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Abstract We present a PDE-constrained optimization algo-
rithm which is designed for parallel scalability on distrib-
uted-memory architectures with thousands of cores. The
method is based on a line-search interior-point algorithm
for large-scale continuous optimization, it is matrix-free in
that it does not require the factorization of derivative matri-
ces. Instead, it uses a new parallel and robust iterative linear
solver on distributed-memory architectures. We will show
almost linear parallel scalability results for the complete
optimization problem, which is a new emerging important
biomedical application and is related to antenna identifica-
tion in hyperthermia cancer treatment planning.
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1 Introduction

Biomedical hyperthermia cancer treatment is a promising
therapeutical option in oncology [12]. Various types of can-
cer can be treated by heating the tumor to about 45 ◦C using
non-ionizing radiation (microwaves). It makes the tumor
more susceptible to an accompanying radio or chemother-
apy. Heating tumors above a temperature of about 45 ◦C
results in preferential killing of tumor cells and makes them
more susceptible to an accompanying radio or chemo ther-
apy. Modern hyperthermia applicators operating at around
100 MHz provide a larger number of antennas for which the
amplitude and phase can be controlled independently which
permits shifting the focus and preventing hotspots. The op-
timal hyperthermia treatment planning can be formulated
as a nonlinear optimization problem, in which the Pennes
Bio-heat equations [13] appear as important constraints –
a mathematical task known as PDE-constrained optimiza-
tion. Solving the PDE constrained optimization problem
presents a frontier problem in scientific computing. The
size, complexity and infinite-dimensional nature of PDE-
constrained optimization problems present significant chal-
lenges for general purpose optimization algorithms and, typ-
ically, Tikhonov regularization, iterative solvers, precondi-
tioning, inexactness and parallel implementations are neces-
sary to cope with the numerical challenges.

For designing an individually optimal therapy, ampli-
tudes and phases of the antennas have to be selected such
that the tumor temperature is maximized up to a target ther-
apeutical temperature Tther of 43 ◦C. In order not to damage
healthy tissue, certain temperature constraints have to be re-
spected. The induced temperature distribution is essentially
described by the elliptic bio heat transfer equation [13]. The
aim is to predict the temperature distribution T (state vari-
ables) which depends on the complex control of the anten-
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nas ui and Ei (control variables). This leads to the following
large-scale nonlinear optimal PDE control problem and the
goal is to minimize the objective function [12]:

F =
∫

x∈Ωt

(Tther − T)2 dΩ +
∫

x �∈Ωt,T>Thealth

(T − Thealth)
2 dΩ

(1a)

subject to

−∇ · (k∇T)+ρbρω(T − Tb) = ρσ

2

∣∣∣∣∣
∑

i

ui Ei

∣∣∣∣∣
2

in Ω

(1b)

k∂nT = qconst on ∂Ω (1c)

T |Ω/Ωt < Tlim (1d)

min{|ui|} ≥ α max{|ui |} . (1e)

Here, k is the thermal conductivity, ρ the density (ρb:
blood density), ω the perfusion rate, σ the electrical con-
ductivity, T the temperature and Tb the arterial blood tem-
perature and these tissue parameters depend also on the tem-
perature. Ω is the part of the patient’s body that is affected,
Ωt ⊂ Ω is the domain occupied by tumor tissue. The com-
plex control of antenna is defined by ui and Ei and the tem-
perature is Tther = 43 ◦C, Thealth = 42 ◦C and Tlim = 44 ◦C.
α depends on the HTP applicator that is used in the therapy.

In our application there is great interest in solving opti-
mization problems of extremely large sizes. Since the con-
straints of the problem correspond to a discretized biomed-
ical PDE, the accuracy of the optimization solution with
respect to this infinite-dimensional problem is directly re-
lated to size of the largest discrete approximate problem
that can be solved. One possible alternative for large-scale
optimization is to reduce the original problem into one of
a smaller size through a process of nonlinear elimination [9,
23]. This process involves an iteration for determining an
optimal set of control variables. For each set of controls,
the equality constraints in (1b) are solved for the remain-
ing state variables, and an auxiliary system may be solved
for the sensitivities of the state variables with respect to
the controls. The remainder of the iteration involves only
the computation of a displacement in the controls. Algo-
rithms of this type, however, suffer from a number of various
setbacks. For example, if a large number of iterations are re-
quired to find an optimal set of control variables, then such
a procedure requires a large number of exact solutions of
the equality constraints (a PDE) and the adjoint equations
(another set of PDEs).

