Skip to main content
Log in

Quantum mechanics and classical computing

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

Abstract

Scaling properties of modular quantum systems will dominate the future of quantum computing as well as the potential role of quantum mechanics in classical computing. We undertake a brief journey through length- and time-scales in order to locate pertinent control schemes. It is argued that ‘‘quantum benefits’’ are more likely to survive in ‘‘imbodied’’ systems like coherently driven materials, sensors or robots than in abstract digital computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. Schroeder M (1991) Fractals, Chaos, Power Laws. H Freeman and Company, New York

    MATH  Google Scholar 

  2. Landauer R (1999) Physica A 263:63

    Article  MathSciNet  Google Scholar 

  3. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Schönhage A (1979) In: Automata, Languages and Programming. Lecture Notes in Computer Science vol 71, p 520, Springer

  5. Abrams DS, Lloyd S (1998) Phys Rev Lett 81:3992

    Article  Google Scholar 

  6. Zak M (1999) In: Lecture Notes in Comp Science vol 1509 p 160, Springer

  7. Alicki R (2000) LANL preprint quant-ph/0006018

  8. Lavor C et al. (2003) LANL preprint quant-ph/0303175

  9. Mahler G, Weberuss VA (1998) Quantum Networks, (2nd edition). Springer, Berlin New York

    Google Scholar 

  10. Josza R, Linden N (2002) LANL preprint quant-ph/0201143

  11. Lubkin E (1978) Math Phys 19:1028

    Article  MATH  Google Scholar 

  12. Skyora S (1974) J Statist Phys 11:17

    Article  MathSciNet  Google Scholar 

  13. Mahler G, Otte A, Stollsteimer M (2003) Int J Circ Theory Appl 31:3

    Article  MATH  Google Scholar 

  14. Thirring W (1983) A Course in Mathematical Physics 4: Quantum Mechanics of Large Systems. Springer, Heidelberg

    Google Scholar 

  15. Gemmer J, Otte A, Mahler G (2001) Phys Rev Lett 68:1927

    Article  Google Scholar 

  16. Gemmer J, Mahler G (2003) Eur Phys J B 31:249

    Article  MathSciNet  Google Scholar 

  17. Jensen RV, Shankar R (1985) Phys Rev Lett 54:1879

    Article  Google Scholar 

  18. Michel M, Hartmann H, Gemmer J, Mahler G (2003) Eur Phys J B 34:325

    Article  Google Scholar 

  19. Wolf SA et al. (2001) Science 294:1488

    Article  Google Scholar 

  20. Mahler G, May V, Schreiber M (eds)(1996) Molecular Electronics. Marcel Dekker, New York

    Google Scholar 

  21. Wang KL (2002) J Nanosci Nanotechnol 2:235

    Article  MATH  Google Scholar 

  22. Lozovik YE et al. (2003) Phys Lett A 313:112

    Article  MathSciNet  Google Scholar 

  23. Lent CS et al. (1993) Appl Phys Lett 62:714

    Article  Google Scholar 

  24. Girlanda M, Macucci M (2002) J Appl Phys 92:536

    Article  Google Scholar 

  25. Moore GE (1975) Int Elec Devices Mtg, Technical Digest IEEE, Piscataway, New Jersey, 75:11

  26. Skinner AJ, Kane BE (2002) LANL preprint, quant-ph/0206159

  27. Steane AM (2003) LANL preprint, quant-ph/0304016

  28. Quantum roadmap: http://qist.lanl.gov

  29. Hamann SE et al. (1998) Phys Rev Lett 80:4149

    Article  Google Scholar 

  30. Chiorescu I et al. (2003) Science 299:1869

    Article  Google Scholar 

  31. Benioff P (2000) LANL preprint quant-ph/0003006

  32. Hau L (1999) Nature 397:594

    Article  Google Scholar 

  33. Hogg T, Chase JG (1996) In: PhysComp96, New England Complex Systems Institute. Toffoli T, Biafore M, Leao J (eds) p 147

  34. H Cruse et al. (2002) In: Ayers J, Davis JL, Rudolph A (eds) Neurotechnology for Biomimetic Robots. MIT Press, Cambridge, MA, p 283

    Google Scholar 

  35. Zeh HD (1996) In: Giulini D et al. (eds) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin New York, p 5

    Google Scholar 

  36. http://www.foresight.org

  37. Nielsen MA (2002) LANL preprint, quant-ph/0210005

  38. Beth T, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Mahler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, G. Quantum mechanics and classical computing . Informatik Forsch. Entw. 21, 91–97 (2006). https://doi.org/10.1007/s00450-006-0015-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-006-0015-8

Keywords

Navigation