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Abstract Design, implementation, and re-engineering of op-
erating systems are still an ambitious undertaking. Despite,
or even because, of the long history of theory and practice
in this field, adapting existing systems to environments of
different conditions and requirements as originally specified
or assumed, in terms of functional and/or non-functional re-
spects, is anything but simple. Especially this is true for the
embedded systems domain which, on the one hand, calls
for highly specialized and application-aware system abstrac-
tions and, on the other hand, cares a great deal for easily
reusable implementations of these abstractions. The latter
aspect becomes more and more important as embedded sys-
tems technology is faced with an innovation cycle decreas-
ing in length. Software for embedded systems needs to be
designed for variability, and this is in particular true forthe
operating systems of this domain. The paper discusses di-
mensions of variability that need to be considered in the
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development of embedded operating systems and presents
approaches that aid construction and maintenance of evolu-
tionary operating systems.
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ZusammenfassungEntwurf, Implementierung und innerer
Strukturwandel von Betriebssystemen ist nach wie vor ein
anspruchsvolles Unterfangen. Trotz, oder gerade auch we-
gen, der langen Geschichte von Theorie und Praxis in die-
sem Bereich, ist eine Anpassung bestehender Systeme an
Umgebungen mit anderen Bedingungen und Anforderungen
als ursprünglich festgelegt oder angenommen alles andere
als einfach in funktionaler wie auch nichtfunktionaler Hin-
sicht. Dies gilt insbesondere für die Domäne eingebetteter
Systeme, die einerseits nach hoch spezialisierten und an-
wendungsgewahren Systemabstraktionen verlangt und sich
andererseits aber auch leicht wiederverwendbare Implemen-
tierungen dieser Abstraktionen wünscht. Der zuletzt genann-
te Aspekt gewinnt mehr und mehr an Bedeutung, da einge-
bettete Systeme immer kürzer werdenden Innovationszyklen
unterworfen sind. Software eingebetteter Systeme muss da-
her im Hinblick auf Veränderlichkeit entworfen werden, was
vor allem für die Betriebssyteme dieser Domäne gilt. Der
Artikel diskutiert Dimensionen von Veränderlichkeit, diebei
der Entwicklung eingebetteter Betriebssysteme zu berück-
sichtigen sind und stellt Ansätze vor, die der Konstruktion
und Wartung evolutionsfähiger Betriebssysteme behilflich
sind.

Schlüsselwörter Eingebettete Systeme· Betriebssys-
teme· Erweiterbarkeit· Spezialisierung· Portabilität·
nichtfunktionale Eigenschaften· querschneidende Belange

CR Subject Classification C.3 · D.2.11· D.2.13· D.4.7

1 Introduction

The design and development of an operating system has to
reflect numerous constraints predefined by its application
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domain. This domain consists, among others, of applicati-
on software at the top and computer hardware at the bot-
tom, thus with the operating system in between “a rock and
a hard place”. There are many different sorts of application
programs and a manifold of hardware devices (for storage,
execution, and input/output) the operating system has to take
care about. The decision on a proper function set to support
all (or even only a subset of) these programs already in light
of a single given hardware platform equals a tightrope walk
and, in most cases, results in compromise solutions:

Clearly, the operating system design must be stron-
gly influenced by the type of use for which the ma-
chine is intended. Unfortunately it is often the case
with ‘general purpose machines’ that the type of use
cannot easily be identified; a common criticism of
many systems is that, in attempting to be all things to
all individuals, they end up being totally satisfactory
to no-one. [26]

The problem becomes even more serious with so called non-
functional properties which, in addition to ordinary functio-
nal properties such as thread, memory, and address-space
management or file handling, have to be provided by any
sort of operating system, although in different flavours. Ex-
amples of those non-functional properties are the mode of
operation of a computing system (such as single/multi user,
real-time, time sharing, etc.) or a certain quality of service
to be ensured for the application. General purpose machines
are highly vulnerable to malpractice or even malfunction in
this regard. In addition, it is fairly difficult if not impossible
to make them behave as needed, either due to absence of de-
dicated system functions, by reason of inability to eliminate
unused function implementations or, most notably, because
of a poorly organized system software structure. All general
purpose machines being in daily use of today largely share
the same heritage: their system software has been designed
not in a way that eases extension and contraction—as it ac-
tually should have been the case since the seventies of last
millennium [35].

Due to the need for customized solutions, particularly
the embedded systems domain calls for a large assortment
of specialized operating-system components. Depending on
the application case, not only are number and kind (in func-
tional terms) of the components varying, but also the same
single component may appear in highly different versions.
Most crucial in this setting are non-functional propertiesthat
are ingredient parts of single components or crosscut in the
extreme case the entire system software. These properties
not only limit component reusability but also impair softwa-
re maintenance in general. Being able to deal with software
variability—not only in the realm of operating systems—
becomes more and more eminent for embedded systems.

The automotive domain gives an idea on the increasing
demand of software variability management. A modern car
can be considered a “distributed system on wheels”: 40 up
to over 100 of (8-, 16-, 32-bit) microcontrollers interconnec-
ted by a complex network (e.g. LIN, CAN, MOST, Flexray)

is the normal case—as is a 1l/100km additional fuel con-
sumption due to the weight of all the network cables [42;
24]. About 35 % of the total costs of a car is in the electro-
nics. Automobile electronics, in turn, makes up about 80 %
of all the innovations in a car. Furthermore, 90 % of these
innovations come up with software and not hardware. Thus,
software is not only a functional issue of the mechatronics
product “automobile”, but also an economical one of high
strategic importance.

On the one hand, there is a strong need to reuse software
solutions across the different variants and models of a car.
On the other hand, in a large number of cases, highly spe-
cialized software solutions need to be built depending on the
actual car variant or model. Alone relying on, for example,
object-oriented approaches to cope with the diversity of pro-
blems coming up when developing embedded-systems soft-
ware is not enough. Specialization by means of inheritan-
ce, e. g., soon may result in unmaintainable class hierarchies
if the combinational complexity increases. Not to mention
the risk of performance loss and large memory footprints in
the case of an excessive exploitation of interface inheritance
and, thus, late binding. Alternative as well as supplemen-
ting approaches are required in order to benefit from object
orientation if one wants to develop system software that is
reusable and customizable at the same time.

In the following, experiences made with the exploitation
of well-known software-engineering approaches in the de-
sign and development of embedded operating systems are
discussed: the program family concept [34; 14], feature mo-
delling [9], and aspect-oriented programming (AOP) [22].
The three approaches are in strong coherence, not only with
respect to their history of development. A program family
combines the two properties “reusability” and “specializati-
on”. The former relates to common functions shared by so-
me family members, while the latter refers to the different
functions that distinguish family members from each other.
Embedded operating systems need to be designed and im-
plemented as a program family, primarily specializing in a
given application domain while it is highly desirable to as-
semble them from as many reusable building blocks as pos-
sible. Feature modelling appears to be the suitable techni-
que to circumstantiate the common and variable properties
of and, thus, to organize a program family. Finally, AOP is
a technique that allows one to rework a reusable software
asset for the purpose of customization/specialization.

It is argued that operating systems must be a softwa-
re product line [44] in order to be specifically prepared for
present and future challenges in the embedded systems do-
main. Motivation of this view is drawn from own experi-
ences in the development of various operating systems for
the desktop, parallel, and embedded systems domain [37;
38; 4]. Most of the ideas presented get realized in the scope
of the ongoing CiAO [28; 27] project.
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2 Causes of Variability

Variability of operating systems comes in different flavours:
it may originate from horizontal and/or vertical changes in
order to add, remove, port, or specialize functions. These
changes can be further classified as static or dynamic, with
the former being carried out before and the latter during
operating-system runtime. In the matter in hand, before run-
time means at configuration, compilation, binding, or loa-
ding time.

