SICS Software-Intensive Cyber-Physical Systems (2020) 35:63-75
https://doi.org/10.1007/s00450-019-00412-x

SPECIAL ISSUE PAPER

®

Check for
updates

The essential deployment metamodel: a systematic review of

deployment automation technologies

Michael Wurster' - Uwe Breitenbiicher! - Michael Falkenthal' - Christoph Krieger' - Frank Leymann’ .

Karoline Saatkamp' - Jacopo Soldani?

Published online: 26 August 2019
© The Author(s) 2019

Abstract

In recent years, a plethora of deployment technologies evolved, many following a declarative approach to automate the
delivery of software components. Even if such technologies share the same purpose, they differ in features and supported
mechanisms. Thus, it is difficult to compare and select deployment automation technologies as well as to migrate from
one technology to another. Hence, we present a systematic review of declarative deployment technologies and introduce
the essential deployment metamodel (EDMM) by extracting the essential parts that are supported by all these technologies.
Thereby, the EDMM enables a common understanding of declarative deployment models by facilitating the comparison,
selection, and migration of technologies. Moreover, it provides a technology-independent baseline for further deployment

automation research.

Keywords Deployment - Infrastructure as Code - Configuration Management - Metamodel - Review

1 Introduction

With the advent of DevOps [24] as a software development
paradigm, the gap between development and operations is
attempted to be eliminated by revising organizational and
cultural challenges. One integral aspect of DevOps is to

B Michael Wurster
michael.wurster @iaas.uni-stuttgart.de

Uwe Breitenbiicher
breitenbuecher @iaas.uni-stuttgart.de

Michael Falkenthal
falkenthal @iaas.uni-stuttgart.de

Christoph Krieger
krieger @iaas.uni-stuttgart.de

Frank Leymann
leymann @iaas.uni-stuttgart.de

Karoline Saatkamp
saatkamp @iaas.uni-stuttgart.de

Jacopo Soldani

soldani @di.unipi.it

Institute of Architecture of Application Systems, University
of Stuttgart, Stuttgart, Germany

Department of Computer Science, University of Pisa, Pisa,
Italy

enable an efficient collaboration by establishing deployment
processes that are highly automated [23] as manual deploy-
ments of services consisting of multiple units is complex,
hard to repeat, and error-prone [33]. Key concepts like con-
figuration management [16] and infrastructure as code [28]
enable a continuous and automated delivery of software com-
ponents over the entire lifecycle, e.g., to install, start, stop,
or terminate components. By describing components and
infrastructure of an application in maintainable and reusable
deployment models, a repeatable end-to-end deployment
automation can be established. Such deployment models can
be of declarative or imperative nature [19]: Declarative mod-
els express the desired state into which an application or
parts thereof are transferred. In contrast, imperative mod-
els describe the deployment steps in a procedural manner.
In industry and research, declarative deployment models are
widely accepted as the most appropriate approach for appli-
cation deployment and configuration management [22]. As a
result, a plethora of different technologies have been devel-
oped following this approach such as Chef, Puppet, AWS
CloudFormation, Terraform, and Kubernetes.

All such technologies aim at automating the deployment
of applications, but they differ in supported features and
mechanisms. For example, Terraform supports the deploy-
ment across multiple cloud providers and it is able to target

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-019-00412-x&domain=pdf

64

M. Wurster et al.

different cloud offerings as a service (XaaS). Whereas,
there are cloud provider-specific technologies, such as AWS
CloudFormation, allowing the deployment only on Ama-
zon’s cloud services. Moreover, there are platform-specific
technologies, such as Kubernetes, that support only spe-
cific deployment bundles (container images) or cloud service
offerings (e.g., restricted to PaaS). In addition, most technolo-
gies use their own modeling language with its own syntax and
expressiveness.

As aresult, it is difficult to compare technologies by their
capabilities as there exists currently no systematic compar-
ison of deployment features and mechanisms. Further, as
application systems are in constant change, it is challeng-
ing to choose an appropriate technology upfront. Moreover,
in cases applications need to be migrated, it is also required to
migrate the associated deployment models to the target envi-
ronment’s technology. This quickly gets cumbersome and
requires knowledge about how to translate the features and
mechanisms from one provider’s technology, e.g., AWS, to
another one, e.g., Azure. In addition, the various technologies
currently in use impede systematic deployment automation
research as the practical feasibility of new approaches is typ-
ically only evaluated using a certain technology. However,
this makes it hard for researchers to understand if proposed
approaches can be mapped to their technologies in use.

