
Computer Science Research and Development manuscript No.
(will be inserted by the editor)

Models and Internals of the IANOS Resource Broker

Vincent Keller1
· Hassan Rasheed1

· Oliver Wäldrich1
· Wolfgang

Ziegler1
· Ralf Gruber2

· Marie-Christine Sawley3
· Philipp Wieder4

Received: date / Accepted: date

Abstract We present the Intelligent Application Ori-
ented System (IANOS) resource broker models and in-

ternals. The aim of IANOS is to provide an understand-

ing of and a solution to the problem of how to find the

best resource (best in the sense “at a given moment and
for the requirements of that specific application”) for a

given submitted application in order to better use a

set of HPC resources (an HPCN Grid). The heart of

IANOS is a cost model that minimizes the overall sub-

mission cost such as execution time cost, waiting time
cost, licenses cost, energy cost, etc.. To estimate the

execution time cost, a model that predicts the perfor-

mance of an application on a resource is provided. This

model is based on a parameterization of the applica-
tion and the resources. IANOS has been deployed and

tested successfully on an international testbed across

Switzerland and Germany.

Keywords HPCN Application · Resource Brokering ·
Cost Model · Grid Efficiency

1FhG SCAI, Schloss Birlinghoven,
D-53754 Sankt-Augustin, Germany
E-mail: Vincent.Keller@scai.fraunhofer.de

2EPFL - Laboratory of Computational Engineering
CH-1015 Lausanne, Switzerland
E-mail: Ralf.Gruber@epfl.ch

3PH Departement/32/3-026
CERN
CH-1211 Geneve 23, Switzerland
E-mail: sawley@cern.ch

4TU Dortmund - ITMC
August-Schmidt Strasse 12
D-44227 Dortmund, Germany
E-mail: philipp.wieder@edu.udo

1 Introduction

*** I do not understand the message of this section

fully. I agree to the initial statement. Then, you take

Swiss resources as an example and present numbers
partly far below 100% while you mention the resources

being overbooked? ***

Harvesting the statistics of utilization of the HPC

centers is often impossible. These critical (sometimes

strategical) data are jealously kept from public view.

Let us take a regional example with Switzerland where
the ratio [GFlops] per capita is one of the highest in the

world, the various Swiss high performance resources are

over-booked. The Swiss National Supercomputing Cen-

ter (CSCS) reports that the average usage of their four
biggest resources in 2006 is over 60 % [3]. At EPFL

(Swiss Federal Institute of Technology in Lausanne),

the DIT (central computing center) reports usage of

more than 50 % for 2007 on their three biggest re-

sources [4,5] while the PLEIADES clusters (three de-
partmental-size clusters) reports usage of more than 80

% for the year 2007. See Table 1.

One can assume that the situation is quite similar

in the other world-wide HPC centers.

There is currently little feedback about applications

that are not adapted to the hardware infrastructure,

and little incentive to do so: if, for instance, a user no-
tices that the network is too slow and hampers the per-

formance of its application, he may try to find another

resource to run it. On the other hand, when he runs an

embarrassingly parallel application on a costly NUMA
architecture, he will probably not recognize this as a

problem.

2

Machine type #Nodes location Annual
usage in [%]

NEC SX-5 16 CSCS 62.75

IBM SP-4 256 CSCS 65.74

Cray XT3 1664 CSCS 88.00

IBM p690 768 CSCS 55.79

Dalco Dual-Opteron 448 EPFL-DIT 79.93

SGI Altix 16 EPFL-DIT 48.97

IBM BlueGene/L 8192 EPFL-DIT 75.40

Dalco Woodcrest 24 EPFL-DIT 53.17

Dell Xeon 3000 Serie 120 EPFL-GM 92.00

Dell Xeon 5150 Serie 99 EPFL-GM 92.00

Logics Pentium IV 132 EPFL-GM 83.00

Table 1 Usage of the resources in several HPC sites in Switzer-
land for the year 2007 (2006 for CSCS). The Swiss National Su-
percomputing Center CSCS, the Computing Center at EPFL-
DIT and the departmental-size clusters Pleiades at Institute of
Mechanical Engineering at EPFL

The groundbreaking idea of IANOS is to offer a tool

that can be used to (1) better schedule the HPC appli-

cation submissions on the expensive HPC resources, (2)

use the HPC resources on the needs of the HPC appli-
cations, (3) help users or developers to improve their

application, (4) a tool to forecast the future optimal

resources’ type based on the current and future appli-

cations needs and finally (5) reduce power consumption.

