Author’s version. The original publication is available at www. springerlink.com Please cite as: Wolfgang Schrdder-Preikschat, Daniel
Lohmann, Fabian Scheler, Olaf Spinczyk: Dimensions of Variability in Embedded Operating Systems. Informatik - Forschung und Entwick-
lung. Volume 22. Number 1 / December 2007: pages 5-25. DOI http://dx. doi . org/ 10. 1007/ s00450- 007- 0037- x

Wolfgang Schroder-Preikschat - Daniel Lohmann - Fabian Scheler - Olaf Spinczyk

Dimensions of Variability in Embedded Operating Systems

Eingegangen: 2007-03-02 / Angenommen: 2007-11-02

development of embedded operating systems and presents
Abstract Design, implementation, and re-engineering of oppproaches that aid construction and maintenance of evolu-
erating systems are still an ambitious undertaking. Despitionary operating systems.

or even because, of the long history of theory and praCtiR%ywords embedded systemsoperating systems

in this field, adapting existing systems to environments gheialization customization portability - non-functional
different conditions and requirements as originally sfiedi

or assumed, in terms of functional and/or non-functional r

groperties cross-cutting concerns

spects, is anything but simple. Especially this is true fier t ZusammenfassungEntwurf, Implementierung und innerer
embedded systems domain which, on the one hand, c@teukturwandel von Betriebssystemen ist nach wie vor ein
for highly specialized and application-aware system alestr anspruchsvolles Unterfangen. Trotz, oder gerade auch we-
tions and, on the other hand, cares a great deal for eagih, der langen Geschichte von Theorie und Praxis in die-
reusable implementations of these abstractions. Ther lagdem Bereich, ist eine Anpassung bestehender Systeme an
aspect becomes more and more important as embedded Bysgebungen mit anderen Bedingungen und Anforderungen
tems technology is faced with an innovation cycle decreass urspriinglich festgelegt oder angenommen alles andere
ing in length. Software for embedded systems needs to dle einfach in funktionaler wie auch nichtfunktionaler Hin
designed for variability, and this is in particular true fbe sicht. Dies gilt insbesondere fir die Domane eingebetteter
operating systems of this domain. The paper discusses Siysteme, die einerseits nach hoch spezialisierten und an-
mensions of variability that need to be considered in thgendungsgewahren Systemabstraktionen verlangt und sich

andererseits aber auch leicht wiederverwendbare Implemen

This work was partly supported by the DFG, grants SCHR 608¢# atierungen dieser Abstraktionen wiinscht. Der zuletzt genan

SP 968/2.

Wolfgang Schroder-Preikschat

Friedrich-Alexander-Universitat Erlangen-Nirnberg

Lehrstuhl Informatik 4

Martensstr. 1

D-91058 Erlangen

Tel.: +49 (0)9131 8527278

Fax: +49 (0)9131 8528732

E-Mail: wosch@informatik.uni-erlangen.de

Daniel Lohmann
Tel.: +49 (0)9131 8527904
E-Mail: lohmann@informatik.uni-erlangen.de

Fabian Scheler
Tel.: +49 (0)9131 8527909
E-Mail: scheler@informatik.uni-erlangen.de

Olaf Spinczyk

Technische Universitat Dortmund

Informatik 12, AG Eingebettete Systemsoftware
Otto-Hahn-Str. 16

D-44221 Dortmund

Tel.: +49 (0)231 7556322

Fax: +49 (0)231 7556116

E-Mail: olaf.spinczyk@udo.edu

te Aspekt gewinnt mehr und mehr an Bedeutung, da einge-
bettete Systeme immer kiirzer werdenden Innovationszyklen
unterworfen sind. Software eingebetteter Systeme muss da-
her im Hinblick auf Veranderlichkeit entworfen werden, was
vor allem fur die Betriebssyteme dieser Domane gilt. Der
Artikel diskutiert Dimensionen von Veranderlichkeit, diei

der Entwicklung eingebetteter Betriebssysteme zu bertck-
sichtigen sind und stellt Anséatze vor, die der Konstruktion
und Wartung evolutionsfahiger Betriebssysteme behilflich
sind.

Schlusselwoérter Eingebettete SystemeBetriebssys-
teme- Erweiterbarkeit Spezialisierung Portabilitat-
nichtfunktionale Eigenschaftergquerschneidende Belange

CR Subject Classification C.3- D.2.11- D.2.13- D.4.7

1 Introduction

The design and development of an operating system has to
reflect numerous constraints predefined by its application

www.springerlink.com
http://dx.doi.org/10.1007/s00450-007-0037-x

2 Wolfgang Schréder-Preikschat et al.

domain. This domain consists, among others, of applica-the normal case—as is 4 /L00km additional fuel con-

on software at the top and computer hardware at the bstimption due to the weight of all the network cablég; [
tom, thus with the operating system in between “a rock a2d]. About 35 % of the total costs of a car is in the electro-
a hard place”. There are many different sorts of applicatioics. Automobile electronics, in turn, makes up about 80 %
programs and a manifold of hardware devices (for storag#,all the innovations in a car. Furthermore, 90 % of these
execution, and input/output) the operating system hagkéo tannovations come up with software and not hardware. Thus,
care about. The decision on a proper function set to suppsoftware is not only a functional issue of the mechatronics
all (or even only a subset of) these programs already in lightoduct “automobile”, but also an economical one of high
of a single given hardware platform equals a tightrope wastrategic importance.

and, in most cases, results in compromise solutions:

Clearly, the operating system design must be stron- On the one hand, there is a strong need to reuse software
gly influenced by the type of use for which the ma- solutions across the. different variants and models_ of a car.
chine is intended. Unfortunately it is often the case On the other hand, in a large number of cases, highly spe-
with ‘general purpose machines’ that the type of use cialized software solutions need to be b_U|It depending en th
cannot easily be identified; a common criticism of actual car variant or model. Alone relying on, for example,
many systems is that, in attempting to be all things to Object-oriented approaches to cope with the diversity of pr

all individuals, they end up being totally satisfactory ~blems coming up when developing embedded-systems soft-
to no-one. 26| ware is not enough. Specialization by means of inheritan-

ce, e.g., soon may result in unmaintainable class hiemschi
The problem becomes even more serious with so called nifithe combinational complexity increases. Not to mention
functional properties which, in addition to ordinary fuieet the risk of performance loss and large memory footprints in
nal properties such as thread, memory, and address-spgaeecase of an excessive exploitation of interface inhecita
management or file handling, have to be provided by aand, thus, late binding. Alternative as well as supplemen-
sort of operating system, although in different flavours: Exing approaches are required in order to benefit from object
amples of those non-functional properties are the mode @fentation if one wants to develop system software that is
operation of a computing system (such as single/multi usegusable and customizable at the same time.
real-time, time sharing, etc.) or a certain quality of seevi
to be ensured for the application. General purpose machines

are highly vulnerable to malpractice or even malfunction inf In Itlhlf foIIowmgt;Nexperlen_ces made with thﬁ explm:]atlgn
this regard. In addition, it is fairly difficult if not impogsle ©f Well-known software-engineering approaches in the de-
Blgn and development of embedded operating systems are

dicated system functions, by reason of inability to e“m&mscussed: the program family concept]14)], feature mo-

unused function implementations or, most notably, beca ling [9], and aspect-orie_nted programming (AORZ]L .
of a poorly organized system software structure. All genery € thrée approaches are in strong coherence, not only with
purpose machines being in daily use of today largely shafPect o their history of development. A program family

the same heritage: their system software has been desig‘ﬁ%’ﬁ‘bmes the two properties “reusability” and “speciaiiza

not in a way that eases extension and contraction—as it gp_- The former relates to common functions shared by so-

tually should have been the case since the seventies of Fﬁgtfam"y members, while the latter refers to the different
millennium [35]. unctions that dlstl_ngwsh family members from_ each othe_r.
Due to the need for customized solutions, particulir‘&mbedded operating systems need to be designed and im-

the embedded systems domain calls for a large assort Iﬁ{nented_ as a program fam"y’. prim_arily spe(_:ializing ina
giyen application domain while it is highly desirable to as-

of specialized operating-system components. Depending i
the application case, not only are number and kind (in fun‘f‘fmble them from as many reusable building blocks as pos-

tional terms) of the components varying, but also the sarﬁ'gle' Feature moqelllng appears to be the .sunable technl-
single component may appear in highly different versiondue to circumstantiate the common and. vangble properties
Most crucial in this setting are non-functional propertiest of igﬂnfhﬂz t}]oa?;glﬁjuzseoigr%g:2\/”\;;3('“;%5?;!:? ?(gtI:v:re
are ingredient parts of single components or crosscut in #d q

extreme case the entire system software. These properﬁ%%et for the purpose of customization/specialization.

not only limit component reusability but also impair softwa

re maintenance in general. Being able to deal with software It is argued that operating systems must be a softwa-

variability—not only in the realm of operating systems—e product line 44] in order to be specifically prepared for

becomes more and more eminent for embedded systemspresent and future challenges in the embedded systems do-
The automotive domain gives an idea on the increasintpin. Motivation of this view is drawn from own experi-

demand of software variability management. A modern cances in the development of various operating systems for

can be considered a “distributed system on wheels”: 40 tige desktop, parallel, and embedded systems dondiin [

to over 100 of (8-, 16-, 32-bit) microcontrollers intercetn 38; 4]. Most of the ideas presented get realized in the scope

ted by a complex network (e.g. LIN, CAN, MOST, Flexraypf the ongoing CiAO 28; 27] project.