In the following, dynamic changes will not be conside-
red mainly because of two reasons. Firstly, prerequisite for a
dynamically alterable system is a software structure that aids
static changes. It is known for a quite long time that only “a
well structured system can easily be understood and modi-
fied” [12]. Above all, this implies a kind of holistic software
design methodology. If one is unable to identify modulari-
zed (“loosely coupled”) sections in a program, attempts to
restructure this particular program dynamically can hardly
be put into practice, if at all: design for static changes co-
mes before the dynamic case. Secondly, it is out of character
to dynamically change software structures of embedded sys-
tems. For quite a large number of embedded systems, not on-
ly is scarceness of resources (in terms of memory and ener-
gy, e. g.) a handicap for carrying out dynamical changes but
also the need for a sustained guarantee of a certain quality of
service or adherence to (soft, firm, hard) time limits or safety
rules.

The ability to changes is motivated in many respects. Ex-
amples are debugging [45], but also optimization, mainte-
nance, evolution, or customization. The following subsec-
tions discuss different dimensions of variability which are
important to be reflected in a design and implementation
structure of an embedded operating system. Most of the ar-
guments presented also hold for other kinds of system soft-
ware, and for application software as well. In the discussion,
a view is taken on a software system that is hierarchically
organized in layers or levels [32].

2.1 Horizontal Changes

With functions being added to or removed from a given layer
the software system gets changed in a horizontal means. This
is, for example, the case when the operating-system interface
is extended by new functions or contracted by functions no
longer used.1 Behind that interface, at lower levels, the ho-
rizontal changes made above may continue downward, de-
pending on the call and/or“uses” relation [33] defined by
the original hierarchically structured system. (The difference
between these two relations is briefly explained next, at the
end of this subsection.) This logical continuation of restruc-
turing, however, is not what is understood in the next sub-
section as “vertical change”

1 Characteristic functions of this sort are system or supervisor calls
such as those ones described in “manual section 2” (man(2)) of a Unix-
like operating system.

ExtensionMajor goal by adding a new function is to reuse
existing functions or implementations as much as possible.
In some cases this may be straightforward, namely when the
existing assets are ready for being reused. In other cases (so-
me of) the existing functions need to be restructured in order
to make parts of them reusable in the course of implemen-
tation of the new function to be added. Whether or not the
one or other way can be taken depends on the functional
and non-functional properties of the existing functions. So
there may also be cases in which reuse is not practicable at
all and implementation from scratch as undesirable conse-
quence arises.

Contraction At first sight it appears as if the removal of an
unused function from the system is a trivial task—but this is
a sophism. If at design time the option to remove functions
later on has not been considered, or even has been simply
forgotten, contraction of existing (system) software may be
a cumbersome undertaking. A system whose software de-
sign eases extension (by adding new functions) also eases
contraction (by removing the added functions later on).

Removing a function being part of a call relation usual-
ly results in a binding error, at latest, when the complete
operating system is going to be assembled and generated. If
the respective function, however, is part of a “uses” relation,
its non-existence must not necessarily be reported by an er-
ror message before runtime. Note that “uses” does not mean
“call” but rather “existence” of a correct implementation of
a specific function or set of functions [33]. For example, an
interrupt handler is “used” but never called by any program
in the system. As a consequence, removing a function being
part of a “uses” relation may result in uncapable system ope-
ration and, at best, becomes directly apparent through some
kind of runtime error.2

2.2 Vertical Changes

Operating systems are software products of typically long li-
fetime. There are a number of species in the general as well
as special purpose sector today who can look retrospectively
at a product history of two to almost three decades, i. e., da-
ted back to the mid-seventies of last century. UNIX [43] and
Unix-like operating systems fall into this category, or Mul-
tics ([8; 31], 1963/69–2000), but also special-purpose sys-
tems such as QNX [18], first released at the beginning of the
eighties. Since their first appearance at the horizon, the sys-
tems were subject to a number of adaptations because of new
hardware platforms they should run atop and different app-
lication environments they should support. The changes to
the system software mostly were of vertical nature: existing

2 In the context of the development of Mach [1], rumours were afloat
saying that the fairly large massiness of the “microkernel”was because
removal of low-level file handling functions resulted in an inoperable
system and, thus, was not a choice. Provided that it was more than a
rumour, this Mach experience is a sign for a badly organized “uses”
relation between the various kernel building blocks.
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functions were adapted to a different use case while main-
taining the same (functional) interface specification.

Porting Adaptation of some existing implementation to
changes coming up with an alteration in the (real/virtual)
machine having been used so far for information processing
is generally known as porting. The ideal picture is that, in or-
der to move the software system to a new (different) machi-
ne, only minor changes will be necessary if all the machine-
dependent parts are encapsulated by a small set of dedicated
abstractions, sometimes termed “port package” or hardwa-
re abstraction layer (HAL). In functional respect this ideal
picture became reality and is documented by a number of
research and commercial systems being in service today. Ne-
vertheless, porting an operating system by rewriting the port
package cannot be considered a trivial task. The real chal-
lenge in porting, however, is to make sure that the transpor-
ted software system behaves as expected and, e. g., has been
known from experiences made with its former installation—
and this has a lot to do with the non-functional properties the
system showed before and one is aware of.

The real-time issues of embedded systems give examples
in which changes with respect to non-functional properties
may entail serious problems (not only) at application level.
Processor speed, memory access latency, cache behaviour,
pipelining effect, or processor architecture (CISC vs. RISC)
in general are hardware attributes which have direct or in-
direct impact on the non-functional properties of a software
system. Other critical attributes are the signalling of inter-
rupts by the hardware (edge- vs. level-triggered), especially
when critical sections are protected by using some kind of
“disable/enable interrupts” pattern. As a consequence, por-
ting system software may raise the need for vertical changes
in the context of some higher-level software in order to fur-
ther ensure correct system functioning. Not rarely do exist
situations in which these changes are cross-cutting concerns
and have to take effect at several locations of system softwa-
re far above the layer made up by the port package.

Changes of non-functional system properties may also
discover design or implementation defects or shortcomings,
which make porting even more complicated. Particularly pro-
blematic are race conditions that had no implication on the
original system but bobbed up suddenly and unexpectedly in
the ported system.3 This is the good case, because a software
flaw will be realized and corrected. The bad case happens the
other way round, namely when changes in non-functional
system properties introduce (those or other kinds of) unde-
tected software flaws.

SpecializationVertical changes in the course of porting sys-
tem software have their origin at the hardware interface and
propagate upwards. Specialization goes the other way round

3 Own experiences from having ported the kernel of the PEACE [38]
parallel operating system from a MC68020- to an i860-based machine:
it took several weeks to identify an undetected critical section of no
longer than 10 lines of C++ code, and less than one hour to comeup
with the portable solution.

and refers to vertical changes that have their origin at the
application (i. e., system call) interface and propagate down-
ward. It starts with re-implementation of an existing function
and may cause further vertical or horizontal changes at lower
layers. Motivation behind the change may be the correction
of some software error or the improvement of a function in
regard of higher execution speed, smaller memory footprint,
or less energy consumption. Thus the change concerns a cer-
tain non-functional property of an existing system function.

Usually, specialization of a function is not directly cross-
cut in that it propagates in horizontal means to an unrelated
function.4 But indirectly there may be cases where the chan-
ges made have strange effects in this regard. Assume functi-
on fx gets specialized, which then propagates downward be-
cause the new implementation offx may perform even better
if function fz, called by fx, is specialized too (but, maybe, in
a different fashion thanfx). Further assume, functionfz is
also used (i. e, called) by functionfy: fz is shared byfx and
fy. The changed non-functional property offz may impact
correct operation offy much in the same way as has been
discussed before with porting. Thus, side-effect of changes
being propagated downward may be changes that propagate
upward to some other function and indirectly influence the
runtime behaviour of that very function. The changes made
to fz in order to improve performance offx must be conform
not only to the “uses” relation betweenfx and fz but also to
the one betweenfy and fz. In other words: the implementa-
tion of fz must be correct in respect of the specifications of
both fx and fy.

