
DOI 10.1007/s00450-009-0059-7

S P E C I A L I S S U E P A P E R

CSRD (2009) 23: 67–79

Surmounting BPM challenges: the YAWL story

Nick Russell · Arthur H. M. ter Hofstede

Received: 9 June 2008 / Accepted: 13 January 2009 / Published online: 6 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The field of Business Process Management (BPM)
has evolved considerably over the past decade. Many pro-
posals for business process modelling and/or execution have
emerged and some of these have faded into oblivion again.
The Workflow Patterns Initiative aimed at achieving a more
structured approach to language comparison and develop-
ment. The patterns that were distilled served as the basis
for YAWL (Yet Another Workflow Language). In this paper
YAWL is positioned with respect to historical developments
in BPM and current challenges in the field.

Keywords Workflow management · Workflow patterns ·
YAWL

1 Introduction

If we cast our eyes back to the late nineties it is interest-
ing to observe the state of play in the field of workflow.
In some ways one could argue that many earlier promises
were left largely unfulfilled. In contrast to the golden vision
that workflow technology offered as a means of rapidly and
rigorously automating repetitive processes thereby stream-
lining their operation, the majority of offerings proved to
lack support for all but the most common process constructs.
Moreover they were subject to inconsistent execution be-
haviours and were generally perceived to impose restrictive

N. Russell (�)
Eindhoven University of Technology,
P.O. Box 513, 5600MB Eindhoven, The Netherlands
e-mail: n.c.russell@tue.nl

A. H. M. ter Hofstede
Queensland University of Technology,
GPO Box 2434, QLD 4001 Brisbane, Australia
e-mail: a.terhofstede@qut.edu.au

work practices on users which ultimately retarded rather
than expedited their work throughput.

The XPDL1 1.0 standard proposed by the Workflow Man-
agement Coalition, was a language which was weak in terms
of the concepts it supported (essentially supporting not much
more than basic control flow operators, see e.g. [3]) and due
to its informal definition left room for substantially vary-
ing interpretations, which were semantically incompatible
(a topic explored in depth in [35]). Staffware was, according
to [20], the workflow management system with the largest
market share, but, as is clear in hindsight, it was not a par-
ticularly powerful product and had a number of idiosyncra-
cies (e.g. roles can only have one participant, AND-joins are
asymmetric [9], and race conditions can cause the OR-join
to behave somewhat counterintuitively [9]). In the academic
realm, there were a number of efforts to devise workflow lan-
guages from first principles, however this work was some-
times undertaken on an isolated basis, and the results tended
to be rather specific and proved to have minimal impact on the
workflow community at large.

Broadly speaking, it was difficult to define process
models that replicated the complexities and variations fre-
quently encountered in practice. Whilst a substantial num-
ber of papers (e.g. [4, 18, 19, 27, 30, 31, 33, 34, 37, 53, 56])
proposed solutions for exception handling and adaptive
workflow, it was still hard to implement a comprehensive so-
lution and the emphasis was often on transactional aspects
which had questionable value in actual business workflows
(for a discussion on transactional aspects in BPM, see [17]).
In terms of the business process lifecycle, the emphasis re-
mained on specification and enactment. Little attention was
paid to monitoring and post-execution analysis. Workflow
applications tended to be developed “in house” from scratch
and there was little need for interaction with other work-
flows and/or external applications.

1 XML Process Definition Language.

1 3

68 Russell and ter Hofstede

In order to gain a more fundamental insight into the
concepts required for workflow specification, the Workflow
Patterns Initiative2 was started in 1999. This initiative com-
menced by taking a closer look at a number of commer-
cially available systems and research prototypes and dis-
tilling the various (control-flow) concepts encountered in
the form of patterns. One of the key advantages offered by
describing these concepts in terms of patterns was that it
provided definitions for them that were technology-agnostic
and therefore applicable on a more general basis than ap-
proaches based on detailed specification of specific process
constructs.

As such the patterns provided a foundation for system
comparison, language development and also for workflow
specification. Over time the patterns were used in official
tendering processes and they influenced commercial and
open source systems. A number of key questions remained
though: Is it possible to provide comprehensive support for
the patterns in a single language? Is it possible to keep this
language relatively simple? Can such a language be auto-
matically supported? The quest for answers to these ques-
tions led to the development of YAWL (an acronym for Yet
Another Workflow Language).

YAWL took Petri nets as a starting point, as it had been
argued that Petri nets were particularly well suited to work-
flow specification [1] and indeed, many of the workflow
patterns can be directly expressed in terms of Petri nets [6].
However, some of the patterns are more difficult to directly
realise in this way and these led to specific language con-
structs in YAWL. The original formal semantics of YAWL
were specified as a transition system, but more recently, the
CPN formalism [32] was used to provide an operational se-
mantics for newYAWL, an extension of YAWL providing
comprehensive support for the latest collections of control-
flow patterns, data and resource patterns [46].

In the following parts of this article we first provide
a brief overview of the main ingredients of YAWL in terms
of its design rationale, language features and operational
environment in Sects. 2–4 respectively. Following on from
this in Sect. 5 we examine the state-of-the-art in the field of
workflow management, and more broadly that of business
process management, in order to see where the challenges
lie and what role YAWL can play in their future resolution.
The article concludes with a brief epilogue in Sect. 6.

2 Design criteria

In this section we briefly examine the design criteria that
underpin the YAWL formalism. These criteria have been
adopted throughout the development process for YAWL and

2 http://www.workflowpatterns.com.