Dimensions of Variability in Embedded Operating Systems 3

2 Causes of Variability ExtensionMajor goal by adding a new function is to reuse
existing functions or implementations as much as possible.

Variability of operating systems comes in different flavamur In some cases this may be straightforward, namely when the
it may originate from horizontal and/or vertical changes ifXisting assets are ready for being reused. In other cases (s
order to add, remove, port, or specialize functions. TheB of) the existing functions need to be restructured inorde
changes can be further classified as static or dynamic, wighmake parts of them reusable in the course of implemen-
the former being carried out before and the latter duririgtion of the new function to be added. Whether or not the
operating-system runtime. In the matter in hand, before rupne or other way can be taken depends on the functional
time means at configuration, compilation, binding, or lo&nd non-functional properties of the existing functions. So
ding time. there may also be cases in which reuse is not practicable at
In the following, dynamic changes will not be conside@ll and implementation from scratch as undesirable conse-
red mainly because of two reasons. Firstly, prerequisita foduence arises.
dynamically alterable system is a software structure tidst a

static changes. It is known for a quite long time that only “ontraction At first sight it appears as if the removal of an
well structured system can easily be understood and moghused function from the system is a trivial task—but this is
fied” [12]. Above all, this implies a kind of holistic softwareg sophism. If at design time the option to remove functions
design methodology. If one is unable to identify modulariater on has not been considered, or even has been simply
zed (“loosely coupled”) sections in a program, attempts fgrgotten, contraction of existing (system) software may b
restructure this particular program dynamically can hardh cumbersome undertaking. A system whose software de-
be put into practice, if at all: design for static changes cgign eases extension (by adding new functions) also eases
mes before the dynamic case. Secondly, it is out of characgghtraction (by removing the added functions later on).
to dynamically change software structures of embedded sys-Removing a function being part of a call relation usual-
tems. For quite a large number of embedded systems, notgnresults in a binding error, at latest, when the complete
ly is scarceness of resources (in terms of memory and engserating system is going to be assembled and generated. If
gy, e.g.) a handicap for carrying out dynamical changes Rk respective function, however, is part of a “uses” retati
also the need for a sustained guarantee of a certain qualit}§ non-existence must not necessarily be reported by an er-
service or adherence to (soft, firm, hard) time limits or 8aferor message before runtime. Note that “uses” does not mean
rules. . _ _ . “call” but rather “existence” of a correct implementatioh o
The ability to changes is motivated in many respects. Ex-specific function or set of function83]. For example, an
amples are debuggingjl, but also optimization, mainte- interrupt handler is “used” but never called by any program
nance, evolution, or customization. The following subsefy the system. As a consequence, removing a function being
tions discuss different dimensions of varlablllty whicle arpart of a “uses” relation may resultin uncapable System ope-

important to be reflected in a design and implementatiegtion and, at best, becomes directly apparent through some
structure of an embedded operating system. Most of the giiid of runtime erro?

guments presented also hold for other kinds of system soft-

ware, and for application software as well. In the discusgsio

a view is taken on a software system that is hierarchicagy2 Vertical Chandes
organized in layers or levelS82]. ' 9

Operating systems are software products of typically long |
fetime. There are a number of species in the general as well
as special purpose sector today who can look retrospegtivel

With functions being added to or removed from a given Iayat a product history of two to almost three decades, i. e., da-

the software system gets changed in a horizontal means ﬁ%d back to the mid-seventies of last century. UNAgjfand
y 9 9 - Uhix-like operating systems fall into this category, or Mul

?S’ for example, the case vyhen the operating-system i.mrf%cs ([8; 31], 1963/69-2000), but also special-purpose sys-
is extended by new functions or contracted by functions RO, &', h'as QNXIB], first released at the beginning of the
longer used. Behind that interface, at lower levels, the ho-i hties. Since their first appearance at the horizon, te sy

rizontal changes made above may continue downward, ‘? ms were subject to a number of adaptations because of new

pending on the call and/duses” relation [33] defined by hardware platforms they should run atop and different app-
the original hierarchically structured system. (The difece ication ent)/ironments tr)(ey should suppgrt. The changegrt)o

between these two relations is briefly explained next, at t ; R
end of this subsection.) This logical continuation of restr € system software mostly were of vertical nature: exgstin

turing, however, is not what is understood in the next subz |, the context of the development of Mactj,[rumours were afloat

section as “vertical change” saying that the fairly large massiness of the “microkermel% because
removal of low-level file handling functions resulted in aoperable

1 Characteristic functions of this sort are system or sugengalls system and, thus, was not a choice. Provided that it was rhared
such as those ones described in “manual sectiomi{(2)) of a Unix- rumour, this Mach experience is a sign for a badly organizesks”
like operating system. relation between the various kernel building blocks.

2.1 Horizontal Changes

4 Wolfgang Schréder-Preikschat et al.

functions were adapted to a different use case while maand refers to vertical changes that have their origin at the
taining the same (functional) interface specification. application (i. e., system call) interface and propagaterdo
ward. It starts with re-implementation of an existing fuont

Porting Adaptation of some existing implementation t@nd may cause further_vertlcal or horizontal changes atrIO_Ne
changes coming up with an alteration in the (real/virtuagyers. Motivation behind the change may be the correction
machine having been used so far for information processifgSome software error or the improvement of a function in
is generally known as porting. The ideal picture is thatin of€9ard of higher execution speed, smaller memory footprint
der to move the software system to a new (different) mact |eSS energy consumption. Thus the change concerns a cer-
ne, only minor changes will be necessary if all the machin&in non-functional property of an existing system funetio
dependent parts are encapsulated by a small set of dedicated/Sually, specialization of a function is not directly cross
abstractions, sometimes termed “port package” or hardvfalt in that it propagates in horizontal means to an unrelated
re abstraction layer (HAL). In functional respect this iledunction.” Butindirectly there may be cases where the chan-
picture became reality and is documented by a numberd§S made have_ strange effects in this regard. Assume functi-
research and commercial systems being in service today. QB-fx gets specialized, which then propagates downward be-
vertheless, porting an operating system by rewriting thie p§2use the new implementationfyfmay perform even better
package cannot be considered a trivial task. The real chifunction f;, called byfy, is specialized too (but, maybe, in
lenge in porting, however, is to make sure that the transp@rdifferent fashion tharfy). Further assume, functiofy is
ted software system behaves as expected and, e. g., has B&hused (i- e, called) by functidiy: f; is shared byfx and
known from experiences made with its former installation-Iy- The changed non-functional property fmay impact
and this has a lot to do with the non-functional properties ti§Orrect operation ofy much in the same way as has been
system showed before and one is aware of. dls_cussed before with porting. Thus, side-effect of change
The real-time issues of embedded systems give examplé¥9 propagated downward may be changes that propagate
in which changes with respect to non-functional propertié@"",ard to some other function andllndlrectly influence the
may entail serious problems (not only) at application levéHntime behaviour of that very function. The changes made
Processor speed, memory access latency, cache behaviBug, N order to Improve performance 6f must be conform
pipelining effect, or processor architecture (CISC vs.®IS N0t only to the “uses” relation betwedpand f, but also to
in general are hardware attributes which have direct or ifjle one betweer, and f,. In other words: the implementa-
direct impact on the non-functional properties of a sofevation of f2 must be correct in respect of the specifications of
system. Other critical attributes are the signalling ogint POth fx andfy.
rupts by the hardware (edge- vs. level-triggered), espigcia
when critical sections are protected by using some kind ?f3 Summary
“disable/enable interrupts” pattern. As a consequence, po’

ithn?heseycstt)?]rtgitogyvs %rr?];ng?/ inlleet\?eel ggfi\?v;?;\i/ﬁrgf da;fpoafnua?ﬁrpose of the discussion was to provide an insight into the
9 complexity of undertaking changes to software systems in

ther ensure correct system functioning. Not far_e'y do 6)5 neral and operating systems in particular. The necessity
situations in which these changes are cross-cutting cosc lor changes is unquestioned, but they must take place in a
and have to take effect at several locations of system seftWa,ojied manner and should be free of side-effects. The

re far above the layer mac}e up by the port package. latter cannot be always guaranteed, why it is essentialdryi
Changes of non-functional system properties may al organize system functions in a “uses” hierarcAg|{ It

discover design or implementation defects or sh_ortcominqams out that finding the “uses” hierarchy is anything but
which make porting even more complicated. Particularly pr&mple and the right one more than ever

blematic are race conditions that had no implication on the Bas'ed on a case study from the opérating-systems do-
original system ?%Jt bpb_bed up suddenly and unexpectedlyr}%in, the following section takes up and deepens some of
the ported systemThis is the good case, because a Softw e issues discussed here. Goal is to provide a further moti-

flaw will be realized and corrected. The bad_case happe_ns 8 on for the software-engineering approaches put faiwar
other way round, namely when changes in non—functmﬁﬂ the sections thereafter
o)

system properties introduce (those or other kinds of) un
tected software flaws.

o .)) 3 Case Study: Flow Control
SpecializationVertical changes in the course of porting sys-
tem software have their origin at the hardware interface amgle closer one approaches to implementation, variabdity i
propagate upwards. Specialization goes the other way rodiés become more and more obvious and largely dictate the

3 Own experiences from having ported the kernel of the PEARSE[¢ Apart from magic effects a different memory layout may have o
parallel operating system from a MC68020- to an i860-basachine: which may come in because of branches to differently aligrdzies-
it took several weeks to identify an undetected criticatisacof no ses. Meant is slower or faster program execution due to @singhe
longer than 10 lines of C++ code, and less than one hour to egpmephysical representation of code and data sections, depgmdfi the
with the portable solution. underlying processor in use.