2.3 Summary

Purpose of the discussion was to provide an insight into the
complexity of undertaking changes to software systems in
general and operating systems in particular. The necessity
for changes is unquestioned, but they must take place in a
controlled manner and should be free of side-effects. The
latter cannot be always guaranteed, why it is essential trying
to organize system functions in a “uses” hierarchy [33]. It
turns out that finding the “uses” hierarchy is anything but
simple, and the right one more than ever.

Based on a case study from the operating-systems do-
main, the following section takes up and deepens some of
the issues discussed here. Goal is to provide a further moti-
vation for the software-engineering approaches put forward
in the sections thereafter.

3 Case Study: Flow Control

The closer one approaches to implementation, variability is-
sues become more and more obvious and largely dictate the

4 Apart from magic effects a different memory layout may have or
which may come in because of branches to differently alignedaddres-
ses. Meant is slower or faster program execution due to changes in the
physical representation of code and data sections, depending on the
underlying processor in use.



Dimensions of Variability in Embedded Operating Systems 5

resource control

thread dispatching

task scheduling

Fig. 1 Functional hierarchy of (operating system) abstractions used to
implement flow control for multi-threaded computing systems.

anyway demanding act of systems programming. Note that
these issues do already exist at design time, they belong to
what is sometimes paraphrased as “operating-systems exper-
tise”. Adoption of this specific domain knowledge is an ite-
rating process of design and implementation. In the followi-
ng some technical difficulties in the design and development
of embedded operating systems are exemplified. Goal is to
put over the problem that comes across with certain tech-
nical facts that originate various cross-cutting concernsof
non-functional properties. The case study is on process ma-
nagement in general and flow control in specific.

Flow control in operating systems can roughly be sepa-
rated in three major building blocks, the implementation of
each of which exhibiting various non-functional properties
of partly cross-cutting character. These blocks are resour-
ce control, task scheduling, and thread dispatching. Figure
1 shows the functional hierarchy which is typically defined
between them. More precisely, in the given case this hierar-
chy describes both the call and “uses” relation.

3.1 Resource Control

The classical mechanism for controlling access to shared re-
sources is the semaphore [10]. This well-known concept has
been implemented in sheer countless versions. For ease of
discussion, we will focus only on the classical primitivesP()
andV() as defined for a counting (or general) and binary se-
maphore. Nevertheless, all the different versions have one
in common, which is the point of interest in the following:
semaphore primitivesP() andV() are to be regarded asindi-
visible operations.

In consideration of the different dimensions of variabili-
ty discussed in the previous section, a semaphore is potential
subject to both horizontal and vertical changes. Note that a
semaphore (or a similar mechanism) is required only if re-
source control is an issue of the system. This means:

1. the presence of concurrently executing threads sharing at
least onereusable indivisible resourceor interacting on
the basis ofconsumable resourcesand

2. the need for coordination of the concurrently executing
threads and their resource accesses at runtime.

Neither of the two aspects must be given in all use cases, in
particular not for special-purpose operating systems. First,

there are embedded applications which do not require threads
in order to model concurrency, but rather rely on events such
as (hardware) interrupts to enable non-sequential execution
of the programs and otherwise operate in a strictly coopera-
tive manner. Due to its blocking nature, semaphores are not
applicable for resource control within event/interrupt hand-
lers and, in this particular use case, would therefore be merit-
less. Second, in case of time-triggered systems coordination
of threads has been done before runtime. The system is gi-
ven a well-organized but static thread schedule free of any
resource access conflicts. Again, there is no need for a sema-
phore mechanism to be implemented by the underlying ope-
rating system. Third, even for event-triggered systems sema-
phores are not a must at runtime: by relying on stack-based
scheduling [3] of tasks/threads flows of control can be crea-
ted and maintained so that semaphores consume nothing but
memory resources and are neither called nor “used”. Thus,
a semaphore mechanism is definitely subject to horizontal
changes in an embedded operating system.

The issue of vertical changes is a bit more complicated,
as it is general a subject of a larger and “obscure” class of
problems. This issue relates, on the one hand, to the various
techniques one can employ to ensure indivisible semaphore
operation and, on the other hand, to the pattern how a se-
maphore can be used to propagate signals (i. e., consumable
resources) from device driver level to threads. Furthermo-
re, this issue also relates to the question of whether or not
the implementation should be keeping track about blocked
threads in a waiting list private to a semaphore instance and
the dependency of the thread scheduling discipline on such
an implementation. That is to say, this issue relates to the
“uses” hierarchy, namely whether task scheduling is abo-
ve or below resource control. The following two paragraphs
elaborate on this issue.

Indivisible OperationA semaphore implementation is a ty-
pical case for aconditional critical region[19]. Fundamen-
tal techniques for protection of such sort of critical region
are, e. g.,mutual exclusionby using lock variables,inhibit
preemptionby making it a kernelized monitor [30], or non-
blocking synchronizationby relying on dedicated elementa-
ry operations of the underlying processor [17; 29]. The lat-
ter has strong consequences with respect to vertical changes
downward in that a tightly coupled implementation of sche-
duler and semaphore is demanded. Creating a “uses” relation
between the two building blocks is hard, if not impossible,
because of the mutual dependencies in their implementati-
ons.

The aforementioned technique, mutual exclusion, makes
the implementation unsuitable for use at device driver level.
Normally, aV() could be used to produce a consumable re-
source (i. e., a signal) a thread at some higher level wants
to consume (usingP()) in order get aware of some device-
related event. The functional property ofV(), which general-
ly is of non-blocking nature, in order to indicate availabili-
ty of such a resource would indeed enable this use pattern,
but not its non-functional property as implied through mutu-
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al exclusion. Thus,V() may block and force an interrupted
thread into a deadlock (e. g. when in overlaps execution of
the P() of the thread who wants to await the signal: the in-
terrupted thread may deadlock itself).

Last but not least there is the technique (inhibit preemp-
tion) which, when being employed, makes the semaphore
implementation anon-preemptive critical section. There are
basically two approaches to achieve this. Common to both is
that the causal event that may lead to preemption is disabled
for the length of the critical section. The difference is in the
type of event, namely whether it relates tointerruption or
resumptionof program execution. In the former case are in-
terrupts to be disabled and enabled, in the latter case is thread
dispatching to be delayed. Strictly speaking, one has to dis-
criminate between disabling either hardware or software in-
terrupts. Which way to go depends on non-functional pro-
perties such as edge- or level-triggered hardware interrupts
and the execution time of the critical sections insideP() and
V(), in particular whether or not this time is bounded. The
latter aspect is largely determined by task scheduling and,if
the semaphore keeps track of blocked threads, the queuing
discipline of the waiting list whenP() blocks the calling and
V() unblocks a waiting thread.

Scheduler DependencyIf the semaphore consists of a wai-
ting list of threads blocked inP(), the queuing discipline em-
ployed must be consistent with the one implemented by task
scheduling. A simple first-in, first-out (FIFO) method is pro-
ne to malfunction if task scheduling happens in a priority-
oriented manner. In such a situation namelyV() may cause
priority violation when, according to FIFO, the next thread
going to be removed from the head of the waiting list is not
the one of highest priority. The effect is that task scheduling
will no longer be able to perform its operations correctly
and, thus, tasks (or threads) may miss their deadlines.

The design decision to use a semaphore waiting list im-
plies that the correct operation of task scheduling dependson
the existence of a correct implementation of resource con-
trol with respect to the specification of task scheduling. In
other words: this decision lets task scheduling “use” resour-
ce control—and vice versa. Assuming this design decision,
figure 1 only shows the call relation but no correct “uses”
relation.

