
Noname manuscript No.
(will be inserted by the editor)

Supporting Incremental Behaviour Model
Elaboration

Sebastian Uchitel†? · Dalal Alrajeh† ·
Shoham Ben-David◦ · Victor
Braberman? · Marsha Chechik◦ · Guido
De Caso? · Nicolas D’Ippolito† · Dario
Fischbein† · Diego Garbervetsky? · Jeff
Kramer† · Alessandra Russo† · German
Sibay †

Received: date / Accepted: date

Abstract Behaviour model construction remains a difficult and labour inten-
sive task which hinders the adoption of model-based methods by practitioners.
We believe one reason for this is the mismatch between traditional approaches
and current software development process best practices which include iter-
ative development, adoption of use-case and scenario-based techniques and
viewpoint- or stakeholder-based analysis; practices which require modelling
and analysis in the presence of partial information about system behaviour.

Our objective is to address the limitations of behaviour modelling and anal-
ysis by shifting the focus from traditional behaviour models and verification
techniques that require full behaviour information to partial behaviour mod-
els and analysis techniques, that drive model elaboration rather than asserting
adequacy. We aim to develop sound theory, techniques and tools that facil-
itate the construction of partial behaviour models through model synthesis,
enable partial behaviour model analysis and provide feedback that prompts
incremental elaboration of partial models.

In this paper we present how the different research threads that we have
and currently are developing help pursue this vision as part of the “Partial
Behaviour Modelling - Foundations for Interative Model Based Software En-
gineering” Starting Grant funded by the ERC. We cover partial behaviour
modelling theory and construction, controller synthesis, automated diagnosis
and refinement, and behaviour validation.

We thank the ERC for financially supporting this work through the grant StG PBM-
FIMBSE

† Imperial College London, UK.
E-mail: [s.uchitel,d.alrajeh,n.dippolito,d.fischbein,g.sibay,a.russo]@imperial.ac.uk
· † FCEN, Universidad de Buenos Aires, Argentina.
E-mail: [suchitel, gcaso, vbraber, diegog]@dc.uba.ar
· ? University of Toronto, Canada.
E-mail: chechik@cs.toronto.edu,shohambd@gmail.com



2 Uchitel et. al

Keywords Partial Behaviour Modelling

1 Introduction

Software systems are amenable to analysis through the construction of be-
haviour models. This corresponds to the traditional engineering approach to
construction of complex systems. Models can be studied to increase confidence
on the adequacy of the product to be built. The advantage of using behaviour
models to describe systems is that they are cheaper to develop than the ac-
tual system. Consequently, they can be analysed and mechanically checked for
properties in order to detect design errors early in the development process
and allow cheaper fixes.

To address this problem significant effort has been devoted to developing
approaches for modelling and verifying system behaviour. These approaches
are typically supported by automated tools that allow specifying behaviour
models, using them as prototypes for exploring the system behaviour, and
checking adequacy of the model to properties and system requirements.

Although behaviour modelling and analysis has been shown to be successful
in uncovering subtle requirements and design errors, adoption by practitioners
has been slow. Partly, this is due to the complexity of building behavioural
models in the first place – behaviour modelling remains a difficult, labour-
intensive task that requires considerable expertise. In addition, and perhaps
more importantly, the benefits of the analysis appear only at the end of a
costly process of constructing a comprehensive behaviour model.

The reason for the latter is that most approaches to behaviour modelling
require a complete description of the system behaviour for a fixed scope and
span [47]: the specification is assumed to completely describe the system with
respect a chosen set of phenomena types (scope) that determine the level
of abstraction of the model and a chosen part of the problem or solution
domain (span). The completeness assumption is limiting in the context of
software development process best practices which include iterative develop-
ment, adoption of use-case and scenario-based techniques and viewpoint- or
stakeholder-based analysis; practices which require modelling and analysis in
the presence of partial information about system behaviour.

The limitations described above motivate a series of research questions that
we aim to address: How can the construction of behaviour models be signif-
icantly simplified? Can we provide automated or semi-automated procedures
to assist engineers in building initial approximations of system behaviour? Can
we provide feedback early in the model construction effort, even in the pres-
ence of partial behaviour descriptions? Can this feedback be used to prompt
further model elaboration?

Our objective is to address the limitations of behaviour modelling and
analysis by shifting the focus from traditional behaviour models and verifi-
cation techniques to partial behaviour models and analysis techniques that
drive model elaboration rather than asserting adequacy. The vision we advo-



Supporting Incremental Behaviour Model Elaboration 3

cate does not require complete descriptions for analysis to proceed. We aim
to provide a framework in which useful feedback can be obtained even when
very little information regarding system behaviour is available.

In the remainder of this paper we summarise the different research threads
we have been working on, namely partial behaviour models (Section 2), con-
troller synthesis (Section 3), automated diagnosis and refinement (Section 4),
and behaviour validation (Section 5).

2 Partial Behaviour Models

Labelled transition systems (LTS) are the basis for widely used techniques
for modelling and analysing the behaviour of software systems. An LTS is a
transition system where transitions are labelled with actions. The set of actions
of an LTS is called its communicating alphabet and constitutes the interactions
that the modelled system can have with its environment. Behaviour models for
complex systems are built compositionally by describing the behaviour of each
system component with an LTS and constructing a composite LTS model that
exhibits the emergent behaviour of the components executing asynchronously
while synchronizing on shared actions.

Existing semantics for LTS, and other popular behaviour modelling for-
malisms such as statecharts, tend to assume that the model provides a com-
plete description with respect to its alphabet. For instance, in a trace-based
semantics, the traces described explicitly by the transitions of the model are
assumed to describe all the intended executions of the system. Any trace not
reproducible through the transitions is assumed to be undesired behaviour of
the system. This interpretation is consistent with semantics based on standard
equivalence relations such as strong and weak bisimulation [59].

An alternative interpretation of LTS is that they represent an upper or
lower bound to the acceptable behaviour of the system. Consider, for instance,
behaviour models synthesised automatically from scenario-based specifications
such as message sequence charts [46]. Scenarios provide examples of how sys-
tem components, the environment and users work concurrently and interact in
order to provide system level functionality. Example-based specifications such
as scenarios are naturally partial as it is impractical and often infeasible to
provide a comprehensive description on an example by example basis. Con-
sequently, when behaviour model synthesis is applied to a scenario descrip-
tion, the resulting model represents a lower bound on the intended system
behaviour: the synthesised model describes some of the behaviour required
in the final implementation, but the fact that the model does not exhibit a
particular behaviour does not mean that the intended implementation must
not provide it. Elaboration of an LTS that represents a lower bound on in-
tended system behaviour consists in strictly adding new behaviour (possibly
described as new scenarios) to the model while preserving the hitherto known
behaviour.



4 Uchitel et. al

The interpretation of LTS models as an upper bound to system behaviour
corresponds to the classical view of process-oriented specification [44,59] where
an LTS is interpreted as a specification of all the acceptable behaviour of
the system. In this view, implementations that satisfy the specification must
provide, in some sense, a subset of the behaviour described in the LTS. The
notions of trace and failures refinement [44], or that of simulation [59] are
classic formalisations of this interpretation.