To tackle these issues, we introduce the Essential Deploy-
ment Metamodel (EDMM), which we obtained through a
systematic analysis aimed at distilling the essential parts
of declarative deployment technologies. We also show how
the analyzed technologies comply semantically with the
EDMM and how it can be mapped to native constructs
of each technology. Thereby, the EDMM provides a com-
mon denominator of the features of the most important
deployment technologies. This enables (1) a common under-
standing of declarative deployment technologies. Further,
it (2) eases the selection of a deployment technology for
one’s own use case as the EDMM mapping describes how
this can be achieved based on a technology-independent
model. In cases where it is required to migrate from one
provider to another, it also requires to migrate the asso-
ciated deployment models. The EDMM (3) supports and
eases such migration processes by knowing the essential
elements of deployment technologies. On top of that, the
EDMM facilitates an automated transformation into spe-
cific deployment technologies in the context of model-driven
architecture (MDA) in order to decide which specific tech-
nology to use as late as possible. Finally, our results give
researchers (4) the possibility to evaluate their concepts
in a technology-agnostic manner by knowing to which
technologies an approach can be applied to without disrup-
tive adaptations. The review of technologies revealed that
there are general-purpose (GP), provider-specific (ProvS),
and platform-specific (PlatS) deployment technologies that

@ Springer

enable the description of components, relations, and respec-
tive types as main deployment model entities.

Hereafter, Sects. 2 and 3 present our review framework
and technology classification. Section 4 defines the EDMM,
while Sect. 5 discuss its mapping to selected technologies.
Finally, Sects. 6 and 7 discuss related work and draw some
concluding remarks.

2 Review framework

This section presents the procedure taken to identify the
EDMM. This was done in three phases: First, we identified
a list of deployment technologies using well-known search
engines in research and industry. Each result was individually
considered and searched for presented or used deployment
technologies. In the second phase, we ranked the technolo-
gies by the amount of search results in a search engine. Lastly,
the analysis of the highest ranked technologies based on a
reference scenario led us to the essential elements of deploy-
ment models. The complete data of the review are available
online.!

2.1 Phase 1: identify technologies

In the first phase, we used ACM Digital Library, IEEE
Xplore, and Google to identify deployment technologies. We
excluded the term “deployment” as the hundreds of results
include unrelated research topics, i.e., covering organiza-
tional and build processes regarding deployment. Therefore,
we refined the search using known terms to target the
identification of deployment automation technologies. In
each search engine, the following query structure was used:
Results must contain the phrase “infrastructure as code” or
“configuration management” and must match the keyword
“cloud computing”. The term “cloud computing” is chosen
because we regard the support of cloud services as an elemen-
tary characteristic of future-proof deployment technologies.

The exact search queries and result numbers are shown
in Table 1. Each result was individually considered and
searched for whether a new technology is presented, the
technology is used in comparative works, or is used to
support evaluating a work or study. In total, 56 technolo-
gies were identified. We focused our review on open-
source or community-licensed technologies and, therefore,
excluded eight technologies in this phase since there are
only commercial or enterprise licenses available. Further, we
excluded Vagrant [21] because it focuses on managing local
development environments. In addition, we excluded AWS
OpsWorks [4] because it is a managed service by AWS pro-

1 http://tinyurl.com/y2azrq3r.

http://tinyurl.com/y2azrq3r

The essential deployment metamodel: a systematic review of deployment automation technologies 65

Table 1 Search details for identifying deployment technologies

Table 2 Deployment technology ranking by popularity

Engine Query Records # Technology Search hits
ACM (“infrastructure as 19 1 Puppet 1.630.000
code” “configuration 2 Chef 1.150.000
management”) AND .
keywords.author.keyword: 3 Ansible 989.000
(“cloud computing”)? 4 Kubernetes 708.000
IEEE (*infrastructure as 71 5 OpenStack HEAT 458.000
code” OR “configuration 6 Terraform 348.000
management”) AND *IEEE 7 AWS CloudFormation 156.000
Terms” :“cloud
computing”)® 8 SaltStack 130.000
Google “configuration 72.600¢ 9 Juju 53.200
management” 10 CFEngine 48.500
“infrastructure as , 11 Azure Resource Manager 47.100
code” “cloud computing”
12 Docker Compose 41.300
4Used “Any field” and “Matches any” operators 13 Cloudify 23.100

b«Command Search” with “Metadata Only” operator
¢The first 100 results were considered

viding Chef or Puppet master nodes and does not provide its
own deployment technology.

