Distrib. Comput. (1998) 11: 113-124 @HSFRU @FE@
COMRUTING

© Springer-Verlag 1998

Randomized naming using wait-free shared variables

Alessandro Panconest-!, Marina Papatriantafilou ***-2, Philippas Tsigad 2, Paul Vitanyit-3

1 BRICS, Department of Computer Science, University of Aarhus, Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark;{ee@biiics.dk)
2 Computing Science Department, Chalmers University of Technology, S-41586hag, Sweden

(e-mail: {tsigas, ptrianta }@cs.chalmers.se)

3 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (e-ailtv@cwi.nl)

Received: September 1994 / Accepted: January 1998

Summary. A naming protocol assigns unique names (keys)may not have a name to start with. If they do, the result-
to every process out of a set of communicating processesng variant of the naming problem is called thenaming

We construct a randomized wait-free naming protocol us-problem.

ing wait-free atomic read/write registers (shared variables) In a distributed or concurrent system, distinct names are
as process intercommunication primitives. Each process hasseful and sometimes mandatory in a variety of situations
its own private register and can read all others. The adincluding mutual exclusion, resource allocation, leader elec-
dresses/names each one uses for the others are possibly dibn and choice coordination. In such cases a naming pro-
ferent: Processes and ¢ address the register of process tocol can be put to good use. When processes are created
in a way not known to each other. Far processes and and terminated dynamically—a common occurrence in dis-
e > 0, the protocol uses a name space of size {ln+tand tributed and concurrent systems—the name space may grow
O(nlognloglogn) running time (read/writes to shared bits) while the number of processes remains bounded. A renaming
with probability at least * o(1), andO(n log? n) overall ex- procedure is used to size down the name space. Examples
pected running time. The protocol is based on the wait-freeof network protocols that crash on duplicate hames or per-
implementation of a novek-Test&SetOnc@bject that ran- form more efficiently for small name ranges are found in
domly and fast selects a winner from a setgofontenders [23] and [26]. A naming protocol is also useful in allocation
with probability at leastv in the face of the strongest pos- of identical resources with a name as a permit to a resource.
sible adaptive adversary. Since our algorithms are wait-free (see below) they are also

) . . . highly fault-tolerant. Managing the assignment of resources
Key words: Naming problem — Symmetry breaking — Unique to competing processes corresponds to a repetitive variant of

process ID — Asynchronous distri_buted protocqls - F.aUIt'the naming problem [6]. In the sequel we also write “key”
tolerance — Shared memory — Wait-free read/write registers . «name” and “key range” for “name space.”

— Atomicity — Test-and-set objects — Randomized algorithms B)
— Adaptive adversary Interprocess CommunicatioWe use interprocess commu-

nication through shared memory and allow arbitrarily initial-
ized shared memory (dirty memory model) as in [19]. Shared
memory primitives such as wait-free atomic read/write reg-
isters [17, 18] are widely used in the theory of distributed
1 Introduction algorithms [12]. A deterministic protocol executedbypro-
cesses igvait-free if there is a finite functionf such that

A naming protocol concurrently executed by each processevery non-faulty process terminates its protocol executing a
out of a subset of processes selects for the host process diumber< f(n) of steps regardless of the other processes
uniquename from a common name space. The name spac@xecution speeds (or crash failures). In other words, a wait-

should be small, preferably of size The processes may or free solution is ¢ — 1)-resilient to process crash failures. A
randomizedprotocol is wait-free if f(n) upper bounds the

* This work was performed during a stay of AP, MP, and PT at CWI, expectationof the number of steps, where the expectation

Amsterdam. . is taken over all randomized system executions against the
. Supported by an ERCIM Fellowship. worst-case adversary in the class of adversaries considered
*** Partially supported by a NUFFIC Fellowship and the European Union . y . . .

through ALCOM ESPRIT Project Nr. 7141. (in our results the adaptive adversaries). Our constructions

t Partially supported by NWO through NFI Project ALADDIN under below use single-writer multi-reader wait-free atomic regis-
contract number NF 62-376 and by the European Union through ALCOMters as constructed in [25, 18] and used in [7, 8, 15]. We

ESPRIT Project Nr. 7141. also write “shared variable” for “register.”
t Partially supported by NWO through NFI Project ALADDIN under L .
contract number NF 62-376 and by the European Union through NeuroAnonymous Communication Modélvery register can be

COLT ESPRIT Working Group Nr. 8556. written by exactly one process and can be read by all other

114

processes—this way the writing process can send messagsize onlyn +t, but it takes exponential time (im). This pro-
to the other processes. If the processes use a common indéxcol was later transformed in [7] to two solutions for the
scheme for other processes registers (an initial consistergsynchronous, shared memory model that are wait-free and
numbering among the processes as it is called in [7, 8, 15])achieve running times ofi(+ 1)4” andn?+ 1 and key range
then optimal naming is trivial by having every process ranksizes of 2 — 1 and @2 +n)/2, respectively. Recently, [9]
its own number among the other values and choose thademonstrated a wait-free long-lived shared memory imple-
rank-number as its key. To make the problem nontrivial, mentation for renaming: out of n processes, usin@ (k%)
every process has its own private register and can read afiteps and achieving key range si2¢:?). For a determinis-
other registers but the processes use possibly different indetic, wait-free solution in the asynchronous, shared memory
schemes. That is, procesgesndq each address a register model a key range of sizen2- 1 is necessary [15].
owned by processin a possibly different way not known to The above results use asymmetric shared memory in the
each other. This may happen in large dynamically changingorm of single-writer multi-reader wait-free atomic read/write
systems where the consistency requirement is difficult orregisters and each “step” reads or writes one such register.
impossible to maintain [19] or in cryptographical systemsMoreover, the global address of each register is known to
where consistency is to be avoided. In this model we cannodll.
use the consensus protocols of [4, 5, 14] or the test-and-set There is a plethora of other work on the naming prob-
implementation outlined in [2]. lem using shared memory cited in [19, 16, 10]. We discuss
what is relevant to this paper. In [16] it is shown that us-
alng boundedsymmetric shared memory, both a determin-
istic solution and a randomized wait-free solution against
gdn adaptiveadversary (Appendix A) are impossible. They
give a wait-free randomizednboundedsymmetric shared
memory solution against a fair adaptive adversary with a
Complexity Measure§.he computational complexity of dis- key range of size: and a logarithmic expected number of
tributed deterministic algorithms using shared memory isrounds—time units during which every process makes at
commonly expressed in number and type of intercommudeast one step—assuming loghit registers. They show that
nication primitives required and the maximum number of unbounded memory is also necessary against an adaptive ad-
sequential read/writes by any single process in a system exsersary. They also give af(logn) expected time solution
ecution. Local computation is usually ignored. We use wait-with key range size: against a faiobliviousadversary using
free atomic read/write registers as primitives. Such primi-O(n) shared memory consisting of legbit registers. Inde-
tives must be ultimately implemented wait-free from single- pendently, [10] gave a randomized solution in the bounded
reader single-writer wait-free atomic read/write bits (that in symmetric memory model with key range sizeunning in
turn are implementable from mathematical versions of hardexpected)(n®) time against a fair oblivious adversary using
ware “flip-flops” [17]). The most efficient such implemen- O(n*) shared atomic multiwriter, multireader bits.
tations use [18] to reduce a multiuser multivalue register t0 To summarize: Eor asynchronous bounded shared mem-
single-reader single-writer multivalue registers, and [17] togry, in theasymmetriccase deterministic wait-free solutions
reduce the latter to Single-reader Single-Writer bits. To Stanare expensive (|n terms of achievable key range) and in the
dardize complexity and to make comparisons to other algosymmetriccase both deterministic wait-free solutions and
rithms unambiguous we express time- and space complexityandomized wait-free solutions assuming an adaptive adver-
in terms of read/writes to the elementary shared bits. sary are impossible. The remaining case is treated below.

