
Improving the Availability of Supercomputer Job Input Data Using Temporal Replication

Chao Wang∗ Zhe Zhang∗ Xiaosong Ma∗† Sudharshan S. Vazhkudai† Frank Mueller∗

Abstract
Supercomputers are stepping into the Peta-scale and Exa-

scale era, wherein handling hundreds of concurrent system
failures is an urgent challenge. In particular, storage system
failures have been identified as a major source of service in-
terruptions in supercomputers. RAID solutions alone cannot
provide sufficient storage protection as (1) average disk recov-
ery time is projected to grow, making RAID groups increas-
ingly vulnerable to additional failures during data reconstruc-
tion, and (2) disk-level data protection cannot mask higher-
level faults, such as software/hardware failures of entireI/O
nodes. This paper presents a complementary approach based
on the observation that files in the supercomputer scratch
space are typically accessed by batch jobs, whose execution
can be anticipated. Therefore, we propose to transparently,
selectively, and temporarily replicate ”active” job inputdata,
by coordinating the parallel file system with the batch job
scheduler. We have implemented the temporal replication
scheme in the popular Lustre parallel file system and eval-
uated it with both real-cluster experiments and trace-driven
simulations. Our results show that temporal replication al-
lows for fast online data reconstruction, with a reasonably
low overall space and I/O bandwidth overhead.

1 Introduction
Coping with failures is a key issue to address as we scale

to Peta- and Exa-flop supercomputers. The reliability and us-
ability of these machines rely primarily on the storage sys-
tems providing the scratch space. Almost all jobs need to
read input data and write output/checkpoint data to the sec-
ondary storage, which is usually supported through a high-
performance parallel file system. Jobs are interrupted or rerun
if input/output data is unavailable or lost.

Storage systems have been shown to consistently rank
as the primary source of system failures, according to logs
from large-scale parallel computers and commercial data cen-
ters [12]. This trend is only expected to continue as individual
disk bandwidth grows much slower than the overall super-
computer capacity. Therefore, the number of disk drives used
in a supercomputer will need to increase faster than the over-
all system size. It is predicted that by 2018, a system at the
top of the top500.org chart will have more than 800,000 disk
drives with around 25,000 disk failures per year [20].

Currently, the majority of disk failures are masked by hard-
ware solutions such as RAID [17]. However, it is becom-
ing increasingly difficult for common RAID configurations to
hide disk failures as disk capacity is expected to grow by 50%
each year, which increases the reconstruction time. The re-
construction time is further prolonged by the “polite” policy

∗ Dept. of Computer Science, North Carolina State University
{wchao,zzhang3}@ncsu.edu, {ma,mueller}@cs.ncsu.edu

† Computer Science and Mathematics Division, Oak Ridge National Lab-
oratory {vazhkudaiss}@ornl.gov

adopted by RAID systems to make reconstruction yield to ap-
plication requests. This causes a RAID group to be more vul-
nerable to additional disk failures during reconstruction[20].

According to recent studies [?], disk failures are only
part of the sources causing data unavailability in storage sys-
tems. RAID cannot help with storage node failures. In next-
generation supercomputers, thousands or even tens of thou-
sands of I/O nodes will be deployed and will be expected to
endure multiple concurrent node failures at any given time.
Consider the Jaguar system at Oak Ridge National Labora-
tory, which is on the roadmap to a petaflop machine (currently
No. 5 on the Top500 list with 23,412 cores and hundreds of
I/O nodes). Our experience with Jaguar shows that the ma-
jority of whole-system shutdowns are caused by I/O nodes’
software failures. Although parallel file systems, such as Lus-
tre [7], provide storage node failover mechanisms,our expe-
rience with Jaguar again shows that this configuration might
conflict with other system settings. Further, many supercom-
puting centers hesitate to spend their operations budget on
replicating I/O servers and instead purchase more FLOPS.

Figure 1 gives an overview of an event timeline describing
a typical supercomputing job’s data life-cycle. Users stage
their job input data from elsewhere to the scratch space, sub-
mit their parallel jobs using a batch script, and offload the
output files to archival systems or local clusters. For better
space utilization, the scratch space does not enforce quotas
but purges files after a number of days since the last access.
Moreover, job input files are often read-only (also read-once)
and output files are write-once.

Although most supercomputing jobs performing numerical
simulations are output-intensive rather than input-intensive,
the input data availability problem poses two unique issues.
First, input operations are more sensitive to server failures.
Output data can be easily redirected to survive runtime storage
failures usingeager offloading[13, 16]. As mentioned ear-
lier, many systems like Jaguar do not have file system server
failover configurations to protect against input data unavail-
ability. In contrast, during the output process, parallel file
systems can more easily skip failed servers in striping a new
file or perform restriping if necessary. Second, loss of input
data often brings heavier penalty. Output files already writ-
ten can typically withstand temporary I/O server failures or
RAID reconstruction delays as job owners have days to per-
form their stage-out task before the files are purged from the
scratch space. Input data unavailability, on the other hand, in-
curs job termination and resubmission. This introduces the
high cost of job re-queuing, typically orders of magnitude
larger than the input I/O time itself.

Fortunately, unlike general-purpose systems, in supercom-
puters we can anticipatefuturedata accesses by checking the
job scheduling status. For example, a compute job is only able
to read its input data during its execution. By coordinating
with the job scheduler, a supercomputer storage system can

1

Scratch Space

Parallel I/O

Compute Nodes

job script

/home
Batch Job Queue

Archival System

ftp/scp

output

files

input

files

Time

Input

Staging

Job

Submission

Job

Dispatch
Input

Completion

Output

Completion

Job

Completion

Output

Offload
Purge

1
2

3

4

5 7

8

6

...