2.2 Phase 2: technology selection

To select the most popular deployment technologies, a
Google search for each technology was performed. Since
most technologies are industry driven and not backed by
scientific papers, the amount of citations is not usable as
ranking method. Therefore, the magnitude of search results
in Google was used, which also includes discussions in blogs
or newsgroups, in order to derive the relevance of a certain
technology. Even though the result is not precise, we are
able to derive a trend in currently used deployment tech-
nologies. We used the following search pattern for ranking:
“<technology> ‘configuration management’ OR ‘infras-
tructure as code’”. We used the American version of Google
for the search. The search was performed using Google’s
Chrome browser in incognito mode on February 14, 2019.
We considered the first 13 technologies for further analysis as
shown in Table 2. The complete ranking is available online!.

2.3 Phase 3: technology analysis

We analyzed the features, mechanisms, and capabilities of
each selected technology based on a reference scenario,
which is depicted in Fig. 1. The authors investigated how
it can be realized using the native constructs or extension
mechanisms of each technology.

2.3.1 Deployment features and mechanisms

For the analysis, several aspects were taken into account
in order to find commonalities. We expect the deploy-
ment technologies to be open-source or community-licensed,
capable to express single-, multi-, or hybrid-cloud deploy-
ments, and provide support for cloud-native application
components (PaaS and FaaS). We derived the following
deployment features and mechanisms for analyzing the auto-
mated deployment capabilities, these are: (i) supporting
multiple cloud providers and platforms, (ii) targeting dif-
ferent cloud offerings (XaaS), (iii) providing capabilities to
structure a deployment into logical parts, (iv) supporting the
creation of custom, fine-granular, reusable entities, (v) allow-
ing to specify desired application state, and (vi) allowing
to hook into or influence the deployment lifecycle. These
deployment automation features and mechanisms were ana-
lyzed based on a reference scenario presented in the next
subsection.

2.3.2 Reference scenario

We envision a simplified multi-cloud order management
application containing cloud-native as well as classical and
legacy components in order to identify the derived deploy-
ment features and mechanisms for each technology. This
reference scenario is intended to cover typical deploy-
ment requirements in modern application systems. It covers
exemplary different cloud providers, regarding multi-cloud
deployments and different cloud offerings as a service
(XaaS). Even though the reference scenario does not reflect
a complex real-life scenario, it supports the identification of
required deployment capabilities to cover modern applica-
tion deployments. The left hand side of the figure depicts

@ Springer

66

M. Wurster et al.

| Order App ~ [======= P[JMS 1.1 Queue]< -------

Order Worker [======= >| Mongon B2 }4
4 Collection)

S {

Admin App

Java WAR £ { Name: orders J
[...]

Memory: 512M

=

Tomcat

Port: 8080

JavaScript (8
e

Name: orders Port: 8088
[...] [...]
C++ Binary S
install.sh I3
v v

[...] v

Azure
install.sh I [AWS SQS] [AWS Lambda] | Cosmos DB Ubuntu LTS)
AccessKey: 1Aow Region: eul AccessKey: eF4z Memory: 8G
Ubuntu LTS Secret; *¥¥*** [...] Secret; ¥**** [...] |
Memory: 1G l L] -] Mod. Image &
[...]
S 2 v
S EE—
AWS ECZ hosted on ——l connects to ======= » OpenStaCk
| C— .)