Problem is the mutual “use” of resource control and task
scheduling. A correct “uses” hierarchy is acyclic [33]. If two
programs depend on, or may take benefit from, each other
the thus created cyclic “uses” relation must be broken. This
is done bysandwiching[33] one of the two programs. In
our example a “double sandwich” needs to be established.
This is becauseP() depends on task scheduling which de-
pends onV() which, in turn, depends on task scheduling. The
correct “uses” relation shows figure2, given the assumption
that a semaphore implements its own waiting list of blocked
threads.

Figure2 implies a subsystem implementation of higher
(structural) complexity than a subsystem that follows a “uses”
relation as described by figure1. Nevertheless, maintaining

thread dispatching

task scheduling

re
so

ur
ce
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on

tr
ol

V()

P()

Fig. 2 “Uses” hierarchy of (operating system) abstractions used to im-
plement flow control for multi-threaded computing systems,supposed
resource control implements a waiting list of blocked threads.

a semaphore waiting list may have advantages in regard to
better performance when threads need to be unblocked. The
“uses” hierarchy helps indicate dependencies of the sort just
mentioned and that must be taken into account for potential
vertical changes.

3.2 Task Scheduling

Like resource control so is also task scheduling potential
subject to horizontal change: in a time-triggered system did
not only resource control took place off-line, namely befo-
re runtime of that very system, but also task scheduling. For
these kinds of applications an embedded operating system is
not equipped with a scheduler, as no dynamic (on-line) sche-
duling of tasks/threads happens to take place. This is diffe-
rent to an event-triggered (priority-oriented) system which,
as a matter of fact, “uses” on-line task scheduling.

Vertical changes to the task scheduling building block
typically come with the actual scheduling discipline needed
to support a particular application. There are numerous dis-
ciplines one may choose from. In the following, only the
classification profiles are discussed in conjunction with the
impact they have on the interaction of the three flow control
building blocks (fig.1 or fig. 2).

Cooperative schedulingassumes that threads voluntarily call
the scheduler to relinquish processor control and allocatethe
processor to some other thread. The non-functional property
given to all scheduling disciplines of this class is the absence
of any critical section in the system that otherwise comes in-
to existence because of thread preemption.

Interrupt-driven schedulingis an extension to cooperative
scheduling. The scheduler gets activated by some device in-
terrupt, performs housekeeping according to its scheduling
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discipline, but does not preempt the interrupted thread. Lo-
gically, the scheduler makes up a critical section and thus
needs to be synchronized proper. Several synchronization
options do exist for this particular case. The various sortsmy
work non-blocking [29; 13], wait-free [17], or constructive
and, thus, tolerate overlapped execution of scheduler functi-
ons, or they disable the causal event responsible for overlap-
ping. More precisely, the latter case means to either disable
interruption of thread execution or delay continuation of a
specific scheduling action as long as the critical section is
active [36]. Note that these techniques (disable interrupt/-
delay continuation) are transitive and implicitly synchronize
functions that are part of a call relation out of the critical
section. That is to say, thread dispatching would automati-
cally run in synchronized mode. Constructive synchroniza-
tion means that, by design, the choice of data structures and
algorithms ensures the absence of any race condition in the
system. All scheduling disciplines of this class have the sa-
me non-functional properties as cooperative scheduling and
they introduce new non-functional properties to the system
due to and depending on the kind of synchronization.

Preemptive schedulingis an extension to interrupt-driven
scheduling. In difference to interrupt-driven scheduling, the
scheduler may decide to preempt the interrupted thread. Ho-
wever, this preemption takes place only at specifiedpre-
emption pointsof the abstract processor “operating system”.
These points may be spread in fairly large and, maybe, ir-
regular offsets across system software. For example, entry
and/or exit of any scheduler function call could be such a
(small-grained) preemption point just as entry and/or exit
of any system call (coarse-grained). All scheduling discipli-
nes of this class have the same non-functional properties as
interrupt-driven scheduling.

Full preemptive schedulingis an extension to preemptive
scheduling. In difference to preemptive scheduling, thread
preemption may take place at any time whatsoever. Strictly
speaking, any instruction of the underlying (physical) pro-
cessor and being accessed by a thread during execution de-
notes a preemption point. All scheduling disciplines of this
class have the same non-functional properties as preemptive
scheduling, except that for synchronization one now has the
choice only between non-blocking, wait-free, or constructi-
ve.

3.3 Thread Dispatching

Coming to the decision which of the many threads ready to
run will be allocated the processor for execution is generally
known as scheduling and will be done by the task scheduling
building block. Conversion of this planning order, thus assi-
gning the processor to the selected thread, is also known as
dispatching. The latter is what thread dispatching is about.
Note that, in contrast to task scheduling and resource con-
trol, thread dispatching never will be subject to horizontal

change as long as a multi-threaded mode of operation is re-
quested by the application.

Logically, thread dispatching represents a critical secti-
on. The steps which are to be passed through are (single pro-
cessor case):

1. Saving of the processor state of the releasing thread into
a state buffer local to that very thread.

2. Refreshing of the pointer to the descriptor of the current-
ly executing thread.

3. Restoring the processor state of the acquiring thread from
a state buffer local to that very thread.

Just as a physical processor, e. g. of IA-32 type, needs an in-
struction pointer (or program counter) in order to identifythe
current machine instruction in the program to be executed,
an abstract processor like an operating system needs a thread
pointer in order to identify the current activity in the system
to which resource management must actually be effective.
The crux is that these two pointers must be updated as an
elementary operationof the abstract processor in order to
correctly switch between two threads. That is to say, the up-
date must be instantaneous i. e. indivisible. Strictly speaking,
step2 and step3 together must be indivisible, otherwise it
may happen that, in case of the currently executing thread
is getting preempted, step1 overwrites the not yet restored
processor state of the currently executing thread.

This example shows that thread switching depends on
non-functional properties defined by the task scheduling buil-
ding block of the flow control subsystem. In fact, thread
switching bears a race condition in case of (full) preemptive
scheduling, as necessary condition, and non-transitive (i. e.
non-blocking, wait-free, or constructive) synchronization of
task scheduling, as sufficient condition.5 If task scheduling
employs some kind of transitive synchronization, thread swit-
ching implicitly is indivisible and, thus, synchronized too.
Otherwise one is spoilt for choice of the synchronization
technique proper to make thread switching atomic. These
techniques maybe the same as discussed with task schedu-
ling in the previous subsection.

There is a way to make thread switching independent of
the synchronization technique used by task scheduling. The
idea is to have the two pointers to be updated only in a lo-
gical sense, i. e. to map them to a single physical pointer
and provide a function that “computes” both from that very
pointer. Necessary condition is that the physical processor is
capable of an operation that allows for an indivisible write
to a memory location storing a pointer of the abstract pro-
cessor defined by the programming language (e. g. C/C++)
used to implement the operating system. Most physical pro-
cessors come with appropriate machine instructions, or in
other words: in most cases matches the pointer size as defi-
ned by the abstract processor the one of the physical proces-
sor. Given these assumptions, constructive synchronization

5 This requires to correct the so far developed “uses” hierarchy: task
scheduling again needs to be sliced into another two parts with the
upper part “using” thread dispatching which, in turn, “uses” the lower
part of task scheduling.
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of thread switching becomes possible, i. e., explicit use of
synchronization primitives is unnecessary as the race condi-
tion of thread switching disappeared.

An implementation of this idea typically uses the stack
pointer of the physical processor as actual parameter to the
mapping function. The descriptor of a thread is stored at the
bottom of the runtime stack of that very thread. In additi-
on, all the stacks are of same maximum size, which must
be a power of two, and are aligned according to that size.
Computation of the pointer to the descriptor of the currently
active thread may be achieved as sketched by the following
C-like function:(sp() |(2N−1))−sizeo f(TD)+1, withTD
representing the descriptor of the currently executing thread
identified through the actual value (sp()) of the stack poin-
ter. Note thatTD may be either the thread descriptor thereat
or a pointer thereon, depending on the descriptor size and
the leeway of permanent local storage on the runtime stacks.

