
1

A Novel Network Request Scheduler

for a Large Scale Storage System

1
Qian Yingjin,

2
Eric Barton,

2
Tom Wang,

2
Nirant Puntambekar,

2
Andreas Dilger

2

2
Lustre Group, Sun Microsystems, Inc.

1
National Laboratory for Parallel and Distributed Processing, China

{Yingjin.Qian, Eric.Barton, Tom.Wang, Nirant.Puntambekar, Andreas.Dilger}@Sun.Com

Abstract

This paper presents a novel Network Request Scheduler (NRS) for a large-scale, Lustre
 TM

 storage

system. It proposes a quantum-based, Object Based Round Robin (OBRR) NRS algorithm that

reorders the execution of I/O requests per data object, presenting a workload to backend storage

that can be optimized more easily. According to the drawback of static deadlines in large-scale

workloads, it proposes a novel, two-level deadline setting strategy that not only avoids starvation,

but also guarantees that urgent I/O requests are serviced in a specified time period. Via a series of

simulation experiments using a Lustre simulator, it demonstrates that I/O performance increases as

much as 40% when using the OBRR NRS algorithm, and the two-level deadline setting strategy

can avoid starvation and ensure that urgent I/O requests are serviced in the required time.

Keywords: Network Request Scheduler; Lustre; QoS; Large scale; Storage system

1 Introduction

I/O bottleneck has always been a major obstacle to achieve high performance in

high-performance computing (HPC) with the increasing use of HPC platforms and

the growing number of parallel I/O intensive scientific applications. The parallel

file system has helped ease the performance gap between I/O hardware and

processor/memory, but I/O remains an area needing significant performance

improvement.

As shown by several studies [2, 4], parallel I/O access uses recurrent, determined

patterns based on stride parameters that are good candidates for optimization.

Parallel I/O scheduling [1, 5] was proposed to exploit parallel I/O access patterns.

Lustre
TM

 is a leading technology in parallel I/O technologies and is an emerging

open source standard for scalable HPC and cluster computers, running on 7 of

Top 10 and 40% of the 100 largest HPC clusters in the world (as of October 2008

[TOP500]). Lustre provides excellent I/O throughput, but further improvements

are possible. This paper presents a novel Network Request Scheduler (NRS)

2

framework; a server-side scheduling strategy to optimize throughput with low

latency for parallel I/O workloads on large-scale Lustre clusters.

2 Lustre I/O Architecture

Building a Lustre cluster requires a Metadata Server (MDS) and Object Storage

Servers (OSSs), each with a backend file system. The MDS manages the name

and directories in the file system, is responsible for metadata operations, and

maintains file layout attributes containing the references of data objects on each

OSS. The OSSs provide file locking and data I/O services. File data may be

striped onto many data objects stored on an OSS (in the form of regular files with

intelligence on the backend file system), enabling fast, concurrent file write and

read capability. A pool of client systems implements POSIX file system interfaces

and access servers through one of many supported networks. Each server has a

thread pool to handle client requests in parallel, maximizing resource utilization.

The service thread count can vary from 2 to 512, depending on server load. Lustre

uses the Distributed Lock Manager (DLM) to support fine-grained locking for

efficient, concurrent file access. Based on the DLM, it implements client data

write-back cache. To access the data, the client obtains the file layout from the

MDS, and then transfers data directly to or from the OSS under DLM lock

protection, resulting in significantly enhanced performance.

Lustre I/O processing implements the scheduling policy and operates as follows:

the client sends an I/O request to the server; the request contains the target data

object ID, I/O offset, and count in object, etc. Upon receipt, the request is

enqueued, and waits for service. The server then dequeues the request (for

execution in the context of a service thread), and writes/reads the bulk I/O data

to/from disks through the network. Upon completion of the request, the server

sends a reply to the client. Requests are dispatched in default FCFS order.

3 Object Based Network Request Scheduler

In terms of data throughput, the best performance is achieved when disk access is

sequential. However, file systems cannot always place and access data

sequentially, since various applications have inherent data access patterns and are

limited by file system block allocation in sequential space allocation.

3

To meet the parallel I/O characteristics based on stride from multiple distributed

applications, Lustre developed a multiple block allocation (mballoc) [3] for its

backend file system that optimizes concurrent block allocations. Mballoc uses

pre-allocation technology to reduce the most time-intensive disk seeks by

allocating blocks contiguously and reducing file system fragmentation. The pre-

allocation region size per object is relatively large, reaching 8MB for a large file.

