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Abstract 

This paper presents a novel Network Request Scheduler (NRS) for a large-scale, Lustre
 TM

 storage 

system. It proposes a quantum-based, Object Based Round Robin (OBRR) NRS algorithm that 

reorders the execution of I/O requests per data object, presenting a workload to backend storage 

that can be optimized more easily. According to the drawback of static deadlines in large-scale 

workloads, it proposes a novel, two-level deadline setting strategy that not only avoids starvation, 

but also guarantees that urgent I/O requests are serviced in a specified time period. Via a series of 

simulation experiments using a Lustre simulator, it demonstrates that I/O performance increases as 

much as 40% when using the OBRR NRS algorithm, and the two-level deadline setting strategy 

can avoid starvation and ensure that urgent I/O requests are serviced in the required time. 
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1 Introduction 

I/O bottleneck has always been a major obstacle to achieve high performance in 

high-performance computing (HPC) with the increasing use of HPC platforms and 

the growing number of parallel I/O intensive scientific applications. The parallel 

file system has helped ease the performance gap between I/O hardware and 

processor/memory, but I/O remains an area needing significant performance 

improvement.  

As shown by several studies [2, 4], parallel I/O access uses recurrent, determined 

patterns based on stride parameters that are good candidates for optimization. 

Parallel I/O scheduling [1, 5] was proposed to exploit parallel I/O access patterns. 

Lustre
TM

 is a leading technology in parallel I/O technologies and is an emerging 

open source standard for scalable HPC and cluster computers, running on 7 of 

Top 10 and 40% of the 100 largest HPC clusters in the world (as of October 2008 

[TOP500]). Lustre provides excellent I/O throughput, but further improvements 

are possible. This paper presents a novel Network Request Scheduler (NRS) 
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framework; a server-side scheduling strategy to optimize throughput with low 

latency for parallel I/O workloads on large-scale Lustre clusters. 

2 Lustre I/O Architecture 

Building a Lustre cluster requires a Metadata Server (MDS) and Object Storage 

Servers (OSSs), each with a backend file system. The MDS manages the name 

and directories in the file system, is responsible for metadata operations, and 

maintains file layout attributes containing the references of data objects on each 

OSS. The OSSs provide file locking and data I/O services. File data may be 

striped onto many data objects stored on an OSS (in the form of regular files with 

intelligence on the backend file system), enabling fast, concurrent file write and 

read capability. A pool of client systems implements POSIX file system interfaces 

and access servers through one of many supported networks. Each server has a 

thread pool to handle client requests in parallel, maximizing resource utilization. 

The service thread count can vary from 2 to 512, depending on server load. Lustre 

uses the Distributed Lock Manager (DLM) to support fine-grained locking for 

efficient, concurrent file access. Based on the DLM, it implements client data 

write-back cache. To access the data, the client obtains the file layout from the 

MDS, and then transfers data directly to or from the OSS under DLM lock 

protection, resulting in significantly enhanced performance.  

Lustre I/O processing implements the scheduling policy and operates as follows: 

the client sends an I/O request to the server; the request contains the target data 

object ID, I/O offset, and count in object, etc. Upon receipt, the request is 

enqueued, and waits for service. The server then dequeues the request (for 

execution in the context of a service thread), and writes/reads the bulk I/O data 

to/from disks through the network. Upon completion of the request, the server 

sends a reply to the client. Requests are dispatched in default FCFS order. 

3 Object Based Network Request Scheduler 

In terms of data throughput, the best performance is achieved when disk access is 

sequential. However, file systems cannot always place and access data 

sequentially, since various applications have inherent data access patterns and are 

limited by file system block allocation in sequential space allocation.  
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To meet the parallel I/O characteristics based on stride from multiple distributed 

applications, Lustre developed a multiple block allocation (mballoc) [3] for its 

backend file system that optimizes concurrent block allocations. Mballoc uses 

pre-allocation technology to reduce the most time-intensive disk seeks by 

allocating blocks contiguously and reducing file system fragmentation. The pre-

allocation region size per object is relatively large, reaching 8MB for a large file. 

