

Edinburgh Research Explorer

Benchmarking for power consumption monitoring

Citation for published version:
Weiland, M & Johnson, N 2015, 'Benchmarking for power consumption monitoring', Computer Science -
Research and Development, vol. 30, no. 2, pp. 155-163. https://doi.org/10.1007/s00450-014-0260-1

Digital Object Identifier (DOI):
10.1007/s00450-014-0260-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Science - Research and Development

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1007/s00450-014-0260-1
https://doi.org/10.1007/s00450-014-0260-1
https://www.research.ed.ac.uk/en/publications/8ef7fe97-45c5-405e-bd82-bf9db7126b30

Noname manuscript No.
(will be inserted by the editor)

Benchmarking for power consumption monitoring

Description of benchmarks desgined to expose power usage characteristics of parallel hardware

systems, and preliminary results

Michèle Weiland · Nick Johnson

Received: date / Accepted: date

Abstract This paper presents a set of benchmarks that are

designed to measure power consumption in parallel systems.

The benchmarks range from low-level, single instructions

or operations, to small kernels. In addition to describing the

motivation behind developing the benchmarks and the de-

sign principles that were followed, the paper also introduces

a metric to quantify the power-performance of a parallel sys-

tem. Initial results are presented and help to illustrate the

contribution of the paper.

Keywords Benchmarks · power consumption · energy

efficiency metrics

1 Introduction

The quest for Exascale computing has put research into the

power consumption of (parallel) software and hardware firm-

ly on the agenda of the HPC community. Recent advances in

HPC-specific hardware architectures, and the advent of low-

power multi- and many-core architectures and accelerator

technologies, have meant that developers of parallel soft-

ware have had to adapt their programming techniques and

models to exploit the full performance of todays systems.

The Adept project is partially funded by the European Commission un-

der the 7th Framework Programme, grant agreement number 610490.

Michèle Weiland

EPCC

The University of Edinburgh

Tel.: +44-131-6505030

Fax: +44-131-6506555

E-mail: m.weiland@epcc.ed.ac.uk

Nick Johnson

EPCC

The University of Edinburgh

Tel.: +44-131-6505030

Fax: +44-131-6506555

E-mail: Nick.Johnson@ed.ac.uk

Developing parallel software that is efficient in both perfor-

mance and power usage in an increasingly complex hard-

ware landscape is one of the core Exascale challenges [2].

It would however be inaccurate to believe that this chal-

lenge only exists at the top end of parallel computing; it is

also a crucial obstacle to overcome for smaller scale parallel

systems, including mobile processing devices and applica-

tions [1]. In order to be able to implement energy efficient

algorithms or choose the most power-performance efficient

hardware, it is first necessary to understand and quantify any

factors that dictate power consumption. Benchmarks can be

used to gain a deeper understanding of how implementation

and architecture choices can impact on the overall efficiency

of software. If we can identify the power usage profiles of

computational patterns, it will become possible to optimise

for energy and power in the same way we optimise for per-

formance today.

This paper describes the design and implementation of a

set of benchmarks that can be used to measure both per-

formance and power usage on a wide range of hardware ar-

chitectures, and outlines the motivation for developing new

benchmarks rather than using existing suites. The bench-

marks introduced here are representative of the whole spec-

trum of parallel computing (from Embedded to HPC) and

provide measurements that can be interpreted on a wide range

of platforms. They also cover different levels of compute

granularity, from single instructions and operations up to

specific computational patterns in the form of kernels.

This paper makes contributions to and progresses the state-

of-the-art in the following areas:

– The development of a set of benchmarks which expose

system behaviour and allow measurement of power and

energy consumption;

2 Weiland & Johnson

– The desgin of a methodology to quantify power and en-

ergy consumption in a range of systems from embedded

to HPC;

– Initial results exposing the power-performance charac-

teristics of two different CPUs.

The work presented here is part of the research undertaken

in the EU FP7 project Adept (“Addressing Energy in Paral-

lel Technologies”)1, which at its heart has the objective to

develop a tool that will allow the prediction of both perfor-

mance and power usage of parallel software on a wide range

of hardware architectures. The development of benchmarks

to further our understanding of energy use and power con-

sumption of software and hardware is central to fulfilling

this objective.