The challenge is thus to design a constrained optimiza-
tion algorithm that emulates an efficient nonlinear program-
ming approach. The algorithm may utilize matrix-vector
products with the constraint Jacobian, its transpose, and the

Hessian of the Lagrangian together with appropriate precon-
ditioners – quantities that are computable for many large-
scale applications of interest – but must overcome the fact
that exact factorizations of derivative matrices are impracti-
cal to obtain. Iterative linear system solvers present a viable
alternative to direct factorization methods, but the benefits
of these techniques are only realized if inexact step com-
putations are controlled appropriately in order to guarantee
global convergence of the algorithm.

Figure 1 shows the parallel biomedical framework of our
application. In a first step, the Maxwell equation has to be
solved in order to determine the electric magnetic fields.
The overall EM fields will be used in the Pennes-Bio heat
equation (1b) and the optimal temperature distribution can
be computed by changing the phase and amplitude of each
antenna of the hyperthermia applicator. Interior point opti-
mization methods will be used for the nonlinear optimiza-
tion problem. They have been proven to be a very efficient
class of methods for inequality constrained finite dimen-
sional optimization. An inexact Newton pathfollowing al-
gorithm is constructed on the base of an efficient inexact
scheme in the primal-dual barrier interior-point optimizer
IPOPT [22] and the parallel linear system solver PSPIKE.
The framework of inexact Newton methods yields accuracy
requirements on the discretization error used to control the
Newton iteration.

Recent advances in optimization algorithms [4–7, 22]
combined with scalable robust appropriate precondition-
ers will result in PDE-constrained optimization applications
that can often scale to millions of optimization variables.

Fig. 1 Overview of the hyperthermia treatment planning process
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We note that our method has much in common with the
algorithms in [2, 3, 10] as we follow a full-space, or all-at-
once, approach for PDE-constrained problems. The major
difference, however, is that we have presented in [7] con-
ditions that guarantee the global convergence of the inexact
optimization algorithm. In this paper, we will use this inex-
act primal-dual barrier interior-point optimizer IPOPT [22]
and add a new scalable and robust solver – PSPIKE. It will
be used to solve a large-scale biomedical PDE-constrained
optimization application in parallel on distributed-memory
architectures. Figure 2 shows different temperature dis-
tributions for two different hyperthermia patient models
during the optimization process. The results have been com-
puted using the parallel algorithms that are described in the
next sections. The underlying framework of the new solver

Fig. 2 Patient model and simulated energy absorption temperature distribution. The images show different temperature distributions within the
iteration of our parallel PDE-constrained optimization process

PSPIKE is based on the well-known shared-memory paral-
lel sparse direct solver PARDISO [18, 19], which typically
scales up to eight to sixteen cores. In order to address scal-
ability up to thousands of cores, the new solver PSPIKE
has been very recently developed and represents a signifi-
cant extension to existing parallel methods. In this paper, we
will show almost linear scalability results for the complete
optimization application up to 256 cores.

2 Primal-dual barrier interior-point optimization

After applying a finite-difference discretization, the PDE-
constrained optimization problem (1) can be transformed
into a nonlinear programming problem (NLP) given by
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a nonconvex objective function f(x) : Rn → R and con-
straint functions c(x) :Rn →Rm , which are both assumed to
be twice continuously differentiable. The objective is to find
a local solution of the optimization problem.

min
x∈Rn

f(x) (2a)

s.t. c(x) = 0 and xL ≤ x ≤ xU . (2b)

Growing interest in efficient optimization methods has led
to the development of interior-point or barrier methods
for large-scale nonlinear programming. In particular, these
methods provide an attractive alternative to active set strate-
gies in handling problems with large numbers of inequal-
ity constraints. Over the past 15 years, there has also been
a much better understanding of the convergence properties
of interior-point methods and efficient algorithms and robust
software codes e.g. [22] have been developed with desirable
global and local convergence properties. Given the original
problem in the form (2), a sequence of corresponding bar-
rier problems,

min
x∈Rn

ϕµ(x) = f(x)−µi
n∑

k=1

ln(x(k)) (3a)

s.t. c(x) = 0 , (3b)

is solved to increasingly tighter tolerances, while again the
barrier parameter µ is driven to zero. Interior-point method
computes the solution equivalently by first solving a smaller,
symmetric, indefinite linear system
[

