Comput Sci Res Dev (2012) 27:181-187
DOI 10.1007/s00450-011-0153-5

SPECIAL ISSUE PAPER

Stochastic online scheduling

Tjark Vredeveld

Published online: 6 April 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this paper we consider a model for scheduling
under uncertainty. In this model, we combine the main char-
acteristics of online and stochastic scheduling in a simple
and natural way. Jobs arrive in an online manner and as soon
as a job becomes known, the scheduler only learns about the
probability distribution of the processing time and not the
actual processing time. This model is called the stochastic
online scheduling (SOS) model. Both online scheduling and
stochastic scheduling are special cases of this model. In this
paper, we survey the results for the SOS model.

Keywords Scheduling under uncertainty - Online
scheduling - Stochastic scheduling - Approximation
policies

1 Introduction

Machine scheduling problems belong to the classical prob-
lems in combinatorial optimization. These problems play a
role whenever jobs need to be processed on a limited num-
ber of machines or processors, with applications in manufac-
turing, parallel computing [3] or compiler optimization [5].
Machine scheduling problems have been studied since the
1950s and for a general overview of the vast amount of liter-
ature we refer to the books by Brucker [2] and Pinedo [24]
and to the handbook of scheduling by Leung [17].

In standard deterministic scheduling all relevant data to
the problem is known a priori. However, this assumption
is not always realistic. In many scenarios, we need to find

T. Vredeveld (X)

Department of Quantitative Economics, Maastricht University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

e-mail: t.vredeveld @maastrichtuniversity.nl

a good schedule when the data is not fully available and
decisions with wide-ranging implications need to be taken
in the face of incomplete data. To cope with these uncer-
tainties, there are two major frameworks in the theory of
scheduling: online scheduling and stochastic scheduling. In
online scheduling models the instance is only presented to
the scheduler piecewise. Jobs are either arriving one by one
(online list model) or over time (online time model). The
actual processing time of a job is usually disclosed upon
arrival of the job and decisions must be made without any
knowledge of the jobs to come. See the survey of Pruhs,
Sgall, and Torng [26] for an overview on online schedul-
ing. In stochastic scheduling, the population of jobs is as-
sumed to be known beforehand, but in contrast to determin-
istic models, the processing times of jobs are only given by
a probability distribution. The actual processing times be-
come known only upon completion of the jobs. The distri-
bution functions of the random variables that describe the
processing times, or at least their first and second moment,
are assumed to be known beforehand. See the survey of
Pinedo [25] and the PhD theses [9, 32] for overviews on
stochastic scheduling.

Recently, a combined model was introduced [7, 19] that
generalizes both stochastic scheduling and online schedul-
ing. Like in online scheduling, we assume that the instance is
presented to the scheduler piecewise, and nothing is known
about jobs that might arrive in the future. Once a job ar-
rives, like in stochastic scheduling, we assume that its ex-
pected processing time, or the distribution function of the
processing time, is disclosed, but the actual processing time
remains unknown until the job completes. In this survey, we
will review the results on this stochastic online scheduling
model.

@ Springer

mailto:t.vredeveld@maastrichtuniversity.nl

182

T. Vredeveld

2 Model and definitions

In the machine scheduling models that we consider, we are
given a set of n jobs J = {1, ..., n} each of which has to be
scheduled on one or all of m machines. Each machine can
process at most one job at a time and is available from the
beginning. Job j € J has release date r;, which is the earli-
est possible time at which this job may be started. Moreover
we associate a nonnegative weight w; with job j. In this
survey, we only consider machine scheduling problems in
which the goal is to find a schedule that minimizes the total
weighted completion time) jw;Cj, where C; denotes the
completion time of job j. Depending on the model, we may
or may not be allowed to preempt a job, that is, interrupt a
job and continue its processing later on the same or another
machine.