2 Benchmarking for power consumption

Benchmarks are used to measure and quantify the perfor-

mance of certain aspects of a given system; here, they are

used specifically to measure the performance in combina-

tion with the power and energy usage of computations on

a wide range of hardware platforms. The purpose of the

benchmarks will not be to measure pure runtime performance.

Rather they will be used to get an understanding of the power

usage of a system (where system includes hardware, soft-

ware environment, programming models and algorithms) to

inform the development of a power usage model for different

operations and computational patterns. Spanning the entire

landscape of parallel computing from Embedded to large-

scale HPC systems, the benchmarks need to reflect this span

by being representative of the different computational de-

mands on these systems. While a HPC application may fo-

cus on floating-point arithmetic, an Embedded application

may be more concerned with thread management and low-

level communication.

2.1 Motivation

The decision to develop a new set of benchmarks rather than

using existing benchmarks (for example BenchIT [6], LM-

bench [10], or MultiMaps [8]) was motivated by two factors:

firstly, to the best of our knowledge, no single benchmark

suite incorporates computational patterns from both Embed-

ded and high-performance computing; as parallel comput-

ing is no longer restricted to HPC, but is becoming increas-

ingly commonplace in the Embedded sector as well, it is

important that a benchmark suite for power measurement

encompasses this branch of computing. Secondly, and more

importantly, in order to measure power usage of particular

1 www.adept-project.eu

fine-grained operations such as inter-process communica-

tion or basic arithmetic, it is necessary to have a clear under-

standing of any overheads that stem from the basic bench-

mark initialisation and management code. Developing the

benchmarks from scratch means that they can be designed so

that any overheads can be minimised and discounted when-

ever necessary. Existing benchmarks would likely need to

be modified considerably in order to allow for clear distinc-

tion between what needs to be measured and what needs to

be discounted. This second point is particularly important as

it dictates the methodology that was followed in the design

and implementation of the benchmarks, which will be elab-

orated on more in Section 3. In order to be able to measure

power on a wide range of hardware platforms it is important

to have a clear set of well-defined software benchmarks as a

starting point to ensure accurate and reliable measurements.

Our benchmarks are designed to expose the computational

loads and patterns of typical workloads from both the em-

bedded and HPC sectors in order to allow separate, platform

dependant tools to extract power and energy usage informa-

tion.

2.2 Designing the benchmarks

As mentioned before, an important factor motivating the de-

cision to write new benchmarks rather than use existing ones

is that of low-level control over the implementation and the

separation of overheads. The following design decisions also

dictated the implementation:

Language All the benchmarks are implemented in C; the

language was chosen for portability reasons, as well as for

being closest to the system. C is used widely in both HPC

and Embedded applications. In scenarios where C is too

high level and too many overheads are introduced, or where

the compiler may optimise the source code in an unpre-

dictable manner, alternative assembler language implemen-

tations are provided. This is especially true for very low-

level operations, such as basic arithmetic.

Optimisation The benchmarks are tested with a range of

different C compilers such as GNU, PGI, Intel and Clang.

The performance and power usage of the benchmarks should

represent real-life performance whenever possible and com-

piling the benchmarks with optimisation enabled should be

the default. However, for some of the benchmarks (e.g. func-

tion calls), enabling optimisation would simply result in the

operation that we want to measure being removed (i.e. by in-

lining the function calls). In such cases the benchmarks are

built with all optimisations disabled.

Benchmarking for Power 3

Assembler In order to ensure that the C version of the bench-

mark codes results in the correct instructions being executed,

the development process involves disassembling the source

code and inspecting the machine code. This way it is possi-

ble to verify exactly which instructions are executed for each

benchmark, and which optimisations the compilers perform.

Overheads It is not possible to eliminate overheads entirely.

For instance, in order to measure the time and energy used

to perform a single multiplication, it is necessary to perform

this operation many times in a loop. The overhead (both in

term of performance and power) that is introduced by the

loop is significant when compared to the multiplication it-

self. It is therefore necessary to measure the overhead on

its own in order to discount it for the overall measurements.

