it comes back to the source through the same child, as otherwise the token

would traverse a cycle. Let vi be such that i is smallest with the property that there is a path

connecting vi with w that does not pass through the source: this path traverses only undiscovered

vertices before the token visits vi. When the token visits vi and starts traversing the graph then it

will discover and visit w, because the token will discover and visit all the vertices on the path to w.

Since all the vertices are incorporated into the created tree, it is a spanning tree.

The traversal of the spanning tree, as it unfolds for the traveling token, is specified by the depth-

first search traversal principle: the token explores all the discoverable vertices before it returns to

the parent. �

Sets and sequences of sets. For a natural number N , the notation [N] denotes the set {1, 2, . . . , N}.
We consider subsets of [N] and sequences of such subsets; the notation S will denote a sequence of

subsets of [N]. Such a sequence S = (S0, . . . , St−1) of subsets of [N] consisting of t terms is said to

be of length t. By writing B ∈ S we mean that B is a term of such a sequence S, as if S were an

unordered family of sets.

We identify a sequence of sets S = (S0, . . . , St−1) with a broadcast schedule S ′ consisting of t

consecutive rounds, in which a node v transmits in round i if and only if v ∈ Si, for 0 ≤ i < t. Such

a broadcast schedule is said to be performed by executing S.

Let S be a sequence of subsets of [N]. For a subset A ⊆ N and a ∈ A, we say that a is selected

from A by S if there is a set S ∈ S such that A ∩ S = {a}.

Let N , x and y be positive integers such that y ≤ x ≤ N . We say that a sequence S of subsets

of [N] is a (N, x, y)-selector if for each set A ⊆ [N] of x elements there are at least y elements in A

that can be selected from A by S. For any fixed ζ such that 0 < ζ < 1, there is an (N, x, ζx)-selector

of size O(x logN), see Chlebus and Kowalski [4] and DeBonis et al. [10].

For an integer c > 0, a sequence S is (N, c)-strongly-selective if, for every non-empty subset Z

of [N] such that |Z| ≤ c, and for each element z ∈ Z, this z can be selected from Z by S. For each

c > 0 such that c ≤ N , there exists an (N, c)-strongly-selective sequence of length O(c2 logN); see

Clementi et al. [7].

Whenever we use combinatorial structures such as selectors or strongly-selective sequences in

algorithm design, then it is assumed that they are a part of code.

Odds and ends. Performance bounds of an algorithm hold with high probability if, for any constant

d ≥ 1, the performance bounds can be made to hold with probability at least 1− n−d by suitably

adjusting constants in a code of the algorithm. We assume that the numbers n, N and ∆ are all

powers of 2, for the simplicity of exposition; in a general case, these parameters can be rounded up

12

to the nearest power of 2. The notation lg x means logarithm of x to the base 2.

3 Algorithmic Tools

We present building blocks of algorithms and concepts and tools used in deriving their performance

bounds.

We propose a construction of an induced subgraph H of a simple graph G such that H is

connected dominating, which we call shortcut connecting. Start with a maximal independent set M

as an initial dominating set; it will grow to eventually make the vertices of a connected subgraph H.

We grow H by iterating the following process. Suppose that there exist two vertices v1 and v2 in

M that are connected in G by a path of length at most three but they are not connected in H by a

path of length at most three: add to H either one or two vertices along with all the newly induced

edges that provide a missing shortcut such that v1 and v2 are now connected in H by a path of

length at most three. The vertices added this way are called connectors for M . The final graph H

consists of the initial maximal independent set M and all the added connectors.

Proposition 1 For a simple connected graph G = (V,E) of diameter D and a maximal independent

set of vertices M ⊆ V , if an induced subgraph H is obtained from M by shortcut connecting then

H is connected, its vertices make a dominating set of G, and the diameter of H is at most 3D+ 2.

Proof: The set of vertices of the subgraph H is dominating in G because M is already such. To

show it is connected, suppose otherwise, to arrive at a contradiction. Each connected component

of H includes at least one element of M . This is because otherwise adding any single vertex from

this component to M would make it larger and still independent. Consider a shortest path in G

connecting two vertices v1 and v2 in M that are in different connected components of H. This

shortest path does not include vertices from M , by its minimality. So v1 and v2 are connected by

a path in H of length at most three. This means that H is not the final subgraph produced by

shortcut connecting, which is a contradiction.

Next we estimate the diameter of H. Take a simple path P = (v1, . . . , vk) in G that has both

endpoints in H. For each vertex vi on P if vi ∈ M then denote vi also by wi and otherwise if vi
does not belong to M then let wi be a neighbor of vi that belongs to M . Consider a sequence of

vertices (w1, . . . , wk). For each pair wi, wi+1, these vertices are connected by a path of length at

most three in G, by their selection. Since both wi and wi+1 are in M , they are connected by a path

of length at most three in H. It follows that for each path in G connecting two vertices in H of

length L there exists a path in H connecting the same pair of vertices of length at most 3L+ 2. �

The following Proposition 2 gives a useful estimate of signal strength with our assumptions

about the model of communication.

Proposition 2 In the model of weak sensitivity and weak connectivity, if a node v transmits and

another node u is such that u and v are neighbors in the communication graph then the signal

strength at u of this transmission is at least (1 + ε)Nβ.

Proof: The signal strength P(v, u) at u of a transmission is given by the formula (1). The distance

between u and v is at most R, by the specification of edges of the communication graph. The signal

13

strength can be estimated as follows:

P(v, u) ≥ P ·R−α = P · (1− ε)−α(P/(Nβ))1/α)−α ≥ (1 + ε)Nβ , (5)

where we used (1− ε)−α > 1 + ε for 0 < ε < 1 and α ≥ 1. �

The communication graph could be discovered by the nodes of a wireless network by having

them transmit one by one in a systematic manner: when a node u hears a message from another

node v that is the only transmitter in the whole network then it may come from a neighbor in the

communication graph. To determine if the inequality dist(u, v) ≤ (1 − εc) · r holds, the node u

could compute the distance dist(u, v) by resorting to the nodes’ coordinates, assuming the nodes

know their own coordinates and include them in transmitted messages as a “signature” identifying

the sender, and also that they know the network radius r = (P/(Nβ))1/α along with the connec-

tivity coefficient εc. After a preprocessing that allows all the nodes to learn and remember their

neighbors in the communication graph, this could be used in distributed algorithms to construct

subgraphs of the communication graph (like backbone) when such algorithms rely on neighbors in

the communication graph exchanging messages. Namely, when a message is heard and it does not

come from a neighbor in the communication graph then it could be ignored. A simpler approach

suffices in the model of weak sensitivity and weak connectivity, as is summarized in the following

Proposition 3. This fact justifies why nodes executing algorithms we develop need to know so little,

and in particular, they do not need to know their positions in a system of coordinates.

Proposition 3 In the model of weak sensitivity and weak connectivity, if a node u hears a message

transmitted by a node v in a round then u and v are neighbors in the communication graph.

Proof: Let T be the set of nodes transmitting in a round, where v ∈ T . The node u hears the

message transmitted by v if both inequalities SINR(v, u, T) ≥ β and dist(v, u) ≤ R hold, by weak

sensitivity. The nodes u and v are neighbors in the communication graph when the inequality

dist(v, u) ≤ R holds, by weak connectivity. �

Shortcut connecting in communication graphs. We obtain a connected dominating set by adding

certain vertices to an independent set of a wireless network. The resulting subgraph of the com-

munication graph has properties useful for implementing communication algorithms in wireless

settings.

Proposition 4 For a connected communication graph G = (V,E) of a wireless network and a maxi-

mal independent set of vertices M ⊆ V in G, if a subgraph H of G is obtained from M by shortcut

connecting then there is a constant upper bound on node degrees of H and the number of nodes

in H is O(m), where m is the size of the smallest connected subgraph of G dominating in G.

Proof: Each box of the pivotal grid contains at most one member of M . A node has neighbors in at

most 25 boxes, including its own. A member of M is connected via connectors to at most 24 other

members of M . A node that is a connector plays this role for at most 24 × 25 pairs of members

of M . It follows that there is a constant upper bound on the number of nodes in H in one box of

the pivotal grid. This gives a constant upper bound on degrees of every node of H.