The time it takes to process job j on machine i is denoted
by the random variable P;;. In this survey, we consider sev-
eral machine environments each with their own restrictions
on the processing times. In single machine models, there is
only one machine to process all jobs and therefore, we de-
note the processing time by P; instead of Py ;. In the identi-
cal parallel machine model, each job has to be processed by
only one machine and as the machines are identical, we have
that the processing time of a job is not machine dependent,
ie., Pjj = Pj. Also in the uniformly related machine envi-
ronment, jobs need to be processed by only one machine.
Each machine has a certain speed denoted by s; and the pro-
cessing time of job j on machine i is given by P;; = P;/s;,
where P; is the random variable denoting the processing re-
quirement of job j. The last model that we will consider in
this survey is the flow shop. In the flow shop problem, a set
of n jobs needs to be processed non-preemptively on m ma-
chines. Each machine can process at most one job at a time
and each job can be processed by at most one machine at
a time. Each job must be processed by each machine in the
same order.

The goal is to find a stochastic online scheduling (SOS)
policy that minimizes the objective function in expectation.
The definition of an SOS policy extends the traditional defi-
nition of stochastic scheduling policies by Mohring, Rader-
macher, and Weiss [22] to the setting where jobs arrive on-
line. A scheduling policy specifies actions at decision time
t. An action is a set of jobs that is started or, in case of pre-
emption, interrupted at time ¢ and a next decision time ¢ > ¢
at which the next action is taken, unless some job is released
or ends at time t” < ¢’. In that case, ¢ becomes the next de-
cision time. To decide, the policy may utilize the complete
information contained in the partial schedule up to time ¢,
as well as information about unscheduled jobs that have ar-
rived at or before 1. However, a policy is required to be on-
line, thus at any time, it must not utilize any information
about jobs that will be released in the future. Moreover, it

@ Springer

needs to be non-anticipatory, thus at any time, it must not
utilize the actual processing times of jobs that are scheduled
or unscheduled but not yet completed. We will measure the
performance of an online policy by comparing it with an
optimal policy. An optimal scheduling policy is defined as
a non-anticipatory scheduling policy that minimizes the ob-
jective function value in expectation. Note that we do not as-
sume that an optimal policy is online. Also notice that even
an optimal scheduling policy generally fails to yield an opti-
mal solution for all realizations of the processing times; this
is because it is non-anticipatory.

For an instance I, consisting of the number of machines
m, the set of jobs J together with their release dates r;,
weights w;, and processing time distributions P;;, let IT(/)
denote the random variable for the solution value of policy
IT on instance i and let C]1'1 (1) denote the random variable
for the completion time of job j under policy IT. When the
instance is clear from the context, we write C;_[for short.
Let

E[[1(I)] =]E[Z w,C}“u)} = ijE[Cjn(I)]

jelJ jeJ

denote the expected performance of a scheduling policy I1
on instance /.

Generalizing the definitions of by Mohring, Schulz, and
Uetz [23] for traditional stochastic scheduling, we define the
performance guarantee of an SOS policy as follows.

Definition 1 An SOS policy Il is a p-approximation if, for
some p > 1, and all instances I of the given problem,

E[TI(D] = pE[OPT(D)].

Here, OPT (1) denotes an optimal stochastic scheduling pol-
icy on the given instance /, assuming a priori knowledge
of the set of jobs J, their weights w;, release dates r; and
processing time distributions P;;. The value p is called the
performance guarantee or approximation ratio of policy I1.
The asymptotic approximation ratio of a policy IT is given
by

. E[I1(1)]
X =inflp>1:INgs.t. ————— <p,
P {p =2 Bopray =7
for all instances I with |J| > No}.

The asymptotic approximation ratio characterizes the maxi-
mum relative deviation from optimality for all sufficiently
large instances. If a stochastic scheduling policy has an
asymptotic approximation ratio of one, then we say it is
asymptotically optimal.