Dimensions of Variability in Embedded Operating Systems 5

there are embedded applications which do not require teread
in order to model concurrency, but rather rely on events such
as (hardware) interrupts to enable non-sequential exacuti

Y of the programs and otherwise operate in a strictly coopera-
task scheduling tive manner. Due to its blocking nature, semaphores are not
applicable for resource control within event/interruphta

lers and, in this particular use case, would therefore bé&mer

L less. Second, in case of time-triggered systems coordimati
thread dispatching of threads has been done before runtime. The system is gi-
ven a well-organized but static thread schedule free of any
Fig. 1 Functional hierarchy of (operating system) abstractis®iio resource access conflicts. Again, there is no need for a sema-
implement flow control for multi-threaded computing syssem phore mechanism to be implemented by the underlying ope-
rating system. Third, even for event-triggered systemsasem

anyway demanding act of systems programming. Note tH¥tores are not a must at runtime: by relying on stack-based
these issues do already exist at design time, they belongéheduling §] of tasks/threads flows of control can be crea-
what is sometimes paraphrased as “operating-systemsexk%i and maintained so that semaphores consume nothing but
tise”. Adoption of this specific domain knowledge is an itememory resources and are neither called nor “used”. Thus,
rating process of design and implementation. In the follow@ Semaphore mechanism is definitely subject to horizontal
ng some technical difficulties in the design and developmeitanges in an embedded operating system.
of embedded operating systems are exemplified. Goal is to The issue of vertical changes is a bit more complicated,
put over the problem that comes across with certain ted@ it is general a subject of a larger and “obscure” class of
nical facts that originate various cross-cutting concerhs problems. This issue relates, on the one hand, to the various
non-functional properties. The case study is on process rigehniques one can employ to ensure indivisible semaphore
nagement in general and flow control in specific. operation and, on the other hand, to the pattern how a se-
Flow control in operating systems can roughly be sepaphore can be used to propagate signals (i. e., consumable
rated in three major building blocks, the implementation ¢esources) from device driver level to threads. Furthermo-
each of which exhibiting various non-functional propestie'e, this issue also relates to the question of whether or not
of partly cross-cutting character. These blocks are resotite implementation should be keeping track about blocked
ce control, task scheduling, and thread dispatching. Eigihreads in a waiting list private to a semaphore instance and
1 shows the functional hierarchy which is typically definethe dependency of the thread scheduling discipline on such

between them. More precisely, in the given case this hier@R implementation. That is to say, this issue relates to the
chy describes both the call and “uses” relation. “uses” hierarchy, namely whether task scheduling is abo-

ve or below resource control. The following two paragraphs
elaborate on this issue.

resource control

3.1 Resource Control

pédivisible OperationA semaphore implementation is a ty-
pical case for @onditional critical region[19]. Fundamen-
dal techniques for protection of such sort of critical regio

discussion, we will focus only on the classical primiti are, e.g:mutual e>.<clu.siorby using lock variablesinhibit
y P Vep reemptiorby making it a kernelized monitoB{], or non-

andv() as defined for a counting (or general) and binarység, i hronizatioby relvi dedi del
maphore. Nevertheless, all the different versions have oN@SINd synchronizatioby relying on dedicated elementa-
ry operations of the underlying processar]29]. The lat-

in common, which is the point of interest in the following; h ith ical ch
semaphore primitive®) andv() are to be regarded adi- ter has strong consequences with respect to vertical csange
downward in that a tightly coupled implementation of sche-

visible operations aul d hore is d ded. Creat » " relati
In consideration of the different dimensions of variabilifU'er and semaphore is demanded. Creating a “uses” relation
tween the two building blocks is hard, if not impossible,

ty discussed in the previous section, a semaphore is pate £ th Ld dencies in their imol .
subject to both horizontal and vertical changes. Note thaP§a!S€ 0 the mutual dependencies in their iImplementati-

semaphore (or a similar mechanism) is required only if r81S: _ _ .
source control is an issue of the system. This means: The aforementioned technique, mutual exclusion, makes

) . the implementation unsuitable for use at device driverlleve

1. the presence of co_nCl_Jr_re_ntIy executlng_threads_ shairln%rma”y, av() could be used to produce a consumable re-

least or]ereusable indivisible resourcer interacting on gqrce (i.e., a signal) a thread at some higher level wants

the basis otonsumable resourcesd _to consume (using()) in order get aware of some device-
2. the need for coprdmaﬂon of the concurrent_ly executing|ated event. The functional property\df , which general-

threads and their resource accesses at runtime. ly is of non-blocking nature, in order to indicate availabil
Neither of the two aspects must be given in all use casestyrof such a resource would indeed enable this use pattern,
particular not for special-purpose operating systemst,Firbut not its non-functional property as implied through mutu

The classical mechanism for controlling access to shared
sources is the semaphotfd]. This well-known concept has

6 Wolfgang Schréder-Preikschat et al.

al exclusion. Thusy() may block and force an interrupted P()
thread into a deadlock (e.g. when in overlaps execution of
theP() of the thread who wants to await the signal: the in-
terrupted thread may deadlock itself).

Last but not least there is the technique (inhibit preemp-
tion) which, when being employed, makes the semaphore
implementation aon-preemptive critical sectioifhere are
basically two approaches to achieve this. Common to both is
that the causal event that may lead to preemption is disabled V()
for the length of the critical section. The difference ishe t
type of event, namely whether it relatesitderruption or Y
resumptiorof program execution. In the former case are in-
terrupts to be disabled and enabled, in the latter casesiadhr
dispatching to be delayed. Strictly speaking, one has to dis
criminate between disabling either hardware or software in Y
terrupts. Which way to go depends on non-functional pro-
perties such as edge- or level-triggered hardware intesrup
and the execution time of the critical sections insideand rig 2 “Uses” hierarchy of (operating system) abstractions uséahi
V(), in particular whether or not this time is bounded. Thglement flow control for multi-threaded computing systesuposed
latter aspect is largely determined by task scheduling i@ndresource control implements a waiting list of blocked thiea
the semaphore keeps track of blocked threads, the queuing
discipline of the waiting list wheR() blocks the calling and
V() unblocks a waiting thread.

resource control

BuliNpayos sel

thread dispatching

a semaphore waiting list may have advantages in regard to
better performance when threads need to be unblocked. The
“uses” hierarchy helps indicate dependencies of the ssit ju
Scheduler Dependendy the semaphore consists of a waimentioned and that must be taken into account for potential
ting list of threads blocked ir() , the queuing discipline em- vertical changes.
ployed must be consistent with the one implemented by task
scheduling. A simple first-in, first-out (FIFO) method is pro
ne to malfunction if task scheduling happens in a priorityd.2 Task Scheduling
oriented manner. In such a situation namély may cause
priority violation when, according to FIFO, the next threadlike resource control so is also task scheduling potential
going to be removed from the head of the waiting list is naubject to horizontal change: in a time-triggered systein di
the one of highest priority. The effect is that task schedyli not only resource control took place off-line, namely befo-
will no longer be able to perform its operations correctlge runtime of that very system, but also task scheduling. For
and, thus, tasks (or threads) may miss their deadlines. these kinds of applications an embedded operating system is
The design decision to use a semaphore waiting list imet equipped with a scheduler, as no dynamic (on-line) sche-
plies that the correct operation of task scheduling dependsduling of tasks/threads happens to take place. This is-diffe
the existence of a correct implementation of resource caent to an event-triggered (priority-oriented) systemchhi
trol with respect to the specification of task scheduling. ks a matter of fact, “uses” on-line task scheduling.
other words: this decision lets task scheduling “use” resou Vertical changes to the task scheduling building block
ce control—and vice versa. Assuming this design decisidgpically come with the actual scheduling discipline nestde
figure 1 only shows the call relation but no correct “usesto support a particular application. There are numerous dis
relation. ciplines one may choose from. In the following, only the
Problem is the mutual “use” of resource control and taskassification profiles are discussed in conjunction with th
scheduling. A correct “uses” hierarchy is acycB&[. If two impact they have on the interaction of the three flow control
programs depend on, or may take benefit from, each otfwilding blocks (fig.1 or fig. 2).
the thus created cyclic “uses” relation must be broken. This
is done bysandwiching[33] one of the two programs. In Cooperative schedulingssumes that threads voluntarily call
our example a “double sandwich” needs to be establish#fte scheduler to relinquish processor control and alldbete
This is becaus@() depends on task scheduling which deprocessor to some other thread. The non-functional prppert
pends onv() which, inturn, depends on task scheduling. Thgiven to all scheduling disciplines of this class is the albge
correct “uses” relation shows figule given the assumption of any critical section in the system that otherwise comes in
that a semaphore implements its own waiting list of blockdd existence because of thread preemption.
threads.
Figure2 implies a subsystem implementation of highdnterrupt-driven schedulings an extension to cooperative
(structural) complexity than a subsystem that follows &4ls scheduling. The scheduler gets activated by some device in-
relation as described by figufie Nevertheless, maintainingterrupt, performs housekeeping according to its schegulin

Dimensions of Variability in Embedded Operating Systems 7

discipline, but does not preempt the interrupted thread. Lchange as long as a multi-threaded mode of operation is re-
gically, the scheduler makes up a critical section and thgeested by the application.

needs to be synchronized proper. Several synchronizationLogically, thread dispatching represents a critical secti
options do exist for this particular case. The various sosts on. The steps which are to be passed through are (single pro-
work non-blocking £9; 13], wait-free [L7], or constructive cessor case):

and, thus, tolerate overlapped execution of scheduletifunc)) ,
ons, or they disable the causal event responsible for qyerlal' Saving of the processor state of the releasing thread into
ping. More precisely, the latter case means to either disab| 2 State buffer local to that very thread.