Let K be an arbitrary set of nodes of G such that K is dominating, the subgraph induced by K

in G is connected, and the size of K is smallest with these two properties. We observe that each

14

node v of K is connected to a constant number of nodes in H. This is because the neighbors of v

in H have to belong to at most 25 boxes of the pivotal grid, determined by the box of v, and there

is a constant upper bound on the number of nodes in H in one box of the pivotal grid. It follows

that the size of H is at most a constant multiple of the size of K. �

Next we discuss the efficiency of using strongly selective sequences to facilitate communication

among neighbors in a communication graph. The following Proposition 5 states a critical technical

insight that we will use to reason about properties of wireless communication in Euclidean space

with the weak sensitivity and weak connectivity. A similar approach was applied in Jurdziński et

al. [26]. We assume that some nodes are active in that only they can transmit.

Proposition 5 In the model of weak sensitivity and weak connectivity, if there are at most z active

nodes per box, then there is a number c such that c = Θ(z3) and with the property that if all the

active nodes execute an (N, c)-strongly-selective sequence, then, for each active node v, there is a

round in which the node v is heard by all its neighbors in the communication graph.

Proof: Let us define η = δz/(εN), where z is smallest such that there are at most z active nodes

in each box and δ > 0 is a constant parameter to be determined later. The quantity η is a linear

function of z, since ε and N are both fixed parameters in wireless networks.

Consider an active node v in a network under consideration. Let the other active nodes in the

boxes within the grid distance of at most η of the box of node v make a set A. The number of such

active nodes is |A| = O(zη2). Let δ be large enough so that all the neighbors of v are in A.

We want a strongly selective sequence such that when it is executed then there is a round in

which v transmits but none of the nodes in A does. To this end, it is sufficient to take an (N, c)-

strongly-selective sequence, where c = Kzη2 with a sufficiently large constant K > 0. Let t denote

this round, counting from the first round of executing the strongly-selective sequence.

We estimate the total interference at a neighbor of v coming from the active nodes that are

not in A. There are 4j boxes of distance j > 0 from the box of v, each with at most z nodes

transmitting among the active nodes. The signal strength from each of these nodes, at any node

that is a neighbor of v, is Θ(j−α). The total interference at a neighbor of v from the transmitting

nodes not in A, as specified in (2), is bounded from above by a quantity proportional to

z
∑
j>η

j · j−α = O
(
zη1−α ·

∑
j≥1

j1−α) = O(zη1−α) , (6)

by the estimate
∑

j≥1 j
1−α = O(1), for α > 2. The total interference at a neighbor of v, as expressed

by (6), could be made smaller than εN by choosing a sufficiently large δ in the specification of η,

since 1/η = εN/(δz). It follows that the total interference plus noise at such a node is at most

N + εN = (1 + ε)N .

The signal strength of a neighbor of v in the communication graph is at least (1 + ε)Nβ, by

Proposition 2. The value of SINR at such a node, according to the defining Equation (3), is at

least β. This means that the conditions of hearing are satisfied, so that node v is heard by all its

neighbors in the communication graph in round t. �

In applying Proposition 5, we will use (N, c)-strongly-selective sequence for sufficiently large c,

with c being either c = O(1) or c = Θ(log3N), depending on whether z = O(1) or z = O(logN),

respectively, and of the respective lengths O(logN) and O(log7N).

15

4 Broadcasting to Coordinate Start

We present a randomized algorithm for a single-source broadcast. Nodes other than the source join

an execution only after they get activated by receiving messages. A “rumor” that the source wants

to disseminate among all the nodes fits into a message that can be transmitted in one round and

consists of O(logN) bits of information.

The broadcast algorithm we develop may be used to synchronize a network. This can be

accomplished by forwarding a counter of rounds along with each message generated by the broadcast

algorithm. Such a counter is inherited by each awoken node and is incremented with each round

of broadcasting. A predetermined threshold for the counter values may be established, determined

by the running time of broadcast, such that when the counter reaches this threshold then this

indicates reaching a synchronized start. Once such a synchronized-start round is reached, an

algorithm designed for a synchronized start can be invoked simultaneously by all the nodes, like

the backbone algorithm given in Section 5.

The broadcast algorithm involves a token traversing the network by hopping along the edges of

its communication graph. The token is initiated by the source node and performs a breadth-then-

depth traversal, as summarized in Fact 1 in Section 2. Nodes do not know their neighbors in the

communication graph when the traversal starts and they need to learn them to be able to control

the moves of the token. Discovering edges of the communication graph and sending a token across

them is accomplished by sending messages, so the token traverses the edges of the communication

graph of the wireless network, by Proposition 3.

We will use two auxiliary randomized distributed routines to coordinate movements of the

token. They will be used to implement a breadth-then-depth traversal and we use the relevant

terminology as explained in Section 3. One is to estimate the number of hidden neighbors of a node

in the communication graph. The other is to discover the hidden neighbors, based on knowing an

estimate of their number. The two auxiliary algorithms are discussed in the next two Subsections.

4.1 Estimating the number of hidden neighbors

We discuss a randomized procedure to estimate the number of hidden neighbors. The procedure

is initiated and coordinated by a node, denoted s, when it holds the token in the course of its

traversal of the network. Only the nodes of distances at most R from S participate, where R is the

hearing radius, since this distance determines neighborhoods in the communication graph in the

weak-connectivity case. The procedure is called Estimate-Hidden. Its pseudocode is in Figure 2.

The node s estimates the number of hidden neighbors by counting messages it hears and com-

paring the outcome to some threshold value. The hidden neighbors of the node s execute 1 + lgN

stages. In stage i, a hidden neighbor iterates the inner loop d lgN times. A node transmits in one

iteration of the inner loop in stage i with probability 2−i, independently from other nodes. If k is

the latest stage for which the number of messages heard by s is at least d lgN · 2−4 then node s

considers the number 2k to be an upper bound on the number of hidden neighbors.

Lemma 1 For each a > 0, if ρ > 1 is the number of hidden neighbors of s then the number 2k

returned by algorithm Estimate-Hidden satisfies ρ ≤ 2k ≤ 25 · ρ with probability at least 1− n−a,

for a sufficiently large parameter d > 0 and all sufficiently large n.

16

procedure Estimate-Hidden

1. s initializes k ← 0
2. s transmits a message inviting hidden neighbors to participate
3. for i← 0 to lgN do /∗ stage i ∗/

if v is a hidden neighbor of s then
for j ← 1 to d lgN do

v carries out a random trial with probability 2−i of success
if a success occurs then v transmits

if s hears a message at least 2−5 · d lgN times in this stage then k ← i
4. return 2k at s

Figure 2: Pseudocode for a node s and its neighbor v. Transmissions of a dummy message are
performed by v and heard and counted by s. Constant d is a parameter to be determined in
analysis. The number 2k returned by s is interpreted as an approximation of the number of hidden
neighbors of s.

Proof: The procedure operates by nodes exchanging messages, which always arrive at a node from

neighbors in the communication graph, by Proposition 3.

Let the interval of integers [2, 21+lgN − 1] be partitioned into disjoint segments as follows:

[2, 3], [4, 7], . . . , [2i, 2i+1 − 1], . . . , [2lgN , 21+lgN − 1] .

The number ρ is in precisely one of these ranges. Let ` be such that ρ ∈ [2`, 2`+1− 1], where ` ≥ 1.

The probability that a specific hidden neighbor of s transmits during stage `, while the other

hidden neighbors do not transmit, can be estimated as follows:

1

2`

(
1− 1

2`

)ρ−1
≥ 1

2`
·
(

1− 1

2`

)2` ρ
2` ≥ 1

2`
·
(

1− 1

2`

)2`+1

≥ 1

2`
· 1

16
,

because ρ < 2`+1. The probability that exactly one hidden neighbor of s transmits is at least

ρ · 1

2`
· 1

16
≥ 1

24
, (7)

because ρ ≥ 2`. Let us define an indicator random variable Xj
i such that Xj

i = 1 when a single

transmission occurs in trial j of stage i, otherwise Xj
i = 0. The estimate of (7) can be interpreted

to mean that Pr(Xj
` = 1) ≥ 1

24
. Define a random variable Xi as follows:

Xi =
∑

j∈[d lgN]

Xj
i .

By the linearity of expectation, the following inequality holds:

E [X`] ≥ 2−4 · d lgN .

By the Chernoff bound, the number of successful transmissions received by node s in stage ` of

algorithm Estimate-Hidden is smaller than 2−5d lgN with probability that is at most n−2a, for

sufficiently large d. It follows that the inequality 2k ≥ ρ does not hold with a probability that is at

most n−2a.