Stochastic online scheduling

183

3 Single machine

The first results on stochastic online scheduling have been
obtained for the non-preemptive single machine environ-
ment [7, 19], although [19] also considered the identical par-
allel machine environment. Whenever all release dates are
the same, i.e.,r; =0forall j =1, ..., n, then the determin-
istic as well as the stochastic single machine problem can be
solved to optimality by a simple rule, called the Weighted
Shortest (Expected) Processing Time rule (WSEPT): pro-
cess the jobs in non-increasing order of weight over (ex-
pected) processing time [27, 30].

3.1 Asymptotic analysis

A straightforward extension to the problem in which there
are non-trivial release dates, is the policy that whenever
the machine is idle it will process a job that has high-
est ratio of weight to expected processing time, w; /K[P;].
Chou, Liu, Queryanne, and Simchi-Levi [7] named this pol-
icy the Weighted Shortest Processing Time among Available
jobs (WSEPTA) rule and performed an asymptotic analysis
for this rule. They showed that whenever the weights are
bounded from above and below by some arbitrary constants,
i.e., there are constants w and w such that w < w; <w for
all j € J, and there are some upper and lower bounds on
the possible realizations of the processing times, i.e., there
are some constants x and X such that Prfx < P; <Xx] =1
for all j € J, the ratio between the expected performance of
the WSEPTA rule and the expected total weighted comple-
tion time of the optimal policy tends to 1, when the num-
ber of jobs tends to infinity. To show their results they first
prove that the value of the LP-relaxation from Goemans [14,
15] on expected processing times yields a lower bound on
the optimal value of the stochastic scheduling problem. This
lower bound for stochastic scheduling was first obtained by
Mohring et al. [23]. Then Chou et al. show that the gap be-
tween the expected value of WSEPTA and the lower bound
is relatively small, that is, o(nzwf), whereas the expected
performance of the optimal policy is at least n(n + 1)w x /2.
This latter bound can be easily obtained by computing the
optimal value for an instance with n jobs, all having pro-
cessing time x, weight w and release date 0. When the as-
sumption that the processing are bounded from below by a
positive constant is not satisfied, then any non-idling policy,
and thus WSEPTA, can be arbitrarily bad.

The asymptotic analysis of Chou et al. has been extended
by Chen and Shen [6] to an asymptotic analysis for any non-
idling policy. However, Chen and Shen not only assume uni-
form bounds on the weights and processing times, but they
also assume that the processing times are i.i.d. with mean p
and the interarrival times are also i.i.d. with mean A > pu.
Under these assumptions, they show that any non-idling

policy is optimal for the non-preemptive single machine
stochastic scheduling problem. They showed that when the
interarrival times are larger than the processing times on av-
erage, the total waiting time is insignificant compared to the
sum of the release dates. Using the same kind of reason-
ing, Chen and Shen also show that any non-idling policy is
asymptotically optimal for the flow shop and uniformly re-
lated machine environment.

3.2 Worst-case performance guarantees

The first non-asymptotic analysis for stochastic online
scheduling on a single machine has been given by Megow,
Uetz, and Vredeveld [19]. They consider a modified ver-
sion of the WSEPT rule, the «-shift WSEPT policy: Given
fixed @ > 0, when a job arrives, modify its release date to
r} = max{r;, aE[P;]}. At any time ¢, when the machine is
idle, start processing the job with the highest ratio w ; /E[P;]
among all available jobs with ¢ > r’.. The deterministic
version of this policy has been proposed by Megow and
Schulz [18]. To analyze this policy, Megow et al. [19] in-
troduce the concept of 6-NBUE random variables, extend-
ing the notion of NBUE (new better than used in expecta-
tion) random variables. A random variable X is said to be
6-NBUE if for all x > 0 it holds that E[X — x| X > x] <
S E[X]. An NBUE random variable is 1-NBUE. Given that
all processing times are §-NBUE, they show that the «-shift
WSEPT policy is a (2 4 §)-approximation for « = 1. The in-
tuition behind the proof of this approximation ratio is that as
soon as a job j becomes available according to its modified
release date, only higher priority jobs, i.e., jobs with higher
ratio wy /IE[P], will be processed up to the start of this job
plus possibly a job £ that is in process at job j’s modified
release date. To bound the remaining processing time of this
job £, we use the property of §-NBUE random variables and
the fact that due to the modification of the release dates this
job satisfies E[P¢] < E[P;].