Fig.1 Reference scenario: application topology containing cloud-native as well as on-premise components

a Java-based Order application deployed onto an Apache
Tomcat server, which is depicted to be installed on a vir-
tual machine (VM) provided by Amazon EC2. The order
application is able to push new orders to a queue hosted
and managed by Amazon’s Simple Queue Service (SQS).
Orders in this queue are processed by a Order Worker imple-
mented as an ephemeral and stateless function using Amazon
Lambda, Amazon’s Function as a Service (FaaS) offering.
In this case, each message put to the queue acts as event and
triggers the worker function to process the respective order.
The worker function updates respective values in a database,
e.g., allocates the purchase order items for shipping. To
cover a multi-cloud scenario, the orders are stored using a
MongoDB Collection hosted and managed by Azure’s Cos-
mos DB service offering. On the right hand side of the
figure, a rather traditional, or non-cloud-native, application
component is depicted. It is envisioned that a kind of admin-
istration application is used internally to track and manage
the received orders by the Order App. In our scenario, this
application is implemented using C++, requiring custom
installation routines (cf. install. sh shell script), and is
hosted on-premise using OpenStack. In summary, our refer-
ence scenario uses application-specific components, such as
the Order App implementing some business logic. Further, it
contains middleware components, such as the Tomcat server,
and computing components, i.e., virtual machines. Lastly, it
contains so-called cloud service components, such as AWS
EC2 and Azure Cosmos DB, which are hosting leaf nodes
(considering the notion of a graph) and in full control of the
respective cloud provider. Anyhow, there can be hosting leaf
nodes representing traditional VM hypervisors or even bare
metal servers.

@ Springer

2.3.3 Remarks

To perform a sound analysis of the selected technologies, we
classified the technologies independently. To ensure avoid-
ance of observer bias, the analysis was executed in parallel
over on-third splits of the selected technologies. Afterwards,
the observations and interpretations were discussed and
double-checked in several joint sessions for reconciliation.
Based on this analysis and the found commonalities of the
technologies, we present a categorization of technologies in
the next section.

3 Categorization of technologies

During the analysis of the selected technologies (cf. Table 2),
we observed that they can be divided into three categories.
Before presenting the categories in detail, we briefly intro-
duce the selected deployment technologies. Puppet, Chef,
and Ansible are configuration management systems. Puppet
enables to write reusable configuration definitions describ-
ing system resources and their state for multiple providers
and services using their own domain-specific language
(DSL) [36]. Chef uses a Ruby-based DSL. Based on a server-
client architecture, it can be used to maintain and configure
systems on various platforms or cloud providers [34]. Ansi-
ble uses a declarative YAML-based DSL to describe system
configurations for various platforms and cloud services. In
contrast to Chef, Ansible uses an agentless architecture [37].
Kubernetes is a platform for automating the orchestration
of containerized, multi-service applications. It automatically
deploys the specified application onto a cluster and ensures

The essential deployment metamodel: a systematic review of deployment automation technologies 67

that its desired configuration is reached and maintained [15].
OpenStack Heat is an orchestration engine that enables
the description of XaaS-based applications using a YAML
syntax. It manages the whole lifecycle of an deployment
and provides interfaces for custom extensions [32]. Ter-
raform is an orchestrator providing plugin interfaces for
custom extensions. It uses its own DSL and primarily tar-
gets multi-cloud application deployments [20]. In contrast,
AWS CloudFormation uses a DSL (JSON and YAML) to
describe, deploy, and manage all infrastructure resources
across Amazon’s cloud services [3]. SaltStack is an orches-
tration and configuration management system using its own
DSL to deploy and manage all kinds of application stacks tar-
geting different cloud providers and services [39]. Juju is a
topology-based application orchestration tool. It enables the
modeling of application deployments using a YAML-based
DSL and supports multiple cloud offerings and services [12].
CFEngine is an open-source configuration management
tool providing enterprise functionalities by a commercial
version. Its primary function is to provide automated con-
figuration and management on top of existing computing
resources [11]. Similar to AWS CloudFormation, Azure
Resource Manager is the deployment and management ser-
vice by Azure to manage resources in Microsoft’s cloud
environment [27]. Docker Compose is a framework for
defining and running multi-container Docker applications. It
provides a YAML-based language to specify the containers
forming an application and their configuration [18]. Cloud-
ify is an open-source application orchestration framework.
It supports hybrid-cloud deployments for all kinds of cloud
services based on a customized YAML syntax inspired by
the TOSCA standard [14].