This is achieved by adding empty loops containing a nop

operation to the benchmarks, thus making sure that the time

and energy spent in an empty loop can be measured:

f o r (i =0 ; i<max rep ; i ++) {
a s m (‘ ‘ nop ’ ’) ;

}

Timing Runtime measurements are currently taken using the

stdlib call gettimeofday(), however alternatives with finer

granularity are being investigated, such as clock gettime()

operating in the CLOCK MONOTONIC RAW mode. When tak-

ing measurements, the convention is to take a minimum of

10 readings and retain the measurement with the lowest run-

time (i.e. the best possible observed performance).

Warm-up Measuring the power usage of a system “from

cold” may give false and misleading results. It is therefore

important that the benchmarks put the hardware into a known

and stable state by warming it up, i.e. making sure the CPU

is running at a relevant clock-speed, and that the pipeline and

caches are filled. This is especially important for the low-

level benchmarks that measure small operations; in a real-

life application those operations are not isolated and mea-

suring them in a “warm” system takes this into account. The

warm-up is achieved by executing a moderate number of the

benchmark operations before taking any measurements.

3 Adept benchmarks

In the interest of brevity, this section only describes a selec-

tion of the benchmarks that were developed to test power-

performance and scaling; a full list is given in Table1. These

benchmarks were chosen to represent operations and algo-

rithms of interest to both HPC and Embedded systems en-

gineers. Parentheses indicate that this benchmark is partly

relevant in this area, or that it is not a commonly used oper-

ation or workload.

Table 1 Complete list of micro- and kernel-level power measurement

benchmarks and an indication of their relevance for either Embedded

or HPC computing.

Benchmark Embedded HPC

Bus transfer ✓ ✓

Memory ✓ ✓

Basic arithmetic ✓ ✓

SIMD instructions ✓ ✓

Network I/O ✓ (✓)

Disk I/O (✓) ✓

Jump & Branch ✓ ✓

Function calls ✓ ✓

Cache misses ✓ ✓

IPC ✓

Thread & process management ✓

BLAS ✓ ✓

File parsing ✓

Pattern matching ✓ ✓

Kernel invocation ✓ ✓

FFT ✓ ✓

Stencil operations ✓ ✓

3.1 Arithmetic Operations

The basic algebra benchmark exercises four basic numeri-

cal operations: addition, subtraction, multiplication and di-

vision. For each operation, different data types may be tested

to compare performance. Measuring a single operation may

be beyond the measurement capabilities of the system under

test, especially for in-band measurement. Therefore a num-

ber of operations N of the same data type are performed in a

loop, in which the number of iterations R is user-specifiable.

For each numerical operation, multiple tests are performed.

The first begins with a single operation (N = 1) being exe-

cuted R times. In each subsequent test, N is increased whilst

R is decreased such that the product (N ×R) remains con-

stant. The motivation is to expose any differences in perfor-

mance for what should remain a constant volume of work

with a reduced overhead being incurred by the loop due to

the execution of fewer iterations. Because this benchmark in

particular deals with small, very basic operations, the work

loops are implemented both in C and in assembly language.

While it is possible to measure single arithmetic instructions

using the assembly implementation, the C implementation

will include load and store instructions in addition to the

arithmetic.

3.2 Memory Benchmarks

This benchmark is designed to test the performance of each

level of memory and observe conditions when hierarchical

boundaries are crossed, for example, from L1 cache to L2

cache.

4 Weiland & Johnson

The benchmark performs reads or writes to a block of mem-

ory, the size of which is user specified. Accesses to this

block are made in one of three ways: contiguous, strided, or

random, each of which is detailed below. For write bench-

marks, a single data value is pre-computed and assigned to

each desired element of the array. For read benchmarks, the

array is pre-filled with random data.

– For the contiguous-access case, elements of the array

are accessed in order of monotonically increasing index.

Each element of the array is accessed once, and once

only.

– For the strided-access case, the array is treated as a quasi-

circular buffer. The indices of the elements to be ac-

cessed increase by a constant, the stride length, which

begins at two elements, and doubles on each pass to a

maximum value requested by the user. For example, if

the user requests a stride length of 4, the benchmark will

be run twice, first using a stride length of 2 and then

again using a stride length of 4. Because the array is

considered quasi-circular, all elements of the array are

accessed for each stride length. Quasi-circular, in this

case, means that for each pass through the array, the off-

set increases by 1. For example, with an array of length

10, and a stride length of 2, the elements would be ac-

cessed in the following order: 0, 2, 4, 6, 8, 1, 3, 5, 7, 9.