3.2.1 Precedence constraints

The literature for deterministic online scheduling when there
are precedence relations among the jobs is rather limited. A
natural online paradigm for online scheduling with prece-
dence relations is given by Feldmann, Kao, Sgall, and
Teng [11]: a job becomes known to the online scheduler as
soon as all its predecessors have finished. Feldmann et al.
study the problem to minimize the makespan, i.e., the latest
completion time of a job. Erlebach, Kiib, and Mohring [10]
studied the deterministic problem for and/or-precedence re-
lations, which is a generalization of the general precedence
constraints, when the goal is to minimize the total weighted
completion time. They analyzed the performance of the
Shortest Processing Time (SPT) rule that schedules the jobs

@ Springer

184

T. Vredeveld

in order of non-decreasing processing times and showed that
it is a 24/n-approximation if all weights are equal and an
n-approximation for arbitrary weights. Megow and Vrede-
veld [21] extended these results to the stochastic online set-
ting and also improved on them. They showed that the Short-
est Expected Processing Time (SEPT) rule attains a perfor-
mance guarantee of +/2n if all jobs have equal weights and
n for arbitrary weights. To prove the upper bound of n, Er-
lebach et al. introduced the concept of a threshold of a job
J, which is the largest processing time of a job that is com-
pleted before job j. They then showed that for each job j
the algorithm that minimizes the threshold is the SEPT rule
and thus the completion time of job j is at least its threshold.
Megow and Vredeveld extended the definition of the thresh-
old to the stochastic setting and showed that a similar prop-
erty on the thresholds hold true for the SEPT policy. They
also gave lower bounds on the approximation ratio for any
stochastic online scheduling policy: for arbitrary weights the
lower bound is n — 1, whereas no online policy can be bet-
ter than a 2./n/3 — 1 approximation when all weights are
equal.

3.2.2 Preemption

Let us now consider single machine scheduling when pre-
emption is allowed. Some of the first results in this setting
that can be found in the literature are by Chazan, Konheim,
and Weiss [4] and Konheim [16]. They formulated sufficient
and necessary conditions for a policy to solve optimally the
single machine problem in which all jobs have the same re-
lease date. Later Sevcik [29] developed an intuitive method
for creating optimal schedules in expectation. He introduces
a priority policy that relies on an index which can be com-
puted for each job based on the properties of a job, but not
on other jobs. Gittins [12] showed that this priority index is a
special case of his Gittins index [12, 13]. Twenty years after
Sevcik presented the priority policy, Weiss [33] formulated
Sevcik’s priority index again in terms of the Gittins index
and provided a different proof of the optimality of the prior-
ity policy. Weiss named this policy a Gittins Index Priority
Policy (GIPP).

GIPP computes an index, or rank, for each job. This rank
is not dependent on other jobs, but changes with the amount
of processing a job has received, and thus also changes over
time. We thus can compute a tentative schedule, assuming
that no job will ever finish before it received its maximum
possible processing time. This tentative schedule can be seen
as an ordered list of job pieces. This amount of processing
time for each piece is the time spent on the job before it will
be preempted. GIPP then always processes the next uncom-
pleted job in the list for the specified amount of time, or up
to completion, whatever comes first.

Megow and Vredeveld [20] formulated two variants of
this GIPP that work online. The first one, called Follow

@ Springer

GIPP (F-GIPP), computes at any release date ¢ the ordered
list of job pieces and their processing times for the jobs that
have been released at or before time . Note that this list
does not take the release dates into account. It then deletes
all the pieces that have been processed up to time ¢, possi-
bly decreasing the amount of processing time for certain job
pieces. It then follows the GIPP until the next release date.
It can easily be shown that this is a 2-approximation policy.
For any realization it can be shown that between the release
date and the completion time of a job j, only job pieces are
processed that also would have been processed before the
completion of job j in the schedule obtained by the optimal
policy for the relaxed problem in which the jobs have no re-
lease date. Moreover, no job can complete before its release
date.