aim to ensure that it provides a mechanism for supporting
business processes that demonstrates broad applicability and
also that it extends the current state of the art.
Suitability The workflow patterns provide a source book
of desirable process constructs and, by definition, their use-
fulness is underscored by the fact that each of them have
been observed in an actual tool and/or language. Although
support for specific workflow patterns may not be required
in some situations, generally speaking, they all represent
meaningful functionality. Hence, the more patterns a lan-
guage supports, the more suitable it is for general workflow
specification.
Formality Workflows can be quite complex due to e.g. par-
allelism, complex data and resourcing strategies. In order
to guarantee that workflow execution is not arbitrary but
can be reasoned about at design time, a workflow language
should have a formal foundation. This foundation then not
only enables design time verification, but can also act as the
blueprint for the runtime environment defining the manner
in which language constructs should actually be enacted. An
example of a formally defined language are the Workflow
nets presented in [5].
Comprehensibility In order to cater for domain experts,
who are not necessarily knowledgeable in IT or BPM, as
far as possible it should be possible to understand work-
flow specifications on an intuitive basis. Graphical represen-
tations in particular can assist in making workflows more
comprehensible, although there are other mechanisms that
can also be helpful in this regard, e.g. the ability to struc-
ture the workflow into various components by means of
a decomposition mechanism or, a more recent development,
by providing support for aspect orientation [21].
Enactability As workflows ultimately need to be enacted
in some form of operational environment, they need to be
executable. At the same time, they should not be tied to
a specific execution environment or vendor and thus they
should be technology independent. This gives the greatest
degree of freedom to business analysts and liberates them
from unnecessary constraints that may be imposed by cer-
tain platforms or even by certain (proposed) standards which
are too closely aligned with individual vendor interests.
Minimality The workflow language should be as minimal
as possible. For example, not every pattern should lead to
yet another language construct. This approach makes the
language easier to explain and understand, and facilitates
its implementation. In this regard it is interesting to ob-
serve that Petri nets, whilst they constitute a complete for-
mal theory for modelling dynamic systems, have a mini-
mal set of constructs. As a consequence, determining their
wellformedness is straightforward, and their semantics are
easily expressed and explained, particularly compared to
some contemporary proposals for business process mod-
elling notations.

1 3

Surmounting BPM challenges: the YAWL story 69

3 Core YAWL

In [1] the benefits of using Petri nets for workflow specifi-
cation were advocated. By way of validation for this pro-
posal, in [6] the CPN formalism was subjected to a patterns-
based analysis. This evaluation confirmed the argument that
Petri nets demonstrate some significant strengths when used
for workflow specification, however it also identified some
areas of weakness. In particular, Petri nets have difficulties
with expressing

• patterns that deal with situations where a number of in-
stances of the same task execute in parallel;

• the concept of an OR-join, a construct which captures the
notion of “wait only if you need to”;

• cancellation where the execution of an activity, a whole
case, or anything in between, needs to terminated.

Workflow nets or WF-nets for short (see e.g. [5]) form a sub-
class of Petri nets defined for the purposes of workflow

Fig. 1 Standard YAWL
symbology

specification. Each net has a unique start place and a unique
end place and all tasks are on a path from the start place
to the end place. Notational abbreviations exist for the var-
ious splits and joins which are encountered when modelling
processes thereby allowing for more compact expression of
workflows. The design of YAWL [7] took Workflow nets as
a starting point and added constructs for the OR-join (in fact
also for the OR-split), multiple instances, and cancellation.
In addition, tasks can be directly connected if they only have
one place in between them (which has no other inputs and
outputs).

In Fig. 1 an overview is provided of the various nota-
tional elements of YAWL. A task can have join and split
behaviour, can have a decomposition, and can be of type
multiple instances (thereby indicating that multiple concur-
rent instances of it are allowed). A task may have an as-
sociated cancellation region from where, at runtime, tokens
are removed whenever any of the instances of the task com-
pletes execution. The term condition is used to capture the

1 3

70 Russell and ter Hofstede

Fig. 2 A simple YAWL net for
conference travel

notion of the place as it exists in WF-nets and Petri nets.
It is interesting to observe that despite the limited number
of notational elements that YAWL comprises, it demon-
strates comprehensive support for the workflow control-flow
patterns.

The OR-join has been the subject of a number of papers
(e.g. [36, 39]) and in one incarnation or another it occurs
in a number of systems and languages. The original defin-
ition of the OR-join for YAWL in [7] was superceded by
the definition provided in [57]. The latter approach treats de-
composed tasks on the path to an OR-join as if they are
atomic and treats other OR-joins on the path to the OR-join
as if they are XOR-joins. An algorithmic approach to com-
puting whether an OR-join is enabled was derived through
a mapping of YAWL (without OR-joins) to Reset-nets (see
e.g. [25]) and exploiting an existing algorithm to computing
coverability. An OR-join can fire if and only if one of its in-
put places contains a token and it is not possible to reach
a marking where an as-yet not marked input place also re-
ceives a token and all input places that were already marked
remain marked.

In Fig. 2, a YAWL net is shown that captures a simpli-
fied version of how conference travel could be planned at
a university. The case starts with the receipt of a paper ac-
ceptance. After some initial planning a quote is requested
and approval is sought. The request for approval is captured
through a deferred choice as the choice is made by the head
of school. If the approval is withheld, the request for a quote
is cancelled, paperwork is filed accordingly, and the case is
closed. Note that we need to explicitly represent the con-
ditions before and after the task request quote as this task
may not have started yet or may have already finished. If
approval is granted, then, if the quote has been received as
well, the trip can be planned. For simplicity, we assume that
this planning may be followed by the booking of an hotel,

registration for the conference, and arrangement of transport
for one or more destinations (hence the use of a multiple
instance task). When all these reservations have been com-
pleted, payment is made and the paperwork related to the
case can be archived.

As a consequence of YAWL’s formal foundation, it is
possible to verify workflows before their deployment. The
well-known soundness property (see e.g. [2]) captures cer-
tain desirable properties of workflows, e.g. whether they can
always terminate, whether they always terminate properly
(i.e. don’t leave tokens behind) and whether all tasks can
be reached in some scenario. Over time, many variants of
this correctness notion have been developed. An overview
of correctness properties for workflows and their decidabil-
ity for various classes of workflow languages can be found
in [13]. For YAWL there are two verification approaches,
neither of which is complete, i.e. not all errors may be de-
tected, due to the high expressive power of YAWL [13]. One
approach, which is documented in [54], is based on the no-
tion of relaxed soundness [23, 24] and uses T-invariants. An-
other approach, which is documented in [58], uses, among
others, the notion of weak soundness for YAWL nets, which
is decidable for YAWL nets without OR joins, and exploits
the mapping of (a subset of) YAWL to Reset nets. The
notion of weak soundness is less restrictive than the no-
tion of soundness as instead of requiring that all reachable
markings can mark the final condition, it is required that
the final condition can be marked when starting from the
start condition. Hence a model can be weak sound, but still
contain a deadlock. For YAWL models with one or more
OR-joins a state space analysis can be performed for models
with a finite state space or the OR-joins can be changed
into XOR-joins (but this has some real limitations). The ap-
proach described in [58] also considers correctness issues
involving OR-joins which can be replaced by an XOR-join

1 3

Surmounting BPM challenges: the YAWL story 71

or an AND-join, and additional elements in cancellation
regions.