1 2 5 6 7 843

Ideal Replication IntervalImplemented Replication Interval

Fig. 1: Event timeline with ideal and implemented replication intervals
selectively provide additional protection only for the duration
when the job data is expected to be accessed.
Contributions: In this paper, we proposetemporal file repli-
cation, wherein a parallel file system performs transparent
and temporary replication of job input data. This facilitates
fast and easy file reconstruction before and during a job’s ex-
ecution without additional user hints or application modifi-
cations. Unlike traditional file replication techniques, which
have mainly been designed to improve long-term data per-
sistence and access bandwidth or to lower access latency, the
temporal replication scheme targets the enhancement of short-
term data availability centered around job executions in super-
computers.

We have implemented our scheme in the popular Lustre
parallel file system and combined it with the Moab job sched-
uler by building on our previous work on coinciding input
data staging alongside computation [30]. We have also im-
plemented a replication-triggering algorithm that coordinates
with the job scheduler to delay the replica creation. Using this
approach, we ensure that the replication completes in time to
have an extra copy of the job input data before its execution.

We then evaluate the performance by conducting real-
cluster experiments that assess the overhead and scalability
of the replication-based data recovery process. To evaluate its
space overhead, we performed a trace-driven simulation based
on three years’ worth of detailed job logs obtained from the
ORNL Jaguar system (No. 5 in Top500 supercomputers). Our
experiments indicate that (1) replication and data recovery can
be performed quite efficiently and (2) less than 1% of the to-
tal disk scratch space is required to create one extra copy for
the input data of active or about-to-be-dispatched jobs. Thus,
our approach presents a novel way to bridge the gap between
parallel file systems and job schedulers, thereby enabling us
to strike a balance between an HPC center resource consump-
tion and serviceability.

2 Temporal Replication Design
Supercomputers are heavily utilized. Most jobs spend sig-

nificantly more time waiting in the batch queue than actually
executing. The popularity of a new system ramps up as it goes
towards its prime time. For example, from the 3-year Jaguar
job logs, the average job wait-time:run-time ratio increases
from 0.94 in year 2005, to 2.86 in 2006, and 3.84 in 2007.
2.1 Justification and Design Rationale

A key concern about the feasibility of temporal replica-
tion is the potential space and I/O overhead replication might
incur. However, we argue that by replicating selected “ac-
tive files” during their “active periods”, we are only replicat-
ing a small fraction of the files residing in the scratch space

at any given time. To estimate the extra space requirement,
we examined the sizes of the aggregate memory space and
the scratch space on state-of-the-art supercomputers. The
premise is that with today’s massively parallel machines and
with the increasing performance gap between memory and
disk accesses, batch applications are seldom out-of-core.This
also agrees with our observed memory use pattern on Jaguar
(see below). Parallel codes typically perform input at the
beginning of a run to initialize the simulation or to read in
databases for parallel queries. Therefore, the aggregate mem-
ory size gives a bound for the total input data size of active
jobs. By comparing this estimate with the scratch space size,
we can assess the relative overhead of temporal replication.

Table 1 summarizes such information for top five super-
computers, on the Top500 list [24]. We see that the memory-
to-storage ratio is less than 8%. Detailed job logs with per-job
peak memory usage indicate that the above approximation of
using the aggregate memory size significantly overestimates
the actual memory use (discussed later in this subsection).

While the memory-to-storage ratio provides a rough esti-
mation of the replication overhead, in reality, however, a num-
ber of other factors need to be considered. First, when analyz-
ing the storage space overhead, queued jobs’ input files cannot
be ignored, since their aggregate size can be even larger than
that of running jobs. In the following sections, we propose ad-
ditional optimizations to shorten the life span of replicas. Sec-
ond, when analyzing the bandwidth overhead the frequency
of replication should be taken into account. Jaguar’s job logs
show an average job run time of around 1000 seconds and an
average aggregate memory usage of 31.8GB, which leads to
a bandwidth consumption of less than 0.1% of Jaguar’s total
capacity of 284GB/s. For this reason, in the following discus-
sions we primarily focus on the space overhead.

Next, we discuss a supercomputer’s usage scenarios and
configuration in more detail to justify the use of replication to
improve job input data availability.

Even though replication is a widely used approach in
many distributed file system implementations, it is seldom
adopted in supercomputer storage systems. In fact, many pop-
ular high-performance parallel file systems (e.g., Lustre and
PVFS) do not even support replication, mainly due to space
concerns. The capacity of the scratch space is important in
(1) allowing job files to remain for a reasonable amount of
time (days rather than hours), avoiding the loss of precious
job input/output data, and (2) allowing giant “hero” jobs to
have enough space to generate their output. Blindly replicat-
ing all files, even just once, would reduce the effective scratch
capacity to half of its original size.

2

System # Cores Aggregate Memory (TB) Scratch Space (TB) Memory to Storage Ratio Top 500 Rank
RoadRunner (LANL) 122400 98 2048 4.8% 1
BlueGene/L (LLNL) 106496 73.7 1900 3.8% 2

Blue Gene/P (Argonne) 163840 80 1126 7.1% 3
Ranger (TACC) 62976 123 1802 6.8% 4

Jaguar Cray XT3/4(ORNL 23412 46.8 600 7.8% 5

Table 1: Configurations of several leading supercomputers as of June2008

Temporal replication addresses the above concern by lever-
aging job execution information from the batch scheduler.
This allows it to only replicate a small fraction of “active files”
in the scratch space by letting the “replication window” slide
as jobs flow through the batch queue.