The paper is organized as follows. Section 2 presents

the parameterization of both the applications and the

resources. These parameterization is mandatory for the

heart of the algorithm used by the IANOS resource bro-
ker and presented in Section 3. To predict the execution

time cost, we present in Section 4 a performance predic-

tion tool and an execution time evaluation model that

takes into account the relevant input parameters of a
given application as well as the characteristics of the

target architecture. First results are presented in Sec-

tion 5 while Section 6 acts as a conclusion and a future

work survey.

2 Parameterization

In [2] and [7], the authors present a parameterization of

the resources and the application. They introduce two

metrics (Γ and κ) that give a value for the fitting of the

needs of an application in regards to what a resource
offers. A short survey of this model follows.

The parameterization of the applications is generic.

It is possible to describe a components-based applica-
tion, each component could be parallel or not. The

SpecuLOOS test case is a components-based applica-

tion where the number of components is equal to one.

2.1 Parameterization of an application

It is supposed that a parallel application component

Ck is well equilibrated, i.e. each parallel task takes the

same computation and communication times during the

execution. In this case, the component Ck can be char-

acterized by:

– O: Number of operations [Flop]

– W : Number of main memory accesses [words]

– Z: Number of messages sent over the communica-

tion network
– S: Number of words sent over the communication

network

– ra: Peak node processor performance in [GFlops]

– Ra: Real node processor performance in [GFlops]

– Va: Number of operations per word in cache [Flop/word]
– γa: Number of operations per word sent over the

network in [Flop/word]

– nsd: Number of parallel tasks (often subdomains)

into which the component can be decomposed

One Flop (Flop) is a word long operation (such

as an ADD or a MUL). A word (word) can be defined

as 64 bits (8 Bytes). This implies that all operations

are performed in double precision. The parameter Va

[Flop/word] can be defined as [2]

Va =
O

W
, (1)

and γa [Flop/word] by

γa =
O

S
. (2)

These two parameters Va and γa are critical to main

memory access and network communication, respec-
tively. In fact, the programmer of the application com-

ponent should maximize Va and γa. The bigger Va the

closer to peak performance runs the processor, whereas

small values of Va characterize components that are

dominated by main memory bandwidth. The bigger γa,
the less critical communication. The latency of the in-

terconnection network can play an important role in

the performance [7]. This implies that Z should be as

small as possible, and message size S should be as large
as possible.

The quantity nsd is often defined by a domain de-

composition technique in which the geometry is cut
into subdomains such that each subdomain can be dis-

cretized by a structured mesh. Structured meshes show

best node performance efficiencies.

3

2.2 Parameterization of a resource

An HPC resource ri is considered as a homogeneous set

of P computational nodes Pi, each connected with the

others with at least one interconnection network.

A computational node Pi is characterized by:

– NCPU : Number of processors per node

– Ncore: Number of cores per processor

– mnode: Main memory size per node in number of

words

– R∞: Peak processor performance of a node [GFlops]
– gp: Efficiency of core: Relation between real to peak

processor performance

– M∞: Peak main memory bandwidth of the node

[Gwords/s]
– MM : Real main memory bandwidth [Gwords/s]

– gM : Efficiency of the motherboard: Relation between

real to peak main memory bandwidth

The measured main memory bandwidth

MM = gM M∞ (3)

can differ quite substantially from the peak memory

bandwidth M∞ and can vary in NUMA-like compu-

tational nodes. If main memory is local MM is larger

than if data resides on an other processor. The param-
eter gM depends on the maturity of the motherboard

and on the compiler.

The quantity

VM =
R∞

M∞

. (4)

is the maximum number of operations a node can achieve

during one LOAD or one STORE (moving one operand

from main memory to the lowest level cache or back).
Typically, VM is between 5 and 12 for RISC processors.