A true circular buffer would see only elements 0, 2, 4, 6

and 8 are each accessed twice. Here, when the end of the

array is reached, the offset, initially 0, is increased by 1,

allowing access to elements 1 (0+1), 3 (2+1), 5 (4+1), 7

(6+1) and 9 (8+1). Each element of the array is accessed

once, and once only, for each stride length.

– For the random-access case, the element of the array to

be accessed is determined randomly, once per iteration;

the number of iterations is equal to the number of el-

ements in the array. The random-access case does not

store a list of previously accessed elements so it is likely

that some elements may be accessed more than once and

some never accessed.

The memory benchmark also has an option to measure a cal-

loc operation, i.e. assigning and zero-ing a block of memory,

for a user-specified amount of memory.

3.3 Function Calls

This benchmark exposes data relating to the overheads in-

curred in calling a function. Many optimising compilers will

attempt to inline functions wherever feasbile, however this

is not always possible and being able to quantify the im-

plications of a function call on performance and energy use

is therefore of interest. This benchmark uses a single code,

an iterative approximation algorithm for π , in all three cases

tested: inline, nested and recursive, each of which is detailed

below. For each case, the entire approximation is repeated

a number of times, R, as specified by the user and within

each repeat, the number of iterations of the approximation,

N, may also be specified.

– In the inline case, the code is inlined to the caller, giving

a baseline for measurement.

– In the nested case, the caller executes a single function,

which contains the code for each repeat, R, of the calcu-

lation. The called function performs N iterations of the

approximation.

– In the recursive case, the caller executes a function for

each repeat, R, which calls itself, for each iteration, N.

Because systems have a maximum recursion depth, the

number of repetitions may have to be broken. When this

is the case, and Ruser > Rmax, a fraction of the repeats

R f rac is executed M times, i.e. R f rac = Ruser/M. The ex-

tra overhead introduced through additional loop is dis-

counted.

3.4 IPC operations

The inter-process communication (IPC) benchmark exercises

three mechanisms of IPC, FIFO buffers, UNIX domain sock-

ets and shared memory segments.

In each case, two processes are spawned using the pThreads

library. One thread runs a server code that sends a times-

tamp via the selected IPC mechanism to the other thread,

which runs a client code. The client receives the timestamp

and adds it to an array along with a timestamp representing

when it received the data from the server. After a user spec-

ified number of repetitions the differences between pairs of

timestamps (server and client) are computed to give an ap-

proximation to the transit time of the IPC mechanism.

Both the socket and FIFO methods have an implicit buffer

which negates the need for explicit signalling between server

and client for the sending of each timestamp, provided there

is consensus about readiness prior to the measurement loop.

The shared memory method does require explicit signalling

for each timestamp and to establish readiness consensus.

Both these requirements are handled using the pThreads con-

ditional signalling and mutex operations.

3.5 BLAS operations

This benchmark is a naı̈ve implementation of selected BLAS

routines for dense data, for example: dot product, vector

Benchmarking for Power 5

product, Euclidian norm, matrix-vector product and scalar-

vector product. In normal coding, it would always be prefer-

able to make use of a BLAS library, often provided by the

CPU or system vendor which has been tuned to provide best

performance for the system in question. In this case, we are

interested in a simple code that is portable between plat-

forms (to compare system performance), portable between

programming methodologies (parallelisation in OpenMP[7]

versus UPC[11] for example) and allows coding with dif-

ferent compiler options and optimisation flags. The baseline

implementation will allow for direct comparison of the im-

plications that different methods of programming, compila-

tion and execution have on power consumption and perfor-

mance.

3.6 FFT

This benchmark is again a naı̈ve implementation of a 2-

dimensional FFT, based on the well-known Cooley-Tukey

algorithm[3]. Whilst alternative implementations exist, this

has been well-studied and provides a good comparison with

implementation in libraries such as FFTW. Much like the

BLAS benchmark in many applications, a tuned, platform

specific implementation would be used. However, the desire

here is for a portable implementation which has no target-

specific tuning, but exposes the computational patterns typ-

ical of an FFT computation.