W̃k Ak

AT
k 0

](
∆xk

∆λk

)
= −

(∇ϕµ(xk)+ Akλk

c(xk)

)
. (4)

The vectors λ and z are the Lagrangian multipliers for the
equality and bound constraints, and X and Z denote the
diagonal matrices with the vector elements of x and z on the
diagonal. Here Ak = ∇c(xk), and Wk denotes the Hessian
∇xxL(x, λ, z) of the Lagrangian function for the original
problem (2),

L(x, λ, z) := f(x)+ c(x)Tλ− z . (5)

The search directions are obtained from solving the linear
system (4) where W̃k is an approximation of the Hessian of
the Lagrangian for the barrier problem (3).

Therefore, the computational efficiency of all PDE con-
strained optimization applications strongly depends on the
efficiency of the numerical linear algebra kernel to solve
the symmetric indefinite Karush–Kuhn–Tucker systems of
optimality (Eq. 4). In recent years, a large amount of work
has been devoted to the problem of solving large symmetric
indefinite systems (Eq. 4) in saddle-point form efficiently.
One reason for this surge in interest is due the success of
interior-point methods in nonlinear programming, which at

their core require the solution of a series of linear sys-
tems in saddle-point form. In this work, we will focus on
a new method – the PSPIKE algorithm – which represents
a highly scalable parallel solver on distributed memory ar-
chitectures.

3 The scalable PSPIKE algorithm

3.1 The basic SPIKE algorithm

Let Ax = f be a nonsymmetric diagonally dominant sys-
tem of linear equations where A is of order n and band-
width 2m +1. Unlike classical banded solvers such as those
in Lapack which are based on LU-factorization of A, the
spike algorithm [1, 8, 14, 16, 17] is based on the factoriza-
tion A = D × S, in which D is a block-diagonal matrix and
S is the spike matrix as shown in Fig. 3 for three partitions.
Note that the block diagonal matrices A1, A2, and A3 are
nonsingular by virtue of the diagonal dominance of A. For
the example in Fig. 3, the basic Spike algorithm consists of
the following stages.

• Stage 1: Obtain the LU-factorization (without pivoting)
of the diagonal blocks Aj (i.e. Aj = LjUj, j = 1, 2, 3).

• Stage 2: Forming the spike matrix S and updating the
right hand side
(i) solve L1U1[V1, g1] = [( 0

B1
), f1]

(ii) solve L2U2[W2, V2, g2] = [( C2
0 ), ( 0

B2
), f2]

(iii) solve L3U3[W3, g3] = [( C3
0 ), f3]

fj , i ≤ j ≤ 3, are the corresponding partitions of the right
hand side f .

• Stage 3: Solving the reduced system,

⎡
⎢⎢⎢⎣

I V (b)
1 0 0

W (t)
2 I 0 V (t)

2

W (b)
2 0 I V (b)

2

0 0 W (t)
3 I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x(b)
1

x(t)
2

x(b)
2

x(t)
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g(b)
1

g(t)
2

g(b)
2

g(t)
3

⎤
⎥⎥⎥⎦ (6)

where (V (b)
i , W (b)

i ) and (V (t)
i , W (t)

i ) are the bottom and
top m × m blocks of (Vi, Wi), respectively. Similarly,
g(b)

i , g(t)
i and x(b)

i , x(t)
i are the bottom and top m elements

Fig. 3 Decomposition where A = D × S, S = D−1 A, Bj , Cj ∈ Rm×m
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of each gi and xi , respectively. Once the much smaller re-
duced system is solved, via a dense system solver, say,
the three partitions xi , i = 1, 2, 3, of the solution x are
obtained as follows:
(i) x1 = g1 − V1x(t)

2
(ii) x2 = g2 − W2x(b)

1 − V2x(t)
3

(iii) x3 = g3 − W3x(b)
2 .

Clearly, the above basic scheme may be made more efficient
if in stage 2 one can generate only the bottom and top m ×m
tips of the spikes Vi and Wi , as well as the corresponding
bottom and top tips of gi . In this case, once the reduced
system is solved, solving the system Ax = f is reduced to
solving the independent systems:

(i) L1U1x1 = f1 − B1x(t)
2

(ii) L2U2x2 = f2 −C2x(b)
1 − B2x(t)

3

(iii) L3U3x3 = f3 −C3x(b)
2 .