The peak performance per node of an application

component can be characterized by

ra = min(R∞, M∞Va) = R∞ min(1,
Va

VM

) . (5)

Here, the quantity ra measures the so-called peak per-

formance, i.e., the performance an application compo-
nent can never reach. If ra is memory access dominated,

i.e. if

Va <
VM

gM

(6)

the real performance Ra of the component is given by

Ra = gM ra . (7)

It was found that gM generally drops with the num-

ber of cores. This can be due to the maturities of the

motherboards and the compilers. If

Va >
VM

gM

(8)

the measured performance is given by

Ra = gpR∞ , (9)

where gp is independent of M∞ and Ncore, but depends

on the implementation of the algorithm. This quantity

can vary quite substantially. For a LINPACK/LAPACK

benchmark that is dominated by DGEMM operations,
gp > 0.7, but if the same matrix-matrix operation is

Fortran or C++ compiled, gp < 0.25.

Let us assume that a resource ri is a homogeneous
machine, for instance, a cluster made of nodes with

the same characteristics, as SMP machines, NUMA ma-

chines, workstations, PS3, or even laptops.

A Grid resource (or simply resource) ri can be
characterized by:

– P : Number of nodes connected to the network

– R: Total peak performance of the resource ri [GFlops]

– M : Total memory of the resource ri [Gwords]

– C∞: Maximum bandwidth of one link [Gwords/s]

– ℓ: Total number of network links
– b∞: Maximum achievable network bandwidth per

node [Gwords/s]

– Vc: R∞/b∞ [Flop/word]

– B: Message size such that transfer time = latency
time [words]

– C: Total peak intercommunication network(s) com-

munication bandwidth [Gwords/s]

– L: Latency of the network [ns]

– 〈d〉: Average distance between nodes in the inter-
connection network

– γM : Maximum number of operations possible during

one data transfer [Flop/word]

Then,

R = PR∞ (10)

M = Pmnode

C = ℓC∞ .

One can in addition define

b∞ =
C

P 〈d〉
=

ℓC∞

P 〈d〉
(11)

to be the average network communication bandwidth

per node [Gwords/s], by

Vc =
R∞

b∞
(12)

4

the number of operations the processor can maximally

perform during the time needed to send one operand

from one node to another node [Flop/word], and

B = b∞L . (13)

This last parameter B in [words] is the message size

that takes one latency time to be transferred from one

node to another node.

Also per node, we can now compute the CPU time

tcomp, the time tb for network communication, and the

latency time tL, all in seconds [s] by

tcomp =
O

Ra

(14)

tb =
S

b∞
tL = LZ .

Since we suppose that the parallel tasks of the compo-

nent are well equilibrated,

Texec = tcomp + tb + tL = tcomp + tcomm = te − ts (15)

Texec corresponds to the time between the start of ex-

ecution, ts, and the end of execution, te, and tcomm is

the total network communication time. Here, we sup-
pose that no overlap between computation and commu-

nication is possible. This clearly overestimates the total

execution time.

The quantity

γM =
Ra

ba

(16)

expresses the number of operations per word sent over

the network for an application. The IT literature com-
monly defines the communication time as

tcomm =
S

b∞
+ LZ =

S

ba

(17)

where

ba =
Sb∞

S + LZb∞
(18)

is the real application network bandwidth. ba = ba(σ)
with σ = S

Z
includes the latency.

we can now introduce the quantity

Γ =
γa

γM

. (19)

This quantity is at the origin of the so-called Γ -model [2]:
Γ is 1 if the computation and the communication take

the same time, Γ = ∞ if there is no communication

(i.e. S = Z = 0), and Γ = 0 if there is no computation.

2.3 The Γ − κ model

It is now possible to present the matching rule: the Γ –

κ model. This model extends the capabilities of the Γ

model [2,7] where:

Γ =
γa

γM

. (20)

We remind that the quantity γa expresses the intercon-

nection needs of the application and γM defines what

the network can give.

On the other hand, we define κ

κ =
Va

VM

, (21)

where the quantity Va expresses the main memory band-

width needs of the application and VM defines the max-

imum node memory bandwidth.

We claim that using Eqs. [20, 21], it is possible to

express the fitness of the resources to the application
needs. Table 2 summarizes the Γ − κ model. One can

easily see that given Γ , it is also possible to determine

if the application is parallel or not (or embarrassingly

parallel); given κ, if the application needs a high mem-
ory bandwidth or a high peak performance processor

node.

*** I most probably miss something but the text in

each line of the table is identical while the formulas are

referring to the two complementary parts of a set ***

Γ ≤ 1 Γ > 1

κ ≤ 1 The node performance
is bounded by the peak
memory bandwidth
M∞. tcomm ≥ tcomp.