As shown in this paper [3], mballoc offers significant performance improvement,

especially for sequential access.

Figure 1 Performance surveys by sgpdd-survey for 2 tires DDN S2A 9550

We conducted considerable research on parallel I/O and observed performance

gains with large transfer size and data chunk. Oak Ridge National Laboratory

(ORNL) performed a series of surveys using the DDN S2A 9550 as the Lustre

backend storage device. As shown in Figure 1, ORNL used sgpdd-survey with

different concurrent regions, threads, and record sizes. The graphs illustrate that

performance decreases with the growth of concurrent I/O regions. Performance

improves slightly with increasing service threads and improves significantly with

the growth of record size. For a 4MB record size, performance improves 50%

compared with a 512K record size. To improve performance, Lustre breaks the

1MB bulk I/O limitation and implements a 4MB bulk I/O delivery through the

network, by aggregating several separated bulk data transfers with 1MB data into

a single I/O delivery request to the server. Figure 2 illustrates the paradigm of

4MB bulk I/O delivery. ORNL’s surveys show performance improvements as

high as 40%, compared with 1MB bulk I/O delivery. We determined that

delivering large I/O requests all the way down to the server block layer was

required to maximize RAID performance by reducing disk seeks significantly,

while 1MB bulk concurrent I/O requests from clients may arrive at servers in a

4

manner that discourages or even destroys sequential access. It was not necessary

to transfer bulk data in larger than 1MB chunks to maximize network throughput.

Although disk elevator scheduling [6] can optimize I/O requests by sorting and

merging them before they are submitted to the disk driver, the disk elevator is

implemented at a low level, without a global view of distributed applications

accessing the file system. Owing to the limit of the disk elevator’s queue depth,

relatively few I/O requests are candidates for request scheduling, compared to the

huge number of buffered I/O requests on the server.

Figure 2 4MB bulk I/O vs. 1MB bulk I/O Figure 3 NRS framework

NRS is a high-level scheduling policy, located between the network and backend

storage, which provides consistently improved performance. Figure 3 shows the

NRS framework. NRS manages incoming requests to a server by reordering

request execution to avoid starvation and to present a workload to the backend file

system that can be optimized more easily by the underlying disk elevator in the

manner of sorting or merging. The work set for scheduling is not the number of

service threads, but all of the queued requests on the server. Unlike large 4MB

bulk I/O suited only for a specific workload, NRS is an attractive strategy that can

be widely used to achieve a similar collective effect on I/O - using NRS at a high

level and the disk elevator at a low level. This combined request scheduling works

with small I/O requests and when accessing a file shared among different clients.

3.1 Object Based Round Robin NRS Algorithm

Based on the feature of block allocation, we propose an Object Based Round

Robin (OBRR) NRS algorithm. The principle is to order the execution of I/O

requests that belong to the same data object, by offset, as close as possible to

reduce disk seeks. The OBRR algorithm aims to provide scheduling strategies that

primarily optimize throughput, but have a concern for fairness and response time.

Network

Backend file system

Server Thread Pool

Incoming requests

Enqueue

Dequeue

Disk I/O elevator

Disk

Network Request Scheduler

client

OSS bulk data
bulk data
bulk data

bulk data
RPC request

client

OSS
bulk data

RPC request

5

Figure 4 Object Based Round Robin algorithm

The basic concept is illustrated in Figure 4. Each data object has two separate

queues (called object queues), which manage its incoming read/write requests,

respectively. Each server has a global FIFO queue (called Q), which manages the

object queue with outstanding I/O requests. When a new I/O request is received, it

is added to its corresponding object queue, sorted by an offset in object, and the

queue is inserted into the global Q if it is not already in it. Each object queue can

be considered a sub I/O scheduler in objects based on the elevator algorithm.

Under OBRR service, the queue per object is serviced in a round robin fashion.

In each round, each queue is provided with a fixed quantum of I/O service. The

quantum of service can be defined in terms of the number of serviced I/O requests

or the I/O amount in each round. It can be set statically or changed over time to

achieve adaptive resource allocation. At the beginning of each service round, the

head object queue is removed from Q, and becomes the work queue. Requests are

dequeued from the work queue for execution until the queue is emptied or its

associated quantum is exhausted. If the work queue uses up its quantum but is not

empty, it is added to the global Q again to wait for the next service round.