If the matrix A is not diagonally dominant, we cannot guar-
antee that the diagonal blocks Ai are nonsingular. However,
if we obtain the LU-factorization, without pivoting, of each
Ai using diagonal boosting (perturbation), then

LiUi = (Ai + δAi) (7)

in which ||δAi|| = O(ε||Ai||) where ε is the unit roundoff.
In this case, we will need to solve Ax = f using an outer it-
erative scheme with the preconditioner being the matrix M
which is identical to A except that each diagonal block Ai is
replaced by LiUi in (7). Solving systems of the form My = r
is accomplished via the Spike scheme outlined above.

3.2 The PSPIKE scheme

The PSPIKE scheme can be used for solving general sparse
systems as follows. First, the sparse matrix A is reordered
via a nonsymmetric reordering scheme that assures none of
the diagonal elements is zero, followed by a weighted re-
ordering scheme which brings as many of the largest elem-
ents as possible inside a narrow central band M. Using
a Krylov subspace method, e.g. BiCGStab [21], for solving
Ax = f , with the extracted banded preconditioner M. The
major operations in each iteration are: (i) matrix-vector mul-
tiplication, and (ii) solving systems of the form My = r. The
systems My = r are solved using our proposed algorithm:
PSPIKE as follows:

The LU-factorization of each diagonal block partition
Mi (banded and sparse within the band) is obtained using
PARDISO [18, 19] without pivoting but utilizing diagonal
boosting. The most recent version of PARDISO is also ca-
pable of obtaining the top and bottom tips of the left and
right spikes Ŵi and V̂i , as well as the corresponding tips of
the updated right hand side subvectors. Further, having the
largest elements within the band, whether induced by the

reordering or occur naturally, allows us to approximate (or
truncate) the resulting reduced system by its block diagonal,
Ŝ = diag(Ŝ1, Ŝ2, . . . , Ŝp), where p is the number of parti-
tions and,

Ŝj =
[

I V̂ (b)
j

Ŵ (t)
j+1 I

]
. (8)

This also enhances parallelism especially when M is of
a large bandwidth. For a more detailed discussion of the
decay rate of spikes and the truncated Spike algorithm
we refer the reader to [11]. In the following section we
will demonstrate the suitability of PSPIKE solver for im-
plementation on clusters consisting of several nodes in
which each node is of multicore architecture. Thus, while
PARDISO is scalable on a single node only, PSPIKE is
scalable across multiple nodes.

3.3 The PSPIKE algorithm for solving linear systems
arising in biomedical PDE-constrained optimization

The linear systems that are extracted from the nonlinear sol-
ver has the following block structure
⎡
⎣D BT

HCT

B C 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ f1

f2

f3

⎤
⎦ (9)

where D ∈Rn×n is diagonal and Dii > 0 for i = 1, 2, . . . , n.
Furthermore H ∈ Rk×k is symmetric positive definite and
C ∈ Rk×n is dense with k 	 m. B ∈ Rn×n is nonsymmetric
banded and sparse within the band.

Premultiplying the above equation by

[
D−1

H−1

I

]
we

get
⎡
⎣ I B̃T

I C̃T

BC 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ f̂1

f̂2

f3

⎤
⎦ (10)

where B̃T = D−1 BT, C̃T = H−1CT, f̂1 = D−1 f1 and f̂2 =
H−1 f2. Rearranging the rows and columns, we have the sys-
tem,
⎡
⎣ I B̃T 0

B 0 C
0C̃T I

⎤
⎦

⎡
⎣x1

x3

x2

⎤
⎦ =

⎡
⎣ f̂1

f3

f̂2

⎤
⎦ . (11)

Observing that
[

I B̃T

B 0

]−1

=
[

0 B−1

B̃−T −B̃−T B−1

]
(12)

we can see that x2 can be obtained by solving the small sys-
tem,

(H + JT DJ)x2 = (
f2 − JT f1 + JTDb

)
(13)
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Table 1 Parallel scalability (total optimization time in seconds) for the PDE-constrained interior-point optimization process. N represents the num-
ber of discretization points, “Nodes” is a dual-quad core Intel Harpertown processor, and “Threads” is the number of threads used on each node.
“Direct” indicate the optimization process using an exact step computation, whereas “Inexact” indicates step computation based on PSPIKE