As shown in this paper [3], mballoc offers significant performance improvement, 

especially for sequential access. 

 

Figure 1 Performance surveys by sgpdd-survey for 2 tires DDN S2A 9550 

We conducted considerable research on parallel I/O and observed performance 

gains with large transfer size and data chunk. Oak Ridge National Laboratory 

(ORNL) performed a series of surveys using the DDN S2A 9550 as the Lustre 

backend storage device. As shown in Figure 1, ORNL used sgpdd-survey with 

different concurrent regions, threads, and record sizes. The graphs illustrate that 

performance decreases with the growth of concurrent I/O regions. Performance 

improves slightly with increasing service threads and improves significantly with 

the growth of record size. For a 4MB record size, performance improves 50% 

compared with a 512K record size. To improve performance, Lustre breaks the 

1MB bulk I/O limitation and implements a 4MB bulk I/O delivery through the 

network, by aggregating several separated bulk data transfers with 1MB data into 

a single I/O delivery request to the server. Figure 2 illustrates the paradigm of 

4MB bulk I/O delivery. ORNL’s surveys show performance improvements as 

high as 40%, compared with 1MB bulk I/O delivery. We determined that 

delivering large I/O requests all the way down to the server block layer was 

required to maximize RAID performance by reducing disk seeks significantly, 

while 1MB bulk concurrent I/O requests from clients may arrive at servers in a 
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manner that discourages or even destroys sequential access. It was not necessary 

to transfer bulk data in larger than 1MB chunks to maximize network throughput. 

Although disk elevator scheduling [6] can optimize I/O requests by sorting and 

merging them before they are submitted to the disk driver, the disk elevator is 

implemented at a low level, without a global view of distributed applications 

accessing the file system. Owing to the limit of the disk elevator’s queue depth, 

relatively few I/O requests are candidates for request scheduling, compared to the 

huge number of buffered I/O requests on the server. 

 

Figure 2 4MB bulk I/O vs. 1MB bulk I/O        Figure 3 NRS framework 

NRS is a high-level scheduling policy, located between the network and backend 

storage, which provides consistently improved performance. Figure 3 shows the 

NRS framework. NRS manages incoming requests to a server by reordering 

request execution to avoid starvation and to present a workload to the backend file 

system that can be optimized more easily by the underlying disk elevator in the 

manner of sorting or merging. The work set for scheduling is not the number of 

service threads, but all of the queued requests on the server. Unlike large 4MB 

bulk I/O suited only for a specific workload, NRS is an attractive strategy that can 

be widely used to achieve a similar collective effect on I/O - using NRS at a high 

level and the disk elevator at a low level. This combined request scheduling works 

with small I/O requests and when accessing a file shared among different clients. 

3.1 Object Based Round Robin NRS Algorithm 

Based on the feature of block allocation, we propose an Object Based Round 

Robin (OBRR) NRS algorithm. The principle is to order the execution of I/O 

requests that belong to the same data object, by offset, as close as possible to 

reduce disk seeks. The OBRR algorithm aims to provide scheduling strategies that 

primarily optimize throughput, but have a concern for fairness and response time.  
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Figure 4 Object Based Round Robin algorithm 

The basic concept is illustrated in Figure 4. Each data object has two separate 

queues (called object queues), which manage its incoming read/write requests, 

respectively. Each server has a global FIFO queue (called Q), which manages the 

object queue with outstanding I/O requests. When a new I/O request is received, it 

is added to its corresponding object queue, sorted by an offset in object, and the 

queue is inserted into the global Q if it is not already in it. Each object queue can 

be considered a sub I/O scheduler in objects based on the elevator algorithm. 

Under OBRR service, the queue per object is serviced in a round robin fashion.  