Temporal replication is further motivated by several ongo-
ing trends in supercomputer configurations and job behavior.
First, as mentioned earlier, Table 1 shows that the memory to
scratch space ratio of the top 5 supercomputers is relatively
low. Second, it is rather rare for parallel jobs on these ma-
chines to fully consume the available physical memory on
each node. A job may complete in shorter time on a larger
number of nodes due to the division of workload and data, re-
sulting in lower per-node memory requirements at a compa-
rable time-node charge. Figure 2 shows the per-node memory
usage of bothrunning and queuedjobs over one month on
the ORNL Jaguar system. It backs our hypothesis that jobs
tend to be in-core, with their aggregate peak memory usage
providing an upper bound for their total input size. We also
found the actual aggregate memory usage averaged over the
300 sample points to be significantly below the total amount
of memory available shown in Table 1: 31.8GB for running
jobs and 49.5GB for queued jobs.
2.2 Delayed Replica Creation

Based on the above observations about job wait times and
cost/benefit trade-offs for replication in storage space, we pro-
pose the following design of an HPC-centric file replication
mechanism.

When jobs spend a significant amount of time waiting,
replicating their input files (either at stage-in or submission
time) wastes storage space. Instead, a parallel file system can
obtain the current queue status and determine areplication
trigger point to create replicas for a given job. The premise
here is to have enough jobs near the top of the queue, stocked
up with their replicas, such that jobs dispatched next will have
extra input data redundancy. Additional replication will be
triggered by job completion events, which usually result in
the dispatch of one or more jobs from the queue. Since jobs
are seldom interdependent, we expect that supplementing a
modest prefix of the queued jobs with a second replica of their
input will be sufficient. Only one copy of a job’s input data
will be available till its replication trigger point. However,
this primary copy can be protected with periodic availability
checks and remote data recovery techniques previously devel-
oped and deployed by us [30].

Completion of a large job is challenging as it can activate
many waiting jobs, requiring instant replication of multiple
datasets. As a solution, we propose to query the queue status
from the job scheduler. Let the replication window,w, be
the length of the prefix of jobs at the head of the queue that
should have their replicas ready.w should be the smallest
integer such that:w∑

i=0

|Qi| > max(R, αS),

where|Qi| is the number of nodes requested by theith ranked
job in the queue,R is the maximum single-job node footprint
(the number of nodes used by the largest running job),S is
the total number of nodes in the system, and the replication
factorα(0 ≤ α) is a controllable parameter to determine the
eagerness of replication.

One problem with the above approach is that job queues
are quite dynamic, as strategies such as backfilling are typ-
ically used with an FCFS or FCFS-with-priority scheduling
policy. Therefore, jobs do not necessarily stay in the queue
in their arrival order. In particular, jobs that require a small
number of nodes are likely to move ahead faster. To address
this, we augment the above replication window selection with
a “shortcut” approach and define a thresholdT , 0 ≤ T ≤ 1.
Jobs that requestT · S nodes will have their input data repli-
cated immediately regardless of the current replica window.
This approach allows jobs that tend to be scheduled quickly
to enjoy early replica creation. Our experiments in Section
4.5 provide an empirical study of the choice ofα andT .
2.3 Eager Replica Removal

We can also shorten the replicas’ life span by removing the
extra copy once we know it is not needed. A relatively safe
approach is to perform the removal at job completion time.
Although users sometimes submit additional jobs using the
same input data, the primary data copy will again be protected
with our offline availability check and recovery [30]. Further,
subsequent jobs will also trigger replication as they progress
toward the head of the job queue.

Overall, we recognize that the input files for most in-core
parallel jobs are read at the beginning of job execution and
never re-accessed thereafter. Hence, we have designed anea-
ger replica removalstrategy that removes the extra replica
once the replicated file has been closed by the application.
This significantly shortens the replication duration, especially
for long-running jobs. Such an aggressive removal policy may
subject input files to a higher risk in the rare case of a subse-
quent access further down in its execution. However, we con-
sider the reduced space requirements for the more common
case outweighs this risk.
3 Implementation Issues

A Lustre [7] file system comprises of three key compo-
nents: clients, a MetaData Server (MDS), and Object Storage
Servers (OSS). Each OSS can host several Object Storage Tar-
gets (OST) that manage the storage devices. All our modifi-
cations were made within Lustre and do not affect the POSIX
file system APIs. Therefore, data replication, failover andre-
covery processes are entirely transparent to user applications.
3.1 Replica Management Services

In our implementation, a supercomputer’s head node dou-
bles as a replica management service node, running as a Lus-
tre client. Job input data is usually staged via the head node,
making it well suited for initiating replication operations.

Replica management involves generating a copy of the
input dataset at the appropriate replication trigger point,

3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300

A
m

o
u

n
t

o
f

m
e

m
o

ry
 (

M
B

)

Sample points

running
queued

Fig. 2: Per-node memory usage from 300 uniformly sampled time points
over a 30-day period based on job logs from the ORNL Jaguar system.
For each time point, the total memory usage is calculated as the sum of
peak memory used per job, i.e., aggregated across all jobs inquestion.

OST0 OST1 OST2 OST3 OST4 OST5 OST6 OST7

0 1 32 4 5 76 8 9 1110 12 13 1514

0 132

4 576

8 91110

12 131514

01 32

45 76

89 1110

1213 1514

OST8

1

5

9

13

Fail

File Size = 16MB, Stripe Count = 4, Stripe Size = 1MB

obj0 obj1 obj2 obj3 obj0' obj1' obj2' obj3' obj1''

Replica (foo')

Original File

(foo)
obj0, 1, 2, 3

obj0', 1', 2', 3'

obj0, 1', 2, 3

obj0', 1'', 2', 3'Replica (foo')

Original File

(foo)

Fig. 3: Objects of an original job input file and its replica. A failur e
occurred to OST1, which caused accesses to the affected object to be
redirected to their replicas on OST5, with replica regeneration on OST8.

scheduling periodic failure detection before job execution,
and also scheduling data recovery in response to reconstruc-
tion requests. Data reconstruction requests are initiatedby
the compute nodes when they observe storage failures dur-
ing file accesses. The replica manager serves as a coordinator
that facilitates file reorganization, replica reconstruction, and
streamlining of requests from the compute nodes in a non-
redundant fashion.