YAWL’s exception handling capabilities are based on the
framework presented in [49]. In this framework a number of
exception types are identified and the concept of an excep-
tion pattern is defined which consists of three components:
(1) what should be done with the work item involved (e.g.
forcibly fail it), (2) what should be done with other related
work items (e.g. cancel the current case), and (3) what cor-
rective action should be taken (e.g. execution of a compen-
satory workflow). A modern workflow environment should
be able to deal with exceptions ([26, 31]) that were not antic-
ipated at design time, and the framework and the related lan-
guage proposal described in [49] served as the starting point
for the concept of exlets in YAWL. Figure 3 illustrates two
exlets that define exception handling behaviours for tasks
in the conference travel process illustrated in Fig. 2. The
first of them handles the situation where a deadline associ-
ated with the request approval task is exceeded. Should this
exception arise, the work item associated with the request
approval task is suspended, reassigned to another resource
(probably via some form of escalation), rewound back to the
beginning and then allowed to continue executing (in effect
being restarted). The second exlet demonstrates how a task
failure of a request quote task should be dealt with. In this
situation, the work item is forcibly stopped (in case it has
not already done so) and then a new instance of it is com-
menced. A comprehensive discussion of the operation and
implementation of exlets in YAWL can be found in [16].

Business processes are often not static in nature, but
evolve over time [42]. This may be due to a number of fac-
tors, e.g. new legislation, changes in the market or learning
experiences. It is important that when necessary changes
are identified, they can be directly supported by the work-
flow system and offline resolution is not required [14]. In
YAWL the concept of worklets is used to deal with evolving
workflows. Over time selected tasks may have an associ-
ated repertoire of workflows and the runtime selection of the
“right” workflow is guided by Ripple–Down Rules [22]. If
a suitable workflow cannot be identified, a new one can be
created. The analyst then defines what the essential differ-
ences are between the context in which this situation was
encountered and the current context for the rule that was se-
lected, but was judged to be not applicable. This then leads
to an extension of the Ripple–Down Rules. Figure 4 illus-
trates the form that a Ripple–Down Rule may take. In this
situation, it is associated with the pay task. Two distinct
variations of this task can be identified: in general for con-
ference delegates, the implementation of the task involves
the sequence of subtasks: record details, receive payment
and confirm registration. However for invited speakers, no
payment is required and the receive payment task is omitted
from the sequence. Should additional classes of conference

Fig. 3 Conference travel exlets for the request approval and request
quote tasks

Fig. 4 Conference travel worklets for the pay task

attendees be identified that need to be handled in a distinct
way, then the rule hierarchy for the task can be further ex-
tended on a dynamic basis to cater for them. A detailed
description of the worklet approach in YAWL can be found
in [14, 15].

Recently, the original set of control-flow patterns was re-
viewed. This led to adaptations of existing patterns and the
introduction of a number of new patterns [50]. Patterns for
the data perspective [48] and the resource perspective [47]
have also been introduced over time. These pattern col-
lections serve as the basis for newYAWL [46], a workflow
reference language providing comprehensive support for the
control-flow, data and resource perspectives. newYAWL is
formalised using Coloured Petri nets (CPN [32]) and conse-
quently the semantic model for newYAWL can be directly
executed in the CPN Tools environment, thus providing the
ability to analyse the complex relationships that may exist
between concepts within and between workflow perspec-
tives.

4 The YAWL environment

The YAWL system3 provides a reference implementation of
the YAWL language. Originally developed to validate that
the workflow patterns provided a suitable basis for defining
the desirable properties of a workflow system, the YAWL
system has subsequently evolved into a high profile work-

3 Available from http://www.yawl-system.com.

1 3

72 Russell and ter Hofstede

flow initiative that has served to guide future research efforts
in the workflow domain. In this section, we briefly examine
the development principles that have evolved for the sys-
tem during this time, introduce the operational architecture
of the system and discuss early deployments of the YAWL
offering in an operational context.

4.1 Development principles

The YAWL system has been under development for over
five years. During this time its capabilities have expanded
markedly and a set of associated development principles
have also evolved that now guide system engineering ef-
forts. These include:

Best practice The YAWL system is intended to demon-
strate best practice in the field of workflow. For this
reason, its fundamental language capabilities are tightly
coupled to the YAWL language and the workflow patterns
initiatives;
Open source The YAWL system is developed under an
open-source licence model. It is freely available available
for download and use in an effort to encourage widespread
adoption of the software. Moreover, such an approach pro-
vides valuable feedback and increases the opportunities for
potential collaboration;
Extensible The YAWL environment is developed using
a service-oriented architecture. There are multiple opportu-
nities for users to integrate their own (or third party) soft-
ware within a YAWL deployment hence providing a wide
variety of options to extend its capabilities and adapt it to
their specific needs;
Modular The YAWL system deliberately divides its opera-
tional environment into a series of distinct software modules
along functional lines. This provide significant flexibility
when deploying a YAWL instance. The specific breakdown
of these modules is described in Sect. 4.2;
Easy to use A significant focus of the YAWL initiative
has been to simplify the overall process of developing
an automated business process. It is possible to both de-
sign and deploy simple processes without requiring any
programming on the part of the user. Even in more com-
plex situations, the extent of custom development is min-
imised. Some situations still require relatively complex
programmming (e.g. data passing, custom forms and ex-
ternal interfaces) however it is hoped that even in these
areas, the complexity of development can be simplified over
time;
Easy to deploy The YAWL system is based on widely
available technology and is packaged in a manner that facil-
itates rapid deployment without requiring extended instal-
lation and configuration activities before it can be utilised;
and

Resilient The ultimate goal for the YAWL system is to be
production strength such that it is capable of supporting
industrial scale process deployments.

4.2 Operational overview

In Fig. 5 (taken from [12]) an overview of the YAWL ar-
chitecture is provided. As it illustrates, the YAWL environ-
ment consists of a number of components that communi-
cate through defined interfaces. YAWL specifications are de-
veloped in the YAWL Process Editor. These specifications
can be validated, exported in XML format and subsequently
be loaded into the YAWL Engine through interface A. The
YAWL engine interprets these specifications and during ex-
ecution it can communicate with other components about
work progression through interface B, e.g. the engine can let
components know that certain work items are enabled and
other components can let the engine know about work item
completion. Similarly, through this interface, cases can be
started and the engine can inform the outside world about
their completion. Although the vision of the workflow en-
gine being completely resource agnostic has not yet been
fully achieved (the engine log events still contain a desig-
nated resource field), dealing with resources is the domain
of the Resource Service. This service can interact with orga-
nizational models in a generic manner through interface O
(i.e. these models can be defined in a relational database or
in an LDAP directory). Resourcing requirements are defined
through the Process Editor and the Resource Service can ob-
tain these through interface R. The Resource Service also
maintains the work lists for resources. The Worklet Service
provides support for dynamic workflow and for exceptions
and it keeps its own event log and information about worklets
as they are created over time. Interface X of this service was
provided for the purpose of communication with the engine
about exceptions. There are other services (e.g. the Declare
service that supports declarative specification and execution
of workflows, see [8]) that are available for the YAWL en-
vironment. As can be seen, the YAWL architecture provides
a relatively open and extensible environment and one can re-
place existing components with custom-made components or
add completely new components.