This way, thread switching gets constructively synchro-
nized by calling some kind ofresume() procedure to impli-
citly get the instruction pointer saved as return address onthe
runtime stack. Withinresume(), the stack pointer is changed
to the top of stack of the thread whose execution is going
to be resumed. This step implicitly gets the thread pointer
changed to the descriptor of that very thread. The critical
operation is writing a memory address into the stack poin-
ter, which must be atomic.

3.4 Summary

The discussion revealed numerous points of variability that
come into play the closer one approaches to implementation.
Knowingly, the description was on a fairly detailed technical
level in order to give an idea of the difficulties in designing
adaptable system software (not only) for embedded systems.
By far not all options have been handled. The discussion
showed how certain non-functional properties crosscut dif-
ferent software functions in a way that seriously complicates
system configuration.

In the following three sections approaches are briefly
presented that aid the construction, configuration, and ad-
aptation of system software. These approaches are program
families, feature modelling, and aspect-oriented program-
ming.

4 Family-Based Design

We consider a set of programs to be a program family
if they have so much in common that it pays to study
their common aspects before looking at the aspects
that differentiates them. [35]

Generally, in the design and development of any kind of soft-
ware this guideline must always be at the back of one’s mind.
Family-based design means a design that aids reuse of soft-
ware assets for a very broad range of application domains.
Today, the notion of a software product line [44] resounds

throughout the land in conjunction with reusable and yet
application-aware software. Software product lines extend
program families by a strong methodology that supports the
complete process of software development and maintenance.

In the context of operating-system development, the key
issues of family-based design is to start with a minimal sub-
set of system functions that is, by definition, reusable for any
kind of application domain. That is to say, no design decisi-
ons have been met that would prevent reuse of that minimal
subset. Step by step this subset gets extended by minimal
system extension by means of functional enrichment. Again,
the extensions are minimal and made with high degree of
reusability in mind. The closer one gets to the application,
the more specialized and, thus, the less reusable an extension
will be. Art of this bottom-up design process is to find ways
that allows one to postpone design decisions related to speci-
fic application requirements as far as possible. Outcome is a
distinctive functional hierarchy consisting of numerous and
sometimes utmost slim functions or abstractions.

Large misbelief is that those kinds of multi-layered soft-
ware systems cannot be turned into highly efficient (object-
oriented) implementations:

It is the system design that is hierarchical, not its im-
plementation. [14]

Macro programming, function inlining, implementation in-
heritance, multiple inheritance based on multiple inclusion,
template-based meta-programming, and aspect-oriented pro-
gramming give examples on how to be able to come up with
a mostly flat system representation of a fairly small memo-
ry footprint [4]. The following subsections sketch this design
philosophy by means of excerpts from a threads package im-
plementation.

4.1 Minimal Subset of System Functions

Development of the minimal subset of system functions starts
with sketching the idea on the intended use case of threa-
ding. This idea becomes manifest in the program shown in
figure3 and is based on two fundamental design decisions:

1. a thread is implemented as a coroutine [6] and
2. creation of which follows a fork-style of programming [7].

In that program, functionassume() corresponds to a fork and
resume() serves thread switching by reactivating the corou-
tine associated with some thread. Destruction of a coroutine
(i. e. thread) takes place automatically when leaving the sco-
pe within which the coroutine has been declared (in the gi-
ven case,main()). Actual declaration of the coroutine means
to allocate a stack instance (pool[]) and coroutine pointer
(son) used for identification. Thenew-Operator serves gene-
ration of the coroutine pointer with respect to alignment re-
strictions as dictated/recommended by the physical proces-
sor. This pointer becomes the stack pointer of the declared
coroutine. Depending on whether the stack of the physical
processor expands downward or upward,new computes a
well-aligned address to the top of a “virgin” stack.
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#include "luxe/Act.h"

#define STACKSIZE 64
#define LEEWAY 16

int main (int argc , char *argv[]) {
static Act *son, *dad;

char pool[STACKSIZE];
son = new(pool , STACKSIZE - LEEWAY) Act;

if ((dad = son->assume ())) {
for (;;) {

// son working...
dad = dad->resume ();

}
}
son = son->resume ();

// dad working...
}

Fig. 3 Strawweight thread: use case.

At bottom layer, the context of a coroutine is made up
of nothing else but aresumption address. This address, an
instance of typeAct, always is stored on top of the stack of a
suspended coroutine. Thus, whenever a coroutine suspends
execution it saves its resumption address on its stack (initi-
ally, the first object on that stack). This is implicitly done
by having a procedure call in charge of coroutine switching.
This procedure is implemented by functionresume(), which
is called by one coroutine and returns to another coroutine.
Return value of this function is the pointer to the coroutine
which recently calledresume(), thus, suspended execution.

Thread creation is always concerned with the issue of
giving a thread an initial runtime context from which it can
start execution. In the case discussed here, this context is
defined by the program itself, more precisely, by the con-
trol flow which creates the coroutine of a thread. Figure3
shows what that means. Coroutine creation is accomplished
by a call to functionassume(). The effect of this call is to
leave an initial resumption address, i. e., an instance of ty-
peAct, on the stack of the established coroutine (son). This
address is the return address ofassume(). In such a setting
assume() returns twice and the return value indicates which
control flow returns. The first return,assume() ; 0, goes to
the creator of the coroutine. In contrast, the second return,
assume() ; toc, goes to the created coroutine, with return
valuetoc 6= 0 and identifying the coroutine which did the
initial resume(). Thefor-loop shown in figure3 implements
the body of the new coroutine, which, in a complete sys-
tem, will consist of additional statements that “bootstrap” a
thread in an application-aware manner.

The interface to the abstraction (Act) that implements the
simple coroutine concept just sketched and which lays the
basis for more complex thread concepts is shown in figu-
re 4, its implementation is shown in figure5. At this level
of abstraction, the state private to a thread consists only of
a stack pointer, which actually is a pointer to an instance
of type Act, and a resumption address, which is indeed that
Act instance being pointed to by the stack pointer (Act*). All

#include "luxe/type/size_t.h"
#include "luxe/machine/pc_t.h"

class Act {
protected:

pc_t tbc; // where to be continued...
public:

void* operator new (size_t, char*, size_t);

Act* assume (); // create act
Act* resume (); // switch act

};

Fig. 4 Strawweight thread: abstraction.

#include "luxe/Act.h"

Act* Act::assume () {
asm ("movl 4(%esp), %eax");
asm ("movl (%esp), %edx");
asm ("movl %edx, (%eax)");
return 0;

}

Act* Act::resume () {
register Act* aux;
asm ("movl %%esp, %0" : "=r" (aux));
asm ("movl 4(%esp), %esp");
return aux;

}

Fig. 5 Strawweight thread: implementation (IA-32).

other state of a thread is shared with all other threads (of this
type) of the same program, which in particular also holds for
the residual processor registers.

Threads of typeAct are “strawweight” because thread
switching only means to (1) save the resumption address of
the running coroutine (as side-effect of the call toresume()),
(2) remember the stack pointer as return value, (3) switch the
runtime stack by overwriting the stack pointer, and (4) con-
tinue execution of the specified coroutine (as side-effect of
the return fromresume()). In addition, the creation of threads
of this type means to (1) setup the initial resumption address
of a new coroutine (as side-effect of the call toassume()),
(2) copy that address to a memory location specified by the
pointer to the coroutine of the thread going to be created, and
(3) return 0. In fact,assume() constructs anAct instance at a
memory location specified through a parameter—in terms of
C++, this function plays the role of anAct constructor.