The second policy defined by Megow and Vredeveld is
easier to formulate: it always processes the job that has cur-
rently the highest rank. We call this policy Generalized GIPP
(Gen-GIPP). Unfortunately, for this policy we cannot claim
that in any realization of the processing times, between re-
lease and completion of a job only pieces are processed that
also would have been processed in the schedule constructed
by the optimal policy for the problem without release dates.
That is, compared to the schedule obtained by F-GIPP, some
jobs may be delayed. However, the expected gain from a job
J that delays a certain (piece) of job k is more than the ex-
pected loss of the delay of job k. Therefore, this policy is
also a 2-approximation.

4 Multiple machines
4.1 Asymptotic analysis

Besides the asymptotic analysis for the non-preemptive sin-
gle machine problem as discussed in the previous section,
Chen and Shen [6] also considered two multiple machine
models: uniform related machines and the flow shop prob-
lem. Recall that in the flow shop problem, each job must
be processed by each machine in the same order, 1,...,m.
Chen and Shen made the following assumptions for the flow
shop problem: there exist uniform bounds on the process-
ing times and weights, i.e., there exist constants w, w and
x,xX > 0 such that w < w; <w and Pr[x < P;; <Xx]=1.
Moreover, they assumed that the interarrival times are i.i.d.
with mean A, the processing times P;; are i.i.d. with mean
< A. They then showed that for any non-idling policy the
sum over all jobs of the time between the completion of the
first operation and the last operation is insignificant com-
pared to the sum of the weighted release dates. Therefore,
they can use the result for the single machine case and thus
any non-idling policy is asymptotically optimal.

In the uniformly related parallel machine setting, each
job needs to be processed by exactly one of m machines, a

Stochastic online scheduling

185

machine i has constant speed s; > 0 and processing a job j
on machine i takes P;/s; time, where P; is a random vari-
able denoting the processing requirement of job j. Again,
Chen and Shen assume that there exists uniform bounds on
the weights and processing requirements as well as i.i.d. dis-
tributed interarrival times and i.i.d. distributed processing re-
quirements. The mean of the processing requirements, [, is
assumed to be larger than the sum of all machine speeds
times the average interarrival time, A Zi s;. Under these as-
sumptions, they show that the non-idling policy First Come
First Served (FCFS) is asymptotically optimal. To come to
this result, Chen and Shen first bound the average waiting
time of the jobs by the average waiting time of a specific
fixed assignment policy. In a fixed assignment policy a job
is assigned to a machine as soon as it arrives. Then, each
machine follows its own policy, in this case FCFS, for the
jobs that are assigned to it. Due to the assumptions on the
interarrival times and processing requirements and due to
the way of assigning the jobs to the machines, the problem
for each machine satisfies the assumptions for the single ma-
chine problem, and therefore it can be shown that the total
weighted waiting time as well as the total weighted process-
ing times are insignificant compared to the total weighted
release date.

4.2 Worst-case performance guarantees

As mentioned in the previous section, the first result for par-
allel machines in the stochastic online setting is by Megow,
Uetz, and Vredeveld [19] for the problem in which preemp-
tion is not allowed. They consider a fixed assignment pol-
icy in which each machine schedules the jobs assigned to
it according to the «-shift WSEPT. By assigning the jobs
in a greedy manner to the machines, i.e., assigning a job to
the machine on which it has the minimal expected increase
in the objective function, we can show that this policy is a
p-approximation, for p = 1 + max{1 + 6/, + 8 + (m —
1)(A + 1)/2m}, for 5-NBUE processing times. Here A is
a bound on the squared coefficient of variation of the pro-
cessing times, Var[Pj]/IE‘Z[Pj]2 < A. For NBUE processing
times, where A = § = 1, we obtain a performance guarantee
which is less than (5 4+ +/5)/2 — 1/(2m) ~ 3.62 — 1/(2m),
when we choose the right . This bound is better than the
previously best known bound of 4 — 1/m of Mohring et
al. [23], even though their policy was not an online policy.
The assignment strategy of the jobs to the machines in the
above described policy can be viewed as a derandomization
of the strategy in which each job is assigned uniformly at
random to one of the m machines. This random strategy has
the same worst-case performance ratio as the derandomized
version.