3.1.1 Replica Creation and Management
We use the copy mechanism of the underlying file system

to generate a replica of the original file. In creating the replica,
we ensure that it inherits the striping pattern of the original
file and is distributed on I/O nodes disjoint from the original
file’s I/O nodes. As depicted in Figure 3, the objects of the
original file and the replica form pairs (objects (0, 0′), (1, 1′),
etc.). To locate the replica and its objects, we utilize Lustre’s
extended attribute mechanism. For a given input file, we add
replica details using these attributes. This way, the replica is
associated with the original file for its lifetime.

3.1.2 Failure Detection
For persistent data availability, we perform periodic fail-

ure detection before a job’s execution. This offline failurede-
tection mechanism was described in our previous work [30].
The same mechanism has been extended for transparent stor-
age failure detection and access redirection during a job run.
To do so, the POSIX file I/O API is intercepted by our Lustre
patched VFS system calls.E.g., the read method of a Lustre
client will issue thell f ile read() function. Both I/O node
failures and disk failures will result in an I/O error immedi-
ately within ll f ile read(). Upon capturing the I/O error in
the system function, Lustre obtains the file name and the in-
dex of the failed OST. Such information is then sent by the
client to the head node, which, in turn, initiates the objectre-
organization and replica reconstruction procedures.

3.1.3 Object Failover and Replica Regeneration
Upon an I/O node failure, either detected by the head node

as part of the periodic offline check or by a compute node
through an I/O error, the aforementioned file and failure in-
formation is sent to the head node. The replica management
service modules on the head node will query Lustre using sev-
eral new commands that we have developed, to identify the
appropriate objects in the replica file that can be used to fill
the holes in the original file. The original file’s metadata is
updated subsequently to integrate the replicated objects into
the original file for seamless data access failover. Since meta-
data updates are inexpensive, the head node is not expected to
become a potential bottleneck.

To maintain the desired data redundancy during the pe-
riod that a file is replicated, we choose to create a “secondary
replica” on another OST for the failover objects after a storage
failure. The procedure begins by locating another OST, giv-
ing priority to one that currently does not store any part of the
original or the primary replica file.1 Then, the failover objects
are copied to the chosen OST and in turn integrated into the
primary replica file. Since the replica acts as a backup, it is
not urgent to populate its data immediately. In our implemen-
tation, such stripe-wise replication is delayed by 5 seconds
(tunable) and is offloaded to I/O nodes (OSSs).
3.1.4 Streamlining Replica Regeneration Requests

Due to parallel I/O , multiple compute nodes (Lustre
clients) are likely to access a shared file concurrently. There-
fore, in the case of a storage failure, we must ensure that
the head node issues a single failover/regeneration request per
file and per OST despite multiple such requests from differ-
ent compute nodes. Also, all the concerned compute nodes
must receive the same object information to update their local
data structure. We have implemented a centralized coordina-
tor inside the replica manager on the head node to handle the
requests in a non-redundant fashion.

3.2 Coordination with Job Scheduler
As we discussed in Sections 1 and 2, our temporal replica-

tion mechanism is required to be coordinated with the batch
job scheduler to achieve selective protection for “active”data.
In our target framework, batch jobs are submitted to asub-
mission manager, which parses the scripts, recognizes and
records input data sets for each job, and creates corresponding
replication operations at the appropriate time.

To this end, we leverage our previous work [30] that au-
tomatically separates out data staging and compute jobs from
a batch script and schedules them by submitting these jobs
to separate queues (“dataxfer” and “batch”) for better control.
This enables us to coordinate data staging alongside compu-
tation by setting up dependencies such that the compute job
only commences after the data staging finishes. The data op-
eration itselfis specified in the PBS job script as follows using
a special “STAGEIN” directive:
#STAGEIN hsi -q -A keytab -k

my keytab file -l user
‘‘get /scratch/user/destination file :

input file’’

1In Lustre, file is across 4 OSTs by default. Since supercomputers typi-
cally have hundreds of OSTs, an OST can be easily found.

4

 0

 10

 20

 30

 40

 50

 60

 70

 80

2GB1GB512MB256MB128MBR
ec

on
st

ru
ct

io
n

co
st

 (
se

co
nd

s)

File size

WFR w/ 1MB chunk
WFR w/ 2MB chunk
WFR w/ 4MB chunk

RR w/ 1MB chunk
RR w/ 2MB chunk
RR w/ 4MB chunk

Fig. 4: Offline replica reconstruction cost with varied file size
We extend this work by setting up a separate queue,

“ReplicaQueue”, that accepts replication jobs. We have also
implemented areplication daemonthat determines “what and
when to replicate”. The replication daemon creates a new
replication job in the ReplicaQueue so that it completes in
time for the job to have another copy of the data when it is
ready to run. The daemon periodically monitors the batch
queue status using theqstat tool and executes the delayed
replica creation algorithm described in Section 2.2. These
strategies enable the coordination between the job scheduler
and the storage system, which allows data replication only for
the desired window during the corresponding job’s life cycle
on a supercomputer.

4 Experimental Results
To evaluate the temporal replication scheme, we (1) per-

formed real-cluster experiments and (2) conducted a trace-
driven simulation study. The former assesses our implementa-
tion of temporal replication in the Lustre file system, in terms
of the online data recovery efficiency. Two representative par-
allel codes are used to measure the visible overhead of fail-
ure detection and data reconstruction. The latter assessesthe
long-term, center-wide scratch space consumption of tempo-
ral replication for job input data based on three years of job
logs collected from the ORNL Jaguar system.

4.1 Experimental Framework
Our testbed comprised a 17-node Linux cluster at NCSU.

The nodes were 2-way SMPs each with four AMD Opteron
1.76 GHz cores and 2 GBs of memory, connected by a Giga-
bit Ethernet switch. The OS used was Fedora Core 5 Linux
x86 64, with Lustre version 1.6.3. The cluster nodes were
setup as I/O servers, or compute nodes (Lustre clients), or
both, as discussed later.