During phase three (cf. Sect. 2.3), we figured out that
some technologies support multi-cloud deployments, such
as Ansible or Terraform, and others are restricted to cer-
tain cloud providers, such as AWS CloudFormation and
Azure Resource Manager. Further, we concluded that there
are technologies suitable to deploy applications targeting
XaaS. Technologies, such as AWS CloudFormation, Ter-
raform, and Ansible, support different kinds of services for
deploying components, whereas technologies, like Kuber-
netes and Docker Compose, are restricted to use specific
platform bundles, container images in their cases. There-
fore, we categorize the technologies in (i) general-purpose,
(i1) provider-specific, and (iii) platform-specific deployment
technologies. Figure 2 indicates the overlap of deployment
technologies regarding the derived deployment features and
mechanisms.

General-Purpose (GP) GP technologies support all
deployment features and mechanisms (cf. Sect. 2.3). They
support single-, hybrid-, and multi-cloud deployments as

General-Purpose

Platform-
Specific

Provider-
Specific

Fig.2 Deployment automation technology categorization

well as different kinds of cloud services (XaaS). In addi-
tion, they can be extended by reusable and customized
components for further providers or services. Thereby,
it is possible to hook into or influence the component’s
lifecycle by defining custom actions. This group encom-
passes the following technologies: Puppet, Chef, Ansible,
OpenStack Heat, Terraform, SaltStack, Juju, and Cloud-
ify.

Provider-Specific (ProvS) ProvS deployment technolo-
gies support XaaS deployments, provide capabilities to
create reusable entities, and can control a component’s
lifecycle (cf. deployment features and mechanisms pre-
sented in Sect. 2.3). In contrast to GP, ProvS technologies
only support single-cloud deployments since they are
offered by specific cloud providers, hence only support-
ing the cloud services offered by the respective provider.
The EDMM is restricted to provider-supported compo-
nent types for the cloud service components (cf. Fig. 1).
This group encompasses the following deployment tech-
nologies: AWS CloudFormation and Azure Resource
Manager.

Platform-Specific (PlatS) PlatS deployment techno-
logies support multiple cloud providers, the creation of
reusable entities, and influencing a component’s lifecy-
cle (cf. deployment features and mechanisms presented in
Sect. 2.3). In contrast to GP, these are restricted regarding
the cloud delivery model and regarding the use of specific
platform bundles for realizing components. Considering
the reference scenario (cf. Fig. 1), the EDMM is restricted
such that only types and artifacts can be used that are
supported by the underlying platform, e.g., Kubernetes
only supports the deployment of container images. This
group encompasses the following deployment technolo-
gies: Kubernetes, CFEngine, and Docker Compose.

@ Springer

68

M. Wurster et al.

All three groups provide deployment features and mecha-
nisms to cover all extracted elements covered by the EDMM
presented in the next section. However, the ProvS and PlatS
groups are restricted in the power to express a deployment,
which is explained in detail in the technology mapping sec-
tion (cf. Sect. 5).

4 The essential deployment metamodel

The EDMM encompasses the essential parts of declarative
deployment models. Declarative deployment models focus
on the “what” and describe the structure of an application to
be deployed including all components, their configuration,
and relationships. The EDMM represents the result of the
analysis of 13 selected declarative deployment technologies
applied in industry and research. The EDMM is illustrated
in Fig. 3, where the structure and names of the entities are
inspired by the TOSCA standard [29] and the Declarative
Application Management Modeling and Notation (DMMN)
with its graph-based nature [8]. The first entities to be defined
are the components forming an application, as well as the
component types allowing to distinguish them and giving
them semantics.

Definition 1 (Component) A component is a physical, func-
tional, or logical unit of an application.

Definition 2 (Component Type) A component type is a
reusable entity that specifies the semantics of a component
that has this type assigned.

For example, a deployment model implementing the refer-
ence scenario contains several components (i.e., Order App,
Tomcat,JSM 1.1 Queue, Order Worker, Ubuntu LTS, or Azure
Cosmos DB), of different component types (e.g., Order App

<« has

Deployment
Model

contains'[

is a Java-based web application, while Tomcat is a Tom-
cat server). The semantics and actions required to install or
terminate a component are provided by its type. While the
component represents a certain functionality for a specific
application, the component type can be used in different
deployment models. To work as intended or to provide a
higher level service, components often depends on other
components. This is specified by relations between compo-
nents.