4.3 Early adoption

Over the past five years, the number of software downloads
for the system has exceeded the 50 000 mark. Several of
these downloads have progressed to fully operational status
and it is interesting to examine three such deployments in
more detail.

YAWL4Film [41] is an initiative undertaken by the Aus-
tralian Film, Television and Radio School in conjunction

1 3

Surmounting BPM challenges: the YAWL story 73

Fig. 5 YAWL system
components [12]

with QUT. This work centred on the development of an
application to support entry and management of produc-
tion data associated with film shoots. A critical part of this
project was the establishment of role-specific data entry
points that allowed for the capture of key production data
during a film shoot. The data collected was then used to cre-
ate multiple reports automatically for distribution to other
production crew menbers. The entire process was supported
by YAWL. This system has already been utilised in two stu-
dent film projects on a pilot basis, and also in a full commer-
cial featured film (produced by Porchlight Films) in 2008.

The Traditional Medicine Hospital in Zhejiang Province,
China adopted the YAWL system as part of their Brain-
Bridge Project which started in May 2007. One of the initial
objectives of this work was to build a workflow-aware radi-
ology information system (RIS). In this project, the system
was based on YAWL and several key processes includ-
ing the radiology examination process were developed as
custom YAWL services. The resultant software is now in
a pilot phase and is currently under evaluation by hospital
staff.

The companies first:utility and first:telecom in the UK
(both part of the Impello plc group), which provide energy
and telecommunications services respectively, have built
software based on the YAWL system that provides a novel
approach to page navigation for web based systems together
with the more traditional use of workflow for choreograph-
ing long-lived business processes.4

4 http://www.yawlfoundation.org/about/adoption.html.

5 Reflections on the state of the art

The development of the YAWL language and system have
given an important insight into the needs of the increasingly
broad range of BPM users and the complexities of develop-
ing a solution that addresses these needs. Whilst the BPM
field has matured during this time and is now recognised as
an important domain in its own right, there are still a wide
range of issues that need further consideration. In this sec-
tion, we will examine some of them in further detail.

5.1 There is no common vocabulary for BPM concepts

One of the major aims of the Workflow Management Coali-
tion was to establish a common vocabulary for the workflow
domain as a precursor to a conceptual workflow reference
model that facilitated the interchange of process models
between distinct systems. The aim of this model was to
provide a common foundation that allowed collaboration
between different systems regardless of the technology on
which their individual process models were based. To some
degree the effort was successful in establishing a basic vo-
cabulary for common workflow terms (e.g. task, case etc.)
but attempts at establishing a common reference model were
largely ignored by workflow developers who did not want
to tie their proprietary modelling formalisms to a common
technique. In effect the workflow reference model became
the lowest common denominator for workflow technology
categorising common concepts encompassed by every sys-
tem rather than providing a comprehensive basis for com-

1 3

74 Russell and ter Hofstede

parison against which systems could be assessed. The prob-
lem remains however and as the BPM field has matured,
there are now an increasing number of terms and concepts
that do not have a specific, broadly agreed definition.

5.2 There is significant disparity between modelling
and enactment tools

In recent years, a wide range of business process modelling
formalisms have been proposed and several of these (cf.
EPCs,5 BPMN,6 UML7 activity diagrams) have come to the
fore as widely used approaches to capturing business pro-
cesses. These formalisms however are designed to operate at
a conceptual level and deliberately abstract from the details
associated with process enactment. Indeed there are no spe-
cific guidelines for any of these notations that describe pre-
cisely how a candidate process should actually be enacted.
The most recent revision of XPDL (v2.0) attempts to pro-
vide a serialised definition for BPMN processes but as with
the modelling notation, its actual execution semantics are
only informally defined and are potentially subject to alter-
native interpretations. Similarly, the BPEL8 language, which
has garnered significant interest, does not have a formally
specified execution model and the much lauded transform-
ation of conceptual BPMN process models to executable
BPEL processes in fact proves to be much more complex
than was originally anticipated [40]. Clearly in order to
close this gap, there needs to be an increased focus on de-
veloping means of operationalising business process defini-
tions. This does not mean ascribing an execution semantics
to common modelling approaches but rather focussing on
the establishment of objective means of transforming be-
tween modelling and enactment notations for business pro-
cesses. YAWL illustrates one possible approach to resolving
this problem. It provides a language that can operate both at
a conceptual and execution level. Whilst the language elem-
ents can be used simply for modelling business processes,
there is sufficient detail captured in a YAWL model to en-
able it to be directly executed.

5.3 The focus must shift from comprehensive modelling
notations to enactment predictability

To date in the BPM field the focus has been on modelling
richness without regard to the manner in which the concep-
tual constructs underpinning these models will ultimately be
realised in practice. Not only are there ambiguities in the
way in which various constructs are operationalised, but in
many cases, it is not clear exactly how some constructs can

5 Event-driven Process Chains.
6 Business Process Modeling Notation.
7 Unified Modeling Language.
8 Business Process Execution Language.

be facilitated at runtime. To further complicate matters, in
many formalisms, it is possible for the same fundamental
concept to be represented in several distinct ways. As a con-
sequence of these issues, it is possible for the same busi-
ness process to be subject to varying execution outcomes
in distinct operational environments. The remedy to these
difficulties lies in providing precise execution semantics for
business processes, typically based on a formal foundation
that provides a deterministic means of describing the state
transformations that occur when a process is enacted. In
YAWL, each of the language elements have a precise for-
mal semantics and as a result, the execution behaviour of
a YAWL model is precisely and unambiguously defined.

5.4 BPM is more than just task coordination or workflow

Until recently process modelling techniques have tended to
focus on describing the control-flow perspective of busi-
ness processes and have ascribed significantly less impor-
tance to other fundamental aspects, e.g. data representation
and management, resource definition, work distribution, ex-
ception handling and so on. This bias has also been re-
flected in workflow technology, which traditionally been
viewed as the natural implementation vehicle for business
processes, and many offerings conceptualise a business pro-
cess in terms of its control-flow representation. Yet, it is
increasingly recognised that in order to be effective, a busi-
ness process needs to be multi-perspective in form and cap-
ture details of a number of distinct process viewpoints. As
a minimum, the data, resource and exception handling per-
spectives need to be considered in addition to control-flow
aspects in order to capture a holistic view of a business pro-
cess. This shortcoming was recognised early in the YAWL
development process and a number of data and resource-
related extensions were applied to the system. Most recently
a comprehensive language extension, termed newYAWL,
has been proposed that radically extends the extent of sup-
port that YAWL provides for the broad range of control-
flow, data and resource patterns.