N Threads Nodes = 1 Nodes = 4 Nodes = 8 Nodes = 16 Nodes = 32 Nodes = 64
(direct) (inexact) (inexact) (inexact) (inexact) (inexact)

1 32 107 2016 1024 507 † †
753 4 10 033 786 262 133 † †

8 7830 629 198 114 † †
1 ‡ 60 861 33 812 17 796 9132 6066

1503 4 ‡ 20 287 10 821 5393 4072 3881
8 ‡ 14 490 7246 4138 1923 1596

The symbol † indicates convergence problems, and ‡ shows that the optimization problem could not be
solved due a high memory consumption of the direct solver

where J and b are obtained by solving BJ = C and Bb = f3,
respectively. Consequently, x1 and x3 can be computed via
x1 = b− Jx2 and x3 = B−T ( f1 − Dx1). The solution process
requires solving linear systems with the coefficient matrices
BT and B. We use BiCGStab with a banded preconditioner to
solve these systems, in which the systems involving the pre-
conditioner are solved via thePSPIKE scheme we described
above. In the next section we will illustrate the scalability
of the above method for solving those systems that arise in
biomedical PDE-constrained optimization problems.

4 Results

The distributed-memory test platform is a cluster with In-
finiband interconnection. Each node has 16 Gb of memory
and two Intel Harpertown processors where each processor
contains four cores that run at 2.8 GHz. The BiCGStab itera-
tions for solving systems involving BT and B are terminated
when ||r̂k||∞/||r̂0||∞ < εin where r̂0 and r̂k are the initial re-
sidual and the residual at the kth iteration, respectively, and
the systems involving the preconditioners are solved via the
PSPIKE scheme described above.

Table 1 shows the parallel scalability (total optimization
time in seconds) for the complete interior-point optimiza-
tion process for an artificial Hyperthermia biomedical model
problem described in [20]. N represent the number of spa-
tial discretization points, “Nodes” is a dual-quad core Intel
Harpertown processors, and threads is the number of threads
used on each node. “Direct” indicate the optimization pro-
cess using an exact step computation, and “Inexact” indicate
step computation based on PSPIKE. It can be observed
that almost linear scalability has been reached. The larg-
est PDE-constrained optimization problem contains more
than 6 750 000 optimization variables and it can be solved
in 1597 s using 512 Intel Xeon cores (64 nodes with each
8 cores).

A real 3D hyperthermia model with over 1.8 million
temperature variables in the NLP problem in (1). We con-
sider linear systems extracted from the first, tenth (mid-

dle), and twenty first (last) iterations. However, since the
results are uniform across these three systems, we present
in Fig. 4 the results for the linear system of the tenth New-
ton iteration.1 Figure 4 depict the speed improvement for
a MPI/OpenMP hybrid implementation (8 cores (threads)
per MPI processes) of the PSPIKE scheme. We demon-
strate the speed improvement of the PSPIKE scheme for
two stopping criteria, 10−5 and 10−7. The corresponding
final relative residuals are O(10−5) and O(10−7), respec-
tively, which is sufficient to ensure the convergence of the
inexact interior-point optimization process. For PARDISO
and MUMPS the final relative residuals are O(10−12). Our
new solver PSPIKE shows excellent scalability compared
to these two state-of-the-art parallel solvers.

5 Conclusion

We have presented a PDE-constrained interior-point algo-
rithm for large-scale hyperthermia cancer treatment plan-
ning. The novel aspects of the approach is that we are
using a globally convergent optimization method [7] and
also using a new scalable linear solver PSPIKE, which is
designed to scale-up to thousands of cores. We have demon-
strated that PSPIKE is an effective extension of PARDISO
regarding parallel scalability on distributed-memory ar-
chitectures. The experiments illustrate the computational
advantages of our algorithm, and it is shown that the PDE-
constrained optimization algorithm and implementation
outperforms conventional approaches in terms of storage
and CPU time for challenging linear systems arising in
biomedical applications.
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Fig. 4 The speed improvement of
PSPIKE compared to PARDISO and
MUMPS up to 256 cores. The base-line is
the performance of PARDISO using one
core (1.338 seconds)
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