4.2 Failure Detection and Offline Recovery
As mentioned in Section 3.1.2, before a job begins to run,

we periodically check for failures on OSTs that carry its input
data. As we configure all OSTs in the “fail-out” mode, OST
failure can be recognized without any timeout. The detection
cost is less than 0.1 seconds as the number of OSTs increases
to 256 (16 OSTs on each of the 16 OSSs) in our testbed. Since
failure detection is performed when a job is waiting, it incurs
no overhead on job execution itself.

When an OST failure is detected, the following two steps
are performed to recover the file from its replica: object
failover and replica reconstruction. The overhead of object
failover is relatively constant (0.84-0.89 seconds) regardless
of the number of OSTs and the file size. This is due to the fact
that the operation only involves the MDS and the client that
initiates the command.

Figure 4 shows the replica reconstruction (RR) cost with
different file sizes. The test setup consisted of 16 OSTs (1

0.1

1

10

100

128MB 256MB 512MB 1GB 2GB

File sizeR
ec

o
v

er
y

 o
v

er
h

ea
d

 /
 r

ec
o

n
st

ru
ct

io
n

co
st

 (
se

co
n

d
s)

up-front recovery overhead
mid-way recovery overhead
up-front replica reconstruction cost
mid-way replica reconstruction cost

Fig. 5: MM recovery overhead vs. replica reconstruction cost
OST/OSS). We varied the file size from 128MB to 2GB. With
one OST failure, the data to recover ranges from 8MB to
128MB, causing a linear increase in RR overhead. Figure 4
also shows that the cost ofwhole file reconstruction (WFR),
the conventional alternative to our more selective scheme
where the entire file is re-copied, has a much higher overhead.
In addition, RR cost increases as the chunk size decreases, due
to the increased fragmentation of data accesses.

4.3 Online Recovery
4.3.1 Application 1: Matrix Multiplication

To measure on-the-fly data recovery overhead during a job
run with temporal replication, we used MM, an MPI kernel
that performs dense matrix multiplication. It computes the
standardC = A ∗ B operation, whereA, B andC aren ∗ n

matrices. A andB are stored contiguously in an input file.
We varyn to manipulate the problem size. Like in many ap-
plications, only one master process reads the input file, then
broadcasts the data to all the other processes for parallel multi-
plication using a BLOCK distribution. Since input operations
are concentrated at the beginning of the run, and the code is
computation-intensive, we focus on the visible recovery over-
head with 1 OST failure.

Figure 5 depicts the MM recovery overhead with different
problem sizes. Here, the MPI job ran on 16 compute nodes,
each with one MPI process. The total input size was varied
from 128MB to 2GB by adjustingn. The input filestripe
countwas 4, and thestripe sizewas 1MB. We configured 9
OSTs (1 OST/OSS), with the original file residing on 4 OSTs,
the replica on another 4, and the reconstruction of the failover
object occurring on the remaining one. Limited by our cluster
size, we let nodes double as both I/O and compute nodes.

To simulate random storage failures, we varied the point in
time where a failure occurs. In “up-front”, an OSTs failure
was induced right before the MPI job started running. Hence,
the master process experienced an I/O error upon its first data
access to the failed OST. With the other case, “mid-way”, one
OST failure was induced mid-way during the input process.
The master encountered the I/O error amidst its reading and
sent a recovery request to the replica manager on the head
node. Figure 5 indicates that the application-visible recov-
ery overhead was almost constant for all cases (right around
1 second) considering system variances. This occurs because
only one object was replaced for all test cases while only one
process was engaged in input. Even though the replication re-
construction cost rises as the file size increases, this was hid-
den from the application. The application simply progressed
with the failover object from the replica, while the replicait-
self was replenished in the background.

4.3.2 Application 2: mpiBLAST
To evaluate the data recovery overhead using temporal

replication with a read-intensive application, we tested with
5

0

2

4

6

8

10

12

1(3) 2(4) 4(6) 8(10) 14(16)

Number of workers (number of computer nodes)

R
ec

o
v

er
y

 o
v

er
h

ea
d

 (
se

co
n

d
s)

up-front recovery overhead

mid-way recovery overhead

Fig. 6: Recovery overhead of mpiBLAST

mpiBLAST [9], a well-known parallel sequence database
search tool. mpiBLAST splits a database into fragments and
performs BLAST search on the worker nodes in parallel.

Since mpiBLAST is more input-intensive, we examined
the impact of a storage failure on its overall performance.The
difference between the job execution times with and with-
out failure, i.e., the recovery overhead, is shown in Figure6.
Since the version of mpiBLAST we used assigns one process
as the master and another to perform file output, the number of
actual worker processes performing parallel input is the total
process number minus two. Each worker process read several
database fragments.

The Lustre configurations and failure modes used in the
tests were similar to those in the MM tests. Overall, the im-
pact of data recovery on the application’s performance was
small. As the number of workers grew, the database was parti-
tioned into more files. Hence, more files resided on the failed
OST and needed recovery. As shown by Figure 6, the re-
covery overhead grew with the number of workers.For this
application, recovery of the failed files was not conducted in
parallel. Since each worker process performed input at its
own pace and the input files were randomly distributed to the
OSTs, the I/O errors captured on the worker processes oc-
curred at different times. Hence, the respective recovery re-
quests to the head node were not issued synchronously in par-
allel but rather in a staged fashion. With many applications
that access a fixed number of shared input files, we expect
to see much more scalable recovery cost with regard to the
number of MPI processes.