In each round, each queue is provided with a fixed quantum of I/O service. The 

quantum of service can be defined in terms of the number of serviced I/O requests 

or the I/O amount in each round. It can be set statically or changed over time to 

achieve adaptive resource allocation. At the beginning of each service round, the 

head object queue is removed from Q, and becomes the work queue. Requests are 

dequeued from the work queue for execution until the queue is emptied or its 

associated quantum is exhausted. If the work queue uses up its quantum but is not 

empty, it is added to the global Q again to wait for the next service round. 

The service quantum per object queue is not be identical and if set differently, 

results in differently weighted services. Lustre is targeted at development of a 

next-generation cluster file system with 100,000s of nodes. The CPU utilization 

needed to sort a huge number of requests, imposed by clients at large scale, was 

the main concern when we designed the scheduling algorithm. In OBRR, the time 

complexity of sorting is significantly reduced as requests are sorted in the object 

queue, which is usually a small subset of the total number of queued requests. 

3.2 Deadline setting strategies 

Executing requests per object queue with a fixed quantum in round robin fashion 

balances response time and maximizes I/O throughput among objects, but it 

cannot ensure fairness in objects. As I/O requests to an object continue to arrive, 
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the elevator scheduling policy in the object queue ignores a request, for a long 

time, because it prefers to handle other requests that are closer to the last served 

one. To avoid starvation and ensure the fairness in objects, a deadline is 

introduced to each I/O request. 

A request deadline is set and starts ticking upon the request’s arrival. Its value is 

the sum of the request’s arrival and expiration times. NRS services requests in 

elevator order in an object queue unless a request’s deadline expires to prevent 

starvation or to meet the requirement of response time, in which case it first 

services any request with an expired deadline. To meet different I/O delivery 

requirements, we designed two deadline setting strategies: a dynamic deadline and 

a mandatory deadline. 

In storage clusters with thousands of nodes, the average time a server takes to 

handle an I/O request scales approximately linearly with the number of clients 

contending for the shared resource disk bandwidth and varies over time. In the 

extreme case, it may even reach hundreds of seconds. Obviously, a static 

expiration time is no longer suitable for large scale workloads. We designed a 

scalable dynamical deadline setting strategy for normal I/O requests according to 

server load. To describe it more exactly, we define a triple 

（ ）where  represents the ith I/O count range window;  represents 

the record size associated with the window;  represents the corresponding I/O 

performance with record size  on the backend storage (benchmarked 

automatically at the time of server setup);  represents the I/O amount of 

outstanding and servicing requests for which the I/O count is in range  

and tracked over time as I/O requests arrive and complete. The expiration time e is 

calculated by the following formula: 

; 

where  is the amplification factor, . With a slightly larger reasonable 

expiration time, it could aggregate and present more contiguous I/O to the 

backend storage. To reduce sorting, a global dynamic deadline FIFO queue is 

introduced which includes I/O requests sorted according to their deadline. As the 

server load decreases, the newly-set dynamic deadline value may be less than the 

maximum deadline value in the deadline queue. At this time, it simply amends the 

deadline to the maximum deadline value. 
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In Lustre clusters, a client may make urgent I/O requests, i.e., some I/O requests 

resulting from a lock conflict to clean cache data on the client. During Lustre 

usage, many timeouts resulting from such kinds of I/O requests have been 

observed. They must be handled as soon as possible, especially when the server is 

under heavy load. Otherwise, it causes a cascade of failures and impacts 

performance. For these I/O requests, we propose a mandatory deadline strategy. 

The client can indicate the maximum service time on the server to handle I/O 

requests. The expiration time is mandatory and set to be the same as the indicated 

maximum service time. In our implementation, all of the maximum service times 

indicated by clients are the same. A separate global mandatory deadline FIFO 

queue is used to manage the I/O requests with a mandatory deadline.  

When dequeuing a request, the two deadline queues are checked. If there is a 

request with an elapsed deadline, then that request is serviced first. The two level 

deadline setting strategy avoids starvation of normal I/O with a dynamic deadline 

guarantee, and ensures that urgent I/O can be serviced in the required time. 