The three interpretations discussed above (complete, upper, and lower
bounds) are not restricted to LTS alone. They apply to the many other
traditional operational formalisms for describing system behaviour such as
those with richer notions of state (e.g kripke structures[52]) and transitions
(e.g. interface automata [23]). Yet these interpretations, particularly the more
widespread one which assumes completeness, are limiting.

For instance, traditional behaviour models cannot adequately model the
known behaviour of a system that has been described by a combination of
use-cases, scenarios and safety properties, a plausible situation in current de-
velopment practices. This is because the use- cases and scenarios provide a
lower-bound and the safety properties provide an upper bound to the intended
system behaviour. It is clear that the interpretations for LTS described above
cannot capture the required behaviour from the scenarios, the proscribed be-
haviour from the properties and the rest which has not been explicitly pro-
scribed nor required. This is because traditional behaviour models are essen-
tially two-valued: the transitions model all of the required behaviour and the
rest is proscribed, the transitions model some of the required behaviour and
the rest is possible, or the transitions model all of the possible behaviour and
the rest is proscribed.

In fact, and more generally, the problem arises because traditional be-
haviour models cannot model explicitly what is unknown about system be-
haviour, or, in other words, distinguish between the behaviour that the system
is must provide, from what it must not provide, and from what is yet unknown.
Behaviour models that distinguish between these kinds of behaviour are re-
ferred to as partial behaviour models. A number of such models exist, and
promising results on their use to support incremental modelling and viewpoint
analysis have been reported (e.g., Partial Labelled Transition Systems [72]),
Modal Transition Systems (MTS)[54], Mixed Transition Systems[20] and multi-
valued Kripke structures [17]).

Partial behaviour models, such as Modal Transition Systems (MTS) [54],
distinguish between three kinds of behaviour: required, proscribed and un-
known, and therefore can describe both an upper and a lower bound to the
intended system behaviour, allowing both bounds to be refined simultaneously.
For instance, MTS are equipped with two kinds of transitions required tran-
sitions and possible transitions. The former provide a upper bound to system
behaviour, while the latter provide the lower bound to system behaviour.

The semantics of a partial behaviour model can be thought of as a set
of traditional behaviour models. For instance, MTS semantics can be given in
terms of sets of LTS that provide all of the behaviour required by the MTS, do



Supporting Incremental Behaviour Model Elaboration 5

not provide any of the behaviour proscribed by the MTS, and make arbitrary
decisions on the MTS’s unknown behaviour. Intuitively, as more information
becomes available, unknown or unclassified behaviour gets changed into ei-
ther required or proscribed behaviour. The notion of refinement between MTS
captures this intuition formally and provides an elegant way of describing the
process of behaviour model elaboration as one in which behaviour information
is acquired and introduced into the behaviour model incrementally, gradually
refining an MTS until it characterizes a single LTS.

The original notion of refinement was aimed at comparing MTS models
with the same alphabet and no unobservable transitions and is referred to
as strong refinement [54]. Although in [54] a notion of weak refinement that
allows for unobservable actions was defined, we have extended this notion to
account for models that have different alphabets [69,35]. More recently [34,
33], we presented a an alternative, possibly more appropriate observational
refinement, based on branching equivalence [74].

A particularly useful notion in the context of software and requirements
engineering is that of merge. Merging two consistent models is a process that
should result in a minimal common refinement of both models where consis-
tency is defined as the existence of one common refinement. Intuitively, merging
builds a model that characterises the intersection of the LTS characterised by
the models being merged. In other words, the merge characterises the LTS
that provide all the required behaviour of the MTS being merged, and that
do not provide any of the proscribed behaviour of the MTS being merged.

MTS merging can be used as the conjunction of multiple partial operational
descriptions. The original formulation of merge was done by Larsen in [55]
where an incomplete merge algorithm was proposed for MTS under strong
refinement. Recently we have presented a correct and complete algorithm [36].
The problem of merge under observational refinements is still open, a partial
result can be found in [35] where we present an incomplete algorithm for
merging models with different alphabets under weak refinement. Finally, we
have studied the problem of providing feedback when MTS are inconsistent
and cannot be merged [66].

MTS, with any of its refinement semantics, has the limitation of not being
closed under merge. This has been studied for strong refinement extensively
and various extensions that resolve this problem have been proposed, notably
Disjunctive MTS [53]. However, this is not the case when weak semantics is
used: infinite state DMTS are required. We are currently studying variants of
MTS which are closed for such weak refinements.

We have revisited the problem of behaviour model synthesis in the context
of MTS. We have provided a generic extension of synthesis approaches that
start from existential scenario-based specifications and build LTS models [70].
Furhtermore, in [71] we also show how MTS can support synthesis from het-
erogenous specifications including safety properties and existential scenarios.

Given that MTS are more expressive than LTS, a common target for sce-
nario synthesis, we have explored opportunities for defining novel synthesis
approaches that start from more expressive scenarios notations. In particular,



6 Uchitel et. al

we have investigated synthesis from triggered scenarios (both with existential
and universal modalities [67]). Existential triggered scenarios had hitherto
been neglected in existing scenario description languages (e.g., [42]) as it is
impossible to adequately capture their semantics using traditional behaviour
models: They express branching properties on required and possible behaviour
(when the trigger occurs, a branch satisfying the main chart must exist but
other behaviour may be allowed). This in turn has led to experimentation in
logics which have sufficient expressive power to describe existential triggered
scenarios without requiring full branching capability [12].

We have developed a testbed for manipulating MTS models, including
synthesis, analysis, merge, parallel composition and animation in a tool, the
Modal Transition System Analyser [30], which is currently an open source
program available at http://sourceforge.net/projects/mtsa/.

3 Behaviour Model Synthesis

Michael Jackson’s Machine-World model [48] establishes a framework on which
to approach the challenges of requirements engineering. In this model, require-
ments R are prescriptive statements of the world expressed in terms of phe-
nomena on the interface between the machine we are to build and the world
in which the real problems to be solved live. Such problems are to be captured
with prescriptive statements expressed in terms of phenomena in the world
(but not necessarily part of the machine-world interface) called goals G and
descriptive statements of what we assume to be true in the world (domain
assumptions D).

Within this setting, a key task in requirements engineering is to understand
and document the goals and the characteristics of the domain in which these
are to be achieved, in order to formulate a set of requirements for the machine
to be built such that assuming that the domain description and goals are valid,
the requirements in such domain entail the goals, i.e., R,D |= G.

Thus, a key problem of requirements engineering can be formulated as
a synthesis problem. Given a set of descriptive assumptions on the environ-
ment behaviour and a set of system goals, construct an operational model of
the machine such that when composed with the environment, the goals are
achieved. Such problem is known as the controller synthesis problem [64,62]
and has been studied extensively. Controller synthesis algorithms have been
used in various software engineering settings including synthesis of glue code
and component adaptors in order to achieve safe composition at the archi-
tecture level [10], and particularly in service oriented architectures [15], or to
synthesise adaptation strategies in autonomous systems [68].

We have investigated the use of controller synthesis techniques to aid the
incremental elaboration of behaviour models. Focus has been on adapting and
extending existing controller synthesis in order to gain insight on given models
of system goals G and domain assumptions D while attempting to synthesise
an operational model for the requirements R such that R,D |= G. In other



Supporting Incremental Behaviour Model Elaboration 7

words, the point is not so much to build R, but rather to investigate how the
non-existence of an R such that R,D |= G can prompt the elaboration of both
G and D.