17

procedure Discover(x)

1. initialize list of discovered neighbors R← ∅ at s
2. for j = 0, 1, . . . , lg x− 1 do /∗ stage j ∗/

notify neighbors v of s:
if v is hidden then v starts executing (N, 2−jx, 2−j−1x)-selector

during executing a selector by neighbors:
if a name v is heard then v gets discovered: node s adds v to R

notify all neighbors discovered in this stage j:
s transmits their names one by one

3. return R as the list of discovered neighbors at s

Figure 3: Pseudocode for a node s. The number x is an upper bound on the number of hidden
neighbors, it is a power of 2 and is passed as an argument. The used selectors are of length
O(2−jx logN) and are part of code. The discovered neighbors become children of s in a breadth-
then-depth tree.

Consider a stage i of the algorithm such that ` + 7 ≤ i ≤ 1 + lgN . In a single round of this

stage, the probability that there is at least one transmitting node is at most

ρ · 2−i ≤ ρ · 2−`−7 < 2−6 ,

because ρ < 2`+1. Thus the expected number of rounds with at least one transmission in stage i is

smaller than d lgN · 2−6. By the Chernoff bound, the number of times node s hears a message in

stage i is at least d lgN ·2−5 with a probability at most n−3a, for a sufficiently large d. The number

of such stages is at most lgN . By the union bound, some of these stages result in producing at

least d lgN · 2−5 messages that are heard with probability at most lgN · n−3a, which is at most

n−2a for sufficiently large n. Therefore, the inequality 2k ≤ 25ρ does not hold with probability at

most n−2a.

We conclude, by the union bound, that both the inequalities ρ ≤ 2k ≤ 25 ·ρ hold with probability

at least 1− n−a, for a sufficiently large parameter d and all sufficiently large n. �

4.2 Discovering hidden neighbors

Let us assume that we have an upper bound x on the size ρ of the hidden neighborhood of a node s,

where ρ ≤ x ≤ 25ρ. The node s could obtain such an estimate x by executing procedure Estimate-

Hidden presented in Section 4.1. Given such a bound x for a node s, a routine Discover(x) allows

the node to learn its neighborhood in O(x logN) rounds, as we show next in Lemma 2.

Pseudocode of procedure Discover is given in Figure 3. The procedure works by repeating

stages lg x times, each stage an iteration of the for-loop, with the goal to decrease by half an

estimate on the number of hidden neighbors. This in turn is accomplished by having the hidden

neighbors execute selectors of lengths determined by stage numbers.

Lemma 2 If a node has at most x hidden neighbors that an execution of Discover(x) makes this

node learn all its hidden neighbors in time O(x logN).

18

algorithm Traverse-To-Broadcast

1. upon receiving and holding the token for the first time:
if s is different from the source then

record the name of the node from which the token arrived as parent
execute procedure Estimate-Hidden

/∗ returns an upper bound x on the number of hidden neighbors ∗/
execute procedure Discover(x) /∗ returns a list R of discovered neighbors ∗/

2. upon receiving and holding the token:
if the token arrived from a node v ∈ R then remove v from R
if R nonempty then pass the token to a node in R else

if s is different from the source
then return the token to the parent and exit

else exit

Figure 4: Pseudocode executed by a node s upon receiving a token while holding it. The source
initiates a token and is the first node holding the token.

Proof: The procedure Discover operates by nodes exchanging messages. A transmitted message

always hops from a node to its neighbors in the communication graph, by Proposition 3.

During executing procedure Discover(x) by a node s, at most x/2 nodes remain hidden after

the first stage, byt the definition of selectors. This pattern continues, such that after a jth stage

the number of hidden neighbors is at most x/2j−1. Indeed, the proof is by induction on j. We

just argued that it holds at the end of the execution of loop “for” applied for j = 0, thus assume

that it holds for some j ≥ 0. By the definition of (N, 2−jx, 2−j−1x)-selector applied to the set of

hidden neighbors, of size at most x/2j by induction, at most x/2j−1 of them remain unselected by

the selector, hence hidden. The lengths of these selectors decreases geometrically, so the lengths of

the stages sum up to O(x logN). �

4.3 Algorithm for broadcasting

We present an algorithm to have a token traverse the network. The algorithm is called Traverse-

To-Broadcast. It is summarized as a pseudocode in Figure 4. The token can carry any contents

piggybacked on it with the goal to broadcast it. A traversal is initialized by the node which is the

source of a broadcast message. There is no prior coordination among the nodes of the network to

participate in an execution. The token’s traversal involves building a breadth-then-depth spanning

tree in the communication graph, rooted at the source node, and the token traverses it in a depth-

first manner, according to Fact 1.

When the algorithm is invoked then nodes do not know their neighbors yet. Each node uses

the procedures Estimate-Hidden and Discover to discover the hidden neighbors in the commu-

nication graph. If a node hears a message from a neighbor that is executing Estimate-Hidden

with an invitation to its hidden neighbors to join in disclosing themselves and becoming children

in a breadth-then-depth tree, then this is a first signal the node obtains that a broadcast has been

initiated. Upon a token’s visit to a discovered neighbor, the visited node creates a list of its hidden

neighbors just to be discovered. The token will be dispatched to visit these nodes one by one after

19

algorithm Backbone-Synchronized-Start

stage 1: call Find-MIS
stage 2: call Connect-To-MIS
stage 3: build an implementation of IntraH
stage 4: build an implementation of InterH

Figure 5: Pseudocode for all nodes to start simultaneously. Procedure Connect-To-MIS starts
from the maximal independent set found by Find-MIS.

each return. When the list of the discovered neighbors gets exhausted, the token is returned to the

parent node from which it arrived. If the token returns to the initiating source node and all its

neighbors have been already visited by the token then the traversal terminates.

Theorem 1 Algorithm Traverse-To-Broadcast accomplishes a broadcast from a single-node

start in O(n log2N) rounds with high probability. Each node uses O(log3N) random bits.

Proof: Each node obtains a correct upper bound on the number of hidden neighbors with high

probability when executing Estimate-Hidden, by Lemma 1. If the bound holds true then pro-

cedure Discover identifies the hidden neighbors correctly, by Lemma 2. The token’s traversal

is implemented by nodes exchanging messages, and this always occurs only between neighbors in

the communication graph, by Proposition 3. The token traverses the obtained breadth-then-depth

spanning tree, by Fact 1, and accomplishes broadcasting in the process.

Now we estimate the running time. Each node executes procedure Estimate-Hidden and

Discover once, by the pseudocode in Figure 4. These procedures are executed sequentially, started

by receiving the token for the first time. Executing Estimate-Hidden takes O(log2N) rounds,

since it consists of two nested loops, by the pseudocode in Figure 2, each taking O(logN) iterations.

Therefore the total time spent on executing Estimate-Hidden isO(n log2N) with high probability.

A node participates only once as a hidden neighbor of a node executing Discover. The sum of

upper bounds on the number of hidden neighbors is at most 25n with high probability, by Lemma 1.

It follows that the time spent on all the executions of Discover is O(n logN) with high probability.

Randomness is used only in procedure Estimate-Hidden. Lemma 1 gives the needed estimates

on probability. A node performs O(log2N) experiments, each requiring O(logN) random bits. �

5 Backbone From Synchronized Start

We develop a randomized algorithm to build a backbone from a synchronized start, which means

that all the nodes begin an execution together. The algorithm runs in O(∆ logN + logcN) time,

where c is a positive constant. The running times of algorithms InterH and IntraH , associated

with a backbone, are O(logN) and O(∆ logN), respectively.