The node perfor-
mance is bounded
by the peak mem-
ory bandwidth M∞.
tcomm << tcomp

κ > 1 The node performance
is bounded by the peak
CPU performance R∞.
tcomm ≥ tcomp.

The node performance
is bounded by the peak
CPU performance R∞.
tcomm << tcomp.

Table 2 Decision table for the application’s fitness based on
their needs. We search resources with κ > 1 and Γ > 1

3 Cost Model

The heart of the IANOS Resource Broker is an objec-

tive function based on one criterion which is the overall

cost of a submission of an application. This cost in-
cludes computing cost on the target resource. It also

includes licenses cost, data transfer cost, ecological cost

and waiting time cost. The brokering algorithm tries to

5

minimize the objective function.

The choice of a well suited resource depends (among

other quantities) on a Quality of Service (QoS) requested

by the user. Some users would like to obtain the result of
their application execution as soon as possible, regard-

less of costs, some others would like to obtain results for

a given maximum cost, but in a reasonable time, and

some others for a minimum cost, regardless of time.

We will describe here in a few words the various

elements that compose that objective function z being

able to satisfy users’ QoS request. This cost function de-

pends on costs due to the execution of the application
on the resource, denoted by Ke, license fees Kl, energy

consumption and cooling Keco, waiting results time Kw,

and amount of data transferred Kd. All these quanti-

ties depend on the application components (Ck), on the
per hour costs (Ki) on resource (ri) with altogether Pi

computational nodes, and on the number of processors

(Pk) used in the computation for each component. The

user can prescribe the two constraints KMAX (maxi-

mum cost) and TMAX (maximum turn around time).
The optimization problem writes:

min z = βKw

(

n
⋃

k=1

(Ck, ri, Pk)

)

+

n
∑

k=1

FCk
(ri, Pk)

∀ 1 ≤ k ≤ n (22)

such that
n
∑

k=1

(

Ke(Ck, ri, Pk, ϕ) + Kl(Ck, ri, Pk)

+ Keco(Ck, ri, Pk) + Kd(Ck, ri, Pk)
)

≤ KMAX

max(tdk,i) − min(t0k) ≤ TMAX

(ri, Pk) ∈ R(Ck),

where

FCk
(ri, Pk) = αk

(

Ke(Ck, ri, Pk, ϕ) + Kl(Ck, ri, Pk)
)

+ γk

(

Keco(Ck, ri, Pk)
)

+ δk

(

Kd(Ck, ri, Pk)
)

[ECU] , (23)

αk, β, γk, δk ≥ 0, (24)

αk + β + γk + δk > 0, (25)

and R(Ck), k = 1, ..., n is the eligible set of resources

for application’s component Ck. We express the money

quantity as Electronic Cost Unit ([ECU]) knowing that
a non-trivial “Supply and Demand” mechanism is lead-

ing the worlds’ currencies system if one takes into ac-

count an international Grid system. This was the case

for the first IANOS testbed across Germany (Euros)

and Switzerland (Swiss Francs). The quantities t0k and

tdk,i represent the job submission time and the time

when the user gets the result, respectively.

In our model, the parameters αk, β, γk, and δk

are used to weight the different terms. They can be

fixed by the users and/or by a simulator and repre-

sent the mathematical formulation of the QoS given by
the users for each submission. For instance, by fixing

αk = γk = δk = 0 and β 6= 0, one can get the result

as rapidly as possible, independent of cost. By fixing

β = 0 and αk, γk, δk 6= 0, one can get the result for

minimum cost, independent of time. These four param-
eters have to be tuned according to the policies of the

computing centers and user’s demands. For instance,

increasing β will increase usage of underused resources.

One recognizes that a simulator is needed to estimate
these parameters.

In fact, the user’s (resource consumer) and the com-

puting center’s (resource provider) interests are comple-

mentary, the first ones would like to get a result as soon
as possible and for the smallest costs, and the second

ones would like to get highest profit and a reasonable

usage of their resources. A simulator will be used to try

to satisfy both. This implies a constant tuning of the
free parameters.