3.1 Environment Assumptions

Jackson [48] and others (e.g., [77,75,60]) have argued that environment as-
sumptions play a key role in the requirements validation process. Many sys-
tem failures are due to invalid assumptions, many times related to an over-
idealisation of the environment’s behaviour. In other words, statements re-
garding environment behaviour that are not realistic are used to demonstrate
the correctness of the requirements with respect to the goals. However, given
that the assumptions are invalid, when the system is developed and deployed,
the goals are not achieved. Thus, best practices include explicit modelling of
assumptions not only better support validation but also make explicit when
system goals are guaranteed to be achieved, helping to set more realistic ex-
pectations.

Although assumptions and their relation with the synthesis problem has
been studied recently [18,16], most synthesis approaches (e.g., [14,68,43]) do
not support an explicit distinction between assumptions and goals. On the
other hand, techniques that do support explicit specification of assumptions
such as [61] give assumptions a syntactic treatment; no semantic restriction or
methodological guidelines are provided as to what assertions consitute valid
assumptions. This is crucial, as we show in [28], when assertions proposed as
domain assumptions are not realisable [75] by the environment, then controller
synthesis techniques can produce valid, yet useless, results: A controller which
rather than attempting to achieve the specified goals, succeeds in violating the
system assumptions and thus discharging its obligation to fulfill the goals.

In [28] we present a controller sythesis technique and methodological guide-
lines for synthesising event-based behaviour models. The approach works for
an expressive subset of liveness properties, GR(1) [61], that distinguishes be-
tween controlled and monitored actions, and differentiates between system
goals and environment assumptions. The technique adapts and extends recent
advances [61] in controller synthesis for shared memory communication style.

In [29] we further this work by studying failure assumptions of environment
controlled actions and identify a realistic fairness condition on failures, strong
independent fairness, which allows for a polynomial treatment of the control
sythesis problem. Intuitively, the strong independent fairness condition states
that not only every failure and every assumption must occur fairly (infinitely
often if enabled infinitely often) but also independently of system state and of
every other failure and assumptions. In other words, failures and assumptions
cannot be coordinated. They must be “controlled” by different agents which
must be oblivious of each other. This notion of fairness has a corresponding
interpretation in stochastic behaviour: if the environment can be thought of
as a grounding of a probabilistic environment with non-zero probability of



8 Uchitel et. al

non-failure, then the executions that are not strong independent fair have
probabilistic measure zero.

Applying controller synthesis techniques which require explicit description
of assumptions prompts behaviour model elaboration. For instance, as part of
the validation of the work in [29] we studied the controller synthesised by [13]
for a web-service required to coordinate purchases on a furniture-sales service
and deliveries on a shipping service. The case study includes failures such as
furniture-sales and shipping services responding negatively to requests. The
technique in [13] gives no guarantees on the resulting controller satisfiying
the expected goals. Hence the resulting controller is not guaranteed to satisfy
purchase requests it receives. Applying our technique [29] shows that the as-
sumptions for this system are insuficient to construct a guaranteed controller
and that in fact progress and fairness conditions are required. If these condi-
tions are explicitly added to the behaviour specification, then a controller that
guarantees system goals is possible and is constructed using [29].

Thus the lack of initial realisability of the specification of the case study
in [13] led to a more elaborate description of the domain assumptions required
to guarantee system level goals.

3.2 Partial Environment Models

Existing controller synthesis approaches require complete descriptions of the
problem domain. Typically, the domain is described in a formal language with
its semantics defined as some variation of a two-valued state machine such as
Labelled Transition Systems (LTS) [49] or Kripke structures [52]. Thus, the
model of the problem domain is assumed to be complete up to some level of
abstraction (i.e., with respect to an alphabet of actions or propositions).

As discussed previously, traditional behaviour modelling frameworks based
on LTS and Kripke structures are not well suited for describing partial knowl-
edge about the problem domain. However, controller synthesis techniques for
partial behaviour modelling formalisms such as multi-valued Kripke struc-
tures [37]) and Modal Transition Systems (MTS) [54] has yet to be studied.

In [27], we define controller synthesis in the context of partially specified
problem domains. More specifically, we study the problem of checking the exis-
tence of an LTS controller (i.e., controller realisability) capable of guaranteeing
a given goal when deployed in a completely defined LTS domain model that
conforms to a partially defined problem domain given as an MTS.

More specifically, given that an MTS defines a set of LTS implementations,
we define the MTS control problem as responding if all, none or some of the LTS
implementations an MTS describes admit an LTS controller that guarantees a
given goal expressed as a Fluent Linear Temporal Logic (FLTL) [39] formula.

A technique that yields an answer to the MTS control problem is presented
in [27] showing that, despite dealing with a potentially infinite number of
LTS implementations, the MTS control problem is in the same complexity
class as the underlying LTS synthesis problem. Furthermore, the results for



Supporting Incremental Behaviour Model Elaboration 9

MTS realisability can be used with controller synthesis techniques that deal
efficiently with restricted yet expressive goals such as [9,8,61].

We believe that the feedback resulting from addressing the MTS control
problem can prompt partial model elaboration. This is particularly so when
the answer to the realisability question is “some”. In these cases, a refinement
of the partial behaviour model that prunes out the implementations which
cannot be controlled is necessary, representing an oportunity for elicitation.

4 Automated Diagnosis and Repair

At the heart of model elaboration is the model-analyse-elaborate cylce. Engi-
neers produce models, be the partial or complete with respect to a particular
level of abstraction, and then use automated sound tools to analyse the emer-
gent behaviour of these models. The result of the analysis can be positive, in
which the engineer considers that sufficient confidence on the adequacy of the
model has been achieved, or negative, in which concrete examples of undesired
behaviour are identified. The elaboration phase attempts to revise or refine the
existing model to eliminate undesired behaviour while preserving the desired
behaviour exhibited by the model.

A key family of tools in the model-analyse-elaborate cycle is that of model-
checkers. Model Checking is an automated technique for verifying formal arte-
facts. It has been successfully used to verify system design and requirements
in different domains including communication and security protocols as well
as biological systems. A model checker requires a model provided in some for-
mal language and a semantic property that such model is expected to have.
Such property is described in a formal language (possibly different from the
one used for the model, but with compatible semantics). The model checker
then automatically checks the validity of the specified property in the mod-
els semantics [19]. If the property is found to not hold, a counterexample is
generated which shows how the property can be falsified.

The automatic generation of counterexamples is one of model checking’s
powerful features for system fault detection. Counter-examples are meant to
help engineers in the tasks of identifying the cause of a property violation and
correcting the model. However, these tasks are complex and little automated
support exists for them. Even in relatively small models such tasks are far
from trivial since (i) counterexamples are expressed in terms of the model’s
semantics rather than the language used to describe the model or the property,
(ii) counterexamples show the symptom and do not indicate the cause of the
violation and (iii) any manual modification to the model may fail to resolve
the problem and may even introduce violations to other desirable properties.