The algorithm is called Backbone-Synchronized-Start. Its pseudocode is in Figure 5. An

execution begins by calling two procedures. One of them elects a maximal independent set of

nodes in the communication graph; we present it in Section 5.1. The other one inter-connects the

nodes in the obtained maximal independent set into a connected dominating and also connects the

20

procedure Find-MIS

for i = 1 to lg(∆ + 1) do /∗ phase i ∗/
for j = 1 to γ lgN do /∗ sub-phase j ∗/

i. Incorporate new members: /∗ first stage of sub-phase j ∗/
if s is neutral then s becomes a candidate with probability 2i/(∆ + 1).
if s is a candidate then

s executes an (N, γ log3N)-strongly-selective sequence to announce its name
take a record of the names from the messages heard from candidates
if s is a candidate then

if s heard a message from some other candidate
then s goes back to neutral
else s becomes a member

ii. Convert neutral nodes to workers: /∗ second stage of sub-phase j ∗/
if s became a member in the preceding stage then

s executes an (N, γ log3N)-strongly-selective sequence to announce its name
take a record of the names heard from new members
if s is neutral and s has just heard some member’s name then

s becomes a worker
s assigns a member with the smallest name just heard as its representative

Figure 6: Pseudocode for a node s. The invoked (N,Θ(log3N))-strongly-selective sequence is a
part of code and is of O(log7N) length. The independent set obtained as output consists of the
nodes that become members. The constant γ is determined by the analysis.

remaining nodes to it; this procedure is discussed in Section 5.2. The execution concludes with

finding transmission schedules for algorithms InterH and IntraH associated with the backbone;

the details are given in Section 5.3.

5.1 Finding a maximal independent set

We use a maximal independent set as a minimal dominating set. The procedure to find a max-

imal independent set is called Find-MIS. Its pseudocode is given in Figure 6. The invoked

(N,Θ(log3N))-strongly-selective sequence of length O(log7N) exists, by the fact that for each

c > 0 such that c ≤ N , there exists an (N, c)-strongly-selective sequence of length O(c2 logN).

The procedure Find-MIS works in phases numbered by integers i, where 1 ≤ i ≤ 1 + lg ∆. A

phase i consists of γ lgN sub-phases, for a constant γ > 0. A sub-phase j of phase i consists of two

stages: the first one serves the purpose to elect new members of a maximal independent set and

the other one determines for some nodes that they will not belong to a maximal independent set

under construction, such nodes will be categorized as workers.

Here is a summary of categorizations of nodes we will use. In the beginning of an execution,

all the nodes have the status of being neutral. This status may change so that a node becomes

either a candidate, a member or a worker. We want the status of either neutral or a candidate to

be temporary and eventually a node to become either a member or a worker, such that this status,

of a member or a worker, stays unchanged.

21

A neutral node can become a candidate in the beginning of the first stage of a phase, as

determined by an outcome of a random experiment. By the end of the first stage, it is also

determined which among the candidates graduate to members and which become neutral again. If

a candidate in a sub-phase hears in the first stage that one of its neighbors is a candidate too then

it reverts to the neutral status. A candidate in a sub-phase that does not hear that its neighbor is a

candidate becomes a member. It follows that there are no candidates at the end of a phase. Once a

node becomes a member, at the end of the first stage, then this status is permanent. Neutral nodes

that hear in the second stage of a sub-phase that some of their neighbors are members immediately

become workers. Once a node becomes a worker, at the end of the second stage, then this status

is permanent. The sets of neutral nodes, as considered in the end of sub-phases, are monotonically

decreasing, in the sense of inclusion.

At the end of an execution, each node becomes either a member or a worker or it remains

neutral. The set of nodes that is produced as outcome, and which is to be a maximal independent

one, consists of the nodes that end up as members.

Next, we argue about the correctness and efficiency of Find-MIS. This procedure operates by

nodes exchanging messages, which successfully arrive to neighbors in the communication graph

once transmitted by a node, by Proposition 3. We may assume that when an execution begins

then phase 0 is has been just completed. We begin with formulating an invariant for a phase i, for

0 ≤ i ≤ lg ∆, which is understood to hold at the end of phase.

Invariant for phase i of procedure Find-MIS:

Each box of the pivotal grid contains at most (∆ + 1)/2i neutral nodes.

Observe that initially the invariant holds for i = 0, by the properties of pivotal grid, see Section 2.

Specifically, if a node belongs to a box, then all other nodes in the box are its neighbors in the

communication graph, so there can be at most ∆ of them. If the invariant holds for a phase i then

it holds also for phase i + 1 with high probability, which we discuss next, starting from Lemma 3

through Lemma 6.

Lemma 3 If the invariant holds for a phase of procedure Find-MIS, then during a sub-phase of

this phase for each neutral node v the number of neutral neighbors of node v that become candidates

is at most (a+ 1) lgN with probability at least 1− n−a, for sufficiently large n.

Proof: In the beginning of the phase, there are at most (∆+1)/2i neutral nodes in each box, by the

invariant. For a sub-phase, each neutral node becomes a candidate with probability 2i/∆. So the

expected number of neutral nodes in a box that become candidates in this sub-phase is at most 2.

Let v be a neutral node. Its neighbors are in at most 25 boxes, so the expected number of neutral

neighbors of node v that become candidates is at most 50.

Suppose X is the number of successes in a number of independent Bernoulli trials, with the mean

number of successes equal to µ. We use the Chernoff bound which states that Pr(X ≥ b) ≤ 2−b for

b ≥ 6µ. Let b = c lg n, for a > 0. Then we have that Pr(X ≥ c lg n) ≤ n−c, for sufficiently large n.

Let a random variable X be specifically the number of neighbors of v that become candidates in a

sub-phase. Choosing c = a+1, we obtain that at least (a+1) lg n neighbors of v become candidates

with probability at most n−a−1. This applies to each node in the network with probability at most

n−a, by the union bound. �

22

Lemma 4 For any a > 0 there exists γ > 0 such that if the invariant holds for a phase of procedure

Find-MIS then each node that executes a strongly-selective sequence to announce its name in a

sub-phase of the phase is heard by all of its neighbors with probability at least 1− n−a.

Proof: For every node, the number of its neighbors that become candidates in a sub-phase is at

most (a + 1) lgN with probability at least 1 − n−a, by Lemma 3. These nodes will execute a

strongly-selective sequence to announce their names during a sub-phase. By Proposition 5, there

exists c = Θ(((a + 1) lgN)3) such that if all the candidates execute an (N, c)-strongly-selective

sequence, then, for each such a candidate node v, there is a round in which the node v is heard by

all its neighbors. It is sufficient to take γ at least such that c = γ lg3N . �

Lemma 5 For any a > 0 there exists γ > 0 such that if the invariant holds for a phase i < lg(∆+1)

of procedure Find-MIS and there are at least (∆ + 1)/2i+1 neutral nodes in phase i + 1 in a box

then there are no neutral nodes in the box after phase i+ 1 with probability at least 1− n−a.

Proof: Denote x = ∆+1
2i+1 . Each node in the box decides with probability 1

x to become a candidate

in phase i+ 1. A node in the box has fewer than 25 · ∆+1
2i

= 50x neighbors in the communication

graph, by the invariant. If exactly one neutral node in the box becomes a candidate in a sub-phase

while none of its neighbors choose the same then we call it a success in the box. If a success

in a box occurs during a sub-phase then the node that is a candidate becomes a member and

its neighbors become workers, because the candidate node does not hear from another candidate

and its neighbor nodes learn of its candidate status during the sub-phase with probability at least

1− n−2a, by Lemma 4, for a suitable γ. The probability of a success in a sub-phase is at least

x · 1

x

(
1− 1

x

)50x
>

1

2e50
= p ,

where the number p is a constant. There exists a sufficiently large c > 0 such that if c lg n

independent trials are performed, each with the probability p of success, then all of them are

failures with probability at most n−2a. It suffices to take γ > c. �

Now we are ready to give a fact that summarizes the key properties of procedure Find-MIS.

Lemma 6 For any a > 0 there is a γ > 0 such that procedure Find-MIS works in O(log8N log ∆)

rounds and produces a maximal independent set with probability at least 1− n−a.

Proof: The number of rounds the procedure is executed is determined by its pseudocode in Fig-

ure 6. There are lg(∆ + 1) phases, each consisting of γ lgN sub-phases. A sub-phase takes

O(log7N) rounds, because of the length of the used strongly-selective sequence. This contributes

O(log8N log ∆) rounds in total.

Next, we argue about the correctness. We show first that the invariant holds for each phase

with probability at least 1− n−a, for a suitable γ > 0. The argument is by induction on the phase

number i. Specifically, conditional on the invariant holding for a phase, it holds for the next phase

with probability at least 1− n−2a, for a suitable constant γ > 0. The base of induction occurs for

the conceptual phase number 0. The invariant holds for this phase since each box contains at most

∆ + 1 nodes by the definitions of ∆ and the pivotal grid. In the inductive step, we show that if the

23

invariant holds for a phase i then it holds for the next phase i+1 with probability at least 1−n−2a.