RandomizationThe algorithms executed by each process are,
randomized by having the process flip coins (access a privatﬁ,

trﬁgd;nngwneﬂ;ngg E%Svr;ersat:ogz;eg_ogggﬁndrgg‘e'éidale\igogthgsfange for asynchronous asymmetric bounded shared memory
y P YS 9€15bdels (single-writer multi-reader wait-free atomic shared

uniqu_e key—_b_ut with small probability the prOtOC(.)I takes aregisters). We use the anonymous communication model
long time to finish. We use the customary assumption that th?/vere processes have no initial names (equivalently, have

coin f.“p an_d subsequent write to shared memory are separaﬁo global consistent indexing of the other processors). Our
atomic actions. To express the computational complexity o

. -) .., construction requires several algorithms that in the end give
our algorithms we use (i) the worst-case complexity with g 9 g

probability 1— o(1), or (ii) the expected complexity, over all a randomized wait-free naming algorithm. We assume the

. . L adaptive adversary (the strongest adversary).
system executions and with respect to the randomization by (F))ur first alggriihm i t%e implemer?t)ation of an

the processes and the worst-case scheduling strategy of an .
adaptive adversary. a-Test&SetOnceobject: a one-shot test-and-set that guar-

antees that among the< n competing processes invoking
Previous WorkThe agreement problem in the deterministic it, there will be a unique winner with probability, where«
model of computation (shared memory or message passing$ a parameter that can be chosen arbitrarily close to 1. The
is unsolvable in the presence of faults [11, 13, 20]. Surpris-object is safe; that is, at most one process can be a winner.
ingly, [6] showed that theenamingproblem, which requires When invoked byg (out of n) processes, it use®(logq)

a nontrivial form of interprocess “agreement,” is solvable in 1-writer n-reader shared bits per process. The running time
the message passing model. Their solutiofrissilient—up is O(nloggq) read/writes on such bits. These properties are
to ¢ crash failures are tolerated—and uses a name space shown in Theorem 1. In our applications we typically have

Symmetric Shared Memonjnother way to prevent trivial
ranking is using the symmetric shared memory model.
shared memory isymmetridf it consists of a set of identical
processes communicating through a pool of shared variabl
each of which is read and written by all processes [16, 10]

resent ResultdVe show that randomization can yield wait-
ee, inexpensive solutions in terms of time, space, and key

115

g = O(logn) with high probability. Using more complex step by one process is executed. The atomicity requirement
primitives, the object can be implemented by: (a) using induces in each actual system execution total orders on the
copies of 1-writem-readerO(log logq)-bit read/write regis- set of all of the steps by the different processes, on the set of
ters with running time ofO(nlogq) read/writes on these steps of every individual process, and on the set of read/write
registers, or (b) a singlex-writer n-reader 1-writer-per- operations executed on each individual register. Stageof
componenti-component composite register with logleg the system gives for each process: the contents of the pro-
bit components (snapshot memory [3, 1]) with running timegram counter, the contents of the local variables, and the
O(log q) read/writes per process on the composite register.contents of the owned shared registers. Since processes exe-
The second algorithm is a wait-free naming algorithm, cute sequential programs, in each state every process has at
SEGMENT , usinga-Test&SetOnc@bjects. Given any > most a single step to be executed next. Such steperare
0, SEGMENT uses a name space of size (#)m, wheren abledin that state. There is adversaryscheduling demon
is the number of processes. The protocol is always correcthat in each state decides which enabled step is executed
in the sense that all non-faulty processes receive distinchext, and thus determines the sequence of steps of the sys-
names. The running time is a random variable whose valuéem execution. There are two main types of adversaries: the
is O(nlognloglogn) bit operations with high probability. oblivious adversary that uses a fixed schedule independent
By “high probability” we mean that the probability that the of the system execution, and the much strorapaptivead-
running time exceeds the above value($), a quantity that versary that dynamically adapts the schedule based on the
tends to 0 as grows, Lemma 3. In fact, we prove that the past initial segment of the system execution. Our results hold
maximum running timamong all non-crashing processes is against the adaptive adversary—the strongest adversary pos-
O(nlognloglogn) bit operations with probability + o(1). sible.
It is still possible that the expectation of the running time The computational complexity of a randomized dis-
over all coin flip sequences is infinite. Our next Theorem 2tributed algorithm in an adversarial setting and the corre-
shows that with a minor modification a proof similar to that sponding notion of wait-freeness require careful definitions.
of Lemma 3 demonstrates that the expected running timdo not distract the reader we delegated the rigorous novel
of the modified protocols of the involved processes can bdormulation of adversaries as restricted measures over the
bounded byO(n log? n) and henc&ECMENT is “wait-free.” set of system executions to the Appendix A. We believe it
The paper is organized as follows. Section 2 and Ap-is interesting in its own right and will be useful elsewhere.
pendix A spell out our assumptions and our model of compu- For now we assume that the notions of system execution,
tation. Appendix B shows that the simple approach doesn’tvait-freeness, adaptive adversary, and expected complexity
work and motivates the introduction of theTest&SetOnce are familiar. Arandomizedlistributed algorithm isvait-free
object in Sect. 3. This object is used in Sect. 4 to obtain thdf the expected number of read/writes to shared memory by
naming protocol. every participating process is bounded by a finite function
f(n), wheren is the number of processes. The expectation
is taken over the probability measure over all randomized
2 Preliminaries system executions against the worst-case adaptive adversary.

Processes are sequentially executed finite programs with

bounded local variables communicating through single-2.2 Obvious strategy doesn’t work

writer, multi-reader bounded wait-free atomic registers

(shared variables). The latter are a common model for interin Appendix B we analyze a naming strategy that first comes

process communication through shared memory as discusséd mind and show it doesn’t work out in the sense th@t)

briefly in Sect. 1. For details see [17, 18] and for use andbounding the expected number of read/writes to shared mem-

motivation in distributed protocols see [7, 8, 15]. ory is at least exponential. Namely, as soon as there is more
than one process claiming a key the adversary can make
all such processes fail. This problem can be resolved by a

2.1 Shared Registers, anonymous communication, atomicityest-and-set mechanism that ensures a winner among a set of
claiming processes. However, existing constructions such as