Inductive logic programming (ILP) is a subfield of machine learning which
uses logic programming as a uniform representation of knowledge to perform
explanation reasoning. Given an encoding of the known background knowledge
and a set of positive and negative examples, an ILP system will compute a



10 Uchitel et. al

hypothesis which, in conjunction with the background knowledge, allows all
the positive but none of the negative examples.

In the context of behaviour model elaboration, ILP can be applied by rep-
resenting the model under analysis as the background knowledge, property
violations produced by a model checker as negative examples and any witness
to the property (these can easily be generated by a model checker) deemed to
be valid by the engineer as positive examples. The computed hypothesis is a
statement which refines or revises the model specification and that is guaran-
teed to avoid the property violations while preserving the property witnesses.

We believe that that model checking and ILP can be seen as two com-
plementary approaches which if integrated appropriately can support model
elaboration in general and behaviour model elaboration in particular. We have
successfully applied the combination of model checking and ILP in software en-
gineering settings to tackle a variety of problems related to behaviour model
elaboration. We succintly discuss each one in the remainder of the section.
Note, however, that although each of these problem domains differ in their
modelling language, semantics and class of elaborations, they share a number
of characteristics. Their theories describe event-based systems, with a model
semantics expressed in terms of finite-state transition systems, whose ontology
features and semantic properties can naturally be captured by Event Calculus
logic programs [50] with stable model semantics [38].

4.1 Learning Operational Requirements from Goals

A key activity in requirements engineering is the elaboration and analysis of
operational requirements. Operational requirements are requirements for each
operation that is to be provided by the software. Such requirements can, and
typically are, described using pre-, post- and trigger-conditions.

Little support exists for the elaboration of operational requirements from
high-level goals. Letier and van Lamwsveerde [56] have developed an approach
based on operationalisation patterns which allows the derivation of operational
requirements in the form of pre- and trigger-conditions from goals expressed
in Linear Temporal Logic (LTL). Requirements generated by this approach
are guaranteed to be correct. However, patterns are restricted to a collection
of goal and requirement templates, and their application requires a fully re-
fined goal model. Consequently, the elaboration of operational requirements
from goals remains constrained to the set of templates and can be labour in-
tensive and error-prone. The availability of a more systematic and automated
approach would therefore benefit the process of operationalising goals.

In [2,6], we present a formal, tool-supported framework that combines
model checking and ILP to elaborate operational requirements, in the form
of pre- and trigger-conditions, that are correct and complete with respect to
a given set of system goals. The framework is defined as an iterative pro-
cess that consists of four conceptual phases. First, in the analysis phase, an
existing partial specification of operational requirements is verified against a



Supporting Incremental Behaviour Model Elaboration 11

given goal model using a model checker. If verification is unsuccessful (i.e.,
the operational requirements do not entail the goals), the example of goal
violantion automatically generated is used in the scenario elaboration phase
where an engineer elaborates it into a set of positive and negative scenarios. In
the learning phase, the partial specification of operational requirements and
scenarios are used by a non-monotonic inductive learning system to compute
a set of operational requirements that covers all positive scenarios and elimi-
nates all negative ones. Finally, in the selection phase, the engineer selects the
operational requirements to be added from the list proposed by the learning
phase. The four phases are then repeated until no goal violation is detected.

The approach was validated by using case studies [51,32]. For each of the
systems studied, we had an informal description of the system-to-be, a linear
temporal logic representation of its high level goals and a formal operational-
isation of the goals, that is, a set of operational requirements that is complete
with respect to the goals. It is important to note that all these elements, in-
formal description, goals, and operational requirements, were produced by a
third-party. The validation consisted in starting from the high-level goals and
applying the iterative method described in [2]. Human interventions required
by the approach (for example and counter-example generation) were performed
based on our understanding of the informal description of the system and the
high-level goals. Having completed all iterations, the operational requirements
learned were compared to the ones provided. In all cases, we were able to learn
the provided operational requirements, however, in some cases we were also
able to identify alternative operationalisations of the high-level goals.

4.2 Zeno-Behaviour Elimination

In requirements engineering [48] focus is on prescriptive declarative statements
of intent whose satisfaction requires the cooperation of agents (or active com-
ponents) in the software and its environment. Such statements are commonly
referred to as system-level goals, or simply goals [76].

The declarative nature of goals often hinders the application of a number
of successful validation techniques based on executable models such as graph-
ical animations, simulations, and rapid-prototyping. They do not naturally
support narrative style elicitation techniques, such as those in scenario-based
requirements engineering and are not suitable for down-stream analyses that
focus on design and implementation issues which are of an operational nature.

To address these limitations, techniques have been developed for construct-
ing behaviour models automatically from declarative descriptions in general
[71] and from goal models specifically [57]. The core of these techniques is
based on temporal logic to automata transformations developed in the model
checking community. For instance, in [57] Labelled Transition Systems (LTS)
are built automatically from KAOS goals expressed in fluent linear temporal
logic [39].



12 Uchitel et. al

A key technical difficulty in constructing behaviour models from goal mod-
els is that the latter are typically expressed in a synchronous, non-interleaving
semantic framework while the former have an asynchronous interleaving se-
mantics. This mismatch relates to the fact that it is appropriate to make
different assumptions for modelling requirements and system goals than for
modelling communicating sequential processes. One of the practical conse-
quences of this mismatch is that the construction of behaviour models from
a goal model may introduce deadlocks and progress violations. More specifi-
cally, the resulting behaviour model may be zeno, i.e exhibit traces in which
time never progresses. Clearly, these models do not adequately describe the
intended system behaviour and thus are not a suitable basis for analysis.

A solution proposed in [57] to the problem of zeno traces is to construct
behavior models from a fully operationalised goal model rather than from a
set of high-level goals. This involves identifying system operations and ex-
tracting operational requirements in the form of pre- and trigger-conditions
from the high-level goals [56]. This has some important disadvantages. Firstly,
operationalisation is a manual process for which only partial support for the
derivation of a complete operationalised model is provided. Support comes in
the form of derivation patterns restricted to some common goal patterns [22].
Secondly, it impedes early construction of behaviour models from high-level
goals which can provide insights before going through a tedious operationali-
sation process.

In [7,4] we apply a combination of model checking and ILP to the prob-
lem of non-zeno behaviour model construction. The approach starts with a
goal model and produces a non-zeno behaviour model that satisfies all goals.
Briefly, the proposed method first involves translating automatically the goal
model, formalised in Linear Temporal Logic (LTL), into a (potentially zeno)
labelled transition system. Then, in an iterative process, zeno traces in the
behaviour model are identified mechanically, elaborated into positive and neg-
ative scenarios, and used to automatically learn preconditions that prevent the
traces from occurring. Identification of zeno traces is achieved by model check-
ing the behaviour model against a time progress property expressed in LTL,
while preconditions are learned using Inductive Logic Programming (ILP).

As a result of the proposed approach, not only a non-zeno behaviour model
is constructed, but also a set of precondition is produced. These preconditions,
in conjunction with the known goals, ensure the non-zeno behaviour of the sys-
tem. Consequently, the approach also supports the operationalisation process
of goal models described in [56].