interruption of thread execution or delay continuation of & Refreshing of the pointer to the descriptor of the current
specific scheduling action as long as the critical section js 1Y xecuting thread. .

active 36]. Note that these techniques (disable interrupt/a' Restoring the processor state of the acquiring thread fro
delay continuation) are transitive and implicitly synchize a state buffer local to that very thread.

functions that are part of a call relation out of the criticajst a5 5 physical processor, e. g. of 1A-32 type, needs an in-
section. That is to say, thread dispatching would automadiyction pointer (or program counter) in order to identifg
cally run in synchronized mode. Constructive synchronizgyrrent machine instruction in the program to be executed,
tion means that, by design, the choice of data structures afihpstract processor like an operating system needs dthrea
algorithms ensures _the a}bs_en_ce of any race condition in Hlﬁnter in order to identify the current activity in the syt
system. All scheduling disciplines of this class have the sg \which resource management must actually be effective.
me non-functional properties as cooperative scheduling afhe crux is that these two pointers must be updated as an
they introduce new non-functional properties to the systéffementary operationf the abstract processor in order to
due to and depending on the kind of synchronization. correctly switch between two threads. That is to say, the up-
date must be instantaneous i. e. indivisible. Strictly kjpep
Preemptive schedulings an extension to interrupt-drivenstep2 and steB together must be indivisible, otherwise it
scheduling. In difference to interrupt-driven scheduliti;e may happen that, in case of the currently executing thread
scheduler may decide to preempt the interrupted thread. Hogetting preempted, stelpoverwrites the not yet restored
wever, this preemption takes place only at specifieet processor state of the currently executing thread.
emption point®f the abstract processor “operating system”. This example shows that thread switching depends on
These points may be spread in fairly large and, maybe, iren-functional properties defined by the task schedulirilg bu
regular offsets across system software. For example, erdiig block of the flow control subsystem. In fact, thread
and/or exit of any scheduler function call could be suchswitching bears a race condition in case of (full) preengptiv
(small-grained) preemption point just as entry and/or exitheduling, as necessary condition, and non-transitiee (i
of any system call (coarse-grained). All scheduling discip non-blocking, wait-free, or constructive) synchroninatdf
nes of this class have the same non-functional propertiesask scheduling, as sufficient conditi®f task scheduling
interrupt-driven scheduling. employs some kind of transitive synchronization, threait-sw
ching implicitly is indivisible and, thus, synchronizedoto
Full preemptive schedulings an extension to preemptiveOtherwise one is spoilt for choice of the synchronization
scheduling. In difference to preemptive scheduling, tireéechnique proper to make thread switching atomic. These
preemption may take place at any time whatsoever. Stricigghniques maybe the same as discussed with task schedu-
speaking, any instruction of the underlying (physical)-prding in the previous subsection. o
cessor and being accessed by a thread during execution deThere is a way to make thread switching independent of
notes a preemption point. All scheduling disciplines o§ththe synchronization technique used by task scheduling. The
class have the same non-functional properties as preeanpiflea is to have the two pointers to be updated only in a lo-
scheduling, except that for synchronization one now has ti€al sense, i.e. to map them to a single physical pointer

choice only between non-blocking, wait-free, or consiructgnd provide a function that “computes” both from that very
ve. pointer. Necessary condition is that the physical proadsso

capable of an operation that allows for an indivisible write

to a memory location storing a pointer of the abstract pro-
3.3 Thread Dispatching cessor defined by the programming language (e.g. C/C++)

used to implement the operating system. Most physical pro-

Coming to the decision which of the many threads ready &SSors come with appropriate machine instructions, or in
run will be allocated the processor for execution is gegraPther words: in most cases matches the pointer size as defi-
known as scheduling and will be done by the task schedulii§d by the abstract processor the one of the physical proces-
building block. Conversion of this planning order, thusiassSOr- Given these assumptions, constructive synchrooizati
gping th? processor to t-he selected thre.ad, Is also _known <§’lehis requires to correct the so far developed “uses” hibsarask
dISpatChmg' The latter is what thread. dispatching is abogéheduling again needs to be sliced into another two patts the
Note that, in contrast to task scheduling and resource CQ@per part “using” thread dispatching which, in turn, “Uste lower

trol, thread dispatching never will be subject to horizbntaart of task scheduling.

8 Wolfgang Schréder-Preikschat et al.

of thread switching becomes possible, i.e., explicit use tfroughout the land in conjunction with reusable and yet
synchronization primitives is unnecessary as the raceicorapplication-aware software. Software product lines exten
tion of thread switching disappeared. program families by a strong methodology that supports the
An implementation of this idea typically uses the stackomplete process of software development and maintenance.
pointer of the physical processor as actual parameter to theln the context of operating-system development, the key
mapping function. The descriptor of a thread is stored at tresues of family-based design is to start with a minimal sub-
bottom of the runtime stack of that very thread. In additset of system functions that is, by definition, reusable figr a
on, all the stacks are of same maximum size, which musdnd of application domain. That is to say, no design decisi-
be a power of two, and are aligned according to that sizms have been met that would prevent reuse of that minimal
Computation of the pointer to the descriptor of the curgentsubset. Step by step this subset gets extended by minimal
active thread may be achieved as sketched by the followisgstem extension by means of functional enrichment. Again,
C-like function:(sp() | (2N — 1)) —sizeofTD)+1,withTD the extensions are minimal and made with high degree of
representing the descriptor of the currently executingatir reusability in mind. The closer one gets to the application,
identified through the actual valusy()) of the stack poin- the more specialized and, thus, the less reusable an esttensi
ter. Note thafl D may be either the thread descriptor thereatill be. Art of this bottom-up design process is to find ways
or a pointer thereon, depending on the descriptor size ahdt allows one to postpone design decisions related ta-spec
the leeway of permanent local storage on the runtime stacls application requirements as far as possible. Outcome is a
This way, thread switching gets constructively synchralistinctive functional hierarchy consisting of numeroumsl a
nized by calling some kind afesune() procedure to impli- sometimes utmost slim functions or abstractions.
citly get the instruction pointer saved as return addresh®n Large misbelief is that those kinds of multi-layered soft-
runtime stack. Withinesune(), the stack pointer is changedware systems cannot be turned into highly efficient (object-
to the top of stack of the thread whose execution is goimgiented) implementations:
to be resumed. This step implicitly gets the thread pointer
changed to the descriptor of that very thread. The critical
operation is writing a memory address into the stack poin-
ter, which must be atomic. Macro programming, function inlining, implementation in-
heritance, multiple inheritance based on multiple induasi
template-based meta-programming, and aspect-orierded pr
3.4 Summary gramming give examples on how to be able to come up with
a mostly flat system representation of a fairly small memo-
The discussion revealed numerous points of variability they footprint [4]. The following subsections sketch this design
come into play the closer one approaches to implementatiphilosophy by means of excerpts from a threads package im-
Knowingly, the description was on a fairly detailed teclahic plementation.
level in order to give an idea of the difficulties in designing
adaptable system software (not only) for embedded systems.
By far not all options have been handled. The discussiénl Minimal Subset of System Functions
showed how certain non-functional properties crosscut dif
ferent software functions in a way that Seriou5|y Compﬁsat Development of the minimal subset of system functionsstart
system configuration. with sketching the idea on the intended use case of threa-
In the following three sections approaches are briefing. This idea becomes manifest in the program shown in
presented that aid the construction, configuration, and dg@ure 3 and is based on two fundamental design decisions:

aptation of system software. These approaches are program, thread is implemented as a coroutiélegind

families, feature modelling, and aspect-oriented program creation of which follows a fork-style of programmirig [
ming.

It is the system design that is hierarchical, not its im-
plementation. 4]

In that program, functioassume() corresponds to a fork and
resune() serves thread switching by reactivating the corou-
tine associated with some thread. Destruction of a coreutin
(i. e. thread) takes place automatically when leaving tloe sc
pe within which the coroutine has been declared (in the gi-
if they have so much in common that it pays to study ven casenui n()). Actual declaration of the coroutine means

their common aspects before looking at the aspects to allocate a staCk. i.HSthC@oél [1) and coroutine pointer
that differentiates them3p] (son) used for identification. Theew-Operator serves gene-

ration of the coroutine pointer with respect to alignment re
Generally, in the design and development of any kind of softtrictions as dictated/recommended by the physical proces
ware this guideline must always be at the back of one’s mirgbr. This pointer becomes the stack pointer of the declared
Family-based design means a design that aids reuse of sofroutine. Depending on whether the stack of the physical
ware assets for a very broad range of application domaipsocessor expands downward or upwareyw computes a
Today, the notion of a software product ling4] resounds well-aligned address to the top of a “virgin” stack.

4 Family-Based Design

We consider a set of programs to be a program family

Dimensions of Variability in Embedded Operating Systems 9

#include "luxe/Act.h" #i nclude "luxel/typel/size_t.h"
#include "luxe/ machine/ pc_t.h"
#defi ne STACKSI ZE 64

#defi ne LEEWAY 16 class Act {
protect ed:
int min (int argc, char *argv[]) { pc_t thc; /'l where to be continued...
static Act *son, *dad; public:
voi d* operator new (size_t, char*, size_t);
char pool [STACKSI ZE] ;
son = new(pool , STACKSIZE - LEEWAY) Act; Act* assume (); Il create act
Act* resume (); /1 switch act
if ((dad = son->assume())) { I

for (;;) {
/1 son working... . . .
dad = dad->resume(); Fig. 4 Strawweight thread: abstraction.