Definition 3 (Relation) A relation is a directed physical,
functional, or logical dependency between exactly two com-
ponents.

Definition 4 (Relation Type) A relation type is a reusable
entity that specifies the semantics of a relation that has this
type assigned.

Concrete typed relations are also proposed by Weerasiri et
al. [41] and examples of them can be found in our reference
scenario (cf. Fig. 1). For instance, the relation from Order App
to JMS 1.1 Queue is of type connects to, and it specifies that a
network connection is to be set to allow the two components
to communicate. The relation from Order App to Tomcat of
type hosted on, and it indicates that the Order App is to be
installed on the Tomcat server.

The actions and information required to realize the instal-
lation or termination of components and relations must be
provided. The EDMM encapsulate this in operations and
properties.

Definition 5 (Operation) An operation is an executable
procedure performed to manage a component or relation
described in the deployment model.

Definition 6 (Property) A property describes the current
state or prescribes the desired target state or configuration
of a component or relation.

P -
has ! has
Property 4—: MO(.jEI L > Operation
| Entity : A
4 implements
PR R —— jm===beeao
1 Model : 1 Model : .
: Element Type : : Element : Artifact
I 4 | I 4 | implements
. is source of v
Component Relation <« is of type Relation < Component
Type Type
| is of type <« is target of |

Fig.3 The essential deployment metamodel

@ Springer

The essential deployment metamodel: a systematic review of deployment automation technologies 69

Consider, for instance, the Tomcat component in our ref-
erence application (cf. Fig. 1) which represents a Tomcat
server installed on an Ubuntu VM. It can be associated with
a property indicating that the exposed port of the web server
must be 8080. Further, the Tomcat component is also asso-
ciated with the operation install (cf. install. sh script)
that denotes the logic required to install the component on the
corresponding VM. Components and operations are imple-
mented through so-called artifacts. According to UML, an
artifact is a physical piece of information that is created to be
used for deployment and operation of a system [31]. On the
one hand, there are artifacts representing an executable entity
that implements an operation, e.g., a file containing the logic
required to install and start a certain application component.
On the other hand, there are artifacts used for the operation
of a component to carry out the business logic and intended
functionality, i.e., in the form container images, compiled
binaries, or compressed source code.

Definition 7 (Artifact) An artifact implements a component
or operation and are required for their execution.

For instance, consider the Admin App component in the ref-
erence scenario (cf. Fig. 1). The shell script to install the
corresponding component represents an artifact that is asso-
ciated with the install operation. In contrast, the compiled
binary file of the Admin App also represents an artifact but
this file is needed to materialize an instance of this component
and is required for the operation.

Finally, note that all model entities, such as components,
relations, their types as well as properties and operations are
contained in a so-called deployment model. Component and
relation types are usually defined across deployment mod-
els to enable reuse including their operations as artifacts,
whereas artifacts implementing a component are typically
referenced in the deployment model itself. Further, deploy-
ment models define properties, which can be referenced and
used by contained elements. A deployment model does not
have to consist of a single file, instead, it can be a set of
files, which semantically belong together. For example, sev-
eral technologies allow to reference or import component
types from different sources, others require a self-contained
deployment model. At the time of deployment, all entities
must be available for the underlying runtime that are refer-
enced or contained in the deployment model.

Definition 8 (Deployment Model) A deployment model
describes declaratively the desired target state of an appli-
cation including all necessary model entities.

The target state is the completed deployment of all compo-
nents and relations according to the specified properties, as
described in the deployment model.

The formalized essential entities of a declarative deploy-
ment model are not only resulting from our analysis. Similar

elements have already been discussed in other research stud-
ies [5,8,9], even if not based on a systematic review of exist-
ing and well-established declarative deployment automation
technologies.

5 EDMM technology mapping

In this section we show how the concepts of EDMM can
be semantically mapped to the selected deployment tech-
nologies. The mapping is structured into three subsections
according to the categories presented in Sect. 3.