5.5 Business processes are inherently flexible in nature

Perhaps the major criticism that workflow technology has
faced in recent years has related to its inflexibilty and the
difficulty in reconciling relatively static business process
definitions with the realities of the modern business environ-
ment and the need to dynamically adapt to changing circum-
stances. It is now widely recognised that process flexibility
or agility is a key requirement for effective business oper-
ation and consequently, this is a property that needs to be
supported in enabling technologies for business processes.
However the notion of process flexibility is subject to a wide
variety of interpretations. In [52], four distinct operational

1 3

Surmounting BPM challenges: the YAWL story 75

approaches are described to facilitating process flexibility
in the form of a taxonomy. These include (1) flexibility by
design where alternative execution options are explicitly in-
cluded in a business process at design-time, (2) flexibility by
deviation where a workflow offering provides facilities for
individual cases to temporarily deviate from the strict exe-
cution sequence prescribed by the associated process model,
(3) flexibility by underspecification where there is the ability
to leave sections of a process model undefined and facilities
are available in a workflow offering to specify the struc-
ture of these missing portions immediately prior to their
execution at runtime and (4) flexibility by change where
a workflow offering provides the ability to change the form
of a process model during execution for one, several or all
process instances. The fundamental aspects of each of these
approaches are relatively well understood.9 The workflow
control-flow patterns [9, 28] characterise the potential range
of flexibility by design constructs, the pockets of flexibility
proposal [59] describes a mechanism for supporting flexi-
bility by underspecification, and the change patterns and
change support features in [55] comprehensively describe
approaches to facilitating flexibility by underspecification
and change.

Broad support for flexibility by design in contempo-
rary workflow offerings is relatively commonplace, however
other forms of flexibility support are less widely imple-
mented. Moreover where an offering does provide other
approaches to facilitating flexible process execution, it tends
to focus on one specific area, e.g. the case handling tool
FLOWer [10] provides a number of deviation facilities and
the adaptive workflow system ADEPT [42, 43] is particu-
larly strong in terms of its support for dynamic process
change. By virtue of its extensible service-oriented archi-
tecture, YAWL offers a variety of forms of flexible process
support. Its worklet and exlet facilities provide mechanisms
for dealing with changes in the operating environment and
unexpected exceptions that arise during execution. More-
over the augmentation of YAWL with the Declare service as
part of the flexibility as a service initiative [12] demonstrates
how it is possible to support each of the forms of process
flexibility identified in the taxonomy in a common operating
environment.

5.6 Business process enactment is increasingly complex

One of the fundamental recognitions in recent years has
been that most significant business processes operate on
a “whole-of-organisation” basis rather than in departmen-
tal terms. This means that business processes involve the
coordination of numerous individuals throughout an organi-

9 A comprehensive overview of the literature in the area of process
flexibility can be found in [51].

sation in working towards specific organisational objectives.
Often business processes are so broad in form that they
do not fall under the auspices of any one individual but
instead have specific sections which are managed by dis-
tinct resources. Furthermore, it is possible that all of the
expertise required to undertake a given process does not lie
within the organisation and that the business process also
needs to integrate external resources and services in order
to achieve corporate goals. As such the automated busi-
ness process serves as a means of distributing work across
a suitably qualified range of resources and coordinating their
efforts. In order to achieve this aim, the enabling technol-
ogy must be capable of integrating a wide variety of sys-
tems and resources operating in distinct locations and be
based on technologies of varying sophistication. Moreover
it should allow individual sections of the overall business
process to be substituted with alternative execution mech-
anisms as better facilities are identified over the life of the
process. Recent development in the web services areas, par-
ticularly the emergence of the service oriented architecture,
offer a wealth of opportunities for dealing with these issues.
The YAWL system is based on a distributed architecture
that ensures that the design-time environment, workflow en-
gine, resource manager and worklist handlers that make up
the operational environment function independently of each
other and interact via defined interfaces. Moreover there are
a series of additional interfaces that allow custom services
to be developed for YAWL processes thus catering for fu-
ture operational enhancement and integration with external
systems and services.

5.7 User empowerment offers a range of opportunities
for improving process performance

Whilst there has been significant focus on the optimisation
of business processes from a global standpoint, in many
cases, it is the individual users responsible for complet-
ing specific activities within a process that are best posi-
tioned to identify opportunities for improvement. With this
in mind, it is potentially beneficial to furnish users with bet-
ter intelligence regarding the impact of their individual work
activities on the broader organisational process. This intelli-
gence may take a number of distinct forms. One approach is
based on the use of process mining which aims to provide
users with decision making information based on analysis
of preceding executions of the same process. A multitude
of different analysis techniques are possible however the
most important consideration when using these approaches
is ensuring that the necessary information is presented to
the user in a meaningful way at the time that they require
decision support. This approach can be especially power-
ful when linked with richer work list visualisation facilities
which provide workflow users with a much broader range

1 3

76 Russell and ter Hofstede

of information about outstanding work items when mak-
ing a decision as to which work item to execute next or
which work items need prioritising. To this end, research
is currently being conducted with YAWL which focuses on
integrating one of the most comprehensive process mining
offerings currently available (the ProM [11] suite of tools) in
order to provide better decision support for workflow users.
There is also research [38] investigating various approaches
for improving work list visualisation.

5.8 Simulation offers opportunities for validating
likely process performance

Typically one of the motivations for using workflow tech-
nology is that it offers the opportunity to automate complex
business processes with the expectation that they will deliver
more effective and efficient process performance. However
it can be difficult to establish at design-time whether a pro-
posed process model will actually function in accordance
with expectations. Indeed, it is often only at runtime that
the operational dynamics of a process become clear. Simu-
lation offers one opportunity for providing earlier validation
of likely process performance in a given application context.
By providing the ability to automatically execute large num-
bers of process instances for a given process model in an
environment that utilises realistic data values and distributes
work amongst a similar set of resources to those encoun-
tered in the target operating environment, vital insights can
be gained as to the probable performance of a given pro-
cess model and the opportunities that might exist for fur-
ther improving its performance. With these opportunities in
mind, research [45] is currently being conducted to provide
simulation capabilities for the YAWL system that allow ac-
curate prediction of potential short-term behaviours based
on analysis of the current state and historical information
analysed using the ProM offering.