3.7 Stencil algorithms

This benchmark is a naı̈ve implementation of a 5, 9, 19 & 27

point stencil operation. Stencil algorithms are widely used in

numerical HPC codes and the computational patterns they

exhibit therefore are of interest. The stencil operations are

computed multiple times to ensure a runtime large enough

for measurement and consist of performing the stencil op-

eration (N-point average) on the complete dataset each time

with the intermediate result at each iteration saved to an out-

of-place buffer which becomes the input buffer for the next

iteration, whilst the current input buffer becomes the storage

buffer.

4 Metrics

Perhaps one of the most important issues when benchmark-

ing power consumption and performance is how best to re-

port and analyse the data. Traditionally, performance is re-

ported in units of operations of interest per second (op/s).

In this case, an operation of interest may be bytes written to

disk, packets sent across a network interface, or the number

of dot-products calculated.

The biggest problem with this approach is that it takes ac-

count of neither energy consumption nor other system com-

ponents. When considering energy consumption, the whole

system should be accounted for, rather than a specific com-

ponent, which implies adding idle, or unused, components

to any metric.

We therefore propose a metric of operations-of-interest per

second per Watt (op/s/W) which allows a comparison of

the power efficiency of different components in a given sys-

tem. From this we can derive a metric for the energy scaling

performance of a system.

E(1) = EA × 1+EI × (NT − 1) (1a)

E(NA) = EA ×NA +EI × (NT −NA) (1b)

E(NA)

E(1)
=

EA ×NA +EI × (NT −NA)

EA +EI × (NT − 1)
(1c)

Consider Equation 1 where E represents energy consumed,

N represents the number of components and the subcripts A,

I & T represent active, idle and total respectively. For this

explanation, it is assumed that the components in question

are cores in a multi-core CPU. The equation is cast in terms

of energy and operations of interest, ie the time element has

been factored out. This is because we seek to compare the

performance and efficiency of a system using a fixed vol-

ume of computational work. The runtime of this work will

vary with changes in the system configuration (for example

choice of CPU or number of active threads) hence normaliz-

ing by runtime. We are also concerned with the energy con-

sumed by the system doing the work, not the peak-power

which is an instantaneous measurement and a function of

the design of the system.

Equation 1a gives the total energy consumed by one active

core as the energy consumed by an active core (EA) plus the

energy consumed by NT − 1 idle cores. Equation 1b gener-

alizes this to an arbitrary mix of idle and active cores. Fi-

nally, Equation 1c gives the scaling ratio; that is, the ratio of

the energy consumption of one active core (with the remain-

der idle) to an arbitrary number of active cores. In a system

where idle cores consume no energy, this would result in a

linear scaling with NA, but this may not be the case in prac-

tice.

This approach could be further generalised by including terms

for all system components such as memory, GPU and disk

in both active and idle states.

6 Weiland & Johnson

5 Early results

In this section we show results from selected multi-threaded

BLAS benchmarks, namely AXPY and dot-product using

a vector length of 50 million elements, as well as a simple

arithmetic benchmark. The results were obtained by using

the power measurement systems available on an ODROID

XU+E platform [4]. The motivation for using this system

is that it provides easy access to power measurements. The

benchmarks were run on the platform’s performance CPU,

an ARM A15 and on the powersaving CPU, an ARM A7.

Ordinarily, the system is free to migrate loads between pro-

cessors, however, for this test the load (the benchmark) was

fixed to one CPU. In all cases, the energy consumption fig-

ures are for the CPU in question only, to give an estimate

of performance scaling for the CPU. Additionally, the A15

core is complex and offers out of order execution in a similar

manner to a x86-based system. More details of this system

can be found in Appendix A. In the case of an HPC system,

whole-node power readings may be obtained from the sys-

tem itself, but more usually provided by the job scheduler

upon job completion. The Cray XC30 is an example of a

system that already offers this functionality [5].

1 2 3 4
Thread Count

0

20000

40000

60000

80000

100000

120000

140000

R
un

tim
e

(m
s)

int float double

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

En
er

gy
 (J

)

A7 axpy

Fig. 1 AXPY benchmark as run on A7 processor for three data types:

int, float & double.