Consider a box. If there are at most ∆+1
2i+1 neutral vertices in this box then certainly the invariant

holds for the next phase, and otherwise there are at least ∆+1
2i+1 vertices in the box. If so then, by

Lemma 5, there are no neutral vertices after phase i + 1 with probability at least 1 − n−2a, for a

suitable constant γ > 0. This completes the argument by induction. The invariant holds for each

phase with a probability that is a product of all these conditional probabilities for each phase, that

is with a probability at least

(1− n−2a)lg(∆+1) ≥ 1− lg(∆ + 1) · n−2a ≥ 1− n−a ,

by the Bernoulli’s inequality.

Next we argue that when an execution is completed then the set of nodes that are members

makes a maximal independent set, with a suitably high probability. The assumption is that the

invariant is satisfied for each phase. The set of members after a phase is an independent set of

nodes. This is because when two neighbors are candidates in a sub-phase then they hear each

other’s names in a sub-phase with a high probability, by Lemma 4, and so retreat to being neutral.

To show that the independent set of members is maximal independent, it is enough to demonstrate

that no neutral node remains after an execution is over: this is because then each node is either a

worker or a member, so there is no room for more members. It suffices to argue that there are no

neutral node in every box. Suppose otherwise, that there remain neutral nodes in a box. Let i be

the smallest integer such that when phase i occurs then the number of neutral nodes in the box is

at least ∆+1
2i+1 and at most ∆+1

2i
. By Lemma 5, there are no neutral nodes in the box after the phase

is over with a probability at least 1− n−3a, for a suitable γ > 0. Since there are at most n boxes,

the probability of some neutral nodes surviving all the phases is at most n−2a, by the union bound.

We conclude that all possible unfavorable events occur with a probability that is at most n−a,

again by the union bound. �

5.2 Implementing shortcut connecting

We describe a procedure to build a connected dominating set starting with a maximal indepen-

dent set by way of implementing shortcut connecting, as it is defined in Section 2. This is done

by designating connectors which together with the independent set make a connected dominating

subgraph. It is assumed that a maximal independent set is given and each node knows whether it

belongs to this set or not. A node in such an independent set is called a member, to be consistent

with the categorization of some nodes as members in the sense of procedure Find-MIS. The algo-

rithm is called Connect-To-MIS and its pseudocode is given in Figure 7. It is structured as four

consecutive parts, which we describe in detail next.

The goal of the first part is for all the non-member nodes to learn the names of their member

neighbors. The members transmit their own names using a (N, c)-strongly-selective sequence of

length O(logN), for a sufficiently large constant c > 0, to be determined in analysis. Every node

that is not a member records the names of members, as they are heard. The j-th heard name heard

by a non-member node is called the j-th member of this non-member node.

During the second part, members learn about other members of distance at most three in the

communication graph. This is done by having each member communicate with its neighbors and

nodes of distance two, as those were learned in the first part. Let x = O(log7N) be the length of

24

procedure Connect-To-MIS

part 1: Non-members learn their neighbors:
if s is a member then it executes a (N, c)-strongly selective sequence

else s records the names of member neighbors
part 2: Members learn about other members of distance at most three:

sub 1: any two adjacent non-members exchange information about their member neighbors
sub 2: non-members pass what they have learned in sub-part 1 to member neighbors

part 3: Members choose connectors and notify them:
sub 1: connectors of distance one from their members get notified
sub 2: connectors of distance two from their members get notified

part 4: Nodes learn the neighborhoods in the backbone:
if s belongs to the backbone then

s executes a (N, c)-strongly selective sequence
s simultaneously records the names of neighbors heard from

Figure 7: Pseudocode for a node s. The (N, c)-strongly-selective sequence is of length O(logN),
where the constant c > 0 is determined in analysis. Communication in sub-parts is by way of
executing suitable strongly-selective sequences.

an (N,Θ(log3N))-strongly-selective sequence, which is the same sequence as in the implementation

of procedure Find-MIS. This is organized as two sub-parts such that during the first sub-part two

adjacent nodes that do not belong to the maximal independent set exchange information about

their neighbors that are members, and during the second sub-part each node passes this knowledge

along with the information about its own neighbors that are members to the member neighbors, of

whom there are at most 25. The details are given next.

The first sub-part proceeds as follows. First, each non-member node v chooses a number tv
that is Θ(∆) uniformly at random from a suitable range, which is determined in analysis. Time

is partitioned into consecutive blocks of length x, each devoted to executing some (N,Θ(log3N))-

strongly-selective sequence by suitable nodes. Additionally, we join blocks into consecutive groups

of 25 blocks each. Then node v is active during group tv in every round in [25xtv+1, . . . , 25x(tv+1)],

in the following sense: in the j-th block of group tv, where 0 ≤ j ≤ 24. More precisely, in rounds

[25xtv + jx + 1, . . . , 25xtv + (j + 1)x, node v transmits its j-th member and its own name using

an (N,Θ(log3N))-strongly-selective sequence. Each node w records all the names heard in this

execution. For every name that u heard, node w records the round number fu when the name of u

was heard and the node gu who sent it.

The second sub-part proceeds similarly, with the following modifications. First, each group

consists of 49 blocks. This is because there is at most one member in a box of the pivotal grid

and 49 is an upper bound on the number of boxes containing nodes that are two hops away from a

node, as argued in Section 2. Second, each block is associated with some known member, either in

one-hop neighborhood, as learned in the first part, or in two-hop neighborhood, as learned in the

first sub-part of this second part. In the latter case, such member’s name, say u, is transmitted

along with its associated forwarding node gu and the successful round number fu. Third, at the

end of this sub-part, each member w additionally records all members’ names u heard in this sub-

part, together with one or two node(s) associated with this name, and one or two, respectively,

round number(s) when successful transmissions between the node(s) and the member took place.

25

In case there are many intermediate nodes or pairs thereof, an arbitrary selection of one such a

configuration per a member’s name is made: for each member’s name u, let gu,1 denote a one-hop

neighbor and gu,2 be two-hop neighbor associated with this name, and let fu,i be associated with a

successful transmission round of node gu,i, for i = 1, 2. In case there is only one connector associated

with a member of name u, we denote it by gu and its successful round number by fu, to simplify

the notation. These nodes are designated as connectors.

In the third part, members inform connectors chosen in the second part. Similarly as in the

second part, this is carried out in two sub-parts, with first connectors of distance one and then of

distance two becoming informed. In the first sub-part, every member node w transmits according

to a (N, c)-strongly-selective sequence of length O(logN), for a sufficiently large constant c > 0,

precisely 121 times, one after another. The number 121 is an upper bound on the number of member

nodes in any 3-hop neighborhood. In the j-th execution of a (N, c)-strongly-selective sequence,

node w transmits its j-th heard member u’s name along with its associated connector gu and round

value fu, or a pair of connectors gu,1, gu,2 and round numbers fu,1 and fu,2. Upon receiving such a

message containing only one connector gu and a value fu, connector gu records that it is a connector

from member u to member w, as well as the successful round fu when forwarding took place. Upon

receiving such a message containing two connectors gu,1 and gu,2 and values fu,1 and fu,2, connector

gu,1 records that it is a connector from a member u, via node gu,2, to a member w, as well as the

successful round fu,1 when the forwarding from it to the member w took place. In the second sub-

part, only such connectors gu,1 are active in relaying messages. Similarly as in the first sub-part,

they use a (N, c)-strongly-selective sequence of length O(logN), for a sufficiently large constant

c > 0, precisely 121 times one after another. In the j-th execution of the (N, c)-strongly-selective

sequence, node gu,1 transmits its j-th heard associated connector gu,2 for the member u, along with

its associated pair of members u and w and round value fu,2. Upon receiving such a message,

connector gu,2 records that it is a connector from the member u to the member w, via node gu,1,

as well as the successful round fu,2 when the forwarding from it to the connector gu,1 took place.

A non-member node is in the backbone when it is a connector to some pair of members.

In the final fourth part, all backbone nodes, both members and connectors, learn their neigh-

borhoods in the backbone. In order to accomplish it, they transmit their own names using an

(N, c)-strongly-selective sequence of length O(logN), for a sufficiently large constant c > 0. Each

backbone node records all the receives names as its neighbors in the backbone.

Lemma 7 Procedure Connect-To-MIS builds a connected dominating subnetwork satisfying all

the specifications of a backbone in O(∆ log7N) time with high probability, when starting with a

maximal independent set of nodes.