5.9 Configurable reference models offer a means
of disseminating best practice knowledge

The use of reference models has long been advocated as
a means of distributing knowledge in regard to optimal pro-
cess designs for a given domain. Whilst the rationale for the
concept is sound, in practice however it is often found that
the specific context in which a reference model can be ap-
plied is extremely limited. As a remedy to this difficulty, the
notion of configurable reference models was proposed [44]
where the various configuration alternatives which might
exist for a given reference model are specifically encoded
within the model. In doing so, the generality of a given ref-
erence model is radically increased by allowing its use to be
tailored to a variety of specific scenarios. The notion of con-
figurable reference models has been adapted to the YAWL

environment and a set of configurable extensions have been
proposed for the YAWL language [29].

6 Epilogue

In this paper we have looked at YAWL’s roots in an histor-
ical context, promulgated its raison d’être, briefly outlined
its main ingredients and system support facilities, and exam-
ined the state of play in BPM, specifically identifying how
YAWL addresses some of the challenges this field currently
faces.

BPM has evolved considerably over the last decade and
there is increasing recognition that modelling languages
should be more expressive and provide comprehensive sup-
port for the control-flow, data, resource and exception hand-
ling perspectives, that they should be formally defined,
and that process automation environments should support
evolving business processes, empower users in their de-
cision making and offer sophisticated runtime as well as
post-execution diagnostics. It is hoped that YAWL can play
a guiding role in the future development of the BPM field.

Acknowledgement The authors would like to thank all members
of the YAWL Foundation for their assistance in the development of
YAWL. Particular thanks go to Wil van der Aalst as co-developer
of the YAWL language and his substantial contributions to both the
language and the support environment over the years.

This research is conducted in the context of the Patterns for
Process-Aware Information Systems (P4PAIS) project which is sup-
ported by the Netherlands Organisation for Scientific Research
(NWO).

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. van der Aalst W (1996) Three good reasons for using a Petri-net-
based workflow management system. In: Navathe S, Wakayama T
(eds) Proceedings of the International Working Conference on
Information and Process Integration in Enterprises (IPIC-96),
Cambridge, MA, pp 179–201

2. van der Aalst W (2000) Workflow Verification: Finding Control-
Flow Errors using Petri Net-Based Techniques. In: van der Aalst
W, Desel J, Oberweis A (eds) Proceedings of Business Pro-
cess Management: Models, Techniques and Empirical Studies.
Springer-Verlag, Lecture Notes in Computer Science, vol 1806,
pp 161–183

3. van der Aalst W (2003) Patterns and XPDL: A Critical Evaluation
of the XML Process Definition Language. QUT Technical report,
FIT-TR-2003-06, Queensland University of Technology, Brisbane

4. van der Aalst W, Basten T (2002) Inheritance of Workflows: An
Approach to Tackling Problems Related to Change. Theor Com-
put Sci 270(1-2):125–203

1 3

Surmounting BPM challenges: the YAWL story 77

5. van der Aalst W, van Hee K (2002) Workflow Management:
Models, Methods and Systems. MIT Press, Cambridge, MA

6. van der Aalst W, ter Hofstede A (2002) Workflow Patterns: On
the Expressive Power of (Petri-net-based) Workflow Languages.
In: Jensen K (ed) Proceedings of the Fourth International Work-
shop on Practical Use of Coloured Petri Nets and the CPN Tools,
University of Aarhus, Aarhus, Denmark, vol 560 of DAIMI, pp
1–20

7. van der Aalst W, ter Hofstede A (2005) YAWL: Yet another work-
flow language. Inf Syst 30(4):245–275

8. van der Aalst W, Pesic M (2006) DecSerFlow: towards a truly
declarative service flow language. In: Bravetti M, Nunez M, Za-
vattaro G (eds) International Conference on Web Services and
Formal Methods (WS-FM 2006), Springer, vol 4184, pp 1–23

9. van der Aalst W, ter Hofstede A, Kiepuszewski B, Barros A
(2003) Workflow patterns. Distrib Parall Databases 14(3):5–51

10. van der Aalst W, Weske M, Grünbauer D (2005) Case handling:
A new paradigm for business process support. Data Knowl Eng
53(2):129–162

11. van der Aalst W, van Dongen B, Günther C, Mans R, Alves de
Medeiros A, Rozinat A, Rubin V, Song M, Verbeek H, Weijters A
(2007) ProM 4.0: Comprehensive Support for real Process Analy-
sis. In: Kleijn J, Yakovlev A (eds) Petri Nets and Other Models
of Concurrency – ICATPN 2007, 28th International Conference
on Applications and Theory of Petri Nets and Other Models of
Concurrency, ICATPN 2007, Siedlce, Poland, 25–29 June 2007,
Proceedings, Springer, Lecture Notes in Computer Science, vol
4546, pp 484–494

12. van der Aalst W, Adams M, ter Hofstede A, Pesic M, Schonen-
berg M (2008a) Flexibility as a Service. Tech. Rep. BPM-08-09,
http://www.BPMcenter.org

13. van der Aalst W, van Hee K, ter Hofstede A, Sidorova N, Ver-
beek H, Voorhoeve M, Wynn M (2008b) Soundess of workflow
nets: Clasification, decidability, and analysis. Tech. Rep. BPM-
08-02, http://www.BPMcenter.org

14. Adams M (2007) Facilitating Dynamic Flexibility and Excep-
tion Handling for Workflows. PhD Thesis, Queensland Uni-
versity of Technology, Brisbane, Australia, available through
http://www.yawl-system.com

15. Adams M, ter Hofstede A, Edmond D, van der Aalst W (2006)
Worklets: A service-oriented implementation of dynamic flexi-
bility in workflows. In: Meersman R, Tari Z (eds) On the Move
to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, OTM Confederated International Conferences,
CoopIS, DOA, GADA, and ODBASE 2006, Montpellier, France,
29 October–3 November 2006. Proceedings, Part I., Springer,
Lecture Notes in Computer Science, vol 4275, pp 291–308

16. Adams M, ter Hofstede A, van der Aalst W, Edmond D (2007)
Dynamic, Extensible and Context-Aware Exception Handling for
Workflows. In: Meersman R, Tari Z (eds) On the Move to Mean-
ingful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS, OTM Confederated International Conferences CoopIS,
DOA, ODBASE, GADA, and IS 2007, Vilamoura, Portugal, 25–
30 November 2007, Proceedings, Part I, Springer, Lecture Notes
in Computer Science, vol 4803, pp 95–112