In Figure 1 we see the A7 processor performance and power

consumption for three data types when running the AXPY

benchmark. It can be clearly seen that using the double data

type consumes more energy and takes longer to complete

than the float data type, which may naı̈vely be expected.

The energy consumption scales reasonably well for all three

data types, although is definitely sub-linear. It may at first

seem counter-intuitive that the total energy consumption de-

creases with increasing core count, however this is a result of

the reduced total runtime. It is clear that, on this low-power

CPU, there is a benefit in running the AXPY benchmark

with as many cores as possible to get the best performance

in terms of runtime and energy.

1 2 3 4
Thread Count

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

R
un

tim
e
(m

s)

int float double

1.5

2.0

2.5

3.0

3.5

4.0

4.5

En
er
gy
 (J
)

A7 dot_product

Fig. 2 Dot-product benchmark as run on A7 processor for three data

types: int, float & double.

In Figure 2 we see the same processor executing the dot-

product benchmark. Again, the scaling performance of both

runtime and energy consumption is good, but sub-linear. In-

terestingly, for this benchmark on the A7 CPU, the perfor-

mance of the float data type is better (faster runtime, but

higher energy consumption) than for the integer data type.

1 2 3 4
Thread Count

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
un

tim
e

(m
s)

int float double

15

20

25

30

35

40

45

50

55

En
er

gy
 (J

)

A15 axpy

Fig. 3 AXPY benchmark as run on A15 processor for three data types:

int, float & double.

Benchmarking for Power 7

In Figure 3 we see the performance of the A15 processor

running the AXPY benchmark. Compared with Figure 1, it

is clear that this processor consumes a much larger amount

of power, of the order of 7 times that of the A7, for the sin-

gle core case. Runtime performance is much improved com-

pared to the A7 CPU, with this benchmark taking around

one order of magnitude less time to complete for the single

core case. However, the scaling is poor up to 4 threads with

little runtime decrease from additional cores, but a marked

increase in power consumption.

1 2 3 4
Thread Count

0

2000

4000

6000

8000

10000

12000

14000

R
un

tim
e

(m
s)

int float double

10

15

20

25

30

35

En
er

gy
 (J

)

A15 dot_product

Fig. 4 Dot-product benchmark as run on A15 processor for three data

types: int, float & double.

In Figure 4 we see the same processor running the dot-product

benchmark. The result, when comparing with Figure 2, cor-

relates to that of the AXPY case: the runtime performance

improvement is good, with a marked reduction for the single

core case, however the scaling is poor and power consump-

tion markedly increases with increasing core counts.

Taken together, these results show that balancing the power

and performance of the two BLAS benchmarks is more com-

plex than might be initially assumed. With a simple proces-

sor such as the A7, results scale well in terms of runtime

and power consumption as the number of active cores is in-

creased. In both benchmarks shown, the most efficient oper-

ating mode for this processor is to use all available cores, re-

gardless of data type. For a more complex processor such as

the A15, it is more difficult to balance runtime against power

consumption. Increasing the core count can reduce the run-

time, but markedly increases power consumption, even with

the saving of a reduced runtime.

Figure 5 shows the performance for 1 billion integer addi-

tions as part of the Basic Arithmetic benchmark. The “nop”

no-op 1 2 4 5 8 10
Number of loop operations N

0

1000

2000

3000

4000

5000

6000

R
un

tim
e

(m
s)

1_volatile some_volatile all_volatile

0

1

2

3

4

5

6

7

En
er

gy
 (J

)

int_add

Fig. 5 Performance of integer additions benchmark

instance of the benchmark is used to quantify the overhead

that is introduced by an loop with 1 billion iteration. It is

possible to see that changing the number of operations inside

the loop (N) has a minimal effect on both runtime and energy

consumption. What affects these quantities most is the data

locality, such as whether a value is in the CPU register, in the

cache or in main memory, as well as the number of iterations

used to compute the operations. In the 1 volatile case,

only one of the variables inside the work loop is declared

volatile. In the some volatile and all volatile cases,

some or all of the variables are declared as volatile re-

spectively; in the some volatile case the number of ac-

cesses to volatile variables per iteration remains constant

for all values of N (i.e. the total number of volatile mem-

ory accesses reduces as N increases), whereas the total num-

ber of volatile memory accesses is independent of N in the

all volatile scenario. It can be seen then that, as ex-

pected, the more variables are volatile, the more the power

consumption increases noticeably for ≥ 3 operations in the

work loop (N ≥ 3). This is because non-volatile variable

may be highly-efficiently stored in the CPU registers, whereas

the use of volatile tells the compiler to re-read the vari-

ables with every use. The use of the volatile keyword is

widespread in Embedded systems programming, though less

commonly used in HPC.