4.3 Obstacle Generation

Completeness is among the most critical and difficult challenges facing require-
ments engineers. Missing requirements and assumptions are reported as one
of the major causes of software failure [76]. Incompleteness often arises from
the lack of anticipation of exceptional conditions. The natural inclination is



Supporting Incremental Behaviour Model Elaboration 13

rather to conceive idealised systems; this prevents adverse events or condi-
tions from being properly identified, and as a result, specifications of suitable
countermeasures in such circumstances are missing.

Risk analysis is therefore at the heart of the requirements engineering pro-
cess [31,76]. A risk is commonly defined as an uncertain factor whose occur-
rence may result in some loss of satisfaction of some corresponding objective.
In goal-oriented system modelling frameworks, obstacles are introduced as a
natural abstraction for risk analysis when using goal models [77]. An obstacle
to a goal is a precondition for the non-satisfaction of this goal. Depending
on the category of goal being obstructed, obstacles may correspond to safety
hazards, security threats, inaccuracy conditions on software input/output vari-
ables with respect to their environment counterpart, etc.

Obstacle analysis roughly consists of three steps [76]: (a) identify as many
obstacles as possible to every leaf goal in the systems goal refinement graph,
(b) assess the likelihood and severity of each obstacle; and (c) resolve likely
and severe obstacles by systematic transformations to the goal model using
appropriate countermeasures.

The obstacle identification step is obviously crucial. In [77], a formal tech-
nique is described for generating obstacles by regressing goal negations through
available domain properties. Although quite systematic, this technique appears
costly to implement for goals formalised in a first-order real-time linear tem-
poral logic. No tool support is available.

In [3], we present an alternative, tool-supported technique for obstacle
generation. A complete set of obstacles, relative to what is known about the
domain, is computed by iterating the following cycle: (a) a behaviour model
is synthesised from the available background properties; (b) this model is ver-
ified against the goal and against a negated form of it, in order to generate a
negative trace (counterexample) and a positive trace (witness), respectively;
(c) the negative trace is taken as a positive example whereas the positive trace
is taken as a negative example input for a learning engine; (d) the learning
tool generates a set of candidate obstacles that cover the positive example
and exclude the negative one; (e) the user can then select from the generated
obstacles those considered likely and severe, and suggest further domain prop-
erties; (f) a new cycle is applied to the background properties augmented with
such properties and the negated obstacles generated at the previous cycle. The
process terminates when a domain-complete set of obstacles is generated for
the available domain properties.

4.4 Vacuity Resolution for Triggered Scenarios

Scenarios, use cases and story boards are popular means for supporting require-
ments engineering activities. They illustrate examples of how the software-to-
be and its environment should and should not interact. They are commonly
used as an intuitive, semi-formal language for describing behaviour at a func-
tional level.



14 Uchitel et. al

A common form for providing examples of behaviour is through condi-
tional statements. Use cases [1] support existential conditional statements such
as “once an appropriate user ID and passwords has been obtained, a home-
owner can access the surveillance cameras placed throughout the house from
any remote location via the internet” [63]. Live Sequence Charts [42] support
universal conditional statements such as “the controller should probe the ther-
mometer for a temperature value every 100 milliseconds, and if the result is
more that 60 degrees, it should deactivate the heater and send a warning to the
console”. Some languages support both existential and universal conditional
scenarios [67].

Conditional scenarios with different modalities are useful. They provide
support for “what-if” elaboration of requirements specifications [1], and the
progressive shift from existential statements, in the form of examples and
use-cases, to universal statements in the form of declarative properties. Each
conditional scenario constitutes only a partial description of the system’s in-
tended behaviour. Hence, typically many of them are used in conjunction along
with other behaviour descriptions such as system goals [21]. The emergent be-
haviour of such rich descriptions can be complex to reason about, hindering
validation, and resulting frequently in specifications that are incomplete or
contradictory.

One particular issue that conditional scenarios have is that they are liable
to being satisfied vacuously; a system can be constructed so that it satisfies
the conditional scenarios by never satisfying the condition. For instance, a
system in which the homeowner is never given a user password vacuously
satisfies the use case described above. This problem, commonly referred to as
antecedent failure [11] in temporal specifications, is often an indication that
the specification is partial and hence provides an opportunity for elicitation;
it is clear that the stakeholder’s intention is that “the system should provide
the user with an id and password”, and if it does, then the user can access the
installed surveillance cameras. In addition, vacuously satisfiable specifications
can have pernicious effects, concealing conflicting behaviour which is important
to explore. For example, consider two scenarios extracted from the mine pump
example in [51]: “once the methane sensors detect that the methane level
is critical, then the pump controller must send a signal to the pump to be
switched off” and “once the water sensors detect that the water level is above
the high-threshold, then the pump controller must send a signal to the pump
to be switched on”. These scenarios are consistent as a system in which water
sensors never detect high water and methane levels vacuously satisfies both
scenarios. However, if these two levels were to occur, then the scenarios provide
contradictory information of what the controller must do.

In [5] we present an approach that not only detects vacuously satisfiable
conditional scenarios but also provides automated support for learning new
scenarios that ensure the conditions, i.e. triggers, are satisfied. More specif-
ically, the approach takes as input a set of scenarios formalised as triggered
existential and universal scenarios [67] and consists of two main phases. The
first involves (i) synthesising a Modal Transition System from the scenarios,



Supporting Incremental Behaviour Model Elaboration 15

representing all possible implementations that satisfy them and (ii) perform-
ing a vacuity check, using a model checker, against a scenario’s trigger. If the
vacuity check is positive, the model checker produces examples of how the
system-to-be could satisfy the trigger, i.e. non-vacuity witnesses [41]. In the
second phase, (iii) an engineer classifies the examples as either positive or neg-
ative, i.e. ones that should be accepted or not in the final implementation, and
then (iv), together with the given scenarios, inputs them into an inductive logic
programming learning tool to compute new triggered scenarios which, if added
to the existing scenarios, guarantee that they are no longer vacuously satisfi-
able. This process is repeated for each given triggered scenario, producing in
the end a scenario-based specification that is not vacuously satisfiable.

5 Behaviour Model Validation

Behaviour model validation aims to determine the degree to which a behaviour
model is a sufficiently accurate representation of the real world (as it is or as
it is intended to be once the system under construction is deployed). The gap
from the formal language used for modelling to the untractable informal world
makes validation a difficult task.

Although related, verification of behaviour models (determining whether
the behaviour model satisfies specific formally described properties [45]) is of
a very different nature, where at least the artefacts to be compared are in the
realm of mathematics.

Behaviour model verification and validation are complementary activities;
both are necessary to increase confidence regarding the quality of the software
under construction. Much work has gone into supporting behaviour model
verification; however, we believe, there is significant progress to be made on
supporting behaviour model validation.

There are two broad strategies that can be taken to validate behaviour
models. One is to turn the validation problem into a verification one. More
concretely, to produce a specification against which the behaviour can be veri-
fied. The idea is that if the specification is simpler than the artefact, validation
of the former is likely to be simpler and less error prone. Although an effective
strategy, since an alternative specification is required, it must be validated ap-
propriately, falling back into the validation problem. In other words, turning
a validation problem into a verification problem creates a new (possibly sim-
pler but of reduced scope) validation task, so eventually human intervention
is required.