Proof: It is sufficient to show that the algorithm Connect-To-MIS implements shortcut connect-

ing in wireless networks, which makes Propositions 1 and 4 applicable. This follows from the fact

that an execution of Connect-To-MIS is a systematic enlargement of a maximal independent

set of nodes according to the requirements for shortcut connecting. We rely on the property that

nodes add edges by sending messages to neighbors in the communication graph, which always arrive

successfully, by Proposition 3. A detailed argument follows.

The first part makes each non-member learn the names of all its member neighbors. There are

at most 25 such neighbors, since there is at most one member in a box of the pivotal grid. If the

constant c is sufficiently large, than executing a (N, c)-strongly-selective sequence of lengthO(logN)

26

is sufficient to achieve this task, by Proposition 5.

During the second part, each member obtains either direct or relayed information from each of

its one- or two-hop neighbors, about their at most 121 member neighbors, each of distance at most

three from the member. By letting each non-member node to choose a random number in range

Θ(∆), for a sufficiently large range proportional to ∆, in every box of the pivotal grid, there are

O(logN) nodes that selected the same round, with high probability. In order to allow each of these

nodes to transmit alone, an (N,Θ(log3N))-strongly-selective sequence of length x = O(log7N)

can be used, by Proposition 5 for b = O(logN) active nodes per box with high probability, by an

argument similar to that in the proof of Lemma 5. This applies to both sub-parts. Additionally,

a factor of 25 guarantees that in the first sub-part such situations will occur at least 25 times, so

each non-member node will be able to successfully transmit all the names of its member neighbors.

There might be at most 49 members of one or two hops away from a node. The second sub-part

accomplishes its goal for similar reasons. This results in each member learning at most 121 other

members of at most three hops away, together with at most two connectors.

In the third part, each member needs to send to at most two connectors the information sum-

marizing what it learned about other members of distance at most three away. To accomplish this,

the members execute an (N, c)-strongly-selective sequence of length O(logN) in the first sub-part,

similarly as in part one, each time for a different name of such a member, repeating for at most

121 names. In the second sub-part, each connector that receives such a message addressed to it, in

which it occurs with another connector, relays this message to the other connector using the same

procedure as in the first sub-part. Each node could be chosen as a connector to at most 121 pairs of

members, hence repeating the (N, c)-strongly-selective sequence 121 times, each time for a different

pair of members for which it was chosen as a connector, is sufficient for relaying all such messages

to all two-hop connectors. Proposition 5 is used, for a constant number z of active nodes per box,

these being only members and connectors, to guarantee a successful message exchange between the

neighboring pairs of active nodes.

This is repeated one more time in part four to assure that both the members and the connectors

will know about the other nodes that are either members or connectors and that are in their range.

The argument for correctness is similar to the one in part one, except that instead of at most one

member in each box of the pivotal grid we have a constant number of backbone nodes in a box. �

5.3 Implementing local algorithms

The nodes in a backbone use local algorithms IntraH and InterH . Both IntraH and InterH
are deterministic, though the latter is pre-computed by a randomized algorithm.

Algorithm IntraH facilitates communication among the nodes in the backbone. It schedules

all members and connectors to transmit using some (N, c)-strongly-selective sequence of length

O(logN), for sufficiently large constant c > 0. One run is executed for preprocessing to confirm

neighboring backbone nodes. Additionally, if a non-backbone node does not have its associated

backbone node yet, which is its representative node, then it selects the smallest among the heard

names in the backbone as its representative.

Algorithm InterH facilitates communication between the nodes not in the backbone and

their representatives in the backbone. It is specified as follows. We refer to the length of an

(N,Θ(log3N))-strongly-selective sequence by x = O(log7N). Each non-backbone node selects a

27

number t in the range [1, y] uniformly at random, where y = Θ(∆ logN), with a sufficiently large

constant in front of ∆, and it transmits its own name by executing an (N,Θ(log3N))-strongly-

selective sequence in rounds [t ·x+1, t ·x+x]. A backbone node records the names of the associated

non-backbone nodes from which it receives such message as a potential representative. After time

y · x, each backbone node arranges all its associated nodes into a list and processes it as follows.

For each associated node on the list, it executes some (N, c)-strongly-selective sequence of length

z = O(logN), for sufficiently large constant c > 0, transmitting the associated node’s name when-

ever scheduled. These executions occur for every node on the list one after another. The part is

completed within ∆z rounds, as at most ∆ associated nodes are on the list. Each associated node v

remembers its position on the list of associated nodes of its potential representative, denoted σv,

upon receiving a message addressed to it from such a backbone node.

Algorithm IntraH facilitates communication among neighbors in a backbone. It is defined as

follows: every non-backbone node v transmits according to a (N, c)-strongly-selective sequence of

length z in rounds [σv · z + 1, σv · z + z]. The component σv makes it possible to schedule all the

workers to avoid collisions at their shared representatives, as already determined, while the (N, c)-

strongly-selective sequence component facilitates avoiding clashes between a constant number of

backbone neighbors.

Lemma 8 The local algorithms are successfully constructed in O(∆ log7N) rounds with high prob-

ability. IntraH operates in O(logN) time and InterH operates in O(∆ logN) time.

Proof: By Proposition 3, messages are exchanged between neighbors in the communication graph.

Proposition 5 guarantees a successful message exchange between neighboring pairs of backbone

nodes, as their number per box is constant. Next, we argue about computing algorithms InterH
and IntraH associated with the backbone.

Random selections allow for all non-backbone nodes to avoid collisions at their potential repre-

sentatives with high probability, while an (N,Θ(log3N))-strongly-selective sequence allows to avoid

clashes between O(logN) non-backbone nodes of different potential representatives with high prob-

ability, since the density of backbone nodes is constant per box. One auxiliary execution of InterH
allows to assign by each non-backbone node its representative in the backbone, as it can hear all

its neighbors in the backbone due to the fact that there is a constant number of them.

A schedule for algorithm IntraH can be found similarly as for part two of Connect-To-

MIS. Selecting a random number and a strongly-selective sequence allows each backbone node

to hear all the names of neighboring non-backbone nodes with high probability. Backbone nodes

send acknowledgements to their non-backbone neighbors using the same (N, c)-strongly-selective

sequence as in the schedule of InterH , such that all non-backbone nodes receive them.

Algorithm IntraH makes non-backbone nodes transmit, each using an (N, c)-strongly-selective

sequence, in the order determined by the list created during the first part of procedure Connect-

To-MIS, see Figure 7. Correctness follows by the property that each execution of an (N, c)-

strongly-selective sequence is associated with a set of pairs involving backbone and non-backbone

nodes. Hence, due to a constant density per boxes of the pivotal grid, applying the strongly-selective

sequence guarantees successful deliveries of each of these pairs, by Proposition 5.

The time this computation takes is determined by the durations of all parts. Performance

bounds of algorithms IntraH and InterH follow from their specifications. A strongly-selective

sequence is of length O(logN). Algorithm InterH uses it no more than ∆ times. �

28

algorithm Backbone-General-Start

stage 1: active nodes execute procedure Find-MIS
stage 2: each node in the maximal independent set executes Traverse-To-Broadcast

using a dedicated token
stage 3: all nodes execute Backbone-Synchronized-Start at the same round

Figure 8: Active nodes start from the beginning, while the other nodes join after contacted by a
node visited by a token. The surviving token imposes on all the nodes a round number to be used
to start executing Backbone-Synchronized-Start simultaneously.

5.4 Combining ingredients into a backbone

An algorithm that builds a backbone from a synchronized start is called Backbone-Synchronized-

Start. Its pseudocode is in Figure 5. The algorithm begins by executing Find-MIS, which pro-

duces a maximal independent set. This is followed by Connect-To-MIS, which works with the

maximal independent set produced by Find-MIS. Finally, a backbone is completed by augmenting

nodes with local algorithms, as specified in Section 5.3.

Theorem 2 Algorithm Backbone-Synchronized-Start builds a backbone in O(∆ log7N) rounds

with high probability, such that IntraH operates in O(logN) time and InterH in O(∆ logN) time.

Proof: The first stages produces a maximal independent set with high probability, by Lemma 6.

Given a success of the first stage, the second stage constructs a connected dominating set that

satisfies the specifications of a backbone, by Lemma 7. The time to construct local algorithms and

their performance bounds follow from Lemma 8. �

6 Backbone From General Start

We build on algorithms presented in Sections 4 and 5 to obtain a general distributed algorithm to

construct a backbone. This algorithm is called Backbone-General-Start. Its pseudocode in

given in Figure 8.