Megow et al. [19] also show a lower bound on the per-
formance ratio that can be obtained by a fixed assignment

policy. They show that if all processing times are i.i.d. and
exponentially distributed, there exist instances, such that any
fixed assignment policy on these instances has an expected
solution value at least 3(\/5 — 1) times larger than the ex-
pected solution value of an optimal policy.

Schulz [28] improved on these results. He gave a ran-
domized online policy that achieves a bound of 2 + A. His
policy is also a fixed assignment policy and is an extension
of an online algorithm proposed by Correa and Wagner [8]
for deterministic scheduling to the stochastic scheduling set-
ting. This policy first computes a virtual preemptive fast sin-
gle machine schedule for jobs with deterministic processing
times equal to the expectation of the processing times based
on the ideas of Goemans [14, 15] and uses the concept of
a-points, introduced by Sousa [31] to determine the time at
which a job becomes available for scheduling on a randomly
selected machine. A derandomized version, which is not
a fixed assignment policy, attains a approximation ratio of
max{¢+1, ((¢+1)A+¢+3)/2}, where again A is a bound
on the squared coefficient of variation and ¢ = (1 4+ /5)/2
is the golden ratio.

4.2.1 Precedence constraints

When precedence constraints are present, Megow and Vre-
develd [21] consider an version of the SEPT policy that uti-
lizes only one machine, which they call the 1-SEPT pol-
icy. They prove that this is a n-approximation policy and
also show a lower bound of (n — 1)/m for any online pol-
icy. To prove the upper bound of n, they basically use the
same technique as in the single machine case. In case that
the weights are all equal, they show that this policy is a
+/2mn-approximation and that no online policy can have an
approximation ratio that is less than (2./n/m)/3 — 1.

4.2.2 Preemption

For the preemptive problem, Megow and Vredeveld [20] ex-
tend the F-GIPP policy to identical parallel machines: at any
time process the m first jobs in the list of job pieces, or if
less than m uncompleted jobs are present process all uncom-
pleted jobs. They show that this policy is a 2-approximation
by bounding the expected value of the optimal policy by
the optimal value of a single machine stochastic schedul-
ing problem in which the processing times are a factor m
smaller. Besides the extension of the F-GIPP policy to mul-
tiple machines, they also provide a randomized fixed assign-
ment policy with a performance guarantee of 2: assign each
job uniformly at random to one of the m machines and run
Gen-GIPP on each machine.

It is worth noticing that, unlike the known results for
non-preemptive scheduling, the approximation guarantees
for these preemptive policies are not dependent on prop-
erties of the probability distribution, such as the squared

@ Springer

186

T. Vredeveld

coefficient of variation. Actually, the guarantee for F-GIPP
is the same as its deterministic counterpart that at any mo-
ment in time processes the at most m jobs with highest ratio
of weight to processing time, see [18]. On the other hand,
the non-preemptive policies work well if only information
about the first and second moment of the processing times
are given, whereas our preemptive policies need to know the
complete probability distribution.

5 Concluding remarks

The area of stochastic online scheduling is relatively new.
Several results have been obtained so far, but many more
open problems remain. Up to now, only results are known
when the objective is to minimize the total weighted com-
pletion time and it would be interesting to see what results
can be obtained for other objective functions, like minimiz-
ing the expected makespan or the expected total flow time.