The other strategies require a human in the loop that constrasts informally
the model against his or her understanding of the domain. Walkthroughs,
inspections and reviews are classic structured activities for organising this task.
However, key to effective validation is the ability to present behaviour models
in alternative, semantic preserving, views. Hence, much work has gone into
developing semantic preserving automated manipulations of models that can
be used to produce alternative views. Some classic examples of this strategy



16 Uchitel et. al

are minimisation, slicing, execution, simulation and abstraction. We have been
pursuing the latter for a number of years. More specifically, we have focussed
on automated abstraction for validation of pre/post condition specifications
and API implementations with requires clauses.

5.1 Behaviour Validation of Pre/Post Condition Specifications

Pre- and post-condition specifications constitute good practice in a variety
of behaviour modelling activities. In requirements engineering, they provide
the link between declarative high-level system goals and operational require-
ments for the software-to-be [73]. Use case specifications, which are popular
in development processes such as RUP (Rational Unified Process), are also
equipped with pre- and post-conditions. In design, the notion of design by
contract [58], as a mechanism to abstract the way functionality is provided
by a procedure or method, is underpinned by pre-/post- conditions. Object
oriented design commonly includes design of method pre- and post-conditions
in addition to the specification of class or object invariants. At the code level,
the use of assertions to verify at run-time pre-/post- conditions is considered
good practice [65].

A pre/post condition pair constitutes a specification that is local to a spe-
cific operation (method, procedure, use case, event, etc.). The precondition
is an assertion that is expected to hold before the occurrence of the opera-
tion. The postcondition is an assertion that is guaranteed to hold after the
occurrence of the operation if the precondition held before the occurrence.
Typically, a contract specification will include various operations (needed to
provide some significant service) each with a pre/post condition pair and pos-
sibly an invariant that is expected to hold after the occurrence of any sequence
of the specified operations.

Validating pre/post condition specifications, i.e., understanding if there is
a correspondence between the meaning of the specification and the meaning
that the specification was expected to have, is a difficult and error prone task.
Although understanding the pre/post condition for a single operation may be
relatively simple, understanding if chaining them for an arbitrary sequence of
operations is describing the intended outcome is complicated. For example,
ensuring that the pre/post conditions of a set of operations of an API are
correct requires understanding if they preserve the system invariant and fit
together adequately to provide the intended API functionality. Validating a use
case model requires understanding how the various use-cases can be combined
to provide the expected software-wide requirements.

In [25], we propose a strategy for validation of pre/post condition specifi-
cations based on the conjecture that pre/post condition specifications would
benefit from easily auditable abstractions that exhibit global implications of
locally specified behaviour. The approach is based on the static construction of
a conservative abstraction of the specification semantics (typically, an infinite



Supporting Incremental Behaviour Model Elaboration 17

state machine) in the form of a finite behaviour model that is sufficiently small
to make validation tractable.

The technique buids abstractions at a level which can be seen as a generali-
sation of the pre/post condition philosophy: A precondition describes the state
in which a specific operation is permissible. We are interested in capturing the
precondition for each arbitrary set of operations. In other words, each state
in the resulting behaviour model should characterise the condition for which
a subset of the specified operations is enabled; this means that the invariant
of the state is the conjunction of the preconditions enabled at that state. The
contract abstraction is then completed by adding transitions according to the
preconditions and postconditions of the operations they model: A transition
can be added if the precondition for the operation holds on the source state
and the postcondition holds on the target state.

The models constructed by the approach described herein can be used to
validate contract pre/post-condition-based specifications through inspection,
animation and simulation. We believe, and our experience so far confirms,
that the criterion chosen for abstraction facilitates validation and debugging.
Firstly, because a formal and intuitive correspondence exists between the state
space of the behaviour model and that of the artifact being specified. Further-
more, that correspondence is structured in a way that can be easily traced
back to the original specification. Not only does each state in the behaviour
model represent an invariant expressed in terms of the variables, predicates
and propositions that appear in the specification (and hence constructing con-
crete scenarios from abstract ones is straightforward), but also the invariants
are expressed as a conjunction of preconditions, each of which is a building
block of the specification being validated (and hence facilitating the identifica-
tion of problematic operations). Secondly, in the case studies conducted so far,
the state-based models we have produced automatically from contract speci-
fications have had a similar level of abstraction to models manually produced
by the authors of the contract specification. For instance, we have produced
abstractions that correspond to manually produced typestate specifications for
object oriented classes [26], and abstractions that are comparable to the state-
machines included in Microsoft technical documents to aid the comprehension
of their protocol specifications.

5.2 Program Behaviour Validation

Code artefacts that have non-trivial requirements with respect to the order in
which their methods or procedures ought to be called are commonplace. Such
is the case for many API implementations and objects. In practice, descrip-
tions of intended behaviour are incomplete and informal, if documented at all,
hindering verification and validation of the code artefacts themselves and the
client code that uses the artefacts.

The work in [24] addresses the problem of validating if API implementa-
tions provide their intended behaviour when descriptions of this behaviour are



18 Uchitel et. al

informal, partial or non-existent. Validation of API implementation behaviour
can result in the identification of bugs in the code which induce undesired
requirements, adjustment of the requirements expected by the engineer to the
requirements implicit in the code, and the improvement of available documen-
tation for that code.

Although seemingly a technique that is applicable further downstream than
validation of behaviour models, this is not necesarily the case. It is not uncom-
mon to find in industry behaviour models specified with a standard program-
ming languages (albeit in a restricted form). For instance, in the model-based
testing approach used by the Protocol Engineering Team at Microsoft [40] be-
haviour models are provided as C# classes. Each class has methods that are
interpreted as guarded rules defining a rich action machine. In [24] we report
on the application of this technique to Microsoft protocols, among others.

The technique described in [24] and then extended [78] automatically
constructs abstractions based on enabledness equivalence from code artefacts
equipped with requires clauses for methods. These models, similarly to types-
tates, encode all admissible sequences of method calls. The level of abstraction
at which such models are constructed aims at preserving enabledness of sets
of operations, resulting in a finite model with intuitive semantics and formal
traceability links to the code.

Evaluation of this work shows that enabledness-based abstractions can
be useful for validation of code artefacts and identifying findings that re-
late to bugs in code and problems in expected or documented requirements.
Evaluation was performed on case studies such as the PipedOutputStream,
Signature and ListItr from the Java Development Kit (JDK) 1.4 imple-
mentation; the SMTPProtocol class from the Ristretto protocol-level Java
mail client; and the PCCRR class was taken from a C# SpecExplorer proto-
col model. Resulting abstractions were reviewed by an expert and compared
to informal third-party developed documentation that was already available
for these clasess. These reviews led to the identification of issues related to
mismatches between code and documentation.

6 Conclusions

We have presented the main threads of research that we have and currently are
developing in the context of the “Partial Behaviour Modelling - Foundations
for Interative Model Based Software Engineering” Starting Grant funded by
the ERC. The project is concerned with supporting incremental elaboration
of behaviour models by providing feedback early in the modelling effort and
by prompting issues that can drive further model elaboration.

Thus, the vision we are pursuing is one in which complete descriptions
are not needed before analysis and feedback are possible. Rather, we aim to
provide a framework in which useful feedback can be obtained even when very
little information regarding system behaviour is available.