Figures 6 and 7 show the energy efficiency as described by

Equation 1 for the AXPY and dot-product benchmarks. The

data used to compute these results is the same as used for

the previous figures; the workload is fixed and strong scal-

ing behaviour is shown. What can be seen is that for the

benchmarks shown the CPU-power efficiency of the A15

scales sub-linearly (scaling factor > 1), whereas the CPU-

power efficiency of the A7 is super-linear (< 1). What the

figures represent is the efficiency of changing processors

8 Weiland & Johnson

1 2 3 4
Number of Active cores (NA)

0.8

1.0

1.2

1.4

1.6

En
er

gy
 S

ca
lin

g
R

at
io

 (E
(N

A
)

E
(1

)
)

Scaling ratio for AXPY benchmark

A15 int
A7 int
A15 float
A7 float
A15 double
A7 double
Linear

Fig. 6 Energy scaling for AXPY benchmark

1 2 3 4
Number of Active cores (NA)

0.8

1.0

1.2

1.4

1.6

En
er
gy
 S
ca
lin
g
R
at
io
 (E

(N
A
)

E
(1

)
)

Scaling ratio for dot-product benchmark

A15 int
A7 int
A15 float
A7 float
A15 double
A7 double
Linear

Fig. 7 Energy scaling for dot-product benchmark

from idle to active. If idle CPUs consumed zero energy, and

if perfect scaling of energy usage of active cores were as-

sumed, the efficiency ratio would be 1 for all core counts.

However this is not the case, firstly because idle cores con-

sume power (namely 0.0354W per A15 core and 0.0125W

per A7 core2) and therefore need to be taken into account for

the overall energy usage of the CPU, and secondly because

E(NA) 6= N ×E(1).

The A15 processor, in both benchmarks cases, consumes

∼ 1.6×E(NA) Joules when using 4 actives cores (NA = 4

and E(NA) = 24.13 Joules), which means that for the im-

proved runtime achieved by using 4 threads a 60% energy

usage penalty is incurred (with E(1) = 16.06 Joules).

2 These numbers were extracted from the system when the respec-

tive CPU was idle

The A7 processor, however, is the opposite. Using more cores

results in a lower overall energy consumption,∼ 0.8×E(NA)

Joules when using 4 actives cores (NA = 4). The implication

here is that the more cores used, the more efficient (in terms

of energy consumed) the processor becomes and computing

the benchmarks. An indication of this is also that the differ-

ence between the idle and active power for a single core on

this processor is small, whilst it is much more significant for

the A15.

6 Future Work

The work presented in this paper is still in the early stages of

research. The baseline implementations of the benchmarks

have been developed and tested on a variety of platforms

to ensure portability and correctness; the next steps involve

developing alternative implementations and parallelisation

strategies using different programming models and, where

applicable, different algorithms. To date, we have been re-

stricted to perform power measurements on the two ARM

CPUs offered by the ODROID platform. As part of the Adept

project, we are working on designing a flexible and accurate

power measurement solution that will allow us to run the

benchmarks on a wider range of platforms.

7 Conclusions

Understanding the power consumption profile of an appli-

cation on a given hardware architecture is the all-important

first step in being able to optimise this application for en-

ergy and power usage. Without this prerequisite understand-

ing, trying to achieve good power-performance efficiency is

akin to implementing code optimisations without knowing

the performance hotspots. This is where the Adept bench-

marks, and the associated metrics, come in: they provide

detailed, quantifiable and comparable information that will

deepen the understanding of software and hardware power

usage profiles.