A big difference between stochastic online scheduling
and deterministic online scheduling can be found in the sin-
gle machine problem in which we schedule the jobs pre-
emptively to minimize the total completion time. In the de-
terministic setting, an optimal solution can be found by a
simple online algorithm that always processes the job with
shortest remaining processing time. On the other hand, we
have shown that the optimal stochastic scheduling policy for
this problem cannot be an online one [1].

Another interesting question comes from the difference
in the results for the preemptive and non-preemptive prob-
lems. We have seen that for the non-preemptive problem on
identical machines, the proposed stochastic scheduling poli-
cies only need to know the first and second moment of the
probability distributions of the processing times, whereas
the proposed policies for the non-preemptive problems need
to have full knowledge of the random variables and their dis-
tribution functions. Then again, the performance guarantee
of these policies is independent of the properties of the dis-
tribution functions, whereas the obtained performance guar-
antees for the non-preemptive problem depend on properties
like the coefficient of variation and §-NBUE. This raises the
question what the influence of knowledge of the probability
distributions is on the performance guarantee.

Acknowledgements The author thanks two anonymous referees for
valuable comments on improving the exposition.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

@ Springer

References

1. Becchetti L, Marchetti-Spaccamela A, Schifer G, Vredeveld T
(2006) On scheduling stochastic jobs to minimize the expected total
flow time. Unpublished manuscript

2. Brucker P (2004) Scheduling algorithms, 4th edn. Springer, Berlin

3. Chakrabarti S, Muthukrishnan S (1996) Resource scheduling for
parallel database and scientific applications. In: Proceedings of the
8th annual ACM symposium on parallel algorithms and architec-
tures (SPAA), pp 329-335

4. Chazan D, Konheim AG, Weiss B (1968) A note on time sharing. J
Comb Theory 5:344-369

5. Chekuri C, Johnson R, Motwani R, Natarajan B, Rau B, Schlansker
M (1996) An analysis of profile-driven instruction level parallel
scheduling with application to super blocks. In: Proceedings 29th
IEEE/ACM int. symp. on microarchitecture, Paris, France, pp 58—
69

6. Chen G, Shen Z-JM (2007) Probabilistic asymptotic analysis of
stochastic online scheduling problems. IIE Trans 39:525-538

7. Chou C-FM, Liu H, Queyranne M, Simchi-Levi D (2006) On the
asymptotic optimality of a simple on-line algorithm for the stochas-
tic single machine weighted completion time problem and its exten-
sions. Oper Res 54(3):464-474

8. Correa J, Wagner M (2009) LP-based online scheduling: from sin-
gle to parallel machines. Math Program 119:109-136

9. Dean BC (2005) Approximation algorithms for stochastic schedul-
ing problems. PhD thesis, Massachusetts Institute of Technology

10. Erlebach T, Kédb V, Mohring RH (2004) Scheduling AND/OR-
networks on identical parallel machines. In: Jansen K, Solis-Oba
R (eds) Proceedings of the first international workshop on approxi-
mation and online algorithms, WAOA 2003. Lecture notes in com-
puter science, Budapest, Hungary, vol 2909. Springer, Berlin, pp
123-136

11. Feldmann A, Kao M-Y, Sgall J, Teng S-H (1998) Optimal on-
line scheduling of parallel jobs with dependencies. J] Comb Optim
1(4):393-411

12. Gittins JC (1979) Bandit processes and dynamic allocation in-
dices. J R Stat Soc, Ser B 41:148—-177

13. Gittins JC (1989) Multi-armed bandit allocation indices. Wiley,
New York

14. Goemans MX (1997) Improved approximation algorithms for
scheduling with release dates. In: Proceedings of the 8th ACM-
SIAM symposium on discrete algorithms, New Orleans, LA, USA,
pp 591-598

15. Goemans MX, Queyranne M, Schulz AS, Skutella M, Wang Y
(2002) Single machine scheduling with release dates. SIAM J Dis-
crete Math 15:165-192