The service quantum per object queue is not be identical and if set differently,

results in differently weighted services. Lustre is targeted at development of a

next-generation cluster file system with 100,000s of nodes. The CPU utilization

needed to sort a huge number of requests, imposed by clients at large scale, was

the main concern when we designed the scheduling algorithm. In OBRR, the time

complexity of sorting is significantly reduced as requests are sorted in the object

queue, which is usually a small subset of the total number of queued requests.

3.2 Deadline setting strategies

Executing requests per object queue with a fixed quantum in round robin fashion

balances response time and maximizes I/O throughput among objects, but it

cannot ensure fairness in objects. As I/O requests to an object continue to arrive,

qn q3 q2 q1

req

req

req
…

req

req

req

…

req

req

req

…

. . .

wq

req

req …

req

Q
Data Object

r w

object queue

…

6

the elevator scheduling policy in the object queue ignores a request, for a long

time, because it prefers to handle other requests that are closer to the last served

one. To avoid starvation and ensure the fairness in objects, a deadline is

introduced to each I/O request.

A request deadline is set and starts ticking upon the request’s arrival. Its value is

the sum of the request’s arrival and expiration times. NRS services requests in

elevator order in an object queue unless a request’s deadline expires to prevent

starvation or to meet the requirement of response time, in which case it first

services any request with an expired deadline. To meet different I/O delivery

requirements, we designed two deadline setting strategies: a dynamic deadline and

a mandatory deadline.

In storage clusters with thousands of nodes, the average time a server takes to

handle an I/O request scales approximately linearly with the number of clients

contending for the shared resource disk bandwidth and varies over time. In the

extreme case, it may even reach hundreds of seconds. Obviously, a static

expiration time is no longer suitable for large scale workloads. We designed a

scalable dynamical deadline setting strategy for normal I/O requests according to

server load. To describe it more exactly, we define a triple

（ ）where represents the ith I/O count range window; represents

the record size associated with the window; represents the corresponding I/O

performance with record size on the backend storage (benchmarked

automatically at the time of server setup); represents the I/O amount of

outstanding and servicing requests for which the I/O count is in range

and tracked over time as I/O requests arrive and complete. The expiration time e is

calculated by the following formula:

;

where is the amplification factor, . With a slightly larger reasonable

expiration time, it could aggregate and present more contiguous I/O to the

backend storage. To reduce sorting, a global dynamic deadline FIFO queue is

introduced which includes I/O requests sorted according to their deadline. As the

server load decreases, the newly-set dynamic deadline value may be less than the

maximum deadline value in the deadline queue. At this time, it simply amends the

deadline to the maximum deadline value.

7

In Lustre clusters, a client may make urgent I/O requests, i.e., some I/O requests

resulting from a lock conflict to clean cache data on the client. During Lustre

usage, many timeouts resulting from such kinds of I/O requests have been

observed. They must be handled as soon as possible, especially when the server is

under heavy load. Otherwise, it causes a cascade of failures and impacts

performance. For these I/O requests, we propose a mandatory deadline strategy.

The client can indicate the maximum service time on the server to handle I/O

requests. The expiration time is mandatory and set to be the same as the indicated

maximum service time. In our implementation, all of the maximum service times

indicated by clients are the same. A separate global mandatory deadline FIFO

queue is used to manage the I/O requests with a mandatory deadline.

When dequeuing a request, the two deadline queues are checked. If there is a

request with an elapsed deadline, then that request is serviced first. The two level

deadline setting strategy avoids starvation of normal I/O with a dynamic deadline

guarantee, and ensures that urgent I/O can be serviced in the required time.

4 Evaluation

We used a Lustre simulator [7] to evaluate the NRS algorithms. We measured

principal metrics including I/O bandwidth, disk seeks and response time, etc. The

Lustre simulator was developed by Sun as a simulation platform to research

scalability, analyze I/O behaviors and design various algorithms at large scale. It

simulates disks, the Linux I/O elevator [6], a file system with mballoc block

allocation, a packet-level network, and three Lustre subsystems: client, MDS and

OSS. The Lustre simulator can simulate concurrent operations by 100,000 clients.