17. Alonso G (2005) Transactional Business Processes. In: Dumas M,
van der Aalst W, ter Hofstede A (eds) Process-Aware Information
Systems: Bridging People and Software through Process Technol-
ogy, Wiley-Interscience, New York, pp 257–278

18. Casati F, Ceri S, Pernici B, Pozzi G (1996) Workflow evolution.
In: Thalheim B (ed) Conceptual Modeling – ER’96, 15th Inter-
national Conference on Conceptual Modeling, Lecture Notes in
Computer Science, vol 1157, Springer, Cottbus, Germany, pp
438–455

19. Casati F, Ceri S, Paraboschi S, Pozzi G (1999) Specification and
implementation of exceptions in workflow management systems.
ACM Trans Database Syst 24(3):405–451

20. Casonato R (1998) Gartner group research note 00057684,
production-class workflow: A view of the market,
http://www.gartner.com

21. Charfi A, Mezini M (2006) Aspect-oriented workflow languages.
In: Meersman R, Tari Z (eds) On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM Con-
federated International Conferences, CoopIS, DOA, GADA, and
ODBASE 2006, Montpellier, France, 29 October–3 November
2006. Proceedings, Part I, Springer, Lecture Notes in Computer
Science, vol 4275, pp 183–200

22. Compton P, Jansen B (1988) Knowledge in context: A strategy
for expert system maintenance. In: Siekmann J (ed) Proceedings
of the 2nd Australian Joint Artificial Intelligence Conference,
Springer-Verlag, Adelaide, Australia, Lecture Notes in Artificial
Intelligence, vol 406, pp 292–306

23. Dehnert J, van der Aalst W (2004) Bridging the Gap Between
Business Models and Workflow Specifications. Int J Cooperat In-
form Syst 13(3):289–332

24. Dehnert J, Rittgen P (2001) Relaxed Soundness of Business Pro-
cesses. In: Dittrich K, Geppert A, Norrie M (eds) Proceedings
of the 13th International Conference on Advanced Information
Systems Engineering (CAiSE’01), Lecture Notes in Computer
Science, vol 2068, pp 157–170

25. Dufourd C, Finkel A, Schnoebelen P (1998) Reset Nets Be-
tween Decidability and Undecidability. In: Larsen K, Skyum S,
Winskel G (eds) Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming, Springer-
Verlag, Aalborg, Denmark, Lecture Notes in Computer Science,
vol 1443, pp 103–115

26. Eder J, Liebhart W (1996) Workflow recovery. In: Proceedings of
the First IFCIS International Conference on Cooperative Infor-
mation Systems (CoopIS’96), IEEE Computer Society, Brussels,
Belgium, pp 124–134

27. Ellis C, Keddara K, Rozenberg G (1995) Dynamic change within
workflow systems. In: COCS ’95: Proceedings of conference on
Organizational computing systems, ACM, New York, NY, pp 10–
21

28. Farrell A, Sergot M, Bartolini C (2006) Formalising workflow: A
CCS-inspired characterisation of the YAWL workflow patterns.
Group Decis Negot 61(3):213–254

29. Gottschalk F, van der Aalst W, Jansen-Vullers M, La Rosa M
(2008) Configurable workflow models. Int J Cooperat Inform
Syst 17(2):177–221

30. Grefen P, Vonk J (2006) A taxonomy of transactional workflow
support. Int J Cooperat Inform Syst 15(1):87–118

31. Hagen C, Alonso G (2000) Exception handling in workflow man-
agement systems. IEEE Trans Softw Eng 26(10):943–958

32. Jensen K (1997) Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use, vol 1, Basic Concepts. Monographs
in Theoretical Computer Science, Springer-Verlag, Berlin

33. Joeris G (1999) Defining flexible workflow execution behav-
iors. In: Dadam P, Reichert M (eds) Workshop Informatik ’99:
Enterprise-wide and Cross-enterprise Workflow Management:
Concepts, Systems, Applications, CEUR-WS.org, Paderborn,
Germany, CEUR Workshop Proceedings, vol 24, pp 49–55

34. Kammer P, Bolcer G, Taylor R, Hitomi A, Bergman M (2000)
Techniques for supporting dynamic and adaptive workflow. Com-
puter Supported Cooperative Work 9(3/4):269–292,
http://citeseer.ist.psu.edu/kammer98techniques.html

35. Kiepuszewski B, ter Hofstede A, van der Aalst W (2003) Funda-
mentals of control flow in workflows. Acta Inform 39(3):143–209

36. Kindler E (2006) On the semantics of EPCs: Resolving the vi-
cious circle. Data Knowl Eng 56(1):23–40

37. Klein M, Dellarocas C, Bernstein A (eds) (2000) Adaptive Work-
flow Systems, Special issue of the journal of Computer Supported
Cooperative Work, vol 9

1 3

http://www.BPMcenter.org
http://www.BPMcenter.org
http://www.yawl-system.com
http://www.gartner.com
http://citeseer.ist.psu.edu/kammer98techniques.html

78 Russell and ter Hofstede

38. de Leoni M, van der Aalst W, ter Hofstede A (2008) Visual sup-
port for work assignment in process-aware information systems.
In: Dumas M, Reichert M, Shan MC (eds) Business Process Man-
agement, 6th International Conference, BPM 2008, Milan, Italy,
2–4 September 2008. Proceedings, Springer, Lecture Notes in
Computer Science, vol 5240, pp 67–83

39. Mendling J, van Dongen B, van der Aalst W (2007) Getting Rid
of the OR-Join in Business Process Models. In: Proceedings of
the 11th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC’07), IEEE Computer Society, An-
napolis, Maryland, pp 3–14

40. Ouyang C, Dumas M, van der Aalst W, ter Hofstede A (2006)
From business process models to process-oriented software
systems: The BPMN to BPEL way. Tech. Rep. BPM-06-27,
http://www.BPMcenter.org

41. Ouyang C, La Rosa M, ter Hofstede A, Dumas M, Shortland K
(2008) Toward Web-Scale Workflows for Film Production. IEEE
Internet Computing 12(5):53–61

42. Reichert M, Rinderle S, Dadam P (2003) ADEPT workflow man-
agement system. In: van der Aalst W, ter Hofstede A, Weske M
(eds) Business Process Management, International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26–27, 2003, Pro-
ceedings, Springer, Lecture Notes in Computer Science, vol 2678,
pp 370–379