We assume that an arbitrary set of nodes is activated to start an execution. An activated node

begins by executing algorithm Find-MIS from Section 5.1. During an execution, if a node not

originally activated receives a message, it ignores it and does not join yet. The outcome maximal

independent set is nonempty, since the initial set S of awoken nodes is non-empty.

Next, each node in the obtained maximal independent set initiates an execution of Traverse-

To-Broadcast from Section 4.3 with itself as source. This may create multiple tokens that

traverse the network concurrently. Each token carries its source name, to which we refer as the

token’s name. The tokens compete for survival by comparing their names. When tokens visit

nodes, they leave a name behind as a trace of visit. A token that comes to a node formerly visited

by other tokens is compared, by the name it brings, to the previous visitors.

A token carries a round number, which is interpreted as a round by which a full synchronization

of the network will be accomplished, as determined by its originator. We want nodes to maintain

29

consistency of such synchronization times. This is done by following the proposal of a “highest

bidder,” understood as a token of the maximum name seen so far. The source nodes initialize this

with their own tokens, while the others nodes wait for a token to visit.

When processing messages generated in tokens traversals, all nodes participate. If there is a

conflict between two messages needed to be sent at the same round then a message for the token

with a greater source name takes precedence. To process received tokens, a node refers to a variable

max-name. Once a node obtains a token, it proceeds in one of the following ways:

(i) if this is a first token ever received then the node sets max-name to the name of the token,

adopts the proposed round number propagated by the token and proceeds to facilitate this

token’s further traversal by sending the required messages;

(ii) if this is a token with a smaller name than max-name then this token is destroyed by the node

not sending messages to facilitate the token’s further traversal;

(iii) if this is a token with a name greater than max-name then the node sets max-name to the

name of the visiting token, adopts the information propagated by the token, and proceeds to

facilitate this token’s further traversal by sending the suitable messages.

If there is a node that keeps a token’s name and the associated information it carries then we say

that the token is operative at the node. It is critical to have a bound on the number of tokens

that are operative in nodes’ neighborhoods, since each active node may contribute to collisions by

generating messages needed for the corresponding token’s traversal. This is reflected in the size of

strongly-selective sequences used to resolve collisions.

Lemma 9 There is a constant upper bound on the number of tokens that are operative in a box of

the pivotal grid at any round.

Proof: Tokens start their traversal originating at nodes of a maximal independent set. There is a

most one node per box in this set, since the nodes in a box induce a clique in the communication

graph. If a token arrives at a node then the node establishes its children in the breadth-then-depth

tree. This means that each node in the box learns about this token’s arrival and if this token arrives

to a child in the box while a token with a larger name has already visited the box then the smaller

token gets destroyed. A token may arrive through a node’s neighbor, and a node has neighbors in

at most 25 boxes. If we start with at most one operative token in each box then this leads to an

invariant that there are at most 25 operative tokens in a box at all times. �

A token with the largest name eventually becomes the only survivor. Its traversal activates the

whole network and synchronizes the nodes to begin a target algorithm in the same round. This

algorithm is Backbone-Synchronized-Start from Section 5.4, which constructs a backbone.

Theorem 3 Algorithm Backbone-General-Start creates a backbone network, for any set of

initially activated nodes, in O(n log2N + ∆ log7N) rounds with high probability. The total number

of random bits per node is poly-logarithmic in N , and the associated local algorithms backbone

algorithms operate in the same times as produced by algorithm Backbone-Synchronized-Start.

30

Proof: The algorithm resorts to the procedures that were already discussed so it suffices to revisit

their performance bounds and the assumptions under which they are valid. Procedure Find-MIS

works in O(log8N log ∆) rounds and produces a maximal independent set with high probability, by

Lemma 6. Algorithm Traverse-To-Broadcast accomplishes a single-source broadcast from a

single-node start in O(n log2N) rounds with high probability, with each node generating O(log3N)

random bits, by Theorem 1. These bounds remain valid with multiple tokens. This is because of a

constant upper bound on the number of tokens operative that are operative in a box of the pivotal

grid in any round, by Lemma 9. Algorithm Backbone-Synchronized-Start finds a backbone

in O(∆ log7N) rounds with high probability, by Theorem 2. These bounds added together make

O(n log2N + log8N log ∆ + ∆ log7N) = O(n log2N + ∆ log7N) rounds with high probability. �

7 Conclusion

We developed algorithms for broadcasting and building a backbone in the model of weak-sensitivity

and weak-connectivity of wireless networks, where nodes do not know their position in a coordinate

system. This extends the related results obtained for the case when nodes can refer to their

coordinates in the plane, as obtained by Jurdziński and Kowalski [20] and Jurdziński et al. [26].

Jurdziński et al. [26] showed a lower bound Ω(min{D∆, n}) on time performance of broadcast

and wake-up in wireless networks with a single-node start. Combining it with the performance

of algorithm for building a backbone we developed demonstrates that preprocessing a network, in

order to synchronize the nodes such that they can start an execution simultaneously, decreases the

expected-time performance requirements for some communication tasks in wireless networks, for

the model of weak sensitivity and weak connectivity.

Algorithms for a weak-sensitivity weak-connectivity SINR regime can be compared to those

developed for a related model of (geometric) radio networks. Radio networks allow for randomized

broadcast algorithms of running time proportional to the diameter D such that other parameters

contribute sub-linear factors, see Kowalski and Pelc [28] and Czumaj and Rytter [8]. Solutions for

SINR networks have to efficiently combine methods of resolving collisions not only coming from

simultaneously transmitting neighbors in the communication graph but also interferences coming

from other parts of the network. Broadcast requires time Ω(min{D∆}) in a weak-sensitivity weak-

connectivity SINR model.

The concept of pivotal grid defined in terms of a coordinate system in a plane but it only serves

the purpose to argue about correctness and performance bounds of algorithms but does not impact

actions of nodes. It would be interesting to develop algorithms to build a backbone with comparable

performance bounds in general metric spaces, such as bounded-growth ones.

Backbones provide natural infrastructure of wireless networks. It would be interesting to ex-

plore leveraging backbones to support dynamic communication tasks, such as periodic broadcast,

convergecast, and routing.

31

References

[1] Chen Avin, Yuval Emek, Erez Kantor, Zvi Lotker, David Peleg, and Liam Roditty. SINR

diagrams: Convexity and its applications in wireless networks. Journal of the ACM, 59(4):18,

2012.

[2] Leonid Barenboim and David Peleg. Nearly optimal local broadcasting in the SINR model with

feedback. In Post-Proceedings of the 22nd International Colloquium on Structural Information

and Communication Complexity (SIROCCO), Lecture Notes in Computer Science vol. 9439,

pages 164–178. Springer, 2015.

[3] Marijke H. L. Bodlaender and Magnús M. Halldórsson. Beyond geometry: towards fully real-

istic wireless models. In Proceedings of the 33rd ACM Symposium on Principles of Distributed

Computing (PODC), pages 347–356, 2014.

[4] Bogdan S. Chlebus and Dariusz R. Kowalski. Almost optimal explicit selectors. In Proceedings

of the 15th International Symposium on Fundamentals of Computation Theory (FCT), Lecture

Notes in Computer Science vol. 3623, pages 270–280. Springer, 2005.

[5] Bogdan S. Chlebus, Dariusz R. Kowalski, Andrzej Pelc, and Mariusz A. Rokicki. Efficient

distributed communication in ad-hoc radio networks. In Proceedings of the 38th International

Colloquium on Automata, Languages and Programming (ICALP), Part II, volume 6756 of

Lecture Notes in Computer Science, pages 613–624. Springer, 2011.

[6] Bogdan S. Chlebus and Shailesh Vaya. Distributed communication in bare-bones wireless

networks. In Proceedings of the 17th International Conference on Distributed Computing and

Networking (ICDCN), pages 1:1–1:10. ACM, 2016.

[7] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast in radio

networks of unknown topology. Theoretical Computer Science, 302(1-3):337–364, 2003.

[8] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in radio networks with unknown

topology. Journal of Algorithms, 60(2):115–143, 2006.

[9] Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin C. Newport. Broadcast in the ad hoc

SINR model. In Proceedings of the 27th International Symposium on Distributed Computing

(DISC), Lecture Notes in Computer Science vol. 8205, pages 358–372. Springer, 2013.