Every read/write register iswnedby one process. Only the [2] require all processes to have a consistent numbering—

owner of a register can write it, while all the other processesghe model is not anonymous. As pointed out in the intro-

can read it. In onstepa process can either: (i) read the value duction, this would render the naming problem trivial: just

of a register, (ii) write a value to one of its own registers, rank the numbering and choose your rank as a key, see also

or (iii) possibly flip a local coin (invoke a random number [7, 8, 15]. To resolve this problem we introduce a probabilis-

generator that returns a random bit), followed by some localtic a-Test&SetOncebject that selects a winner with high

computation. The communicationasmonymousWhile each probability and doesn’t require a consistent initial number-

process has its own private register and can read all otherég among the processes.

the addresses/names each one uses for the others are possibly

different: Processep and ¢ each address the register of

process in a way not known to each other. 3 Probabilistic a-Test&SetOnc@bject

We require the system to kegomic every step of a pro-
cess can be thought to take place in an indivisible instancén «-Test&SetOncebject shared by. processes is a prob-
of time and in every indivisible time instance at most one abilistic, wait-free object with the following functionality:

116

For every 0< o < 1 we can construct the object such that

The probability of having exactly out of ¢ processes step-

when it is concurrently invoked by any subset of the userping forward to the next row is given by

processes it selects a winner with probability«. If there

areq < n processes competing for the same object, then thq:r[X =kl =

maximum number of shared bit accesses performed by an
process has expectati@i(n logq). Typically, ¢ := O(logn)
so that the expectation @(n log logn).

The object is based on the following property of the
geometric distribution. Suppose there amandom variables
X, identically and geometrically distributed, & = k] =
(1 — p)p®. Then, with “good probability” there will be a
unique maximumJX; > X, for somei and allj # i.

3.1 Synchronous algorithm

Considern processes numbered 1 througland anco x n
matrix A = (a;;) (1 < ¢ < 00,1 < j < n). Processes
p1,D2,---,0q (g < n) enter the competition which is ex-
pressed by initially setting,, := 1 for 1 < i < ¢ and
filling the remainder of4 with zero entries. The game is di-
vided into rounds: := 1,2, In each round, every process
that is still in the game independently flips an identical coin
with probability s of success and — 1 of failure. In each
roundk, every procesp; with ay, ,, = 1 flips its coin. Ifp;'s
coin flip is successful then steps forwardsetsay+1,p, := 1)
else itbacks-off(resetsa; ,, := 0 (1 <[< k) and exits). In

each round there are three mutually-exclusive possible outvhich can be verified using (2) and (3).

comes: (i) exactly one process steps forward and all other
back-off—the process is declared thinner and the game

ends; (ii) all processes back-off, in which case the game
ends with no winner; (iii) more than one process steps for-

ward, in which case the game continues, until one of the tw
aforementioned events occurs.

Let f(q) denote the probability that the game ends with
a winner for an initial number of competing processes.
The exact behavior of (q) seems hard to analyze. Fortu-

0,

(1) @
y k

For the case = 2, these two equations give
f(2)=s*f(2) +25(1 - 5) 3)

which implies the first part of the lemma.

We prove the second part of the lemma by induction.
The base casef(2) > f(2), is trivial. For the inductive
step, assume thgt(k) > f(2) for all 2 < k < ¢. Using (1)
and (2), it follows from the induction hypothesis that

PrIX =1]+ Y0 f(k) PrIX =k]

1@ = 1- Pr[X=q]
_ PIIX =11+ f(2) Y2155 PriX =A]
- 1-—Pr[X=¢q]
_ PriX=1]+ f(2)(1 — PriX =0] — Pr[X =1] — Pr[X =¢])
- 1— PrX=¢]

> [(2).
The last inequality is equivalent to
PriX =1] - f(Q(Pr[X =0]+PriX =1])) >0
([

?he next lemma shows that, with high probability, the game
ends very quickly with a winner.

Lemma 2 Letl < ¢ < n. Then, the probability that there is
a winner withinr rows is at leastf(2) — ns".

Proof. Let WW,. be the event that there is a winner within
rows. Then forg = 1 Pr[W,] = 1. For other values of

nately, the next lemma gives an easy proof of a statemern®r[W,] = Prlthere is a winner]

that is good enough for our purposes. We defjii@) = 0
and f(1) = 1.

Lemma 1l LetO< s < 1. Then

() f(2) =2s/(1+s)and
(ii) forall ¢ > 2, f(q) > f(2).

Proof. Suppose that after the first coin flip,out of ¢ initial

— Pr[there is a winner after rows]
> f(q) — Pr[some process makes it for
at leastr rows]
> f(2)—qs"
> f(2) —ns".
O

processes step forward. Since the number of rows available 5, important corollary of this lemma is that, by choosing
for the game is gnbounded, the probability of havmg_a Win-; and » appropriately, the probability of having a winner
ner at this point is exactly(k). Let X be a random variable \yithin O(log) rows can be set arbitrarily close to 1. In other
denoting the number of processes that step forward. Thenyqrqs; infinitely many rows are not needed (but simplify the
the probability of the game ending with a winner is: analysis). If we want a probability of successof= 1 — ¢

q we need to satisfy
£@) =) fk)PIX = k]
k=0 2s

—ns" >1—e
1+s -

Recalling thatf(0) = 0 and f(1) = 1, this equation can be

rewritten as: By settings = 1—¢/2 the number of rows needed would be

only r = (2/€)log(n/e). For instance, forx = .9 we would
needr ~ 20(logn + 4) and fora = .99 we would need
r =~ 200(logn + 7).

q—1

fla) =PrX = 1]+ f(@) PrIX =g+ Y f(k)PrIX =] (1)

k=2

3.2 Asynchronous implementation

Let the entries of matrixA correspond to the states of 1-
writer n-reader bits and let there be ontyrows, soA is an

r X nmatrix. Thej-th bit of each array can be written only
by processi but can be read by all processes.

Definition 1 When a process steps forward from réw- 1
to row k it first sets its private bit at rowt to 1 and then
reads the other bits of row. If they are allO the process is
said to belucky at rowk.

Even though in an asynchronous system a process cann
determine whether it reached a certain row alone or wheth

117

row. Notice also that if a process is actually the winner at
some row—all other processes backed off—from then on it
will step from one row to the next with probability 1.

The relevant properties of the protocol are: Liveness: ev-
ery non faulty process executes the protocol for a bounded
number of steps, regardless of other processes speeds or
crash failures; safety: at most one process wins; and, if the
number of rows iDO(log ¢) then the probability that among
q < n competing processes there is a winnewnis-a pa-
rameter that can be set arbitrarily close td 1.

Claim 1 (Liveness)a-TAsONCE is wait-free and uses at
Rlost 2(r + 1) +r read/writes to 1-writerp-reader shared
its.

slower processes will eventually reach the same row, it suf-

fices that it can determine whether it is lucky: the geometricproof. A processp invoking the protocol either backs off
distribution ensures that a process that has not baCked-Oﬁnmediate|y, executing at most2r steps, Orjoins the com-

after many rows (say: ~ logn) is, with high probability,
the only one left. Trivially, to be lucky at row (1 < k& < r)

is necessary to be a winner and, as we will show, to be luckteps.

at row r is sufficient to be a winner.