Figure 5 Performance comparison between FCFS and OBRR algorithms

To evaluate the OBRR algorithm, the experiment was designed as follows: raw

disk bandwidth 450MB/s with 10ms seek time to simulate the large-scale Jaguar

8

Lustre cluster, 8000 clients, 144 OSSs, each client writes/reads 32MB I/O, and the

quantum was defined to service 8 I/O requests per round. Figure 5 shows the

results between the FCFS and OBRR algorithms with transfer sizes from 64k to

1MB using the IOR file per processor access mode. With a 1MB transfer size,

FCFS aggregate read/write performance was 34.8GB/s and 34.4GB/s while

OBRR performance was 49.2GB/s and 48.6GB/s; average disk seeks dropped

dynamically from 240 to 75. Table 1 shows disk request size statistics after

merging by the disk elevator with a 1MB transfer size on 1 OSS. The 2MB disk

requests improved by 30% and 4MB disk requests increased to 21%. Average

disk seeks dropped dynamically, and the disk driver got much larger disk requests

using the OBRR algorithm. Aggregate performance improved by more than 40%.

Table 1 Disk request size statistics after merging by the disk elevator on one OSS

 request size

algorithm

1MB 2MB 4MB

count percent count percent count percent

FCFS 1758 99% 1 0% 0 0%

OBRR 485 47% 312 30% 217 21%

Figure 6 Trace of I/O RPC requests with two-level deadline setting strategy

To evaluate the deadline setting strategy, the experiment was designed as follows:

1000 clients each send 32M I/O with a 1MB transfer size to one OSS; the time

skew between clients to launch the I/O is 20s; an extra 50 clients generated 1MB

urgent I/O with an indicated maximum service time of 5s per 100ms interval, and

. In Figure 6, the left graph shows the trace of number of queued requests

on the server over time – the maximum number reaches almost 8000. In the right

graph, the curve “RT(d)” plots by using the requests’ completion time as the X

axis and the requests’ response time as the Y axis. It denotes the variation over

time of response time with the dynamic deadline setting policy; the maximal value

9

reaches nearly 25s. Similarly, the curve “ET(d)” denotes the variation over time of

the corresponding estimated expiration time and shows estimated expiration times

are large enough to collect contiguous I/O and setting values almost followed the

trend of the requests’ response time. The curve “RT(m)” denotes the variation

over time of response time of requests with a mandatory deadline setting policy. It

demonstrates response times are constant at about 5s and urgent requests can be

finished in the required time.

5 Conclusion

HPC servers must manage I/O resources efficiently and fairly among many

clients. In this paper, we presented an object based NRS for the Lustre file system.

We also designed a quantum-based OBRR algorithm with a deadline to schedule

intensive parallel I/O workloads on servers. Via experiments based on simulation

scaling up to thousands of clients, we demonstrated that this algorithm can

significantly maximize I/O throughput by reordering the execution of high-level

I/O requests to present a workload to the low-level disk elevator that can be

optimized more easily. It maintains fairness, avoids starvation and ensures the

response time requirement for I/Os with different urgencies using a quantum

based scheduling algorithm per object, together with a two-level deadline setting

policy. Based on the simulation, our next step will be to implement and evaluate

the NRS on large storage clusters in real-world environments.

References

[1] Adrien Lebre, G. Huard, Y. Denneulin. I/O Scheduling Service for Multi-Application Clusters.

Cluster, pp.1-10, 2006 IEEE international conference on Cluster Computing, 2006.

[2] P. E. Crandall. Input/output characteristics of scalable parallel applications. In Proceedings of

Supercomputing ’95, San Diego, CA, December 1995. IEEE Computer Society Press.

[3] Aneesh Kumar K. V. Ext4 block and inode allocator improvements. Proceedings of the Linux

Symposium, Volume One (July 23rd-26th, 2008 Ottawa, Ontario Canada).

[4] N. Nieuwejaar, D. Kotz. File-access characteristics of parallel scientific workloads. IEEE

Transactions on Parallel and Distributed Systems, 7(10):1075-1089, October 1996.

[5] R. Ross. Reactive scheduling for parallel i/o systems, PhD thesis, Dept. of Electrical and

Computer Engineering, Clemson University, Clemson, SC, December 2000.

[6] Seetharami Seelam. Enhancements to Linux I/O Scheduling. In Processing of the Linux

Symposium, Volume Two (July 20nd-23th, 2005 Ottawa, Ontario Canada).

[7] Lustre simulator. https://bugzilla.lustre.org/show_bug.cgi?id=%2013634.

© 2009 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, [insert all other Sun Product Names, Service Names, Program Names, Special Programs Logos, and slogans
listed in Tmark and referred to or displayed in the document] are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. [Include appropriate legends for

any third-party marks that are referred to or displayed in the document and listed in Tmark (because of contractual obligations).] Information subject to change without notice.

https://bugzilla.lustre.org/show_bug.cgi?id=%2013634