A ODROID Specifications

The board used in the evaluation section of this paper is an ODROID

XU+E. This is a complete System-on-Chip based on the Samsung Exynos

5410 Octa processor with two quad-core ARM CPUs [9]: the perfor-

mance CPU, a complex out-of-order ARM A15 running at 1.6GHz,

and the powersaving CPU, a simple in-order ARM A7, with a clock

speed of 200MHz. Both CPUs have 32KB L1 instruction and data

caches per compute core. However the L2 cache (which is shared be-

tween all core of the CPU) for the A15 is 2MB, as opposed to only

512KB for the A7. The ODROID has 2GB of LPDDR3 DRAM, which

runs at 800MHz and has a maximum bandwidth of 12.8GB/s. Ordinar-

ily, the system is free to migrate loads between processors, however, for

all results in this paper the load (the benchmark) was fixed to one CPU.

Benchmarking for Power 9

The ODROID has built-in power measurement sensors for both the

SoC and board, allowing easy access to power usage data without ex-

ternal instrumentation. These sensors can measure the voltage, current

and power consumption of each the CPUs, as well as the memory and

the on-board GPU. The sensor readings are reported via the Linux

filesystem. The update period for the sensors is set to the default of

262ms although it can be lowered to measure shorter loads at a cost of

an increased overhead in sampling, as for any in-band measurement

system. The measurements themselves are taken by INA231 sensor

modules from TI which use 16bit ADCs with an accuracy of 2.5µV .

A block diagram for the ODROID is shown in Figure 8.

Acknowledgements Thanks to James Perry and Iakovos Panourgias,

both EPCC, for testing/reviewing the benchmarks, and to Andrew Mc-

Cormick from Alpha Data Parallel Systems Ltd for deriving the energy

scaling metrics.

References

1. Towards a breakthrough in software for advanced computing sys-

tems. Report from a Workshop organised by the European Com-

mission in preparation for HORIZON 2020 (2012)

2. Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W.,

Elnohazy, E., Harrison, R., Harrod, W., Hiller, J., Karp, S., Koel-

bel, C., Koester, D., Kogge, P., Levesque, J., Reed, D., Schreiber,

R., Richards, M., Scarpelli, A., Shalf, J., Snavely, A., Sterling,

T.: Exascale software study: Software challenges in extreme scale

systems (2009)

3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calcu-

lation of complex Fourier series. Mathematics of Computation

19(90), 297297 (1965). DOI 10.1090/s0025-5718-1965-0178586-

1. URL http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1

4. Hardkernel: ODROID XU+E Specification. Online. URL

http://bit.ly/1sLd62v

5. Hart, A., Richardson, H., Doleschal, J., Ilsche, T., Bielert, M.,

Kappel, M.: User-level power monitoring and application perfor-

mance on cray xc30 supercomputers. In: In Proceedings of the

Cray User Group (CUG) 2014, Lugano, Switzerland (2014)

6. Juckeland, G., et al.: BenchIT – Performance measurement and

comparison for scientific applications. In: G. Joubert, W. Nagel,

F. Peters, W. Walter (eds.) Parallel Computing Software Tech-

nology, Algorithms, Architectures and Applications, Advances in

Parallel Computing, vol. 13, pp. 501 – 508. North-Holland (2004)

7. OpenMP ARB: OpenMP Specification (2013)

8. PMaC: MultiMaps. URL http://bit.ly/1hG2vwr

9. Samsung: Samsung Exynos 5 Octa Specification. URL

http://bit.ly/OOsOcZ

10. Staelin, C., packard Laboratories, H.: lmbench: Portable tools for

performance analysis. In: In USENIX Annual Technical Confer-

ence, pp. 279–294 (1996)

11. UPC Consortium: UPC Language Specications (2005)

Dr Michèle Weiland is a Project

Manager at EPCC, the supercom-

puting centre at the University of

Edinburgh. She is the Coordina-

tor of the EU FP7-funded Adept

project; her main research interest

are in power-performance optimi-

saiton of HPC applications.

Dr Nick Johnson is an Applica-

tions Consultant at EPCC, the su-

percomputing centre at the Uni-

versity of Edinburgh. He cur-

rently works on the EU FP7-funded

Adept project; his research in-

terests are the power-performance

optimisation of applications, and

methods for the measurement and

quantification of power in com-

puter systems.

10 Weiland & Johnson

Fig. 8 ODROID block diagram, courtesy of HardKernel.