Theorem 1 For every0 < s < 1, thea-TAsSONCE protocol
implements ax-Test&SetOnce object that selects a unique
winner among a set of invoking processes with probabil-
ity at leasta := 2s/(1 +s) — o(1) (provided no processes

petitition. Then, it either will win executing at mosh@-+1)
steps or back off and lose executing at mos{r2+ 1) +r
U

In the remainder of the section we consider a system
of ¢ < n processes executing the protocol of Fig.1, and
executions for this system such that no crashes occur and
show that in this case a process gets a key—and hence it is
captured—uwith probabilityy.

crash) and never selects more than one winner. The object
can be invoked repeatedly until the key is assigned, provide€laim 2 Let B be the set of processes that back off during

no crashes occur. If the object is invoked fyout of n
processes the invocation uségnlogq) 1-writer n-reader

an execution and lét := | B|. For each row, the number of
lucky processes is at most- 1 and at most one of them is

atomic single bit registers and has worst case running timeoutside5.

of O(nlog ¢) read/writes of the shared bits.

Proof. In Fig.1 every procesg owns an array of atomic
bits denoted by:[1..r, p]—one bit for each row of the game.
The i-th row a[i, 1..n] has one bita[i, p] owned by process
p (1 < p < n). Initially, in line 1 of Fig.1, the process
checks whether the object is currently occupied diker

Proof. A process which does not exit right away after exe-
cuting line 1 is called a&ompetingprocess. For every row
row (1 < row < r), every still competing process first
setsa[row, p] := 1 by executingW RIT E(a[row,p],1) in

line 3 of the protocol, and subsequently reads the other bits
in the row by executing the loop of line 4. Suppose by way

processes trying to grab the key or whether initial memoryof contradiction that two processgsand p’ do not back

is dirty (possibly by a previous competition). If so, then

off and both are lucky at rowow. We can assume that

it exits reporting a failure by way of line 9. Line 9 resets p executes itdV RIT E(a[row, p], 1) beforep’ executes its

all bits a[i,p] (1 < ¢ < r) owned by the process to 0 to

clean its “own” possibly dirty memory for future tries. (Of

course, this needs to be done only once at the start of ea
process and we can add a line of code to this effect.) Lines
through 8 implement the following algorithm: Determine if
you are lucky at the current row. If yes, then step forward
with probability 1, otherwise with probability. The value of

s is the same for all processes. A processsif it is lucky

at rowr, otherwise itfails. We will show below that at most

W RITE(a[row, p'],1). Sincep andp’ are not backing off,
these bits will stay 1. But the order of atomic events is

?/RITE(a[row,p], 1) < WRITE(a[row,p'],1)

< READ(a[row,p'])

which contradicts thap’ is lucky because[row, p] =

1 by
the timep’ reads it. O

Consequently, among the processes that do not back off,

one process can win and hence that the protocol is safeat most one can be lucky at a certain row. As for the pro-

Before exiting by reporting a failure, the protocol “cleans
up” its private bit array (line 9). This is done to make the

cesses which do back off, all of them could be lucky. Con-
sider for instance processés, b, and bz standing at row

object reusable if no process wins and no crashes occur sew and suppose that the adversary freezes the first two. It

that eventually every non faulty process gets a name.
From a probabilistic point of view it is immaterial

is possible fos to step ahead and to be lucky at roww+1
and that eventuallypz and all other processes aheadbef

whether the coins are flipped synchronously or asynchro-——
nously. Because the coin f|ipS are independent the rate 1In the case of crashes we need not bother to estimate the probability.

at which processes back off remains essentially unchang
which is the key to the probabilistic analysis of the asyn-

e

Hﬂis is because the adversary is forced to “sacrifice” processes: for every
invokation either some process crashes or one process wins the game with
probability o ~ 1. Given enough objects, all non-faulty processes will

C_hronous process. Another main ingredient in the proof is &ooner or later get a key. The problem, discussed below, is how to make
simple upper bound on the number of lucky processes pethis happen fast for all processes using as few objects as possible.

118

param r:int ;
param s:in (0,1) ;
var a[1,1],...,a[r,n] shared array of boolean;

procedure a-TASONCE(p): boolean;
var i, row: int ;

var tmp[l..n]: array of boolean;
begin
1: for i € {1..n} do

tmpli] := READ(a[1,1]) ;

if tmp[i] = 1 then row = r; goto L2 fi

{Shared Declarations
{number of rows for the game ©(logq)}

{a[l..r, p] is owned by procesp }

{p is the invoking procegs

{game started/memory dirty

od;
2: row =0 ;
3 (L1): row :=row+1; WRITE(a[row,p],1) ;
4: for i € {1..n} — {p} do tmp[i] := READ(a[row,1]) ; od ; {check contention at rovy
5: if tmp(s) = 0 for all ¢ # p then
6: if row =r then return(Success) else gotoL1 fi
else
7 if row =r then gotoL2
8: else goto(L1,L2) with probability (s,1 — s) fi ;
9 (L2): while row > 0 do WRITE(a[row, p],0)) ; row :=row — 1 0od;
10: return (FAILURE)
end

{join the gamé
{step forwarg

{if alone at row}

{back-off}

Fig. 1. Protocola-TAasONCE for ¢ out of n pro-
cessesy is the invoking process)

and b, back off. Doing this they all reinitialize their bits to
zero (line 9 of the protocol in Fig.1). Afterwards,; could
be unfrozen by the adversary and be lucky at rew + 1

in C' do not reach row by definition.) By Claim 2, at each
row at most one process i@ can be lucky. Thereforg’
reaches row only if there is a sequence of coin tosses that

and back off later. And so on. brings some procegs from row 1 to row 2, another process
p2 from row 2 to row 3, and so on. These processes might
be the same or different but, in any case, the probability of
these consecutive successes’isHence the probability that

the adversary spoils the game in this case is

Claim 3 (Safety)At most one process can win.

Proof. A process that is lucky at row will not back-off.
In particular it will not clean up its row of bits (line 9 of
the protocol). Hence, having two lucky processes at row

contradicts Claim 2. . Pr[somep; # p reaches row] < Z Pr[p; reaches row]

K2

Claim 4 Consider the set of executions such that no process = ¢ Pr[p’ reaches row] = ¢s".
crashes occur and such that the bits of dh&est&SetOnce
object are initialized correctly to 0. Then, the success prob
ability of a-TAsONCE with ¢ < n invoking processes is at

Consider now the other case. Since we assume that no

crashes occur, all participating processes must toss their
coins until they either back off or reach row How long

least) S) A .
it takes is immaterial because the coin flips are indepen-
0= — —(n+q)s". dent. Since we are interested in the probability that they all
1+s back off before rowr it is disadvantageous for the adversary

Proof. Intuitively, the aim of the adversary is to prevent a [0 have some of the processes stepping forward with prob-

process from winning. We will bound the probability that ability 1. Indeed, these probability 1 events only increase
the adversary succeeds by increasing its power. Since e number of forward steps of some processes. Hence, the

assume that no crashes occur, there are only two ways fdprobability of having no winner can be bounded as in the

the adversary to prevent a win from occurring: Either two or SYnchronous game, namely by-1f(2) +ns". .
more processes reach rawor all processes back off prior))
to row r. We make “two copies” of the game and allow Settingr :=logq the theorem is proven. O

the adversary to play both. That is, we consider two objects,
each invoked by the same number of processes; in one game The analysis above uses 1-writeireader 1-bit registers
the adversary will try to maximize the probability that the as intercommunication primitives. Of course, if we use more
first of the two “spoiling” events occurs and in the other it complex primitives then the complexity figures decrease.
tries to maximize the probability of the second “spoiling”
event. The adversary succeeds if it wins at least one of th€orollary 1 For every0 < s < 1, there is an implementa-
two games. Clearly, this is an upper bound on the probabilitytion of ana-Test&SetOnce object that succeeds with proba-
that it succeeds by playing just one game. bility at leasta := 2s/(1 + s) — o(1) (provided no processes
Consider the first case and focus on the sulisedf crash) and invoked by out of n processes it uses copies
processes that do not back-off. The adversary can bring onef 1-writer n-reader O(log logq)-bit shared read/write vari-
procesy to rowr with probability 1. What is the probability ~ables and its running time i9(n log ¢) read/writes of shared
that anotherprocessp’ € C reaches row? (Processes not variables.