}
}

son = son->resume(); #include "luxe/Act.h"
/1 dad working. .. Act* Act::assume () {
} asm ("movl 4(%sp), %eax");

("
asm ("movl (%esp), %edx");
asm ("movl %edx, (%eax)");

Fig. 3 Strawweight thread: use case. return 0

}
Act* Act::resume () {
At bottom layer, the context of a coroutine is made up register Act* aux;

of nothing else but aesumption addressThis address, an 257 Em: Z’}@;Eb)%;@gp:fr" tawa)i
instance of typect , always is stored on top of the stackofa return aux; ' ’
suspended coroutine. Thus, whenever a coroutine suspends
execution it saves its resumption address on its stack-(init
ally, the first object on that stack). This is implicitly dond9- 5 Strawweight thread: implementation (IA-32).
by having a procedure call in charge of coroutine switching.

This procedure is implemented by functiogsume() , which

is called by one coroutine and returns to another coroutifiner state of a thread is shared with all other threads (®f th
Return value of this function is the pointer to the coroutin/P€) of the same program, which in particular also holds for

which recently calledesune() , thus, suspended execution. tN€ residual processor regis“ters. o
Thread creation is always concerned with the issue of Threads of typext are “strawweight” because thread

giving a thread an initial runtime context from which it car?V\"tChm.g only means to (1.) save the resumption address of
E?]% running coroutine (as side-effect of the calléeume()),

start execution. In the case discussed here, this contex remember the stack pointer as return value, (3) switeh th
defined by the program itself, more precisely, by the COrl]ntime stack by overwriting the stack pointer, and (4) con-

trol flow which creates the coroutine of a thread. Fig8re . e execution of the specified coroutine (as side-efféct o

hows what that means. Coroutine creation i mlit{ . .
shows what that means. Coroutine creation is accomplis e return fromesume()). In addition, the creation of threads

by a call to functionassune(). The effect of this call is to) 1 .

leave an initial resumption address, i.e., an instance-of this type means to (1) s_etupthe initial resumption adglres

peAct, on the stack of the established coroutipe), This O1.& NEW coroutine (as side-effect of the callataune()),

address is the return addressaefune() . In such a setting (2). copy that addres_s to a memory 'OC?‘“O” specified by the

assurme() returns twice and the return value indicates whi ointer to the coroutine of the thread going t(.) be create, an
) return 0. In factassune() constructs anct instance at a

control flow returns. The first returassume() ~ 0, goes to . - .
the creator of the coroutine. In contrast, the second retu@emory location specified through a parameter—in terms of

assunme() ~» toc, goes to the created coroutine, with retur ++, this function plays the role of ant constructor.

valuetoc # 0 and identifying the coroutine which did the

initial resume() . Thef or -loop shown in figure implements

the body of the new coroutine, which, in a complete syg-2 Minimal System Extensions

tem, will consist of additional statements that “bootstrap

thread in an application-aware manner. Providing thread concepts of higher “weight class”, i. &; b
The interface to the abstractiose() thatimplements the ger processor state, is a typical case of minimal system ex-

simple coroutine concept just sketched and which lays ttensions to the level of abstraction implementediy For

basis for more complex thread concepts is shown in figthis purposeact gets functionally enriched through imple-

re 4, its implementation is shown in figue At this level mentation inheritance by inheriting its properties to téats

of abstraction, the state private to a thread consists dnlyabassFl ux (fig. 6) and providing extensions that lead to im-

a stack pointer, which actually is a pointer to an instanpéementations of different non-functional propertiesamts

of type Act, and a resumption address, which is indeed thatt execution speed and memory consumption (see tgble

Act instance being pointed to by the stack pointer{). All The parameter (figr) to Fl ux specifies the weight class of

10 Wolfgang Schréder-Preikschat et al.

#include "I uxe/Act.h" Table 1 Memory footprint of fundamental t_hread switching funcson
#include "I uxe/ machine/ Fl uxvariety. h" Fl ux<T>::resune() — Fl ux<T| SOS>: : unwi nd(), IA-32. Listed are
. static (text, no data in this case) and dynamic (stack) memezyuire-
templ ate<Fluxvariety T> ments. Distinguished are needs for the call (left term) dredldody
class Flux . public Act { (right term) of the respective function, with the sums giythe subto-
P Act* induce (Flux<T>*&): tal needs. The total need of a weight class computes fronufittal
Act* resume (Act8); /1 switch flux plus the needs of strawweight thread switching.
Act* unwind (Acté&); /1 switch flux, inlined
b weight class static dynamic subtotal total

Fig. 6 Abstraction of different weightily threads. Functionduce() straw 87 4+4 23

extenddict : : assume() by inheriting the processor state to the created ftl)y 1%* ié g* ié 2% ?i
thread. Functiomnwi nd() is thei nl i ne-version of, and reused by, fea;;%rp 11117 81 3 P 81
functionr esume() and performs the actual thread switch. light 11419 8128 66 89

#include "l uxe/ machine/ Act Mode. h"

. is required to “bootstrap” itself after having resumed exec
enum FluxVariety {

Il Straweight = Act, tion. Note that this method of (low-level) thread switchiag
ggmim?vgit ho - SEEI 85;' R different from the conventional one in which the thread swit
Feat herwe?gm - GPR| BIR. ching away is required to be of the same type as the thread
Lightweight = GPR to be switched to.

b Tablel shows the memory footprint of individual mem-

_ _) _ _ bers of theFl ux family (including Act) for 1A-32 type of
Fig. 7 Thread weight classes and their mappingAtd state saving

modes: general purpose registers (GPR), omit frame po{@EP), Processors. The numbers give the non-functional proertie
omit volatile registers (OVR), block-move registers (BMR) in terms of memory consumption for each of the members.

They demonstrate how the resource requirements of various

, members do vary with functionality. The figures are much
#include "luxe/Flux.h"

4 ncl ude " | uxe/ machi ne/ Act St at e. h” more dramatic in case of PowerPC (G4) type of processors,
for example, which range from 40 bytes (strawweight) up to
tenpl at e<Fl uxVariety T> H H _
inline Act* Flux<Ts::unwind (Act& next) { 115_2 bytes (Ilghtwelgh_t) for the total amount of memory oc
Act* peer; cupied. A byte saved, is a byte got: this is still of importanc
if (T & S0S) { for embedded systems—and the presented design meets ex-
Act St at e<T| BMR> *apr;
apr = ActState<T| BMR>: : stack(); actly these needs.
peer = next.resume();
apr->clear();
} else {
Act St atff(Tl) BVR> apr; 5 Feature Modelling
apr.cacne N
peer = next.resume(); . . .
apr.apply(); Feature modelling is understood as “the activity of model-
Eet urn peer ling the common and the variable properties of concepts and
} ’ their interdependencies and organizing them into a coheren

model referred to asfeature modél[9]. Goal is to come up
Fig. 8 Generic thread switching. Template paramétepecifies the with directives for and a first structure of a design of a sys-
thread weight class and whether the state is saved onkedtom the tem that meets the requirements and constraints specified by
stack (SOS) using push/pop instructions if applicable vesanto/re- yhe features. Feature modelling is particularly suitalle f
stored from a state buffer variable. .) > .
capturing the common and variable properties of program
families.
a thread instance created from that very parameterized data
type.)
Figure8 shows a generic implementation of thread swif-1 Feature Diagrams

ching. The weight class (specified as template parameter) .) i

refers to the thread being switched away (i. ., the calle§ommon is & graphical representation of the feature model
not to the one being switched to. Another notably propéf! terms of afeature diagramThe diagram is of tree-like

ty of this implementation is that a thread not only saves bpructure (see figurg), with the nodes referring to specific
also restores its processor state self-contained. $tspda- f€ature categories. Four fundamental feature categorges a
king, the thread who is switching away is not involved ifl€finéd:mandatory optional alternative andcumulativé.
restoring the processor state of some other, maybe differéyfeature diagram describes the options and constraints tha

weightily thread. This approach allows switching betweens . o category “cumulative” corresponds to category &

threads _Of different weight class, i.e., type. Common to adhown, e.g., from§]. This notion is used for better understanding in
threads is thect concept only and every thread of typleix a general sense and is in the same diction as the other thmeepts.

Dimensions of Variability in Embedded Operating Systems 11

on programs whose tasks are not run in an event-driven but,
maybe, time-triggered mode or who implement event hand-
ling on its own for whatever reason.