4.2 Minimal System Extensions

Providing thread concepts of higher “weight class”, i. e., big-
ger processor state, is a typical case of minimal system ex-
tensions to the level of abstraction implemented byAct. For
this purpose,Act gets functionally enriched through imple-
mentation inheritance by inheriting its properties to template
classFlux (fig. 6) and providing extensions that lead to im-
plementations of different non-functional properties in terms
of execution speed and memory consumption (see table1).
The parameter (fig.7) to Flux specifies the weight class of



10 Wolfgang Schröder-Preikschat et al.

#include "luxe/Act.h"
#include "luxe/machine/FluxVariety.h"

template<FluxVariety T>
class Flux : public Act {
public:

Act* induce (Flux <T>*&);
Act* resume (Act&); // switch flux
Act* unwind (Act&); // switch flux, inlined

};

Fig. 6 Abstraction of different weightily threads. Functioninduce()
extendsAct::assume() by inheriting the processor state to the created
thread. Functionunwind() is theinline-version of, and reused by,
functionresume() and performs the actual thread switch.

#include "luxe/machine/ActMode.h"

enum FluxVariety {
// Strawweight = Act,

Flyweight = GPR|OFP|OVR ,
Bantamweight = GPR|OVR,
Featherweight = GPR|BMR,
Lightweight = GPR

};

Fig. 7 Thread weight classes and their mapping toAct state saving
modes: general purpose registers (GPR), omit frame pointer(OFP),
omit volatile registers (OVR), block-move registers (BMR).

#include "luxe/Flux.h"
#include "luxe/machine/ActState.h"

template<FluxVariety T>
inline Act* Flux <T>::unwind (Act& next) {

Act* peer;
if (T & SOS) {

ActState <T|BMR> *apr;
apr = ActState <T|BMR >::stack();
peer = next.resume();
apr->clear();

} else {
ActState <T|BMR> apr;
apr.cache();
peer = next.resume();
apr.apply();

}
return peer;

}

Fig. 8 Generic thread switching. Template parameterT specifies the
thread weight class and whether the state is saved on/restored from the
stack (SOS) using push/pop instructions if applicable or saved into/re-
stored from a state buffer variable.

a thread instance created from that very parameterized data
type.

Figure8 shows a generic implementation of thread swit-
ching. The weight class (specified as template parameter)
refers to the thread being switched away (i. e., the caller),
not to the one being switched to. Another notably proper-
ty of this implementation is that a thread not only saves but
also restores its processor state self-contained. Strictly spea-
king, the thread who is switching away is not involved in
restoring the processor state of some other, maybe different
weightily thread. This approach allows switching between
threads of different weight class, i. e., type. Common to all
threads is theAct concept only and every thread of typeFlux

Table 1 Memory footprint of fundamental thread switching functions:
Flux<T>::resume() 7→ Flux<T|SOS>::unwind(), IA-32. Listed are
static (text, no data in this case) and dynamic (stack) memory require-
ments. Distinguished are needs for the call (left term) and the body
(right term) of the respective function, with the sums giving the subto-
tal needs. The total need of a weight class computes from its subtotal
plus the needs of strawweight thread switching.

weight class static dynamic subtotal total

straw 8+7 4+4 23
fly 11+11 8+12 42 65
bantam 11+13 8+16 48 71
feather 11+7 8+32 58 81
light 11+19 8+28 66 89

is required to “bootstrap” itself after having resumed execu-
tion. Note that this method of (low-level) thread switchingis
different from the conventional one in which the thread swit-
ching away is required to be of the same type as the thread
to be switched to.

Table1 shows the memory footprint of individual mem-
bers of theFlux family (including Act) for IA-32 type of
processors. The numbers give the non-functional properties
in terms of memory consumption for each of the members.
They demonstrate how the resource requirements of various
members do vary with functionality. The figures are much
more dramatic in case of PowerPC (G4) type of processors,
for example, which range from 40 bytes (strawweight) up to
1152 bytes (lightweight) for the total amount of memory oc-
cupied. A byte saved, is a byte got: this is still of importance
for embedded systems—and the presented design meets ex-
actly these needs.

5 Feature Modelling

Feature modelling is understood as “the activity of model-
ling the common and the variable properties of concepts and
their interdependencies and organizing them into a coherent
model referred to as afeature model” [ 9]. Goal is to come up
with directives for and a first structure of a design of a sys-
tem that meets the requirements and constraints specified by
the features. Feature modelling is particularly suitable for
capturing the common and variable properties of program
families.

5.1 Feature Diagrams

Common is a graphical representation of the feature model
in terms of afeature diagram. The diagram is of tree-like
structure (see figure9), with the nodes referring to specific
feature categories. Four fundamental feature categories are
defined:mandatory, optional, alternative, andcumulative6.
A feature diagram describes the options and constraints that

6 Feature category “cumulative” corresponds to category “or” as
known, e. g., from [9]. This notion is used for better understanding in
a general sense and is in the same diction as the other three concepts.
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C

f1

f3 f4

f2

f5 f6

Fig. 9 Feature diagram:f1 and f2 are cumulative features of concept
C, f3 and f4 are alternative features off1, and f2 implies a mandatory
featuref5 and an optional featuref6.

shall exist within a system. It models the variable and fixed
properties of a family of software and hardware assets which
implement that system.

The diagram shown in figure9 describes a specific con-
ceptC, e.g. the flow control subsystem of an operating sys-
tem. If conceptC gets to be included in the final system
configuration, then any non-empty subset of features from
the set{ f1, f2} of cumulative features is also included. The
feature setwith respect toC at this level of abstraction is
{ f1, f2,{ f1, f2}}. If feature f1 is present, one feature from
the set{ f3, f4} of alternative features must be included. Thus,
the feature set off1 consists of eitherf3 or f4. If feature f2
is selected, mandatory featuref5 must and optional feature
f6 may be included in the final configuration.

This technique allows for a compact and precise speci-
fication of interdependencies of functional as well as non-
functional properties of fairly complex systems. Basing ona
tool which aids the construction process of a feature mo-
del and supports the mapping of features to implementa-
tions, automated generation of highly specialized software
systems becomes possible [5].

5.2 Flow Control Features

An example on how this technique can be used to describe
interdependencies of the different variants of the flow con-
trol subsystem discussed in the previous section gives the
feature diagram shown in figure10. For the ease of under-
standing, the figure sketches an excerpt, only, and focuses
on properties related to thread processing, thread synchroni-
zation, and event synchronization.

According to the semantics of the individual feature no-
des (see figure9), flow control may be either cooperative
or preemptive. Only in the case of preemptive thread pro-
cessing, the need for coordination of concurrently executing
threads of control arises. Note that for a number of use ca-
ses, especially those ones of the deeply embedded systems
domain, it suffices when the operating system provides co-
operative (task) scheduling. This makes sense for applicati-

on programs whose tasks are not run in an event-driven but,
maybe, time-triggered mode or who implement event hand-
ling on its own for whatever reason.

Preemptive scheduling of threads calls for synchroniza-
tion measures for which a number of options do exist in the
literature. Whether a single option is suited to help solve all
sorts of synchronization problems depends on the actual use
case. Sometimes a single option suffices. At some other time
several options are required or beneficial, each of which op-
timized with respect to a certain problem or class of synchro-
nization. This is reflected by modelling preemptive schedu-
ling as a cumulative feature and, thus, allowing for system
configurations that support any combination of synchroniza-
tion techniques.

In this setting, constructive synchronization stands for
concepts and techniques which, at design time, help to pre-
vent the need for explicit synchronization at runtime. An ex-
ample gives the technique described in section3.3, namely
the use of a function in the course of thread dispatching in
order to map the pointer to the current thread of control to the
stack pointer of that very thread and, thus, allow the implicit
atomic update of logically two different pointers—provided
that the underlying processor supports the atomic update of
a single pointer. Note that this approach may fail, e. g., in ca-
se of 8-bit processors on the one side and 16- or 32-bit sized
pointer types defined by the programming language or com-
piler on the other side. Similar holds for 16-bit processors
versus 32-bit pointer types. Thus, whether or not this ap-
proach succeeds is a question of the semantic gap between
the physical and the virtual machine in use for the particu-
lar application case. This kind of dependency in most cases
cannot (easily be) expressed by a hierarchically structured
feature diagram, but rather is a case for additional specifi-
cations of constraints and conflicts with respect to a specific
feature or group of features: often, they are cases of cross-
cutting concerns not only of a feature diagram but also soft-
ware system. It is up to the feature model to include these
supplementing specifications, and not necessarily the feature
diagram.