119

Proof. We can replace each arrafl..r, p] of a-TASONCE 4.2 Trickier but easy to analyze strate§¥GMENT

by a single O(loglogg)-bit variable which is used as a

counter which counts up to = clogg, and simplify the By imposing just a little bit of structure on the way the
protocol in the obvious way. O objects can be invoked it is possible to come up with a

.)] simple and efficient protocEGMENT amenable to a clean
In [3] the notion of “composite register” or “snap- analysis. Set

shot object” is constructed from multi-user wait-free atomic _n
read/write registers. Acomposite registers useful to ob- m.= af’

tain a “snapshot” of the states of a set (or all) shared . - .
variables inpa system. It is a wait-free reac(i/write) registerWhereo‘ Is the reliability of thea-Test&SetOncebject and

R = (R R,,) where eachR; can be written by some B is a parameter which will take care of random fluctua-
- ey dlm T

process (without changing; (; # 7)) and each process tions. We will show below that ~ (1 — 2¢) for some other
can atomically read all ofKy, R,,). Since the atomic parametere to be determined later, whekecan be taken

accesses are linearly ordered by definition each read by grbitrarily small (but must be fixed). Therefore, by setting

process gives it a snapshot of the contents of all shared varfy ~ 1— ¢, we havem ~ (1 + 3Jn. We divide the key space
ablesRy.....R,,. into segmentseach of length

Corollary 2 For every0 < s < 1, there is an implementa- ls =clnn

tion of ana-Test&SetOnce object, that succeeds with proba-yhere is a constant to be specified later and “In" de-

bility at leasta := 2s/(1 +5) — o(1) (provided no processes potes the natural logarithm. We think of each segment as
crash) andforg out ofn processes |tusesasmgiewr|t¢r n- a ring of objects, where théth and the { + [,)-th ob-
reader 1-writer-per-component-component composite reg- jects in a segment are the same. The protocol is shown in
ister with log logn-bit components and its running time is Fig 2 and is as follows. Each process selects a random key
O(log g) read/writes on the composite register. start € {1,...,m}; this automatically determines a seg-
ment whose initial position we denote by The processes
will then start invoking keys by “walking” around the seg-
ment, that is, a process will first try to get a key by invoking
the a-Test&SetOncebject corresponding to its first random
choicestart; then, if necessary, it will invoke the next (mod-
ulo [,) object in the ring, and so on, until it gets back to the
starting pointstart. As we shall see, with high probability,
)) every process will get a key before reaching this point. In
4 A wait-free naming protocol the extremely unlikely event that some process will not find
a key in its segment, the whole key range is scanned repeat-

We base our wait-free randomized naming protocol on theedly until a key is found (Phase 2 of the protocol). This will
a-Test&SetOnceobject. There are: competing processes ensure that all processes eventually get a name.

p1,---,pn and the key space consistsmafa-Test&SetOnce

objects—one for each key. Lemma 3 For every0 < «, < 1, protocol SEGMENT
solves the naming problem famprocesses using: = n/(a5)
a-Test&SetOnce objects. The protocol is safe and correct.

4.1 Simple but too hard to analyze strategy With probability 1 — o(1) the running time isO(rn logn log
logn) read/writes to 1-writern-reader shared atomic bits.

At first glance a simple strategy (as in Appendix B) may P
suffice: Each process repeatedly invokes an object selectqg a segment will becaptured—they will find their key or

uniformly at random, until it succeeds in getting a key (and o551, jnside the segment. Therefore, everJest&SetOnce

no other process can get that key). On average, we eXpeBTbject is invokedO(l,) = O(logn) times with high proba-

am objects to fire correctly in the sense that they assignoi“ty as well. Consequently, we can apply Theorem 1 with

their key to one of the invoking processes. By choosing ._ | = fault thi that th
m := n/(af) to take care of random fluctuations, we can ¢ := O(logn). For non-faulty processes this means that they

that wall s a k will find the key within the segment. First, we show that the
ensure that every process eventually gets a key. processes distribute evenly among the segments. Let
The running time of this simple strategy seems hard to

analyze. At any point in time, there will be a set of still com- P, = (# processes in segmesjt
peting processes to be matched with a set of available keys.

The number of available objects determines the probabilityThen,

of getting a key (the randomly selected object must at least

be available). In turn, this probability determines the num- Pr[procesy selectss] =
ber of rounds needed for the slowest process before it gets a

key. The problem is that the number of empty objects at any,

given round depends on what the adversary does; processes

can be stopped or let go to occupy an object. It is not clear , := E[P,] = Z Pr[process selectss] = caflnn
to us how to frame all possible adversarial strategies. p

Proof. The array of counters of the previous corollary can
be replaced by a composite register, akepshot object
as defined in [3, 1]. This improves the complexity figures
and would simplify the protocol, given the availability of a
shapshot object implementation. O

roof. We show that, with high probability, all processes

Inn
=caf—
n

3|

120

param n: int ; {number of processgs
param e: real ; {specify key-range
var m,ls: shared int; { key rangem := [(1 + 3¢)n]}

{ segment sizés ;= [c-Inn|}
procedure nameSEGMENT(): int € {0..m} ;
var start,key,l: int € {0..m} ;
var succeed: boolean;
begin
start := random € {1..m} ;
1= |start/ls]ls +1; {beginning of segment
key := start ; succeed :=0 ;
repeat {Phase 1: try to get key within segmén
key = ((key + 1)modls) +1 ;
succeed := (a-TASONCEy, (p) = SUCCESS) {Compete for key
until succeed =1 or key = start ;
while succeed = 0 do {Phase 2: linear seargh
key = (key + 1)modm ;
succeed := (-TASONCEy (p) = SUCCESS)
od;
return (key)
end

Fig. 2. ProtocolSEGMENT for processp

Since the segments are chosen independently we can invoke With the above notation, and recalling our definition of
the Chernoff-bounds to estimate the tails of the Binomialcaptured, the expected number of captured processes is at
distribution in the following form (see for example [22]): least

a+a(ly — a).