Supporting Incremental Behaviour Model Elaboration 19

We have described the four main threads of research that pursue this vi-
sion. The first, partial behaviour models, aims at studying behaviour models
capable of explicitly describing behaviour that is yet to be elicited, yet to be
defined or simply uneconomical to describe at a certain stage. We have made
contributions in this thread related to Modal Transition System refinement,
merge, synthesis, and analysis. The second thread, Controller Synthesis, aims
at developing controller synthesis techniques to automatically build models of
system requirements such that they guarantee system goals under specific en-
vironment assumptions, but also to investigate how the non-existence of such
a controller can prompt elaboration of system goals and assumptions. We
have made contributions adapting controller synthesis techniques to a soft-
ware engineering setting based on event-based behaviour models while focus-
ing on methodologically sound use of assumptions in such techniques. The
third thread, automated diagnosis and refinement, aims at combining model
checking and inductive logic programming to support elaboration by provid-
ing suggestions, sound by construction, of refinements or revisions of partial or
inconsistent models. We have contributed a framework for combining model
checking and inductive logic programming in addition to various applications
of this framework to model elaboration. Finally, the last thread has focused on
the problem of validation of behaviour to support human inspection. We have
contributed a novel abstraction technique that has shown to aid the identifi-
cation of issues in behaviour specifications and code.

Although for presentation purposes our work has been structured in four
main threads, in practice these threads overlap and play on each other. For
instance, the non-existence of a suitable controller for all concrete environ-
ments described by a partial behaviour model leads naturally to refine the
model pruning out uncontrollable environments. Achieving such pruning can
be done using automated learning. Furthermore, once a controller has been
synthesised, validating its behaviour can be done by producing enabledness-
based abstractions. The synergetic use of the breadth of contributions de-
scribed in this paper conforms much of the future work needed to further our
vision of incremental, iterative elaboration of partial behaviour models.

References

1. I. Alexander and N. Maiden. Scenarios, stories, use cases: through the systems devel-
opment life-cycle. Wiley, 2004.

2. D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational requirements
from goal models. In Proc. of 31st Intl. Conf. on Softw. Eng., pages 265–275, 2009.

3. D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo, and S. Uchitel. Generating
obstacle conditions for requirements completeness. In Proc. of 34th Intl. Conf. on
Softw. Eng., 2012.

4. Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastián Uchitel. Deriving non-zeno
behaviour models from goal models using ilp. Formal Asp. Comput., 22(3-4):217–241,
2010.

5. Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastián Uchitel. Learning from
vacuously satisfiable scenario-based specifications. In Juan de Lara and Andrea Zisman,



20 Uchitel et. al

editors, FASE, volume 7212 of Lecture Notes in Computer Science, pages 377–393.
Springer, 2012.

6. Dalal Alrajeh, Oliver Ray, Alessandra Russo, and Sebastián Uchitel. Using abduction
and induction for operational requirements elaboration. J. Applied Logic, 7(3):275–288,
2009.

7. Dalal Alrajeh, Alessandra Russo, and Sebastián Uchitel. Deriving non-zeno behavior
models from goal models using ilp. In José Luiz Fiadeiro and Paola Inverardi, editors,
FASE, volume 4961 of Lecture Notes in Computer Science, pages 1–15. Springer, 2008.

8. R. Alur and S. La Torre. Deterministic generators and games for LTL fragments. ACM
Transactions on Computational Logic (TOCL), 5(1):1–25, 2004.

9. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata.
In Proceedings of the IFAC Symposium on System Structure and Control, 1998.

10. M. Autili, P. Inverardi, M. Tivoli, and D. Garlan. Synthesis of” correct” adaptors for
protocol enhancement in component-based systems. SAVCBS 2004 Specification and
Verification of Component-Based Systems, page 79, 2004.

11. D. Beatty and R. Bryant. “Formally Verifying a Microprocessor Using a Simulation
Methodogoly”. In Proceedings of Design Automation Conference’94, pages 596–602,
1994.

12. Shoham Ben-David, Marsha Chechik, Arie Gurfinkel, and Sebastián Uchitel. Cssl: a logic
for specifying conditional scenarios. In Tibor Gyimóthy and Andreas Zeller, editors,
SIGSOFT FSE, pages 37–47. ACM, 2011. (Acceptance rate: 16%. Scopus).

13. P. Bertoli and M. Pistore. Planning with extended goals and partial observability. In
Proceedings of ICAPS, volume 4, 2004.

14. Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo
Traverso. MBP: a model based planner. In Proceedings of the IJCAI01 Workshop
on Planning under Uncertainty and Incomplete Information, 2001.

15. A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic synthesis of behavior
protocols for composable web-services. In Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering on European software engineering conference and
foundations of software engineering symposium, pages 141–150. ACM, 2009.

16. Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environment
assumptions for synthesis. In Proceedings of the 19th international conference on Con-
currency Theory, CONCUR ’08, pages 147–161, Berlin, Heidelberg, 2008. Springer-
Verlag.

17. Marsha Chechik, Benet Devereux, Steve Easterbrook, and Arie Gurfinkel. Multi-valued
symbolic model-checking. ACM Trans. Softw. Eng. Methodol., 12(4):371–408, October
2003.

18. Marsha Chechik, Mihaela Gheorghiu, and Arie Gurfinkel. Finding environment guaran-
tees. In Proceedings of the 10th international conference on Fundamental approaches
to software engineering, FASE’07, pages 352–367, Berlin, Heidelberg, 2007. Springer-
Verlag.

19. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
20. D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”.

ACM Transactions on Programming Languages and Systems, 2(19):253–291, 1997.
21. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.

Science of Computer Programming, 20(1):3–50, 1993.
22. R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-driven re-

quirements elaboration. In Proc. of 4th ACM SIGSOFT symposium on Foundations of
Softw. Eng., pages 179–190, 1996.

23. Luca de Alfaro and Thomas A. Henzinger. Interface automata. SIGSOFT Softw. Eng.
Notes, 26(5):109–120, September 2001.

24. Guido de Caso, Vı́ctor A. Braberman, Diego Garbervetsky, and Sebastián Uchitel. Pro-
gram abstractions for behaviour validation. In Richard N. Taylor, Harald Gall, and
Nenad Medvidovic, editors, ICSE, pages 381–390. ACM, 2011.

25. Guido de Caso, Vı́ctor A. Braberman, Diego Garbervetsky, and Sebastián Uchitel. Auto-
mated abstractions for contract validation. IEEE Trans. Software Eng., 38(1):141–162,
2012.



Supporting Incremental Behaviour Model Elaboration 21

26. R. DeLine and M. Fahndrich. Typestates for Objects. Ecoop 2004-Object-Oriented Pro-
gramming: 18th European Conference, Oslo, Norway, June, 2004: Proceedings, 2004.

27. Nicolás D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel. “The
Modal Transition System Control Problem”. In Submitted.

28. Nicolás D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel. Synthesis-
ing non-anomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol., 22(1), 2013.

29. Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman, and Sebastián Uchitel. Syn-
thesis of live behaviour models for fallible domains. In Richard N. Taylor, Harald Gall,
and Nenad Medvidovic, editors, ICSE, pages 211–220. ACM, 2011.

30. Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián Uchitel. Mtsa: The
modal transition system analyser. In ASE, pages 475–476. IEEE, 2008.

31. M.S. Feather and S.L. Cornford. Quantitative risk-based requirements reasoning. J. Re-
quirements Eng., 8:248–265, 2003.

32. A. Finkelstein. The london ambulance system case study. In Proc. of 8th Intl. Work. on
Software Specification and Design, pages 5–19, 1996.

33. D. Fischbein. “Foundations for Behavioural Model Elaboration Using Modal Transition
Systems ”. PhD thesis, Imperial College London, UK, April 2012.

34. Dario Fischbein, Vı́ctor A. Braberman, and Sebastián Uchitel. A sound observational
semantics for modal transition systems. In Martin Leucker and Carroll Morgan, editors,
ICTAC, volume 5684 of Lecture Notes in Computer Science, pages 215–230. Springer,
2009.

35. Dario Fischbein, Nicolás D’Ippolito, Greg Brunet, Marsha Chechik, and Sebastián Uchi-
tel. Weak alphabet merging of partial behavior models. ACM Trans. Softw. Eng.
Methodol., 21(2):9, 2012.

36. Dario Fischbein and Sebastián Uchitel. On correct and complete strong merging of
partial behaviour models. In Mary Jean Harrold and Gail C. Murphy, editors, SIGSOFT
FSE, pages 297–307. ACM, 2008.

37. Melvin Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticae, 15(3-4):335–
350, 1991.

38. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R.A.
Kowalski and K. Bowen, editors, Proc. of 5th Int. Conference on Logic Programming,
pages 1070–1080, 1988.

39. D. Giannakopoulou and J. Magee. “Fluent Model Checking for Event-Based Systems”.
In Proceedings of the 9th joint meeting of the European Software Engineering Con-
ference and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’03), pages 257–266. ACM Press, September 2003.

40. W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman. Model-based quality assurance
of protocol documentation: tools and methodology. STVR, (in press).

41. A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”. In Proceedings of 10th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’04), volume 2988 of LNCS, pages 451–466, Barcelona, Spain, March
2004. Springer.

42. David Harel. Come, let’s play - scenario-based programming using LSCs and the play-
engine. Springer, 2003.

43. William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. Software engineering for
self-adaptive systems. chapter A Case Study in Goal-Driven Architectural Adaptation,
pages 109–127. Springer-Verlag, Berlin, Heidelberg, 2009.

44. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, New York, 1985.
45. IEEE. IEEE Standard Glossary of Software Engineering Terminology, September 1990.
46. ITU. Message sequence charts. Technical Report Recommendation Z.120, International

Telecommunications Union. Telecommunication Standardisation Sector, 2000.
47. Michael Jackson. Software Requirements & Specifications - A Lexicon of Practice,

Principles and Prejudices. Addison-Wesley, 1995.
48. Michael Jackson. The world and the machine. In Proceedings of the 17th international

conference on Software engineering, ICSE ’95, pages 283–292, New York, NY, USA,
1995. ACM.

49. R. Keller. “Formal Verification of Parallel Programs”. Communications of the ACM,
19(7):371–384, 1976.



22 Uchitel et. al

50. R.A. Kowalski and M. Sergot. A logic-based calculus of events. New generation com-
puting, 4(1):67–95, 1986.

51. J. Kramer, J. Magee, and M. Sloman. Conic: An integrated approach to distributed
computer control systems. In IEE Proc., Part E 130, 1983.

52. S.A. Kripke. “Semantical Considerations on Modal Logic”. Acta Philosophica Fennica,
16:83–94, 1963.

53. K. Larsen and L. Xinxin. “Equation Solving Using Modal Transition Systems”. In Pro-
ceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS’90),
pages 108–117. IEEE Computer Society Press, 1990.

54. K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In Proceedings of 3rd Annual
Symposium on Logic in Computer Science (LICS’88), pages 203–210. IEEE Computer
Society Press, 1988.

55. Kim G. Larsen, Bernhard Steffen, and Carsten Weise. “A Constraint Oriented Proof
Methodology based on Modal Transition Systems”. In Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’95), LNCS, pages 13–28. Springer, May
1995.

56. E. Letier and A. Van Lamsweerde. Deriving operational software specifications from
system goals. In Proc. of 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 119–128, 2002.

57. Emmanuel Letier, Jeff Kramer, Jeff Magee, and Sebastián Uchitel. Deriving event-
based transition systems from goal-oriented requirements models. Autom. Softw. Eng.,
15(2):175–206, 2008.

58. B. Meyer. Applying ’design by contract’. Computer, 25:40–51, 1992.
59. R. Milner. Communication and Concurrency. Prentice-Hall, New York, 1989.
60. David Lorge Parnas and Jan Madey. “Functional Documents for Computer Systems”.

Science of Computer Programming, 25:41–61, 1995.
61. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive (1) designs. Lecture

notes in computer science, 3855:364–380, 2006.
62. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 179–190. ACM New York, NY, USA, 1989.

63. R.S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education, 7th edition, 2010.

64. PJG Ramadge and WM Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(1):81–98, 1989.

65. David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, 1995.

66. Mathieu Sassolas, Marsha Chechik, and Sebastián Uchitel. Exploring inconsistencies
between modal transition systems. Software and System Modeling, 10(1):117–142, 2011.

67. German Sibay, Sebastián Uchitel, and Vı́ctor A. Braberman. Existential live sequence
charts revisited. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors,
ICSE, pages 41–50. ACM, 2008.

68. Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Plan-directed architectural
change for autonomous systems. In Arnd Poetzsch-Heffter, editor, SAVCBS, pages 15–
21. ACM, 2007.

69. S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”. In Proceedings of
12th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 43–52, November 2004.

70. Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model synthesis from
properties and scenarios. In ICSE, pages 34–43. IEEE Computer Society, 2007.

71. Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Synthesis of partial behavior
models from properties and scenarios. IEEE Trans. Software Eng., 35(3):384–406, 2009.

72. Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Behaviour model elaboration using
partial labelled transition systems. In ESEC / SIGSOFT FSE, pages 19–27. ACM,
2003.

73. H.T. Van, A. van Lamsweerde, P. Massonet, and C. Ponsard. Goal-oriented requirements
animation. In Requirements Engineering Conference, 2004., pages 218–228, 2004.

74. Rob J. van Gabbeek and W. Peter Weijland. Branching time and abstraction in bisim-
ulation semantics. J. ACM, 43(3):555–600, 1996.



Supporting Incremental Behaviour Model Elaboration 23

75. A. Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering.
IEEE Computer Society Washington, DC, USA, 2001.

76. A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Specifications. Wiley, 2009.

77. Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented re-
quirements engineering. IEEE Transactions on Software Engineering, 26:978–1005,
October 2000.

78. Edgardo Zoppi, Vı́ctor Braberman, Guido de Caso, Diego Garbervetsky, and Sebastián
Uchitel. Contractor.net: inferring typestate properties to enrich code contracts. In
Proceedings of the 1st Workshop on Developing Tools as Plug-ins, TOPI ’11, pages
44–47, New York, NY, USA, 2011. ACM.