The other three subfeatures of the cumulative feature “pre-
emptive” stand for explicit synchronization at runtime using
blocking, non-blocking, or arrestive concepts in order to pre-
vent the occurrence of race conditions. A distinction is ma-
de between explicit synchronization of threads (blocking,
non-blocking) and events (arrestive). Blocking synchroniza-
tion typically goes back on lock variables, conditional cri-
tical sections, semaphores, and monitors to implement tem-
porary mutual exclusion of otherwise concurrently execu-
ting threads [10; 15; 16; 19; 20]. Using priority-oriented
scheduling and having semaphores maintain their own wai-
ting lists of blocked threads requires to strictly follow the
queuing discipline of the scheduler, otherwise priority viola-
tion may be the consequence. That is to say, there is a cross-
cutting concern with respect to scheduler and semaphore.
Furthermore, with such class of scheduling as foundation,
blocking synchronization in general may cause priority in-
version [25]. This raises a serious problem for (hard) real-
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Flow Control

cooperative preemptive

blocking non-blocking

wait free

arrestive

interruption

total selective

preemption continuation

conservative speculative

reentrant

constructive

Fig. 10 Feature diagram describing the common and variable properties of functions used to implement flow control in operating systems
(excerpt). The features shown likewise map to a specific system behavior with respect to thread processing (cooperative, preemptive), thread
synchronization (blocking, non-blocking), and event synchronization (arrestive, constructive).

time systems and, thus, calls for specific solutions such as a
kernelized monitor [30] or provisions for priority inheritan-
ce/ceiling [40], or a simpler variant like stack-based priority
ceiling [2].

As a consequence, subfeature “blocking” implies a cou-
ple of constraints on the presence of certain functions in the
operating system provided that a specific mode of operation
need to be supported. Most notably is that not all of these
functions are in a call relation and, therefore, cannot be re-
solved by conventional linker techniques. Rather, these func-
tions are in a “uses” relation [33]. So whether a kernelized
monitor or some sort of priority ceiling protocol shall be ex-
ploited must be specified by some meta-level linking infor-
mation. In the given case, this information comes from other
features being mapped to implementations and which need
to be selected upon system configuration time. As adumbra-
ted, not only is real-time mode of operation a non-functional
property of cross-cutting concern, but also blocking syn-
chronization.

All the problems discussed just now do not exist with
non-blocking (and, maybe, wait-free) synchronization [17;
29; 13; 21]. However, solutions in this direction are not al-
ways straightforward and often depend on the availability of
dedicated machine instructions. The latter case limits porta-
bility. In addition, reuse of indivisible resources cannotbe
easily controlled this way, if at all. Thus, non-blocking syn-
chronization is a preferred option, but not in all situations.

Arrestive synchronization means to temporarily disable
events which are the potential reason for thread preemption.
This art of synchronization does not block threads, but rather
the occurrence of certain events. As indicated by the corre-
sponding cumulative feature shown in figure10, the events
blocked relate either to interruption (by total or selective di-
sabling of interrupts i. e. first-level interrupt handlers), con-

tinuation (by disabling second-level interrupt handlers), or
preemption (by disabling the dispatcher). The continuation
alternatives shown refer to options one has in order to se-
rialize and queue up arriving second-level interrupt handlers
while a critical section is active [36]. Temporarily disabling
of thread dispatching to take care of non-preemptive criti-
cal sections [30] typically works in a similar manner. No-
te that preemption takes place in form of a continuation of
an interrupt handler. Instead of disabling any kind of con-
tinuation, arrestive synchronization of preemption meansto
disable only one kind of continuation. Thus, an optimizati-
on takes place here in favour of a higher degree of potential
concurrency in the system.

As became clear from the discussion in section3, in so-
me configurations arrestive synchronization has to work in
cascaded fashion. When arrestive synchronization is used,
for example, to ensure atomic operation of a semaphore and
the scheduler, then synchronization of the latter must be reen-
trant. This is because of the call relation between semapho-
re and scheduler, for instance whenP() calls the schedu-
ler to block the currently executing thread which, in turn,
has called that veryP(). In such a situation, nested non-
preemptive critical sections are given. As the called critical
section (scheduler) may be called not only from within ano-
ther critical section (P()) but also by normal (non-critical)
programs, its synchronization statements must be reentrant.
Similar holds for the call relation between scheduler and dis-
patcher. Reentrant code may have drawbacks with respect to
execution speed, why it is reasonable to make it an optional
feature in the feature diagram of figure10. Also note that
this feature is a further case of a cross-cutting concern.

The following sections describes how to achieve syn-
chronization of a critical section that stays in at least two
different call relations: (1) by some other “surrounding” cri-
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tical section and (2) by no critical section at all. Reentrant
synchronization statements are needed in the first case, but
not in the second case. Of course will reentrant synchroni-
zation also be applicable for the second case, but at a higher
cost for this particular case—and this will be in contradicti-
on to the program family concept:

Some users may require only a subset of the services
of features that other users need. These “less deman-
ding” users may demand that they are not be forced
to pay for the resources consumed by the unneeded
feature. [35]

6 Aspect-Oriented Programming

The examination of variability in (embedded) operating sys-
tems made in the previous sections showed that not all kinds
of potential software changes are supported by going back
on conventional concepts such as abstract data types, para-
meterized data types, or inheritance. These concepts works
well if there is (1) a unique hierarchical relation to the assets
subject to changes and (2) a rudimentary simple structural
complexity defined by that relation. Changes given because
of non-functional properties that crosscut the system softwa-
re are hardly to accomplish and, depending on how extensive
these cross-cutting concerns are, may lead to a poorly under-
standable and manageable software structure in general.

Aspect-oriented programming (AOP [22]) is a techni-
que that attempts to improve separation of concerns. With
conventional modularization techniques, achieving separa-
tion of concerns if two concerns are “cross-cutting” raises
problems and typically leads to thecode tanglingandco-
de scatteringphenomena. Code tangling means that on the
implementation level the code of two (or more) concerns is
intermixed rather than separated. Scattering means that the
code of one concern is not localized, but can be found in
various different modules.

AOP aims at supporting modular high-level concern im-
plementations. For example, the code that implements a spe-
cific synchronization policy should be a separate module that
represents the human-readable policy description almost di-
rectly in a programming language. Hence, the synchroniza-
tion policy could be evolved independently from the other
modules, which also could be reused in other contexts wi-
thout or with different synchronization schemes.

Today, most AOP languages use the concepts and termi-
nology that was first introduced by AspectJ [23]. Followi-
ng we will give a brief overview of the most common AOP
language elements in general and the AspectC++ [41] noti-
on in particular, as required for understanding the remaining
parts of this paper. Even though the introduction is based on
AspectC++, it basically holds for any statically woven AOP
language.

6.1 Terminology

The most relevant AOP concepts arejoin-point andadvice.
An advicedefinition describes a transformation to be perfor-
med at specific positions either in the static program struc-
ture (static cross-cutting) or in the runtime control flow (dy-
namic cross-cutting) of a target program. Ajoin-point de-
notes such a specific position in the target program. Advice
is given byaspectsto sets of join-points calledpointcuts.
Pointcuts are defined declaratively in ajoin-point descrip-
tion language. The sentences of the join-point description
language are calledpointcut expressions. An aspect encap-
sulates a cross-cutting concern and is otherwise very similar
to a class. Besides advice definitions, it may contain class-
like elements such as methods or state variables.