—€? s/3 — —€%caB/3 .
PrllPs — ps| > eps] < 2e7€ Ha/3 = Q= Ceab/ “At least” because for each corrupt object the adversary must
) crash at least one process. By the Chernoff bounds, the true
By setting number of captured processes is at least
6
c> Ve (4) a+ (- éea(ls — a).
e

with probability at least
1 - 2exp{—c®a(ls —a)/3}.

we can ensure that

PI[P, > (1 +€)us, for somes] <> Pr{Ps > (1 +€)u]

s We know that with high probability each segment has at
< opn—€caB/3 o 2 (5) most P, = (1+¢)cafInn processes. A straightforward com-

n putation shows thaP, < a+(1—e¢)a(l; —a) for everya > 0

so that the probability thatomesegment receives more that &S long as
(1 +€)us processes is< 2/n = o(1). B= 1-e¢

We also need to ensure that every segment captures all l1+e
of its processes. Here we need to take care of the adversarWhat is left to verify is that, no matter howis chosen by
Basically the problem is as follows. Whenever an object isthe adversary, all segments capture their processes with high
invoked, the adversary may or may not crash a process duprobability. To this end, notice that < P; and therefore
ing its object invocation; when this happens we say that thds — a > I — P,, which implies that the probability that a
object iscorrupt Consider the case when one process walkssegment fails to capture its processes is at most
around the whole segment without finding a key. When this s
happens all objects in the segment are invoked. i the 2exp{—e*a(l; — P;)/3}
number of corrupt objects then each of thig { a)-many
non-corrupt objects succeeds with probabilityindepen-
dently of other objects. In other words, we are considerin
ls —a Bernoulli trials with probability of success equaldo
where “success” means that some of the invoking processes
is given a key. Notice that for small values bf— a large ¢z 22— oac
deviations from the mean are more likely. Therefore, it is
advantageous for the adversary to crash processes, thereBynce there aren/l; < n segments, the probability that
corrupting objects, in the hope that some of the segmentsome segment fails is 2/n = o(1). Together with Equa-
will not capture all of its processes (while our aim is to en- tion 5, this gives that with probability + o(1) each pro-
sure that all segments will capture their processes). We nowess finds a key withi®(logn) object invocations. (Sim-
show that with an appropriate choice of the constattiis ilarly, every object is invokedO(l;) = O(logn) times
almost surely never happens. with probability 1 — o(1).) By Theorem 1 every object

~1-— 2e.

a bound which is independent of the adversary. A straight-
forward computation shows that this exceptional probability
Yis at most Zn? provided that

121

invocation has running tim&(nloglogn) reads/writes to It is clear that the above together with Claim 3 and
1-writer, n-reader 1-bit atomic registers. Thus, theax- Claim 1 imply that protocolSEGMENT is a wait-free so-
imum running timeamong all non-crashing processes is lution for the process naming problem even in the average
O(nlognloglogn) bit operations with probability + o(1). sense. The theorem is proven. O

But is the protocol safe: does every process obtain a dis- . i
tinct key under every circumstance? If a process fails to findR€mark 1 In practice the protocol will be much faster for
a key in its segment it scans the whole key space until a keyn0st of the keys, because the expected number of processes
is found. We saw in Sect. 3 that theTest&SetOncebjects ~ Per object after the first random object is selected/is: <
are safe, they never give the key to more than one process: AlSO, a very large fraction of the processes will need just
Since there are more objects than processes and non-corrupi€ invocation to get a key; well-known results on martin-
objects can be invoked repeatedly until they assign the keydale inequalities state that wherprocesses select a random

sooner or later every correct process will find a key (with K€Y out ofm keys, the fraction of keys chosen by some pro-

probability 1). The lemma is proven. O

cess is very nearly(1—e~™/") > n(1— 1/¢). Hence, with

high probability, very nearlyxn(1 — 1/€) processes will get
Lemma 3 does not imply that the average running time2 key after just one invocation of anTest&SetOncebject.

over all coin flip sequences of outcomes used by the pro;
cesses involved (the expected running time){s logn log
logn) bit operations—the expected running time may still
be infinite. This expectation has to be bounded to meet ou
definition of “wait-freeness” in Appendix A.

To achieve a boundegkpectedunning time we need to
use O(nlogn) bit operations per object invocation, rather

Remark 2 Similar results hold if we implement the
a-Test&SetOncebject with 1-writern-readerO(log logn)-

bit shared read/write variables arwriter n-reader 1-writer-
ber-component n-component composite registers with
log logn-bit components (as in Corollaries 1, 2).

than O(nloglogn). To see the problem, recall that Theo- We thank the referees for their constructive comments which resulted in a

rem 1 states that the object succeeds with probability
providedO(n log ¢) bits are used, whergis the number of
competing processes. §f= ©(n) then O(n logn) bits must

substantial improvement of the presentation.

be used (or otherwise the bound given by Lemma 2 becomegeferences

worthless). Although a very unlikely event, it is entirely pos-
sible that linearly many processes fail in their segment and -
start scanning the whole key space. In such cases, the av;
erage running time will be high because it would take an
exponentially long time before each of the scanning pro-
cesses gets a key. But if we are willing to uSé¢nlogn)

bits per a-Test&SetOncebject, the average running time 3.
will still be only O(nlog? n) bit operations. 4.

Theorem 2 For every0 < «a,(< 1, protocol SEGMENT
solves the naming problem farprocesses using: = n/af 6
a-Test&SetOnce objects. The protocol is wait-free, safe and
correct. The expected running time(¥%n log? n) read/writes 7.
to 1-writer, n-reader shared atomic bits.

Proof. As we saw in the proof of Lemma 3, the probability
that a process has to resort to scanning the whole key space
is o(1). If we denote by: the total number of corrupt keys, o
then by the time the process has scanned the whole space
there have beem —a > 3en non corrupt objects, each firing
independently with probabilitye. Then, with probability at

least

11.

1— 2exp{—d0%aen}

(a bound independent a) at least (+-0)a(m —a) > n—a
object are assigned a key, implying that each ofsthe-
correct processes receives a (unique) key. Defifie :=
2 exp{—6&2aekn/3}. Then, with probability at mosp®” a

second scan is needed, and so on. The average running timg,

in bit operations, is at most

O(nlog”n)(1 - o(1)) +o(1)n y | = O(nlog? n).

k>0

10.

k 16.

Afek Y, Attiya H, Dolev D, Gafni E, Merritt M, Shavit N: Atomic
snapshots of shared memodyAssoc Comput Mach0:873-890 (1993)

2. Afek Y, Gafni E, Tromp J, Vianyi PMB: Wait-free test-and-set Pro-

ceedings of the 6th International Workshop on Distributed Algorithms
vol. 647, pp 85-94l ect Notes Comput Sc¢springer, Berlin Heidelberg
New York, 1992

Anderson J, Composite registeBistrib Comput6:141-154 (1993)
Aspnes J, Herlihy M: Fast Randomized Consensus Using Shared Mem-
ory. J Algorithms11:441-461 (1990)

5. Aspnes J, Waarts O: Randomized Consensus in Expéiedbg? n)

Operations Per Processor, pp 137-146Ptaceedings of FOCS 1992

. Attiya H, Bar-Noy A, Dolev D, Peleg D, Reischuk R: Renaming in an

Asynchronous Environmeni.Assoc Comput MacB7:524-548 (1990)
Bar-Noy A, Dolev D: Shared Memory vs. Message-passing in an Asyn-
chronous Distributed Environment. IRroceedings of the 8th ACM
Symposium on Principles of Distributed Computi®g89, pp 307-318