43. Reichert M, Rinderle S, Kreher U, Dadam P (2005) Adaptive pro-
cess management with ADEPT2. In: Proceedings of the 21st
International Conference on Data Engineering (ICDE’05), IEEE
Computer Society Press, Tokyo, Japan, pp 1113–1114

44. Rosemann M, van der Aalst W (2007) A configurable reference
modelling language. Inf Syst 32(1):1–23

45. Rozinat A, Wynn M, van der Aalst W, ter Hofstede A, Fidge C
(2008) Workflow simulation for operational decision support
using design, historic and state information

46. Russell N (2007) Foundations of Process-Aware Information Sys-
tems. PhD Thesis, Queensland University of Technology, Bris-
bane, Australia, available through http://www.yawl-system.com

47. Russell N, van der Aalst W, ter Hofstede A, Edmond D (2005a)
Workflow resource patterns: Identification, representation and
tool support. In: Pastor O, Falcão e Cunha J (eds) Proceedings of
the 17th Conference on Advanced Information Systems Engin-
eering (CAiSE’05), Springer, Porto, Portugal, Lecture Notes in
Computer Science, vol 3520, pp 216–232

48. Russell N, ter Hofstede A, Edmond D, van der Aalst W (2005b)
Workflow data patterns: Identification, representation and tool
support. In: Delcambre L, Kop C, Mayr H, Mylopoulos J, Pas-
tor O (eds) Proceedings of the 24th International Conference on
Conceptual Modeling (ER 2005), Springer, Klagenfurt, Austria,
Lecture Notes in Computer Science, vol 3716, pp 353–368

49. Russell N, van der Aalst W, ter Hofstede A (2006a) Workflow ex-
ception patterns. In: Dubois E, Pohl K (eds) Proceedings of the
18th International Conference on Advanced Information Systems
Engineering (CAiSE’06), Springer, Luxembourg, Luxembourg,
Lecture Notes in Computer Science, vol 4001, pp 288–302

50. Russell N, ter Hofstede A, van der Aalst W, Mulyar N (2006b)
Workflow control-flow patterns: A revised view. Tech. Rep.
BPM-06-22, http://www.BPMcenter.org

51. Schonenberg H, Mans R, Russell N, Mulyar N, van der Aalst W
(2007) Towards a taxonomy of process flexibility (extended ver-
sion). Tech. Rep. BPM-07-11, http://www.BPMcenter.org

52. Schonenberg H, Mans R, Russell N, Mulyar N, van der Aalst W
(2008) Process flexibility: A survey of contemporary approaches.
In: Dietz J, Albani A, Barjis J (eds) Advances in Enterprise En-
gineering I, 4th International Workshop CIAO! and 4th Inter-
national Workshop EOMAS, held at CAiSE 2008, Montpellier,
France, 16–17 June 2008. Proceedings, Springer, Lecture Notes
in Business Information Processing, vol 10, pp 16–30

53. Sheth A (1997) From contemporary workflow process automation
to adaptive and dynamic work activity coordination and col-
laboration. In: DEXA ’97: Proceedings of the 8th International
Workshop on Database and Expert Systems Applications, IEEE
Computer Society, Washington, DC, p 24

54. Verbeek H, van der Aalst W, ter Hofstede A (2007) Verifying
Workflows with Cancellation Regions and OR-joins: An Ap-
proach Based on Relaxed Soundness and Invariants. Comput J
50(3):294–314

55. Weber B, Reichert M, Rinderle-Ma S (2008) Change patterns and
change support features – Enhancing flexibility in process-aware
information systems. Data Knowl Eng 66(3):438–466

56. Weske M (2001) Formal foundation and conceptual design of dy-
namic adaptations in a workflow management system. In: HICSS
’01: Proceedings of the 34th Annual Hawaii International Confer-
ence on System Sciences (HICSS-34)-Volume 7, IEEE Computer
Society, Washington, DC, p 7051

57. Wynn M, Edmond D, van der Aalst W, ter Hofstede A (2005)
Achieving a general, formal and decidable approach to the OR-
join in workflow using Reset nets. In: Ciardo G, Darondeau P
(eds) Proceedings of the 26th International Conference on Ap-
plication and Theory of Petri nets and Other Models of Concur-
rency (Petri Nets 2005), Springer-Verlag, Miami, Lecture Notes
in Computer Science, vol 3536, pp 423–443

58. Wynn M, Edmond D, van der Aalst W, ter Hofstede A (2006) Ver-
ifying workflows with Cancellation Regions and OR-joins: An
Approach Based on Reset nets and Reachability Analysis. In:
Dustdar S, Fiadeiro J, Sheth A (eds) Proceedings of 4th Inter-
national Conference of Business Process Management, Springer-
Verlag, Vienna, Austria, Lecture Notes in Computer Science, vol
4102, pp 389–394

59. Zisman M (1977) Representation, specification and automation
of office procedures. PhD thesis, Wharton School of Business,
University of Pennsylvania, PA

Nick Russell has over 20 years
experience in the Australian IT
industry in a series of technical
and senior management roles. He
received his PhD from Queens-
land University of Technology in
2007 and is currently a Postdoc-
toral Fellow at Eindhoven Univer-
sity of Technology in The Nether-
lands. Nick has been the driving
force for the development of the
workflow data and resource pat-
terns and the recent revision of the
control-flow patterns. He is also
responsible for the development
of the newYAWL business process
reference language.

1 3

http://www.BPMcenter.org
http://www.yawl-system.com
http://www.BPMcenter.org
http://www.BPMcenter.org

Surmounting BPM challenges: the YAWL story 79

Arthur ter Hofstede received
his PhD from the University of
Nijmegen in the Netherlands in
1993. He is a Professor in the
Faculty of Information Technol-
ogy of Queensland University of
Technology and co-leader of its
BPM Group. Arthur is an original
and ongoing contributor to the
Workflow Patterns initiative and
he manages the YAWL initiative
at QUT.

1 3

	1 Introduction
	2 Design criteria
	3 Core YAWL
	4 The YAWL environment
	4.1 Development principles
	4.2 Operational overview
	4.3 Early adoption

	5 Reflections on the state of the art
	5.1 There is no common vocabulary for BPM concepts
	5.2 There is significant disparity between modelling and enactment tools
	5.3 The focus must shift from comprehensive modelling notations to enactment predictability
	5.4 BPM is more than just task coordination or workflow
	5.5 Business processes are inherently flexible in nature
	5.6 Business process enactment is increasingly complex
	5.7 User empowerment offers arange of opportunities for improving process performance
	5.8 Simulation offers opportunities for validating likely process performance
	5.9 Configurable reference models offer ameans of disseminating best practice knowledge

	6 Epilogue
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