4.4 Trace and Simulation Overview
The real-cluster results presented in the previous sections

demonstrated the efficient online data recovery due to tempo-
ral replication by examining individual jobs. To assess the
overall space overhead caused by temporal replication, we
need to examine the impact of this policy on all jobs for an ex-
tended period, collectively. To this end, we conducted exten-
sive trace-driven simulations. Our simulation was performed
using the operational data from the ORNL Jaguar supercom-
puter (currently No. 5 in the top500 list) with job logs col-
lected from Apr. 2005 to Nov. 2007. Each job entry contains
timing information (such as submission, dispatch, and com-
pletion times) and resource usage details (such as the number
of cores requested and the peak memory usage per core).

One limitation of the Jaguar job log is that it is devoid of
information on job input data size. This metric is needed to
determine the amount of storage space required for replicas.
However, as discussed in Section 2.1 and supported by the
memory usage pattern of jobs on Jaguar shown in Figure 2,
we can safely estimate this information based on each job’s
peak aggregate memory usage.

4.5 Replication Simulation Results
In our experiments, we replayed the job traces and simu-

lated a job queue according to the submission and dispatch
times of jobs. Several replication strategies, described in Sec-
tion 2.2, were used to evaluate our dynamic replica creation
algorithm to study the balance between enhanced data avail-
ability and increased space usage. The first one was FCFS,
where the replication window is calculated based on the ar-
rival time of jobs. The next two strategies used the shortcut
approach, using aT value of 0.01 (FCFS with small thresh-
old) and 0.1 (FCFS with large threshold), respectively. Fi-
nally, as a reference, we used an offline algorithm (dispatch-
aware) that was aware of the actual dispatching order of jobsa
priori and calculate the replication window accordingly. This
offline algorithm indicates the best decision that can be made
with the replication window approach.

Figure 7 compares the above algorithms using differentα

levels. Thealpha value “inf” corresponds to an infinite repli-
cation window size, where all jobs’ input datasets are repli-
cated upon submission regardless of the replication strategy
(hence the convergence).

Figure 7(a) shows the percentage of jobs that are “at risk”.
A job was considered at risk if its replica was not ready when
the job was dispatched. The replication time for each input
dataset was calculated using the cost of a file copy, bench-
marked on Jaguar via the commandcp. Due to the small
default Lustre stripe width, a large number of available OSSs,
and the low average number of concurrent replication oper-
ations estimated in our simulation, we did not consider the
impact of concurrent replications on the copy bandwidth.

With the basic FCFS replication strategy, a large fraction
of jobs are at risk with smallα levels, and even with a rel-
atively largeα level of 2, more than 60% of jobs will not
have their replicas created early enough. The offline algorithm
(dispatch-aware), in contrast, is highly insensitive toα. This
reveals that to have an appropriate level of data redundancy,
only a small portion of jobs in the queue needs to be selected
for replication if we know the exact order of dispatched jobs.
The dispatch-aware curve is almost flat due to the existence of
jobs that are scheduled immediately upon submission, which
leaves no time for data replication. Fortunately, these jobs
tend to be debug or testing jobs that request a small number
of nodes and run time, making them less vulnerable to failures
and requesting a small resubmission cost.

With the shortcut enhancement to FCFS, we see a very se-
lective threshold of 0.01 will dramatically reduce the jobsat
risk. A threshold of 0.1 will generate a fault tolerance level
virtually identical to the offline dispatch-aware algorithm.

In Figure 7(b), we compare the space overhead of the
above strategies by calculating the ratio of total scratch space
used for storing job input file replicas. This ratio was averaged
over 300 snapshots, regularly sampled during the 32-months-
long period. For each snapshot, the total replica size was es-
timated as the sum of the peak aggregate memory usage of
all jobs that have input data replicas created, including both
running and waiting jobs. The results indicate that, overall,
creating one extra copy of active jobs’ input data consumes
a very limited fraction of the entire scratch space on Jaguar.

6

100%

80%

60%

40%

20%

0%
inf210.50.20.1

R
at

io
 o

f
jo

b
s

at
 r

is
k

α

FCFS

shortcut(T=0.01)

shortcut(T=0.1)

dispatch-aware

(a) Jobs at risk

1.8%

1.4%

1%

0.6%

0.2%
0%

inf210.50.20.1

S
cr

at
ch

 s
p

ac
e

u
se

d
 f

o
r

re
p

li
ca

ti
o

n

α

FCFS

shortcut(T=0.01)

shortcut(T=0.1)

dispatch-aware

(b) Replica storage overhead
Fig. 7: Simulation results using a 3-year ORNL Jaguar log with replication covering jobs up toαS nodes; Infinity (inf) denotes replication for all Jobs.
Even with the most aggressive replication setting (an infinite
α level), the replicas will, on average, occupy less than 1.8%
of the scratch space. The space overhead significantly reduces
as theα value is lowered. The differences between different
strategies are quite small since they mainly differ in the han-
dling of small jobs. The dispatch-aware algorithm has an edge
due to its optimal job selection.

In summary, considering both aspects shown in Figure 7,
we regard that FCFS with small threshold as an effective repli-
cation strategy for our traces. A threshold of 0.1 will generate
close-to-ideal data redundancy, which, in turn, allows a small
replication window ofα levels such as 0.2 and 0.5. Such small
windows will incur very low space overhead, lower than 0.5%
of the scratch space.

Finally, Figure 8 demonstrates the behavior of the replica-
tion strategies under different job workload levels, by plotting
the percentage of jobs at risk for the same month (August)
in three consecutive years. As mentioned earlier, most su-
percomputers tend to get crowded once into production. For
our trace, the average job queue length increases from 1.5 in
08/2005, to 27.5 in 08/2006, and to 45.5 in 08/2007. Under a
light load, most jobs can be scheduled quickly, without a suffi-
cient enough waiting period required for just-in-time replica-
tion regardless of strategies. As the system gets busier, differ-
ent strategies begin to diverge. While the naive FCFS strategy
produces a high at-risk rate, short cut with T=0.1 stays close
to the offline dispatch-aware algorithm and is able to replicate
most datasets in time. This result further justifies the advan-
tage of temporal replication when the system is busier. A busy
system implies longer wait times and, consequently, longer
turnaround time for jobs that are required to be resubmitted
due to input data unavailability as they get back at the end
of the queue. However, the longer queue wait time provides
enough room for just-in-time replication.