8. Borowsky E, Gafni E: Immediate Atomic Snapshots and Fast Renam-

ing. In Proceedings of the 12th ACM Symposium on Principles of Dis-
tributed Computing1993, pp 41-52

Buhrman H, Garay JA, Hoepman JH, Moir M: Long-Lived Renaming
Made Fast, InProceedings of the 14th ACM Symposium on Principles
of Distributed Computing1995, pp 194-203

Ejecidlu O, Singh AK: Naming Symmetric Processes Using Shared
Variables.Distrib Comput8:1-18 (1994)

Fischer MJ, Lynch NA, Paterson MS: Impossibility of Distributed Con-
sensus with One Faulty ProcessdrAssoc Comput MacB2:374—-382
(1985)

. Lynch NA: Distributed Algorithms Morgan Kaufmann, 1996
. Herlihy M: Wait-free synchronizatiolPACM Trans Progr Lang Syst

13:124-149 (1991)

. Herlihy M: Randomized Wait-Free Concurrent ObjectsPmc. 10th

ACM Symp. Principles Distrib Comp©91, pp 11-21

Herlihy M, Shavit N: The Asynchronous Computability Theorem for
t-Resilient Tasks. IfProc. 25th ACM Symp Theory of Computit@f3,

pp 111-120

Kutten S, Ostrovsky R, Patt-Shamir B: The Las-Vegas Processor Iden-
tity Problem (How and When to Be Unique). Rroc. 2nd Israel Symp
Theor Comput SystEEE Computer Society Press 1993

122

17. Lamport L: On Interprocess Communicati@istrib Comput1:86-101 and &; = &;_1s;¢;, for ¢ > 0. The adversary is “adaptive”
(1986) since it schedules the process executing the next step based

18. Li M Tromp J, Vieinyi PMB: How to Share Concurrent Wait-free gn the complete knowledge of the initial segment of the sys-
Variables,J Assoc Comput Mach3:723-746 (1996) tem execution including the random outcomes of past coin

19. Lipton RJ, Park A: Solving the processor identity problemCi(n) . . .
spacenform Process Let86(1990), 9194 flips. It can.arb|trarlly delay processes or eveashthem by

20. Loui MC, Abu-Amara HH: Memory Requirements for Agreement not executing enabled steps of particular pr'ocess.es.' B?'PW
Among Unreliable Asynchronous Processaslvances in Computer W€ express the strongest adversary (adaptive, with infinite
ResearchVol. 4, JAI Press, Inc. 1987, pp 163183 computing power, and so on) as a probability measure on

21. McDiarmid C: On the method of bounded differences. In Siemons Jthe set of executions as in [28]. Without loss of generality

(ed)_ Surveys in Combinatoricd ondon Math. Society Lecture Note we assume that the 0n|y randomized steps the protocols use
Series141, 1989, pp 148-188 are fair coin flips
22. Motwani R, Raghavan Randomized Algorithm£ambridge Univer- ’

sity Press 1995 L . . :
23. Rabin MO: The Choice Coordination ProblerActa Informatica Definition 2 Assume the above notation. An adaptive adver

17:121-134 (1982) sary is a probability measure on {2 satisfying:

24. Saks M, Shavit N, Woll H: Optimal Time Randomized Consensus-

A(H) = &oi initi i ;
Making Resilient Algorithms Fast in Practice. Proc SIAM-ACM 1. A4(%) = 1, where&, is the initial execution segment;

Symp Data-Struct and Algdi991, pp 351-362 2. &) = Zs_yc_.,%(éfisc), where the summation is over
25. Singh AK, Anderson JH, Gouda MG: The Elusive Atomic Register enable_d stepsin statec; and the state(s) resulting from
Revisited,J Assoc Comput Mach1:311-339 (1994) executing step In statec;;
26. Tanenbaum AComputer NetworksPrentice-Hall, Englewood Cliffs, 3. . 4(&;scy) = . 4(%;sc;), for each coin-flip step with
NJ, 1981 o ¢y, is the state resulting from; when the outcome of
27. Tromp J: How to Construct an Atomic Variable. Rroc 3rd Int'l is “heads” and¢; is the state resulting from; when the

Workshop Distribut Algor, Lect Notes Comput Sci, Vol. ,39@ringer,
Berlin Heidelberg New York, 1989, pp 492-302

28. Tromp J, Viényi P: Randomized Wait-Free Test-and-Set, CWI Tech.
Report CS-R9113, Amsterdam, March 1991, submitted

outcome ofs is “tails.”.

The first two conditions—already implied by the notion
of probability measure—are included for completeness. The
third condition ensures that the adversary has no control over
the outcome of a fair coin flip: both outcomes are equally
likely. This definition is readily generalized to biased coins
and multi-branch decisions. Now that adversaries have been
defined, we can define the expected lengf¥r;, j) of pro-
cessp;'’s final execution following a finite initial execution
segments;. Let & be an infinite execution starting wit;.

is enabled in state;_; and¢; is the configuration of the (e ~
system after the execution ef, for all < > 0. Technically, ;‘Oe"tolv’\'m{é@ ?ﬁ ;She number of non-idle steps of process

when a process halts it enters infinitely many times a distin-
guishedidle statec., through an idle step... All registers Definition 3 Assume the above notation. Define
are initialized to zero contents in the unique start stgte oo o o
If we initialize with “dirty shared memory” then all regis- g(s. ;)= S k- ({2 €S (7)) = kD
ters can have arbitrary initial contents. The set of all system ' i A(E;)
executions is denoted h§.] o

An adversary is best explained by identifying it with Since the summation includes the cdse oo the expected
a conditional probability density function#(s;c;|;_,) '€ngth is infinite if (but not necessarily only if) the set of in-
where &_1 = cos1...c;_1 is an initial segment of, finite histories in which an operation execution has infinitely
steps; is enabled in state;_;, and¢; is the state result- Many events, has positive measure. The normalization w.r.t.
ing from executing step; in statec, g, for i > 0. Now ¢: gives the adversary a free choice of ‘starting’ configu-
A(sic;|%i_1) is the probability that the initial execution ration. The running time of a deterministic protocol is the
segment’; = &,_1s;c; is realized given tha&;_; has hap- Maximum number of non-idle steps, taken over all legal ex-
pened. If the adversary is randomized itself then we haveécutions, executed by a non faulty process.

D5 Do, ¢scs|#i—1) = 1 with the summation taken over pefinition 4 An implementation of a concurrent object
the different enabled stepsin statec; 1 and the states; shared between processes is wait-free, if there is a finite

that can result from steg a single state it is not random- ,5nd #(n) such that for all adversaries# and for all &;, j,
ized and more states if is a randomized step (a coin flip). the expected lengti(%;, j) < f(n).