16. Konheim AG (1968) A note on time sharing with preferred cus-
tomers. Probab Theory Relat Fields 9:112-130

17. Leung JY-T (2004) Handbook of scheduling: algorithms, models,
and performance analysis. Chapman & Hall, London

18. Megow N, Schulz AS (2004) On-line scheduling to minimize av-
erage completion time revisited. Oper Res Lett 32(5):485-490

19. Megow N, Uetz M, Vredeveld T (2006) Models and algorithms
for stochastic online scheduling. Math Oper Res 31(3):513-525

20. Megow N, Vredeveld T (2006) Approximation in preemptive
stochastic online scheduling. In: Azar Y, Erlebach T (eds) Proceed-
ings of 14th European symposium on algorithms. Lecture notes in
computer science, Zurich, Switzerland, vol 4168. Springer, Berlin,
pp 516-527

21. Megow N, Vredeveld T (2007) Stochastic online scheduling
with precedence constraints. Technical report 029-2007, Technis-
che Universitit Berlin

22. Mohring RH, Radermacher FJ, Weiss G (1984) Stochastic
scheduling problems I: General strategies. Z Oper-Res 28:193-260

Stochastic online scheduling

187

23. Mohring RH, Schulz AS, Uetz M (1999) Approximation in
stochastic scheduling: the power of LP-based priority policies. J
ACM 46:924-942

24. Pinedo M (2002) Scheduling: theory, algorithms, and systems, 3rd
edn. Springer, Berlin

25. Pinedo M (2004) Off-line deterministic scheduling, stochastic
scheduling, and online deterministic scheduling: a comparative
overview. In: Leung JY-T (ed) Handbook of scheduling: algorithms,
models, and performance analysis, chap. 38, Chapman & Hall, Lon-
don

26. Pruhs KR, Sgall J, Torng E (2004) Online scheduling. In: Leung
JY-T (ed) Handbook of scheduling: algorithms, models, and perfor-
mance analysis, chap. 15, Chapman & Hall, London

27. Rothkopf MH (1966) Scheduling with random service times.
Manag Sci 12:703-713

28. Schulz A (2008) Stochastic online scheduling revisited. In: Yang
B, Du D-Z, Wang C (eds) Combinatorial optimization and applica-
tions (COCOA). Lecture notes in computer science, vol 5165, pp
448-457

29. Sevcik KC (1974) Scheduling for minimum total loss using ser-
vice time distributions.] ACM 21:65-75

30. Smith WE (1956) Various optimizers for single-stage production.
Nav Res Logist Q 3:59-66

31. Sousa J (1989) Time indexed formulations of non-preemptive
single-machine scheduling problems. PhD thesis, Université
Catholique de Louvain

32. Uetz M (2002) Algorithms for deterministic and stochastic
scheduling. Cuvillier Verlag, Gottingen

33. Weiss G (1995) On almost optimal priority rules for preemp-
tive scheduling of stochastic jobs on parallel machines. Adv Appl
Probab 27:827-845

Tjark Vredeveld received his MSc
in Operations Research from Eras-
mus University Rotterdam in 1996
and his PhD in Mathematics from
Eindhoven University of Technol-
ogy in 2002. After his PhD, he
spend several months as a post-
doc at the University of Rome, La
Sapienza, and 2 years at the Zuse In-
stitute in Berlin. In 2005, he moved
to Maastricht University, where he
is now Associate Professor in Oper-
ations Research. His research inter-
ests lie in the area of scheduling un-
der uncertainty and approximation
algorithms for NP-hard optimization problems.

@ Springer

	Stochastic online scheduling
	Abstract
	Introduction
	Model and definitions
	Single machine
	Asymptotic analysis
	Worst-case performance guarantees
	Precedence constraints
	Preemption

	Multiple machines
	Asymptotic analysis
	Worst-case performance guarantees
	Precedence constraints
	Preemption

	Concluding remarks
	Acknowledgements
	References