Preemptive scheduling of threads calls for synchroniza-
tion measures for which a number of options do exist in the
literature. Whether a single option is suited to help solie a
sorts of synchronization problems depends on the actual use
case. Sometimes a single option suffices. At some other time
several options are required or beneficial, each of which op-
timized with respect to a certain problem or class of synchro
nization. This is reflected by modelling preemptive schedu-
ling as a cumulative feature and, thus, allowing for system

_ _ _ configurations that support any combination of synchroniza
Fig. 9 Feature diagramf; and f, are cumulative features of conceptiign techniques

C, f3 and f4 are alternative features éf, andf, implies a mandatory . o . o

featurefs and an optional featurg. In this setting, constructive synchronization stands for

concepts and techniques which, at design time, help to pre-
vent the need for explicit synchronization at runtime. An ex

shall exist within a system. It models the variable and fixetinple gives the technique described in sec8@) namely
properties of a family of software and hardware assets whigfe use of a function in the course of thread dispatching in
implement that system. order to map the pointer to the current thread of control¢o th

The diagram shown in figur@ describes a specific con-stack pointer of that very thread and, thus, allow the inifplic
ceptC, e.g. the flow control subsystem of an operating syatomic update of logically two different pointers—provitie
tem. If conceptC gets to be included in the final systenthat the underlying processor supports the atomic update of
configuration, then any non-empty subset of features frarsingle pointer. Note that this approach may fail, e. g.gin ¢
the set{ f;, f} of cumulative features is also included. Thge of 8-bit processors on the one side and 16- or 32-bit sized
feature setwith respect toC at this level of abstraction is pointer types defined by the programming language or com-
{f1, f2, {1, f2} }. If feature f; is present, one feature frompiler on the other side. Similar holds for 16-bit processors
the sef f3, f4} of alternative features must be included. Thusgersus 32-bit pointer types. Thus, whether or not this ap-
the feature set of, consists of eithefs or f4. If featuref, proach succeeds is a question of the semantic gap between
is selected, mandatory featuf@ must and optional featurethe physical and the virtual machine in use for the particu-
fs may be included in the final configuration. lar application case. This kind of dependency in most cases

This technique allows for a compact and precise specannot (easily be) expressed by a hierarchically strudture
fication of interdependencies of functional as well as nofeature diagram, but rather is a case for additional specifi-
functional properties of fairly complex systems. Basingaoncations of constraints and conflicts with respect to a smecifi
tool which aids the construction process of a feature mfgature or group of features: often, they are cases of cross-
del and supports the mapping of features to implementastting concerns not only of a feature diagram but also soft-
tions, automated generation of highly specialized so#waware system. It is up to the feature model to include these

systems becomes possib&. [supplementing specifications, and not necessarily tharkeat
diagram.
The other three subfeatures of the cumulative feature “pre-
5.2 Flow Control Features emptive” stand for explicit synchronization at runtimengsi

blocking, non-blocking, or arrestive concepts in orderre p

An example on how this technigue can be used to descrint the occurrence of race conditions. A distinction is ma-
interdependencies of the different variants of the flow code between explicit synchronization of threads (blocking,
trol subsystem discussed in the previous section gives then-blocking) and events (arrestive). Blocking synchzani
feature diagram shown in figu0. For the ease of under-tion typically goes back on lock variables, conditional cri
standing, the figure sketches an excerpt, only, and focusiesal sections, semaphores, and monitors to implement tem-
on properties related to thread processing, thread synihrgporary mutual exclusion of otherwise concurrently execu-
zation, and event synchronization. ting threads 10; 15; 16; 19; 20]. Using priority-oriented

According to the semantics of the individual feature nscheduling and having semaphores maintain their own wai-
des (see figur®), flow control may be either cooperativeting lists of blocked threads requires to strictly followeth
or preemptive. Only in the case of preemptive thread prqueuing discipline of the scheduler, otherwise prioritylat
cessing, the need for coordination of concurrently exegutition may be the consequence. That is to say, there is a cross-
threads of control arises. Note that for a number of use aastting concern with respect to scheduler and semaphore.
ses, especially those ones of the deeply embedded systEomshermore, with such class of scheduling as foundation,
domain, it suffices when the operating system provides daecking synchronization in general may cause priority in-
operative (task) scheduling. This makes sense for applicaersion P5]. This raises a serious problem for (hard) real-

12 Wolfgang Schréder-Preikschat et al.

Flow Control

preemptive

cooperative

| blocking | | non-blocking | arrestive

constructive

| wait free | | interruption | | preemption | | continuation | | reentrant |

| total | | selective | | conservative | | speculative |

Fig. 10 Feature diagram describing the common and variable piepeuf functions used to implement flow control in operatiygtems
(excerpt). The features shown likewise map to a specifieaystehavior with respect to thread processing (coopergire=mptive), thread
synchronization (blocking, non-blocking), and event $ywaization (arrestive, constructive).

time systems and, thus, calls for specific solutions such asrauation (by disabling second-level interrupt handlews)
kernelized monitor30Q] or provisions for priority inheritan- preemption (by disabling the dispatcher). The continumatio
ce/ceiling jQ], or a simpler variant like stack-based priorityalternatives shown refer to options one has in order to se-
ceiling [2]. rialize and queue up arriving second-level interrupt hargdl

As a consequence, subfeature “blocking” implies a colthile a critical section is active3p]. Temporarily disabling
ple of constraints on the presence of certain functionsén tAf thread dispatching to take care of non-preemptive criti-
operating system provided that a specific mode of operatig®dl sections 30] typically works in a similar manner. No-
need to be supported. Most notably is that not all of thel&that preemption takes place in form of a continuation of
functions are in a call relation and, therefore, cannot be @1 interrupt handler. Instead of disabling any kind of con-
solved by conventional linker techniques. Rather, these-fu tinuation, arrestive synchronization of preemption means
tions are in a “uses” relatior8B]. So whether a kernelized disable only one kind of continuation. Thus, an optimizati-
monitor or some sort of priority ceiling protocol shall be exon takes place here in favour of a higher degree of potential
ploited must be specified by some meta-level linking infoRoncurrency in the system.
mation. In the given case, this information comes from other As became clear from the discussion in secfipin so-
features being mapped to implementations and which ne®é configurations arrestive synchronization has to work in
to be selected upon system configuration time. As adumbgascaded fashion. When arrestive synchronization is used,
ted, not only is real-time mode of operation a non-functiongor example, to ensure atomic operation of a semaphore and
property of cross-cutting concern, but also blocking symhe scheduler, then synchronization of the latter mustée-re
chronization. trant. This is because of the call relation between semapho-

All the problems discussed just now do not exist witfe and scheduler, for instance wheg) calls the schedu-
non-blocking (and, maybe, wait-free) synchronizatiai;[ler to block the currently executing thread which, in turn,
29; 13; 21]. However, solutions in this direction are not alhas called that very(). In such a situation, nested non-
ways straightforward and often depend on the availabifity preemptive critical sections are given. As the called caiti
dedicated machine instructions. The latter case limitsaporsection (scheduler) may be called not only from within ano-
bility. In addition, reuse of indivisible resources canbet ther critical sectionf()) but also by normal (non-critical)
easily controlled this way, if at all. Thus, non-blockingnsy programs, its synchronization statements must be redntran
chronization is a preferred option, but not in all situation Similar holds for the call relation between scheduler assd di

Arrestive synchronization means to temporarily disabRAtcher. Reentrant code may have drawbacks with respect to
events which are the potential reason for thread preemptiG€CcUtion speed, why it is reasonable to make it an optional
This art of synchronization does not block threads, butnatH€ature in the feature diagram of figui®. Also note that
the occurrence of certain events. As indicated by the corfBis feature is a further case of a cross-cutting concern.
sponding cumulative feature shown in figur@, the events The following sections describes how to achieve syn-
blocked relate either to interruption (by total or seleetii- chronization of a critical section that stays in at least two
sabling of interrupts i. e. first-level interrupt handlers)n- different call relations: (1) by some other “surroundingi-c

Dimensions of Variability in Embedded Operating Systems 13

tical section and (2) by no critical section at all. ReentraB.1 Terminology

synchronization statements are needed in the first case, but

not in the second case. Of course will reentrant synchroifihe most relevant AOP concepts go@-point andadvice

zation also be applicable for the second case, but at a high@radvicedefinition describes a transformation to be perfor-

cost for this particular case—and this will be in contraidictmed at specific positions either in the static program struc-

on to the program family concept: ture (static cross-cuttingor in the runtime control flowdy-
namic cross-cuttingof a target program. Aoin-point de-

Some users may require only a subset of the services notes such a specific position_ ir_1 the target program. Advice
of features that other users need. These “less deman-iS given byaspectsto sets of join-points callegointcuts
ding” users may demand that they are not be forced Pointcuts are defined declaratively irjan-point descrip-

to pay for the resources consumed by the unneeded tion language The sentences of the join-point description
feature. B5)| language are callegointcut expressionsAn aspect encap-

sulates a cross-cutting concern and is otherwise veryaimil
to a class. Besides advice definitions, it may contain class-
like elements such as methods or state variables.

The following example serves to illustrate typical syn-
tactical elements of an aspect language, which is AspectC++
in the given case:

6 Aspect-Oriented Programming

The examination of variability in (embedded) operating-sydspect El ement Counter {

tems made in the previous sections showed that not all Kinds advi ce cal I ("% Queue:: enqueue(...)") : after() {

of potential software changes are supported by going back = elements++

on conventional concepts such as abstract data types, para-"

meterized data types, or inheritance. These concepts works

well if there is (1) a unique hierarchical relation to theetss Aspect El enent Counter increments its member variable
subject to changes and (2) a rudimentary simple structueaénent s after each call taueue: : enqueue() . In AspectC++,
complexity defined by that relation. Changes given becaysantcut expressions are built fromatch expressionand

of non-functional properties that crosscut the systenwsoft pointcut functions Match expressions are already primiti-
re are hardly to accomplish and, depending on how extensigepointcut expressions and yield a sehafme join-points.
these cross-cutting concerns are, may lead to a poorly undéame join-points represent elements of the static program
standable and manageable software structure in general.structure such as classes or functions. Technically, match