If the adversary is deterministic then it chooses determinis-
tically a steps and . . #(scs|¥i—1) = 1.
Starting fromc := ¢o the adversary induces a measure appendix B: Simple approach does not work

¢ over all legal system executior$ defined by. 4(&) =
H A & 2 2L\ ~— /4 « 2 & . .
lim; . 4(%) © where. (%) :=. 2(sici|%i-1)-4(%i-1) A related observation was made with respect to the sym-
T o —) metric communication model in [10]. In our case we use the

2 With #; denoting a finite initial segment of an execution afdhe set .
of all infinite executions”, the traditional notation is.*4(I’s,)" instead Methoq of Bounded Dlﬁerences’_ (MOBD) [21]' _Squose we
of “.4(#;)" where cylinder I'y, = {# € 5 : # starts with#;}. We use .have_n.mdependent random variablé§ each taking values
“_4(#;)" for convenience. in a finite set4; and letY = f(X4,..., X,,) be a measurable

Appendix A: System execution, adversary, computational
complexity

A systemexecutionis an infinite sequencé& := cpsicy - ..
of alternating steps; and states:; satisfying that eachs;

123

param n: int ; {number of processgs
param c: real € (0,1) ; {specifies key rande
var m: shared int; { key rangem := |[n(1+c¢)|}
var b[l..m,1],...,b[1..m,n] shared array of boolean;

{eachb[1..m, p] is owned by procespg}
procedure alone (key): boolean; {key = candidate nanje
begin

WRITE([key,p],1) ;
for i € {1..n} do
if READ(blkey,i])=1 then W RIT E(b[key, p], 0); return (FAILURE) fi {not along

od;

return (SUCCESS) ; {along
end
procedure simp-name (): int € {0..m} ;
begin

repeat key := random € {1..m} until alone (key) = 1; return (key)

end Fig. 3. A simple approach to naming: protocol for

processp

function. If, for all vectorsA and B differing only in the chooses the same keéy At this point, the adversary sched-
i-th coordinate, ules the steps gf andq such that both of them don’t secure

key k.
1)~ SB) < e " |
Adversarial strategylf step WRITE(b[key,p],1) is en-
then abled for procesg but the adversary delays execution then
—222/ 3 2 we say thatp is frozen If a p has choserk but has not
Pr{[Y — p| > en] < 2e o (6) yet executedV RITE(b[k, p], 1) we say that the process is
wherey = E[Y]. We will use this in a ball-and-bin scenario, claimingk. Let A = 1/(1 +¢) so thatn = Am, and fix some
where X; denotes the bin where ballends up and” will €<\
measure things such as the number of bins with exdetly ~ The adversary schedules all processes in turn to perform
balls, the number of bins with at leaktballs, and the like. their firstrandom choices. Define event A as “at leaskeys
In these cases, it easy to see that 1 for all i and the are chosen by exactly two processes.” A standard application

bound becomes of the MOBD above shows that the probability that A does
) s not occur is at most— 1", wherec; is a constant depending
Pr{lY — u| > eu] < 2e720/m, only on e and \. The adversary selects: such keys and

i freezes the seffy of corresponding processes. The adversary

We haven processes and a name space of $iz&= gchedules the operations of the remaining processes until
(L+c)n (0 < ¢ < 1). For a naming algorithm to be good, We each of them claims one of the remaining keys and no such
want bothc and the running time to be as small as p053|ble.key is claimed by more than one such process. (If more than

The most obvious naming algorithm works as follows: one process claims one of these keys the adversary schedules
Every process chooses uniformly and independentigna eoyents such that all but one of them back off and try again
tative random key and checks whether it is the only proces§ntj they are unique claimants for other keys.) At this point,
claiming that key. If so, the process secures the key. Othefere are at least (& 2¢)n = (1 — 2¢)\m keys that are
wise, it tries another random key, and so on. claimed by a unique process. Call these e keys. Now

To check whether a process is the only claimant for ashe processes ity are unfrozen. The adversary schedules
key we use the following mechanism. For each kethere thejr operations so that their first attempts fail and all of
is an arrayb[k, 1..n] where bitb[k, p] is owned by process them do a second tentative random key choice. Define event
p (1 < p < n). All bits can be read by all processes. Upon g 55 “, red keys are claimed by exactly one procesgin
choosing a specific key value a process sets its own bit anq |etF, be the set of processes claiming those keys (each
blk,p] to 1 and subsequently reads the other bits of thegch key is now claimed by exactly two processes). Then
arrayb[k, 1..n] to see whether it is the only claimant, Fig. 3. |F5| = | F1| and the adversary can repeat the scenario With
If a process was alone BUCCESs is returned, otherwise a g psituted forF;. A tedious, but standard, application of the
FAILURE. Notice that the bib[k,p] is reset to 0 in case of MOBD shows that the probability that B does not occur is at
failure so that a process can try again. . moste ", where, againg; is a constant depending only on

Itis easy to verify that this solution is safe in the sense ang). Therefore, with high probability the adversary will

that no two processes ever get the same key. It is morge apje to force some process to try an exponential number
difficult to see that its running time is unsatisfactory: for of keys.

¢ < 1 there are adversarial strategies that force some pro-
cess to take exponentially many steps with high probabil-
ity. The problem is that the adversary knows the Key
chosen by a procesg before p executes its subsequent
WRITE(b[k, p], 1) step. Therefore, the adversary can post-
pone the execution of this step until some other progess

124

Alesandro Panconesireceived a PhD in Computer Science from Cornell Philippas Tsigasreceived a BSc in Mathematics from the University of
University in 1993. Thereafter he went back to Europe where he workedPatras, Greece and a PhD in Computer Engineering and Informatics from
in many different countries. From 1993 to 1995 he was an ERCIM post-the same University. Philippas spent a year at the CWI, Amsterdam and
doctoral fellow at CWI in Amsterdam, NTH-SINTEF in Trondheim, and three years at the MPI for Computer Science, Sdmi#en, Germany. Re-
SICS-KTH in Stockholm. From 1995 to 1997 he was at the Freie Univer- cently he joined the faculty of the Department of Computing Science at
sitat and Humboldt Universit in Berlin as an Alexander von Humboldt Chalmers University of Technology and@&borg University, Sweden. His
fellow. After a brief interlude at KTH in Stockohlm he joined BRICS, at research interests include communication/coordination in asynchronous sys-
the University of Aarhus, in the Summer of 1997. tems, fault-tolerance, mobile computing.

Marina Papatriantafilou is a faculty member at the Department of Com- Paul M.B. Vitanyi received a Ph.D. from the Free University of Amsterdam
puting Science, Chalmers University of Technology ariteBorg Univer- in 1978. He currently holds positions at the national CWI research institute
sity, Sweden. She received her BSc and PhD degrees from the Departmeirt Amsterdam and at the University of Amsterdam where he is professor of
of Computer Engineering and Informatics, University of Patras, Greece;computer science. He has worked on cellular automata, computational com-
she has also worked at the CWI (National Research Institute for Mathe-plexity, distributed and parallel computing, machine learning and prediction,
matics and Computer Science in the Netherlands), Amsterdam and at thehysics of computation, and description complexity. Together with Ming Li
MPII (Max-Planck Institute for Computer Science), Saadken, Germany. of the University of Waterloo, since 1984 he pioneered applications of Kol-
She is interested in research on distributed and multiprocessor computingnogorov complexity in computer science, mathematics, physics, machine
including synchronization, communication/coordination, networking, effi- learning, information theory, and introduced the subject in the working
ciency, scalability and fault-tolerance issues. toolkit of researchers in many countries.