4 Performance and Execution Time models

To compute the execution time cost Ke, it is fundamen-

tal to predict how long the execution will last. Thus, it

depends on the performance of a given application on

a resource. It is supposed that the application-relevant
parameters O, S, Z defined in Section 2 are resource-

independent. They vary with the problem size. We esti-

mate their complexities for the DGEMM (full matrix-

matrix multiplication), SMXV (sparse matrix × vec-

tor multiplication) and SpecuLOOS [1] (a spectral and
mortar element analysis toolbox for the numerical so-

lution of partial differential equations and more par-

ticularly for solving incompressible unsteady fluid flow

problems) applications to be:

O(N1, N2, N3) = a1N1N
(a2)
2 N

(a3)
3

Z(N1, N2, N3) = b1N1N
(b2)
2 N

(b3)
3

S(N1, N2, N3) = c1N1N
(c2)
2 N

(c3)
3 .

The integer N1 denotes the number of time steps,

the number of iterations, or more generally the num-

ber of times the algorithm is executed. The integer N2

6

describes a matrix size, or characterizes an algorithm

for which the complexity is not known. These numbers

must be given by the user or specified in the input files

at submission time. Table 6 (page 8) shows an example

of O, S and Z for the SpecuLOOS application. This
spectral code is aimed at direct numerical simulation

(DNS) or large eddy simulation (LES) of incompress-

ible fluid flow problems. The computational load is di-

rectly related to the discretized Navier-Stokes equations
in space and time. Therefore, the algorithm has a com-

plexity that can be measured by three major quantities.

These are N1 the time step of the time integrator, N2

the number of spectral elements and finally the polyno-

mial degree of the Lagrangian interpolants is N3. More
details on the numerical method can be found in [1]

The parameters ai, bi, ci, i = 1, ..., 3 are computed

by means of minimization processes using measurements
made in the past. Measurements of O, Z, and S for

at least three different values of Ni are needed to de-

termine them. In this example we concentrate on the

CPU time, thus finding ai. Since these parameters de-

fine the number of operations, they are independent of
the hardware on which the execution has been made.

This means that when we know O and the resource-

dependent parameters, it is possible to predict the CPU

time for three different values of N1, N2 and N3 for a
different resource.

The total number of operations is

O(Texec) =

Nt
∑

i=1

O(i∆t) (26)

The execution time Texec can be found at the end of

the execution, and the number of operations performed

in each time slot i of size ∆t is delivered by the Mon-
itoring Module of IANOS and enables to compute the

total number of operations performed. To improve the

values of ai and to adjust them to possible modifica-

tions in the hardware and the basic software such as

an improvement of the compiler or the used libraries,
these parameters are determined by an optimization

procedure. The error function

Φ =

Nc
∑

i=1

wi(Oi − Ri
aPiEiTi)

2 (27)

is minimized. Here, Nc is the number of execution data

that is considered, Ri
a is the average CPU performance

(FLOPS/s) delivered by the Monitoring Module, Pi is

the number of processors, Ei is the efficiency or the
CPU usage, Ti is the measured CPU time used, and

wi is a weight that varies in time. The older the execu-

tion time measurement is, the smaller wi is. This makes

it possible to take into account improvements of hard-

ware, compilers, or libraries.

The minimization procedure consists of the resolu-
tion of the system for ai:

∂Φ

∂ai

= 0, ∀i (28)

The variable a1 is linear and can be eliminated. The

non-linear equations for ai, i = 2, 3 are solved using

a Levenberg-Marquardt nonlinear least-squares algo-

rithm.

5 First results

To test the IANOS framework, we choose SpecuLOOS [1].

SpecuLOOS uses a small amount of main memory. Par-

allelization is made in order to reduce the high overall

computing time. The number of elements and the poly-
nomial degrees in the three space directions are denoted

by Nx, Ny, and Nz, and px, py, and pz, respectively.

There are Nx × Ny × Nz elements for a 3D test case.

For the purpose of simplicity, we assume that

N2 = 3

√

Nx × Ny × Nz

N3 = max(px − 1, py − 1, pz − 1) = p (29)

while N1 denotes the number of time steps of the sim-

ulation. Then, the number of operations per iteration

step is thought to be proportional to Eq. 30

O(N1, N2, N3, NCG) ≈ N1NCGN3.0
2 N4.0

3 [GFlop] (30)

where NCG is the number of conjugate gradient itera-

tions.

5.1 SpecuLOOS on one computational node

First of all we run SpecuLOOS on one node, thus no

communication is taken into account. We consider only

computation. One time iteration of SpecuLOOS is di-

vided into three main parts: (1) computes the tentative

velocity (through a Helmholtz equation solved by pre-
conditioned conjugate gradient method), (2) computes

the pressure (through a sophisticated conjugate gradi-

ent) and (3) corrects the tentative velocity. More than

90 % is spent in the second part (the conjugate gra-
dient). The execution time is spent essentially in the

pressure computation of step (2).