Aspect-oriented programming (AORZ]) is a techni- expressions.are g!ven as quoted strings that are evalu_ated
que that attempts to improve separation of concerns. Wifainst the identifiers of a C++ program. The expression
conventional modularization techniques, achieving separ % Queue:: enqueue(. ..)", for instance, returns a name point-
tion of concerns if two concerns are “cross-cutting” raisédit containing every (member-) function of the claseue
problems and typically leads to thesde tanglingand co- th_at is calledenqueue. In the case of overlqaded functions
de scatteringohenomena. Code tangling means that on tHath different argument types the expression would match
implementation level the code of two (or more) concerns @l ©f them.Code join-pointson the other hand, represent
intermixed rather than separated. Scattering means taat$4€nts in the dynamic control flow of a program, such as

code of one concern is not localized, but can be found € execution of a function. Code pointcuts are retrieved
various different modules. by feeding name pointcuts into certain pointcut functions
such ascal | () or execution(). The pointcut expression

AOP aims at supporting modular high-level concern Ly ("% Queue: : enqueue(. . .)") , for instance, yields all the

p]gmentatlons. F(_)r exa”ﬁp'e’ the code thatimplements a SBYents in the dynamic control flow where a function named
cific synchronization policy should be a separate module t eue: - enqueue is about to be called

represents the human-readable policy description alntost ; : .
rectly in a programming language. Hence, the synchroniz As pointcuts are described declaratively, the target code

tion policy could be evolved independently from the othéfself has not to be prepared or instrumented to be affeged b
modules, which also could be reused in other contexts Vﬁgpects. Furthermore, the same aspect can affect varidus an

thout or with different synchronization schemes even unforeseen parts of the target code. These principles

of obliviousnessand quantificationare considered a major
Today, most AOP languages use the concepts and tergiyantage of AOPI[L].

nology that was first introduced by Aspec&B]. Followi-

ng we will give a brief overview of the most common AOP

language elements in general and the AspectGHjrjoti-

on in particular, as required for understanding the remaini6.2 Static Cross-cutting

parts of this paper. Even though the introduction is based on

AspectC++, it basically holds for any statically woven AORAn aspect that encapsulateatic cross-cuttingalters the
language. static structure of the program. In most AOP languages, such

14 Wolfgang Schréder-Preikschat et al.

modifications of the static structure are restricted to the eni t hi n() pointcut function simply returns all join-points in
tension of classes by new elements like methods, state vatiee given classes, functions or namespacesnBysecting
bles or base classes. (&&) all calls tokernel () with the negation!() of all join-

In AspectC++, the encapsulation of static cross-cuttimgints insideker nel (), the pointcut expression finally eva-
is supported by a specific type of advice calieioduction luates to those calls tokar nel () function that are not made
Consider the following aspect, which adds support for tthrefrom akernel () function itself. This, however, has another
local storage to a class modelling a thread descriptor: potential drawback: as the interception now takes place on

aspect ThreadLocal Stor age { the caller side, not only the operating system but also appli

advice "o0s::ToC' : slice class { cation code has to be woven with the aspect. In many cases,
oubl o thsentry; this is not feasible. In variant 3 kernel invocation is tliere
int getTLS() { return tlsentry; } re again intercepted on the callee side, but further filtéwved
void setTLS(int v) { tlsentry = v; } certain control flows:

aspect Kernel Lock_3 {

a adV| ce execution(kernel ())

The aspecintroducesa (private) state variable and some && !cflow(within(kernel ())) : around() {
(public) access methods into the thread descriptor class, o

more precisely, into all classes that are matched by the ex-

pressioros: : ToC'. The cf I ow() pointcut function yields all code join-points
that occur while being in a given control flow. Pointcut func-
, . tion executi on() yields all code join-points, where a given
6.3 Dynamic Cross-cutting function is about to bexecutedThe above pointcut expres-
) . sion therefore evaluates to any non-nested execution of a
An aspect that encapsulatigmamic cross-cuttingitercepts o, o () function. Compared to variant 2, this solution does
certain events in the control flow of a running program. A?Tgt require to weave the application code and furthermore

pects basically provide means to execute some advice cg, fably detects indirectly nested kernel calls.
before after, or instead of ground the current statement if

the event occurs. In the following, this is demonstrated by

three different variants of an aspect which interceptdentr 6.4 Join-Point Context

into and exits from the kernel, thus supports implementati-

on of a kernelized monitor. The advice body is identical fan many cases, advice for dynamic cross-cutting needs to
all three variants of theer nel Lock_x aspectsx = {1,2,3}: read and/or modify the join-point-specific invocation it

it acquires the lock (which is a member of the aspect), preuch as the actual argument values passed to the intercepted
ceeds to the intercepted function f->proceed()) and fi- function. To fulfil the goal of quantification, join-point ep

nally releases the kernel lock. Variant 1 is made of an aspeffic context information has to be provided through a ge-

in which the advice is triggered whenever any function ¢feric interface, as the same advice implementation should
method from the class or namespaeenel is about to be be applicable to many different join-points, such as functi

executed ons with different signatures. Most AOP languages provide
aspect Kernel Lock_1 { a join-point API for this purpose. In AspectC++, the join-
”°'.T“L°“L Ikerrklgel 0 = /;% kernelt o %r(ﬂ)--)": b point API is implicitly available in advice bodies through
08+ ock Tocks aspect menber vari abl e theJoi nPoi nt * tj p type and instance pointer:
advi ce execution(kernel ()) : around() { aspect Tracing {
I ock. enter();
tjp->proceed(); // execute intercepted method advice execution("% ...::%...)"
lock. leave(); && !"void ...::%...)") : after() {
] } JoinPoint:: Result res = *tjp->result();
h cout << "leaving " << tjp->signature()
<< " returning" << res;

This, however, works only if kernel functions do not invoke
each other, as calls tack. enter()/l ock. | eave() must not }:

be nested. Variant 2 provides a less restrictive solution §ye after-advice implementation of the abaveci ng aspect

intercepting the kernel invocation on thaller side: is generic. It can be applied to any function with a non-void
aspect Kernel Lock_2 { return type, as the join-point API provides the required ab-
s stractions from the actual return type.
advi ce cal |l (kernel ())
&& 'within(kernel ()) : around() {
) 6.5 Weaving

}

Thecal | () pointcut function yields all events in the con-Aspect weaving is the term used to describe the process of
trol flow, where a given function is about to balled The transforming the structure or behaviour of a program in or-

Dimensions of Variability in Embedded Operating Systems 15

der to let aspects “affect” other modules. The AspectCigeferences

compiler weaves by transforming AspectC++ code into or-

dinary C++ code39]. It is a preprocessor that mainly gene-1. Accetta M, Baron RV, Golub DB, Rashid RF, Tevanian, Jr A,
rates transparent wrapper functions. This kind of weawingi Young MW (1986) MACH: A new kernel foundation for UNIX

u ; P P ot development. Tech. rep., Carnegie Mellon University, Cotap
called “static weaving” as it is performed at compile-time. Science Dept., Pittsburgh, PA, USA

“Dynamic weaving” is a different weaving approach that, payer TP (1990) A stack-based resource allocation pédicseal-
supports to weave aspect code into a running program. In time processes. In: Proceedings of the 11th IEEE Real-Tiyse S
this paper we focus on static weaving only. Note that a static tems Symposium (RTSS '90), IEEE, Lake Buena Vista, FL, USA,

i pp 191-200
aspect weaver can support aspects that affect static as Wf”Baker TP (1991) Stack-based scheduling of realtime pem=

as dynamic join points. Real-Time Systems 3(1):67—-99
4. Beuche D, Guerrouat A, Papajewski H, Schréder-Preiksdha
Spinczyk O, Spinczyk U (1999) The PURE family of object-
oriented operating systems for deeply embedded systenidn
ceedings of the 2nd IEEE International Symposium on Object-
7 Conclusion Oriented Real-Time Distributed Computing (ISORC'99), EE
Computer Society Press, St Malo, France, pp 45-53

. . . T 5, Beuche D, Papajewski H, Schroder-Preikschat W (2004abfar
The paper discussed dimensions of variability in embedded ity management with feature models. Science of Computer Pr

operating systems. Although the focus was on the domain of gramming 53(3):333-352
embedded systems, all the issues considered are also a cas€onway ME (1963) Design of a separable transition-diagra

; ; ; compiler. Communications of the ACM 6(7):396—408
for gpg(rjat(ljng S){Stemj targ_etlng other domam.?' gowevedr’ t . .Conway ME (1963) A multiprocessing system design. In:-Pro
embedded systems domain raises very specific demands (Oeedings of the AFIPS Fall Joint Computer Conference (FJCC)

only) on the system software which do not always play the Spartan Books, Las Vegas, NV, USA, pp 139-146

same decisive role in other domains. 8. Corbat6 FJ, Vyssotsky VA (1965) Introduction and ovemief
the Multics system. In: Proceedings of the AFIPS Fall Joioitn©
puter Conference (FJCC), Spartan Books, Las Vegas, NV, USA,
pp 185-196

Operating Systems need Software Engineefiing attribute 9. Czarnecki K, Eisenecker UW (2000) Generative Progrargrin

“embedded” implies tight int ti f fi t Methods, Tools, and Applications. Addison-Wesley
embeadead” implies ight integration of an operating syste o Dijkstra EW (1965) Cooperating sequential processesh.Trep.,

with its environment. This requires a software structusg th Technische Universiteit Eindhoven, Eindhoven, The Nédneis,
aids integration, thus allows for adaptation of system-soft (Reprinted inGreat Papers in Computer Sciende Laplante, ed.,
ware to varying demands of the application domain. Family- IEEE Press, New York, NY, 1996)