5 Related Work
RAID recovery: Disk failures can often be masked by stan-
dard RAID techniques [17]. However, RAID is geared to-
ward whole disk failures and does not address sector-level
faults [2, 11, 19]. It is further impaired by controller failures
and multiple disk failures within the same group. Without
hot spares, reconstruction requires manual intervention and
is time consuming. With RAID reconstruction, disk arrays
either run in a degraded (not yielding to other I/O requests)
or polite mode. In a degraded mode, busy disk arrays suf-
fer a substantial performance hit when crippled with multiple
failed disks [29, 22]. This degradation is even more signifi-
cant on parallel file systems, as files are striped over multiple
disk arrays and large sequential accesses are common. Under
a polite mode, with rapidly growing disk capacity, the totalre-
construction time is projected to increase to days, subjecting
a disk array to additional failures [20]. Our approach comple-

ments RAID systems by providing fast recovery, protecting
against non-disk and multiple disk failures.

Recent work on popularity-based RAID reconstruc-
tion [23] rebuilds more frequently accessed data first, thereby
reducing reconstruction time and user-perceived penalties.
However, supercomputer storage systems host transient job
data, where “unaccessed” job input files are often more im-
portant than “accessed” ones. In addition, such optimizations
cannot cope with failures beyond RAID’s protection at the
hardware level.

Replication: Data replication creates and stores redundant
copies (replicas) of datasets. Replication has stronger fault
tolerance than RAID because replicas of a dataset reside on
independent components in the system and have a smaller
chance of simultaneous failure. Various replication tech-
niques have been studied [4, 8, 21, 27] in many distributed
file systems [1, 5, 10, 14].

Most existing replication techniques treat all datasets with
equal importance and each dataset with static, time-invariant
importance when making replication decisions. This indis-
criminate replication increases storage space consumption
manifold, which is a significant burden for heavily loaded
storage systems. An intuitive improvement would be to treat
datasets with different priorities. To this end, BAD-FS [3]per-
forms selective replication according to a cost-benefit analysis
based on the replication costs and the system failure rate. Sim-
ilar to BAD-FS, our approach also makes on-demand replica-
tion decisions. However, our temporal replication scheme is
more “access-aware” rather than “cost-aware”. While BAD-
FS still creates static replicas, our approach utilizes explicit
information from the job scheduler to closely synchronize and
limit replication to jobs in execution or soon to be executed.

Erasure coding: Another widely investigated technique is
erasure coding [6, 18, 28]. With erasure coding,k parity
blocks are encoded inton blocks of source data. When a fail-
ure occurs, the whole set ofn + k blocks of data can be re-
constructed with anyn surviving blocks through decoding.

Erasure coding reduces the space usage of replication
but adds computational overhead for data encoding/decoding.
In [26], the authors provide a theoretical comparison between
replication and erasure coding. In many systems, erasure cod-
ing provides better overall performance, balancing computa-
tion costs and space usage. However, for supercomputer cen-
ters, its computation costs will be a concern. This is because
computing time in supercomputers is a precious commodity.
At the same time, our data analysis suggests that the amount
of storage space required to replicate data for active jobs is rel-
atively small compared to the total storage footprint. There-
fore, compared to erasure coding, our approach is more suit-
able for supercomputing environments, which is verified by
our experimental study.7

100%

80%

60%

40%

20%

0%
inf210.50.20.1

R
at

io
 o

f
jo

b
s

at
 r

is
k

α

average queue length: 1.5

FCFS

shortcut(T=0.01)

shortcut(T=0.1)

dispatch-aware

(a) August of 2005

100%

80%

60%

40%

20%

0%
inf210.50.20.1

R
at

io
 o

f
jo

b
s

at
 r

is
k

α

average queue length: 27.5 Legend as in Fig. 8(a)

(b) August of 2006

100%

80%

60%

40%

20%

0%
inf210.50.20.1

R
at

io
 o

f
jo

b
s

at
 r

is
k

α

average queue length: 45.5 Legend as in Fig. 8(a)

(c) August of 2007
Fig. 8: The ratios of jobs at risk in the month of August in 2005, 2006 and 2007.

Remote reconstruction: Some of our previous studies [15,
25, 30] investigated approaches for reconstructing missing
pieces of datasets (either due to cache miss or failures) from
data sources where the job input data was originally staged
from. By modifying the parallel file system to record the data
source location as a file metadata item, such remote data re-
construction can be performed on demand and in a transparent
fashion. We have shown in [30] that supercomputing centers’
data availability can be drastically enhanced by periodically
checking and reconstructing datasets for queued jobs while
the reconstruction overheads are barely visible to users.

Both remote patching and temporal replication will be able
to help with storage failures at multiple layers. While remote
patching poses no additional space overhead, the patching
costs depend on the data source and the end-to-end network
transfer performance. It may be hard to hide them from appli-
cations during a job’s execution. Temporal replication, onthe
other hand, trades space (which, we argue, is relatively cheap
at supercomputers) for performance. It provides high-speed
data recovery and reduces the space overhead by only repli-
cating the data when it is needed. Our optimizations presented
in this paper aim at further controlling and lowering the space
consumption of replicas.