7

Texec NCG TCG
TCG

Texec
TCG,1

N1 N2 N3 [s] # iter [s] [s]

1 6 7 40.1 198 32.8 0.818 0.17
1 6 9 119.3 247 103.8 0.870 0.42
1 8 5 43.2 205 33.9 0.785 0.17
1 8 7 116.4 268 106.7 0.917 0.40
1 8 9 394.3 344 342.3 0.868 1.00
1 10 5 105.2 259 83.4 0.793 0.32
1 10 7 311.0 339 265.4 0.853 0.78

Table 3 SpecuLOOS on one node of Pleiades2. The number
of conjugate gradient iterations NCG is an average value over
all time steps for the pressure. TCG,1 is the time spent in one
iteration of the conjugate gradient

Table 3 presents the results of SpecuLOOS on one
node of the Pleiades2 cluster. In this table we concen-

trate on the behavior of one iteration of the conjugate

gradient TCG,1. We can then compute the behavior of

the code with NCG. Based on these results, we get the
scaling law shown in Eq. 31.

TCG = 2.01 · 10−6 · N1 · NCG · N
(2.9)
2 · N

(3.3)
3 (31)

TCG depends on N1, N2, N3 and NCG. Compar-

ing Eq. 31 with the theoretical scaling law (Eq. 30),

we realize that the scaling with respect to the number

of elements is the same whereas some lower exponent is
obtained for the polynomial degree. We have to mention

here that the number of conjugate gradient iterations

steps depends on N2 and N3 and on other parameters

that affect the matrix condition. Due to this fact, we
need to include all the operations over all the conjugate

gradient steps in the scaling law. Then we get Eq. 32.

Texec = 1.15 · 10−5 · N1 · N
(3.91)
2 · N

(4.19)
3 (32)

Texec depends on N1, N2 and N3. As a consequence,

NCG = 5.72 · N1.01
2 · N0.9

3 .

5.2 SpecuLOOS in parallel

SpecuLOOS is a parallel code that uses MPI. We de-

velop a small library that catches all the MPI calls.

Then, analyzing the arguments, it is straightforward to
measure the S and Z quantities for a specific run. We

have to mention here that the IANOS Monitoring Mod-

ule includes a modified kernel that automatically save

the S, Z and O quantities. For these first results, the
Monitoring Module was not available on all the produc-

tion resources.

The execution time evaluation model (ETEM) au-

thorizes to predict Texec with a different number of com-

putational nodes. Table 4 presents the results by vary-

ing N2 and N3 with a different number of nodes (here

P = 16). Table 5 presents the results of the same case
(N1 = 1, N2 = 8 and N3 = 7) but with different values

of P .

Texec

[s]
N1 N2 N3 meas. estim. δ

1 8 7 10.6362 10.1316 0.0498
1 10 7 26.1612 26.6085 0.0168
1 12 7 53.8883 57.2796 0.0592
1 14 7 98.0889 107.4067 0.0867
1 16 7 166.7650 181.9406 0.0834
1 18 7 264.0150 285.0532 0.0738
1 8 9 29.5992 33.0406 0.1041
1 8 11 83.2354 92.3402 0.0986
1 8 13 228.7220 232.5157 0.0163
1 8 15 538.2590 543.3537 0.0093

Table 4 Execution Time Evaluation Model on Pleiades2. P =
16, N2 and N3 vary.

Texec

[s]
N1 N2 N3 P meas. estim. δ

1 8 7 2 71.05 81.06 0.123
1 8 7 4 38.33 40.52 0.054
1 8 7 8 20.82 20.26 0.027
1 8 7 16 10.63 10.13 0.049
1 8 7 32 6.17 5.06 0.219

1 8 7 64 3.99 2.53 0.577

Table 5 Variation of the number of nodes P with the same case
N2 = 8, N3 = 7 and N1 = 1. Texec = T (N1, N2, N3) ∗ (32/P).
The reference value is P = 32 (in bold).