: : Elrad T, Aksit M, Kiczales G, Lieberherr K, Ossher H (2D01is-
based software design, feature modelling, and aspeattede cussing aspects of AOP. Communications of the ACM 44(16):33

programming are sound software-engineering approaches th 3g
support the development of system software being appdicat2. Goullon H, Isle R, Léhr KP (1978) Danymic restructing mex-
aware, tailor-made, and composed from yet highly reusable perimental operating system. In: The 3rd Internationalf€@nce

assets. The paper discussed how these approaches can bg"ASBfé"xarngzggéﬂggzng’ IEEE Computer Society Pressndla

used to develop and maintain embedded operating syste®SGreenwald MB, Cheriton DR (1996) The synergy between non
for ease of extension, contraction, porting, and specitiz blocking synchronization and operating system structarePro-
on. ceedings of the 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), ACM/USENIX Association
Seattle, WA, USA, pp 123-136
14. Habermann AN, Flon L, Cooprider LW (1976) Modularizatio

: : : ; and hierarchy in a family of operating systems. Commurieesti
Software Engineering needs Operating Systexhall times of the ACM 19(5):266-272

have been o_perat.ing systems challenging case studiesfr jansen PB (1972) Structured multprogramming. Comnatinic
software engineering. In particular, several key concepts ons of the ACM 15(7):574-578 o _
software engineering go back on experiences people mé@etHans»t?n PIB (1973) Operating System Principles. PreHtdidn-

: : ernationa
with th? design agdldevlelopmerr\]t Of SySt,,errp Softv;/]are. 3099. Herlihy MP (1991) Wait-free synchronization. ACM Trantions
examp eslare mo. ules, layers, the “uses |e(arc Yy, and pro on Programming Languages and Systems 13(1):123-149
gram families which all played a central role in the contexis. Hildebrand D (1992) An architectural overview of QNX: Rro-
of the paper presented. Nothing changed today—far from ceedings of the USENIX Workshop on Micro-kernels and Other
it! The large diversity of operating systems especiallyhia t Kernel Architectures, USENIX Association, Seattle, WA, AJS

) < - pp 113-126
embedded systems domain on the one hand and their high Hoare CAR (1971) Towards a theory of parallel prograngmin

complexity (not necessarily in terms of number of (?ode_ li-" In: Hoare CAR, Perrot RH (eds) Operating System Techniques,
nes), when compared to other sorts of software, still raises Academic Press, London, New York _ _
big challenges to software engineering methods and tocl8. Hoare CAR (1974) Monitors: An operating system struogur

; ; ; ; ol concept. Communications of the ACM 17(10):549-557
One of the key issues in this regard is variability manag HohmFl)Jth M, Hartig H (2001) Pragmatic rgon)blocking syt

. {rablih 21
ment. Embedded operating systems are distinguished Can%"'zation for real-time systems. In: Proceedings of the USENIX
dates for pushing research just as tool development into thi nual Technical Conference, USENIX Association, Boston,,MA

direction forward. USA, pp 217-230

16

Wolfgang Schréder-Preikschat et al.

22.

23.

24,
25.

26.

27.

28.

20.
30.

31.
32.

33.
34.

35.

36.

37.

38.
39.

40.

41.

42,

43.

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C,d-0in44. Weiss DM, Lai CTR (1999) Software Product-Line Engirivagr

tier JM, Irwin J (1997) Aspect-oriented programming. TeRbp.
SPL97-008 P9710042, Xerox PARC

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, @old
WG (2001) An overview of AspectJ. In: Proceedings of the 15th
European Conference an Object-Oriented Programming (EZOO
2001), Springer-Verlag, LNCS 2072, Budapest, Hungary,2-3
353

Koetz J (2006) Personal communication. Audi AG

Lampson BW, Redell DD (1980) Experiences with proceasés
monitors in mesa. Communications of the ACM 23(2):105-117
Lister AM, Eager RD (1993) Fundamentals of Operatingeys,
5th edn. The Macmillan Press Ltd.

Lohmann D, Streicher J, Hofer W, Spinczyk O, Schrode
Preikschat W (2007) Configurable memory protection by aspec
In: Proceedings of the 4th Workshop on Programming Langaiag
and Operating Systems (PLOS '07), ACM Press (Digital Liyar
New York, NY, USA, (to appear)

Lohmann D, Streicher J, Spinczyk O, Schrdder-Preiksttia
(2007) Interrupt synchronization in the CiAO operatingtsps—
experiences from implementing low-level system policigs b
AOP. In: Proceedings of the 6th AOSD Workshop on Aspect:
Components, and Patters for Infrastructure Software (AOSI
ACP4IS '07), ACM Press (Digital Library), New York, NY, USA s
Massalin H, Pu C (1991) A lock-free multiprocessor OShker
Tech. Rep. CUCS-005-91, Columbia University

A Family-Based Software Development Process. Addisonléyes
45. Wilner D (1997) Vx-files: What really happened on Marsy@
te at the 18th IEEE Real-Time Systems Symposium (RTSS '97)

Wolfgang Schrdder-
Preikschat studied computer
science at Technical University of
Berlin, Germany, where he also
received his Ph.D. (1987) and uni-
versity lecture qualification (1994).
After spending about ten years as
a research associate and director
of the system software department
at the German National Rese-
arch Center of Computer Science
(GMD), Research Institute for
Computer Architecture and Softwa-
re Technique (FIRST), Berlin, Dr.
Schroder-Preikschat became a full
professor for computer science at
the Universities of Potsdam (1995—

Mok AKL (1983) Fundamental design problems of distrétait 1997), Magdeburg (1997-2002), and Erlangen-Nurembemgcesi
systems for hard real-time environments. PhD thesis, Massa 2002), Germany. His main research interests are (real-émbedded

setts Institute of Technology, MIT, Cambridge, MA, USA he¢ systems, distributed/parallel operating systems, siradt computer
cal Report MIT/LCS/TR-297

Multicians (2007pt t p: // www. nul ti ci ans. org

Parnas DL (1974) On a 'buzzword’: Hierarchical struetun:
IFIP Congress '74, Information Processing '74, North-ldotl
Publishing Company, Stockholm, Sweden, pp 336—-339
Parnas DL (1975) Some hypotheses about the “Uses” tigrar
for operating systems. Tech. Rep. BS | 75/2, TH Darmstadt
Parnas DL (1976) On the design and development of profgam
milies. IEEE Transactions on Software Engineering SE:3®
Parnas DL (1979) Designing software for ease of extenasia
contraction. IEEE Transactions on Software Engineering Sl
5(2):128-138

Schon F, Schroder-Preikschat W, Spinczyk O, SpinczyR00@)
On interrupt-transparent synchronization in an embeddéect
oriented operating system. In: The Third IEEE Internati@yam-
posium on Object-Oriented Real-Time Distributed Compmutin
(ISORC 2000), IEEE Computer Society, Newport Beach, CA
USA, pp 270-277

Schréder W (1987) Eine Familie UNIX-&hnlicher Betrigjsste-
me — Anwendung von Prozessen und des Nachrichteniiberm
lungskonzeptes beim strukturierten BetriebssystemaftiD
thesis, Technische Universitat Berlin

Schroder-Preikschat W (1994) The Logical Design of [Rdra
Operating Systems. Prentice Hall International
Schroder-Preikschat W, Lohmann D, Gilani W, Schelerpi&
zyk O (2006) Static and dynamic weaving in system softwatk wi
AspectC++. In: Proceedings of the 39th Annual Hawaii Ingio:
nal Conference on System Sciences (HICSS-39), IEEE Compu
Society Press, Kauai, HI, USA, vol 9, pp 214-223

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inhedtapro-
tocols: An approach to real-time synchronization. |IEEEnSee-
tions on Computers 39(9):1175-1185

Spinczyk O, Lohmann D (2007) The design and implementa
on of AspectC++. Knowledge-Based Systems, Special Issue
Techniques to Produce Intelligent Secure Software 20§8):6
651, DOI http://dx.doi.org/10.1016/j.knosys.2007.@ELO
Stimpfle M (2003) Personal communication. DaimlerQerys
AG

Thompson K, Ritchie DM (1974) The UNIX timesharing syste
Communications of the ACM 17(7):365-375

organization, and software engineering. Dr. SchrodeikBehat is
member of ACM, EuroSys, Gl, and IEEE.

Daniel Lohmann studied com-
puter science at University of
Koblenz, Germany. He currently
holds the position as research as-
sociate at University of Erlangen-
Nuremberg, Germany, and works
towards his Ph.D. in the field of
aspect-oriented (embedded) opera-
ting systems. His main interests are
operating systems, (deeply) embed-
ded systems, software product li-
nes, aspect-oriented software deve-
lopment, and generative program-
ming. Mr. Lohmann is member of
ACM, EuroSys, and Gl.

Fabian Scheler studied computer
science at University of Erlangen-
Nuremberg, where he currently
holds the position as research asso-
ciate and works towards his Ph.D.
in the field of real-time (embed-
ded) systems. His main interests
are real-time systems and operating
systems. Mr. Scheler is member of
EuroSys and IEEE.

http://www.multicians.org

Dimensions of Variability in Embedded Operating Systems

17

roSys.

Olaf Spinczyk studied computer
science at Technical University of
Berlin and received his Ph.D. from
University of Magdeburg, Germany
(2003). After having held the po-
sition of an assistant professor at
University of Erlangen-Nuremberg
(2003-2007), he recently moved on
to University of Dortmund, Ger-
many, to fill the position of a full
professor in the area of embedded
systems software. His main inte-
rests are efficient tailor-made ope-
rating systems, embedded systems,
software-product lines, and aspect-
oriented programming. Dr. Spinc-

zyk is member of ACM, GI, and Eu-

	Introduction
	Causes of Variability
	Case Study: Flow Control
	Family-Based Design
	Feature Modelling
	Aspect-Oriented Programming
	Conclusion