6 Conclusion

In this paper, we have presented a novel temporal repli-
cation scheme for supercomputer job data. By creating ad-
ditional data redundancy for transient job input data and
coordinating the job scheduler and the parallel file system,
we allow fast online data recovery from local replicas with-
out user intervention or hardware support. This general-
purpose, high-level data replication can help avoid job fail-
ures/resubmission by reducing the impact of both disk failures
or software/hardware failures on the storage nodes. Our im-
plementation, using the widely used Lustre parallel file sys-
tem and the Moab scheduler, demonstrates that replication
and data recovery can be performed efficiently. Our simula-
tion study, using a 32-month job trace collected from a top10
supercomputer, demonstrates that by limiting the replication
to active or about-to-be-dispatched jobs, we can afford to cre-
ate one extra copy for their input data using less than 1% of
the total disk scratch space.
Acknowledgment

This research is sponsored in part by the National Cen-
ter for Computational Sciences at Oak Ridge National Lab-
oratory (ORNL), managed by UT-Battelle, LLC for the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

References

[1] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J.Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Fed-
erated, available, and reliable storage for an incompletely trusted envi-
ronment. InProceedings of the 5th Symposium on Operating Systems
Design and Implementation, 2002.

[2] Lakshmi Bairavasundaram, Garth Goodson, Shankar Pasupathy, and
Jiri Schindler. An analysis of latent sector errors in disk drives. In
Proceedings of the 2007 ACM International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’07), pages
289 – 300, June 2007.

[3] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livny. Explicit control in a batch aware distributed file system.
In Proceedings of the First USENIX/ACM Conference on Networked
Systems Design and Implementation, March 2004.

[4] C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dy-
namic Peer Networks: Pick Two. InProceedings the 9th Workshop on
Hot Topics in Operating Systems (HotOS), 2003.

[5] A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha: A peer-to-peer en-
hancement for the network file system. InProceedings of Supercom-
puting, 2004.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digitalfountain
approach to reliable distribution of bulk data. InProceedings of the
ACM SIGCOMM Conference, 1998.

[7] Cluster File Systems, Inc. Lustre: A scalable, high-performance file
system. http://www.lustre.org/docs/whitepaper.pdf, 2002.

[8] E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. InProceedings of the ACM SIGCOMM Conference,
2002.

[9] Aaron E. Darling, Lucas Carey, and Wu chun Feng. The design, imple-
mentation, and evaluation of mpiblast. InClusterWorld Conference &
Expo and the 4th International Conference on Linux Cluster:The HPC
Revolution ’03, June 2003.

[10] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In
Proceedings of the 19th Symposium on Operating Systems Principles,
2003.

[11] H Gunawi, V. Prabhakaran, S. Krishnan, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. Improving file system reliability with i/o shepherd-
ing. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07), October 2007.

[12] C. Hsu and W. Feng. A power-aware run-time system for high-
performance computing. InSC, 2005.

[13] J. Lee, X. Ma, M. Winslett, and S. Yu. Active buffering plus compressed
migration: An integrated solution to parallel simulations’ data transport
needs. InProceedings of the 16th ACM International Conference on
Supercomputing, 2002.

[14] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba
Shrira, and Michael Williams. Replication in the Harp file system. In
Proceedings of 13th ACM Symposium on Operating Systems Principles,
pages 226–38. Association for Computing Machinery SIGOPS,1991.

[15] X. Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang, and S. L.Scott. Cou-
pling prefix caching and collective downloads for remote data access. In
Proceedings of the ACM International Conference on Supercomputing,
2006.

[16] H. Monti, A.R. Butt, and S. S. Vazhkudai. Timely Offloading of Result-
Data in HPC Centers. InProceedings of 22nd Int’l Conference on Su-
percomputingICS′

08, June 2008.
[17] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays

of inexpensive disks (RAID). InProceedings of the ACM SIGMOD
Conference, 1988.

[18] J. Plank, A. Buchsbaum, R. Collins, and M. Thomason. Small parity-
check erasure codes - exploration and observations. InProceedings
of the International Conference on Dependable Systems and Networks,
2005.

8

[19] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi abd Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Iron file systems. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 206 –
220, October 2005.

[20] B. Schroeder and G. Gibson. Understanding failure in petascale com-
puters. InProceedings of the SciDAC Conference, 2007.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications.
In Proceedings of the ACM SIGCOMM Conference, 2001.

[22] Alexander Thomasian, Gang Fu, and Chunqi Han. Performance of
two-disk failure-tolerant disk arrays.IEEE Transactions on Comput-
ers, 56(6):799–814, 2007.

[23] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang Zeng, Jianxi
Chen, Zhikun Wang, and Zhenlei Song. Pro: a popularity-based multi-
threaded reconstruction optimization for raid-structured storage sys-
tems. InFAST’07: Proceedings of the 5th conference on USENIX Con-
ference on File and Storage Technologies, pages 32–32, Berkeley, CA,
USA, 2007. USENIX Association.

[24] Top500 supercomputer sites. http://www.top500.org/, June 2007.
[25] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tammineedi, and

S. Scott. Freeloader: Scavenging desktop storage resources for bulk,
transient data. InProceedings of Supercomputing, 2005.

[26] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.replication: A
quantitative comparison. InProceedings of the 1st International Work-
shop on Peer-to-Peer Systems, 2002.

[27] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A
scalable, high-performance distributed file system. InProceedings of
the 7th Conference on Operating Systems Design and Implementation
(OSDI ’06), November 2006.

[28] Jay J. Wylie and Ram Swaminathan. Determining fault tolerance of xor-
based erasure codes efficiently. InDSN ’07: Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 206–215, Washington, DC, USA, 2007. IEEE
Computer Society.

[29] Q. Xin, E. Miller, and T. Schwarz. Evaluation of distributed recov-
ery in large-scale storage systems. InProceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing
(HPDC 2004), pages 172–181, June 2004.

[30] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. Pike, J. Cobb, and
F. Mueller. Optimizing center performance through coordinated data
staging, scheduling and recovery. InProceedings of Supercomputing
2007 (SC07): Int’l Conference on High Performance Computing, Net-
working, Storage and Analysis, November 2007.

9