6 Conclusion and future work

This paper presents a new and original approach for

resource brokering in a HPC Grid environment based

on the needs of the applications. Grid resources and

HPC applications are parameterized so that it is pos-
sible to quantify what an application needs and what

a resource provides. With a non-trivial resource bro-

kering algorithm based on a cost function, it is then

possible to pinpoint the best suited resource for a sub-
mitted application at a given time. The cost function

estimates the total cost of an application on potential

resources in the Grid. To do that, the execution time

8

Texec Z S
[s] # [MBytes]

N1 N2 N3 meas. estim. δ meas. estim. δ meas. estim. δ

1 8 7 6.17 5.06 0.219 2745 3352 0.221 28.69 42.92 0.496
1 10 7 15.72 12.84 0.183 6783 5922 0.127 74.12 79.57 0.074
1 12 7 29.90 28.98 0.031 8067 7908 0.019 141.41 140.24 0.008
1 14 7 54.02 54.97 0.017 9459 8649 0.085 249.26 239.22 0.041
1 16 7 89.48 92.14 0.029 5629 8136 0.445 389.99 399.08 0.023
1 18 7 143.06 140.96 0.014 8354 6797 0.186 657.67 655.40 0.003
1 8 9 15.67 15.55 0.008 3435 4324 0.259 88.94 69.47 0.219
1 8 11 45.06 45.20 0.000 5361 5108 0.047 96.96 102.88 0.061
1 8 13 114.72 116.15 0.001 6267 5669 0.095 148.20 143.26 0.033
1 8 15 273.14 273.00 0.000 5553 6005 0.082 180.97 190.72 0.054
1 8 17 600.10 600.03 0.000 6199 6133 0.011 249.54 245.33 0.017

Table 6 Values of the Performance Prediction Model for the SpecuLOOS framework for one iteration. N1 represents the number of
time steps, N2 the number of elements in each directions (Nx = Ny = Nz = N2) and N3 the polynomial degree of the Lagrangian
interpolants (with px − 1 = py − 1 = pz − 1 = N3). The resource was Pleiades2 (a commodity cluster based on Xeon Serie 3000
processors and a GbE interconnection network). P = 32 for all the validation set.

of the application is predicted using an application’s

behavior model, input parameters and historical moni-
tored data. The scaling rules of the application are used

to predict the execution time. These rules can also be

used to pinpoint poorly implemented algorithms if ones

knows the theoretical scaling rule of a given application.

As far as we know, no other Grid-level resource bro-

ker is able to choose a resource based on the needs of the

application. Even if some are “application-oriented”,

none of them try to quantify the needs of the appli-
cations and what the resources offer. The IANOS re-

source broker implements all the models and features

developed in this paper. More detailed on the imple-

mentation can be found in [6].

Several adjustements must be done in the perfor-

mance and execution time evaluation models. The model

has been validated with a parallel application (Specu-

LOOS) but also with other applications’ kernels (such
as matrix-matrix multiplication or sparse matrix × vec-

tor multiplication). We need to validate the model on

other types of applications. We need a simulator to fine

tune the weight parameters in the cost function.

References

1. Y. Dubois-Pélerin, V. Van Kemenade, M. O. Deville, An
Object-Oriented Toolbox for Spectral Element Analysis, J. Sci.
Comput.,14,1, pp. 1–29, 1999

2. Gruber, R. Volgers, P. De Vita, A. Stengel, M. Tran, T.-M.,
Parameterisation to tailor commodity clusters to applications,
Future Generation Computer Systems, 19, pp. 111–120, 2003

3. CSCS : Swiss National Supercomputing Centre,Annual Re-
port, 2006

4. Menu J., EPFL DIT HPC Clusters - batch statistics, web-
site, [Accessed on July 31, 2008] http://dithpcbatch.epfl.

ch/BatchStatistics.html, 2008

5. Jeaunin M.EPFL BG/L Utilisation by Group (January 2007
- December 2007), website : http://hpc.epfl.ch/Members/

mjaunin/bgl2007.pdf/download, [Accessed on July 31, 2008],
2008

6. H. Rasheed, R. Gruber, V. Keller, W. Ziegler, O. Wäldrich,
P. Wieder, P. Kuonen, M-C. Sawley, S. Maffioletti P. Kunszt,
IANOS : An Intelligent Application Oriented Scheduling Mid-
dleware For An HPCN Grid, CoreGRID serie Grid Computing,
pp. 237 – 248, Springer, 2008

7. Keller Vincent, Optimal Application-Oriented Resource Bro-
kering in a High Performance Computing Grid (PhD thesis),
4221, EPFL, Lausanne (Switzerland) (2008)