[10] Annalisa De Bonis, Leszek G ↪asieniec, and Ugo Vaccaro. Optimal two-stage algorithms for

group testing problems. SIAM Journal on Computing, 34(5):1253–1270, 2005.

[11] Bilel Derbel and El-Ghazali Talbi. Radio network distributed algorithms in the unknown neigh-

borhood model. In Proceedings of the 11th International Conference on Distributed Computing

and Networking (ICDCN), volume 5935 of Lecture Notes in Computer Science, pages 155–166.

Springer, 2010.

[12] Fabian Fuchs and Dorothea Wagner. On local broadcasting schedules and CONGEST algo-

rithms in the SINR model. In Proceedings of the 9th International Symposium on Algorithms

and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGO-

SENSORS), volume 8243 of Lecture Notes in Computer Science, pages 170–184. Springer,

2013.

32

[13] Andrea J. Goldsmith and Stephen B. Wicker. Design challenges for energy-constrained ad hoc

wireless networks. IEEE Wireless Communications, 9(4):8–27, 2002.

[14] Olga Goussevskaia, Thomas Moscibroda, and Roger Wattenhofer. Local broadcasting in the

physical interference model. In Proceedings of the DIALM-POMC Joint Workshop on Foun-

dations of Mobile Computing, pages 35–44, 2008.

[15] Olga Goussevskaia, Yvonne Anne Pignolet, and Roger Wattenhofer. Efficiency of wireless

networks: Approximation algorithms for the physical interference model. Foundations and

Trends in Networking, 4(3):313–420, 2010.

[16] Magnús M. Halldórsson, Stephan Holzer, and Nancy A. Lynch. A local broadcast layer for the

SINR network model. In Proceedings of the 2015 ACM Symposium on Principles of Distributed

Computing (PODC), pages 129–138, 2015.

[17] Magnús M. Halldórsson and Pradipta Mitra. Towards tight bounds for local broadcasting.

In Proceedings of the 8th ACM International Workshop on Foundations of Mobile Computing

(FOMC), page 2, 2012.

[18] Magnús M. Halldórsson and Tigran Tonoyan. Sparse backbone and optimal distributed SINR

algorithms. ACM Transactions on Algorithms, 17(2):article 17, 2021.

[19] Magnús M. Halldórsson, Tigran Tonoyan, Yuexuan Wang, and Dongxiao Yu. Brief announce-

ment: Data dissemination in unified dynamic wireless networks. In George Giakkoupis, editor,

Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC),

pages 199–201. ACM, 2016.

[20] Tomasz Jurdziński and Dariusz R. Kowalski. Distributed backbone structure for algorithms in

the SINR model of wireless networks. In Proceedings of the 26th International Symposium on

Distributed Computing (DISC), Lecture Notes in Computer Science vol. 7611, pages 106–120.

Springer, 2012.

[21] Tomasz Jurdziński and Dariusz R. Kowalski. Distributed randomized broadcasting in wireless

networks under the SINR model. In Ming-Yang Kao, editor, Encyclopedia of Algorithms.

Springer US, 2014.

[22] Tomasz Jurdziński, Dariusz R. Kowalski, Michal Różański, and Grzegorz Stachowiak. Dis-

tributed randomized broadcasting in wireless networks under the SINR model. In Proceedings

of the 27th International Symposium on Distributed Computing (DISC), Lecture Notes in Com-

puter Science vol. 8205, pages 373–387. Springer, 2013.

[23] Tomasz Jurdziński, Dariusz R. Kowalski, Michal Różański, and Grzegorz Stachowiak. On the

impact of geometry on ad hoc communication in wireless networks. In Proceedings of the 33rd

ACM Symposium on Principles of Distributed Computing (PODC), pages 357–366, 2014.

[24] Tomasz Jurdziński, Dariusz R. Kowalski, Michal Różański, and Grzegorz Stachowiak. On

setting-up asynchronous ad hoc wireless networks. In Proceedings of the 2015 IEEE Conference

on Computer Communications (INFOCOM), pages 2191–2199, 2015.

33

[25] Tomasz Jurdziński, Dariusz R. Kowalski, and Grzegorz Stachowiak. Distributed deterministic

broadcasting in uniform-power ad hoc wireless networks. In Proceedings of the 19th Interna-

tional Symposium on Fundamentals of Computation Theory (FCT), Lecture Notes in Computer

Science vol. 8070, pages 195–209. Springer, 2013.

[26] Tomasz Jurdziński, Dariusz R. Kowalski, and Grzegorz Stachowiak. Distributed deterministic

broadcasting in wireless networks of weak devices. In Proceedings of the 40th International

Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes in Computer

Science vol. 7966, pages 632–644. Springer, 2013.

[27] Thomas Kesselheim and Berthold Vöcking. Distributed contention resolution in wireless net-

works. In Proceedings of the 24th International Symposium on Distributed Computing (DISC),

Lecture Notes in Computer Science vol. 6343, pages 163–178. Springer, 2010.

[28] Dariusz R. Kowalski and Andrzej Pelc. Broadcasting in undirected ad hoc radio networks.

Distributed Computing, 18(1):43–57, 2005.

[29] Eyal Kushilevitz and Yishay Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio

networks. SIAM Journal on Computing, 27(3):702–712, 1998.

[30] William K. Moses Jr. and Shailesh Vaya. Deterministic protocols in the SINR model without

knowledge of coordinates. Journal of Computer and System Sciences, 115:121–145, 2021.

[31] Sai Praneeth Reddy, Dariusz R. Kowalski, and Shailesh Vaya. Multi-broadcasting under the

SINR model. CoRR, abs/1504.01352, 2015.

[32] Sai Praneeth Reddy and Shailesh Vaya. Brief announcement: Multi-broadcasting under the

SINR model. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Com-

puting (PODC), pages 479–481. ACM, 2016.

[33] Christian Scheideler, Andréa W. Richa, and Paolo Santi. An O(log n) dominating set protocol

for wireless ad-hoc networks under the physical interference model. In Proceedings of the 9th

ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 91–100,

2008.

[34] Stefan Schmid and Roger Wattenhofer. Algorithmic models for sensor networks. In Proceedings

of the 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2006.

[35] Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Haisheng Tan, and Francis C. M. Lau. Dis-

tributed multiple-message broadcast in wireless ad-hoc networks under the SINR model. In

Proceedings of the 19th International Colloquium on Structural Information and Communica-

tion Complexity (SIROCCO), Lecture Notes in Computer Science vol. 7355, pages 111–122.

Springer, 2012.

[36] Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Jiguo Yu, and Francis C. M. Lau. Efficient

distributed multiple-message broadcasting in unstructured wireless networks. In Proceedings of

the 32nd IEEE International Conference on Computer Communications (INFOCOM), pages

2427–2435, 2013.

34

[37] Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau. Distributed local

broadcasting algorithms in the physical interference model. In Proceedings of the 7th IEEE

International Conference on Distributed Computing in Sensor Systems (DCOSS), pages 1–8,

2011.

[38] Dongxiao Yu, Yifei Zou, Yong Zhang, Feng Li, Jiguo Yu, Yu Wu, Xiuzhen Cheng, and Francis

C. M. Lau. Distributed dominating set and connected dominating set construction under the

dynamic SINR model. In Proceedings of the 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 835–844. IEEE, 2019.

[39] Jiguo Yu, Nannan Wang, Guanghui Wang, and Dongxiao Yu. Connected dominating sets in

wireless ad hoc and sensor networks - A comprehensive survey. Computer Communications,

36(2):121 – 134, 2013.

[40] Yifei Zou, Dongxiao Yu, Libing Wu, Jiguo Yu, Yu Wu, Qiang-Sheng Hua, and Francis C. M.

Lau. Fast distributed backbone construction despite strong adversarial jamming. In Proceedings

of the 2019 IEEE Conference on Computer Communications (INFOCOM), pages 1027–1035.

IEEE, 2019.

35

	1 Introduction
	2 Technical Preliminaries
	3 Algorithmic Tools
	4 Broadcasting to Coordinate Start
	4.1 Estimating the number of hidden neighbors
	4.2 Discovering hidden neighbors
	4.3 Algorithm for broadcasting

	5 Backbone From Synchronized Start
	5.1 Finding a maximal independent set
	5.2 Implementing shortcut connecting
	5.3 Implementing local algorithms
	5.4 Combining ingredients into a backbone

	6 Backbone From General Start
	7 Conclusion