4 Evaluation 

We used a Lustre simulator [7] to evaluate the NRS algorithms. We measured 

principal metrics including I/O bandwidth, disk seeks and response time, etc. The 

Lustre simulator was developed by Sun as a simulation platform to research 

scalability, analyze I/O behaviors and design various algorithms at large scale. It 

simulates disks, the Linux I/O elevator [6], a file system with mballoc block 

allocation, a packet-level network, and three Lustre subsystems: client, MDS and 

OSS. The Lustre simulator can simulate concurrent operations by 100,000 clients. 

 

Figure 5 Performance comparison between FCFS and OBRR algorithms 

To evaluate the OBRR algorithm, the experiment was designed as follows: raw 

disk bandwidth 450MB/s with 10ms seek time to simulate the large-scale Jaguar 
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Lustre cluster, 8000 clients, 144 OSSs, each client writes/reads 32MB I/O, and the 

quantum was defined to service 8 I/O requests per round. Figure 5 shows the 

results between the FCFS and OBRR algorithms with transfer sizes from 64k to 

1MB using the IOR file per processor access mode. With a 1MB transfer size, 

FCFS aggregate read/write performance was 34.8GB/s and 34.4GB/s while 

OBRR performance was 49.2GB/s and 48.6GB/s; average disk seeks dropped 

dynamically from 240 to 75. Table 1 shows disk request size statistics after 

merging by the disk elevator with a 1MB transfer size on 1 OSS. The 2MB disk 

requests improved by 30% and 4MB disk requests increased to 21%. Average 

disk seeks dropped dynamically, and the disk driver got much larger disk requests 

using the OBRR algorithm. Aggregate performance improved by more than 40%.  

Table 1 Disk request size statistics after merging by the disk elevator on one OSS 

  request size 

algorithm 

1MB 2MB 4MB 

count percent count percent count percent 

FCFS 1758 99% 1 0% 0 0% 

OBRR 485 47% 312 30% 217 21% 

 

 

Figure 6 Trace of I/O RPC requests with two-level deadline setting strategy 

To evaluate the deadline setting strategy, the experiment was designed as follows: 

1000 clients each send 32M I/O with a 1MB transfer size to one OSS; the time 

skew between clients to launch the I/O is 20s; an extra 50 clients generated 1MB 

urgent I/O with an indicated maximum service time of 5s per 100ms interval, and 

. In Figure 6, the left graph shows the trace of number of queued requests 

on the server over time – the maximum number reaches almost 8000. In the right 

graph, the curve “RT(d)” plots by using the requests’ completion time as the X 

axis and the requests’ response time as the Y axis. It denotes the variation over 

time of response time with the dynamic deadline setting policy; the maximal value 
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reaches nearly 25s. Similarly, the curve “ET(d)” denotes the variation over time of 

the corresponding estimated expiration time and shows estimated expiration times 

are large enough to collect contiguous I/O and setting values almost followed the 

trend of the requests’ response time. The curve “RT(m)” denotes the variation 

over time of response time of requests with a mandatory deadline setting policy. It 

demonstrates response times are constant at about 5s and urgent requests can be 

finished in the required time. 

5 Conclusion 

HPC servers must manage I/O resources efficiently and fairly among many 

clients. In this paper, we presented an object based NRS for the Lustre file system. 

We also designed a quantum-based OBRR algorithm with a deadline to schedule 

intensive parallel I/O workloads on servers. Via experiments based on simulation 

scaling up to thousands of clients, we demonstrated that this algorithm can 

significantly maximize I/O throughput by reordering the execution of high-level 

I/O requests to present a workload to the low-level disk elevator that can be 

optimized more easily. It maintains fairness, avoids starvation and ensures the 

response time requirement for I/Os with different urgencies using a quantum 

based scheduling algorithm per object, together with a two-level deadline setting 

policy. Based on the simulation, our next step will be to implement and evaluate 

the NRS on large storage clusters in real-world environments. 
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