The following example serves to illustrate typical syn-
tactical elements of an aspect language, which is AspectC++
in the given case:

aspect ElementCounter {
int elements;
advice call("% Queue::enqueue(...)") : after() {

elements++
};

};

Aspect ElementCounter increments its member variable
elements aftereach call toQueue::enqueue(). In AspectC++,
pointcut expressions are built frommatch expressionsand
pointcut functions. Match expressions are already primiti-
ve pointcut expressions and yield a set ofname join-points.
Name join-points represent elements of the static program
structure such as classes or functions. Technically, match
expressions are given as quoted strings that are evaluated
against the identifiers of a C++ program. The expression
"% Queue::enqueue(...)", for instance, returns a name point-
cut containing every (member-) function of the classQueue
that is calledenqueue. In the case of overloaded functions
with different argument types the expression would match
all of them.Code join-pointson the other hand, represent
events in the dynamic control flow of a program, such as
the execution of a function. Code pointcuts are retrieved
by feeding name pointcuts into certain pointcut functions
such ascall() or execution(). The pointcut expression
call("% Queue::enqueue(...)"), for instance, yields all the
events in the dynamic control flow where a function named
Queue::enqueue is about to be called.

As pointcuts are described declaratively, the target code
itself has not to be prepared or instrumented to be affected by
aspects. Furthermore, the same aspect can affect various and
even unforeseen parts of the target code. These principles
of obliviousnessandquantificationare considered a major
advantage of AOP [11].

6.2 Static Cross-cutting

An aspect that encapsulatesstatic cross-cuttingalters the
static structure of the program. In most AOP languages, such
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modifications of the static structure are restricted to the ex-
tension of classes by new elements like methods, state varia-
bles or base classes.

In AspectC++, the encapsulation of static cross-cutting
is supported by a specific type of advice calledintroduction.
Consider the following aspect, which adds support for thread
local storage to a class modelling a thread descriptor:
aspect ThreadLocalStorage {

advice "os::ToC" : slice class {
int tlsentry;

public:
int getTLS() { return tlsentry; }
void setTLS(int v) { tlsentry = v; }

};
...

};

The aspectintroducesa (private) state variable and some
(public) access methods into the thread descriptor class, or,
more precisely, into all classes that are matched by the ex-
pression"os::ToC".

6.3 Dynamic Cross-cutting

An aspect that encapsulatesdynamic cross-cuttingintercepts
certain events in the control flow of a running program. As-
pects basically provide means to execute some advice code
before, after, or instead of (around) the current statement if
the event occurs. In the following, this is demonstrated by
three different variants of an aspect which intercepts entries
into and exits from the kernel, thus supports implementati-
on of a kernelized monitor. The advice body is identical for
all three variants of theKernelLock_x aspects,x = {1,2,3}:
it acquires the lock (which is a member of the aspect), pro-
ceeds to the intercepted function (tjp->proceed()) and fi-
nally releases the kernel lock. Variant 1 is made of an aspect
in which the advice is triggered whenever any function or
method from the class or namespacekernel is about to be
executed:
aspect KernelLock_1 {

pointcut kernel() = "% kernel ::%(...)";
os::Lock lock; // aspect member variable

advice execution(kernel()) : around() {
lock.enter();
tjp->proceed(); // execute intercepted method
lock.leave();

}
};

This, however, works only if kernel functions do not invoke
each other, as calls tolock.enter()/lock.leave() must not
be nested. Variant 2 provides a less restrictive solution by
intercepting the kernel invocation on thecaller side:
aspect KernelLock_2 {

...
advice call(kernel ())
&& !within(kernel ()) : around() {

...
}

};

The call() pointcut function yields all events in the con-
trol flow, where a given function is about to becalled. The

within() pointcut function simply returns all join-points in
the given classes, functions or namespaces. Byintersecting
(&&) all calls to kernel() with the negation (!) of all join-
points insidekernel(), the pointcut expression finally eva-
luates to those calls to akernel() function that are not made
from a kernel() function itself. This, however, has another
potential drawback: as the interception now takes place on
the caller side, not only the operating system but also appli-
cation code has to be woven with the aspect. In many cases,
this is not feasible. In variant 3 kernel invocation is therefo-
re again intercepted on the callee side, but further filteredto
certain control flows:
aspect KernelLock_3 {

...
advice execution(kernel ())
&& !cflow(within(kernel ())) : around() {

...
}

};

The cflow() pointcut function yields all code join-points
that occur while being in a given control flow. Pointcut func-
tion execution() yields all code join-points, where a given
function is about to beexecuted. The above pointcut expres-
sion therefore evaluates to any non-nested execution of a
kernel() function. Compared to variant 2, this solution does
not require to weave the application code and furthermore
reliably detects indirectly nested kernel calls.

6.4 Join-Point Context

In many cases, advice for dynamic cross-cutting needs to
read and/or modify the join-point-specific invocation context
such as the actual argument values passed to the intercepted
function. To fulfil the goal of quantification, join-point spe-
cific context information has to be provided through a ge-
neric interface, as the same advice implementation should
be applicable to many different join-points, such as functi-
ons with different signatures. Most AOP languages provide
a join-point API for this purpose. In AspectC++, the join-
point API is implicitly available in advice bodies through
theJoinPoint* tjp type and instance pointer:
aspect Tracing {

...
advice execution("% ...::%(...)"
&& !"void ...::%(...)") : after() {

JoinPoint::Result res = *tjp->result ();
cout << "leaving " << tjp->signature()

<< " returning" << res;
}

};

The after-advice implementation of the aboveTracing aspect
is generic. It can be applied to any function with a non-void
return type, as the join-point API provides the required ab-
stractions from the actual return type.

6.5 Weaving

Aspect weaving is the term used to describe the process of
transforming the structure or behaviour of a program in or-
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der to let aspects “affect” other modules. The AspectC++
compiler weaves by transforming AspectC++ code into or-
dinary C++ code [39]. It is a preprocessor that mainly gene-
rates transparent wrapper functions. This kind of weaving is
called “static weaving” as it is performed at compile-time.
“Dynamic weaving” is a different weaving approach that
supports to weave aspect code into a running program. In
this paper we focus on static weaving only. Note that a static
aspect weaver can support aspects that affect static as well
as dynamic join points.

7 Conclusion

The paper discussed dimensions of variability in embedded
operating systems. Although the focus was on the domain of
embedded systems, all the issues considered are also a case
for operating systems targeting other domains. However, the
embedded systems domain raises very specific demands (not
only) on the system software which do not always play the
same decisive role in other domains.

Operating Systems need Software EngineeringThe attribute
“embedded” implies tight integration of an operating system
with its environment. This requires a software structure that
aids integration, thus allows for adaptation of system soft-
ware to varying demands of the application domain. Family-
based software design, feature modelling, and aspect-oriented
programming are sound software-engineering approaches that
support the development of system software being application-
aware, tailor-made, and composed from yet highly reusable
assets. The paper discussed how these approaches can be
used to develop and maintain embedded operating systems
for ease of extension, contraction, porting, and specializati-
on.

Software Engineering needs Operating SystemsAt all times
have been operating systems challenging case studies for
software engineering. In particular, several key conceptsof
software engineering go back on experiences people made
with the design and development of system software. Good
examples are modules, layers, the “uses” hierarchy, and pro-
gram families which all played a central role in the context
of the paper presented. Nothing changed today—far from
it! The large diversity of operating systems especially in the
embedded systems domain on the one hand and their high
complexity (not necessarily in terms of number of code li-
nes), when compared to other sorts of software, still raises
big challenges to software engineering methods and tools.
One of the key issues in this regard is variability manage-
ment. Embedded operating systems are distinguished candi-
dates for pushing research just as tool development into this
direction forward.
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