5.1 EDMM to GP-technology mapping

We hereby show how the EDMM can be semantically
mapped to Puppet, Chef, Ansible, OpenStack Heat, Ter-
raform, SaltStack, Juju, and Cloudify. All of these tech-
nologies support the required features and mechanisms as
outlined in Sect. 2.3.

5.1.1 Mapping to Puppet

In Puppet, resources are the main building blocks describing
certain aspects of the system. For example, in our refer-
ence application, the deployment of a component can be
described by a resource. The semantic and structure of a
resource is defined by its assigned resource type (cf. Defini-
tion 2). Puppet provides a set of built-in resource types which
can be extended by custom resource types written in Ruby.
Resources can be bundled to modules enabling the encapsu-
lation of logical parts into reusable entities (cf. Definition 2),
e.g., the stack of the Order App in our reference scenario can
be encapsulated using a module. Resources or modules can be
used in the resulting deployment model and can be mapped to
components encompassing certain semantics. Both, modules
and resources utilize properties, e.g., to define a port a web
server is listening on. In addition, artifacts can be defined
that implement the component, e.g., by defining in a mod-
ule to use a compressed version of the Tomcat web server.
Modules contain a set of classes expressing the logic to con-
verge components into a certain state and can be mapped to
operations in EDMM. In Puppet, relations between compo-
nents can be expressed on different levels and are limited
to a predefined set of relation types. By including another
module the semantic of a “depends on” relation type can be
expressed. On the level of classes, a “depends on” relation
can be defined by using a predefined require function.

5.1.2 Mapping to chef

Chef uses cookbooks to structure and encapsulate logical
parts of a deployment model. Cookbooks can be mapped

@ Springer

70

M. Wurster et al.

to components as well as to component types in our meta-
model. Using cookbooks, reusable entities can be defined
expressing certain semantics, which map to component types.
Further, cookbooks can be imported into other cookbooks,
which maps semantically to components in this context. Our
reference application (Fig. 1) can be expressed in a single
cookbook by importing existing ones from the Chef super-
market, e.g., a cookbook to install a Tomcat web server. In
Chef, all kinds of artifact are supported as long as they can
be referenced and packaged using the provided mechanisms.
The actual operations to be executed to install or configure
a component are encapsulated in so called recipes written in
Ruby. Cookbooks can have dependencies to other cookbooks
by using the depends attribute in the respective meta data
file. With include_recipe, operations from dependent
cookbooks can be integrated in the sequence of operations
required to reach a desired state. Thus, relations of one rela-
tion type can be expressed. By using an attribute file that, for
example, defines the desired port of a web server, inputs for
properties in the recipes can be represented in Chef.

5.1.3 Mapping to Ansible

Ansible and Chef are similar in their concepts. Like in
Chef, playbooks are the elements used to create deployment
models. For example, the complete reference scenario can
be expressed in a single playbook. As playbooks can also
encapsulate logical and reusable parts, they can be mapped
to components and component types due to their recursive
aggregation behavior. There can be a generic “Tomcat” play-
book that enables the deployment and configuration of an
Tomcat web server. Playbooks can also define variables that
are mapped to properties in EDMM. In Ansible, relations,
such as a web application is hosted on a web server, are
implicitly defined by importing other Playbooks and can only
expressed a “depends on” relation type. Ansible uses the con-
cept of “roles”, which contain “tasks” to converge a system
to a desired state. Roles are part of playbooks and mapped to
operations and, therein, all kinds of artifacts are supported
that implement a component.

5.1.4 Mapping to OpenStack Heat

The deployment model for OpenStack Heat is called Heat
Orchestration Template (HOT). The logical parts of an
application, i.e., its components are modeled as resources.
Several resource types are provided by Heat and further
plugins for other resources are already available (e.g.,
Docker or AWS) or can be created. These resource types
are reusable entities that specify the properties and oper-
ations that can be executed on a resource of this type.
They form the component types in Heat. For deploy-
ments on a VM (such as for the Admin App in Fig. 1)

@ Springer

an infrastructure, a Heat::SoftwareConfig, and a
Heat: :SoftwareDeployment resource are used. The
supported artifacts that implement a component depend
on the resource type. With a SoftwareConfig resource
(restricted to be used only with other [aaS resources) arbitrary
operations can be specified and linked to implementation
artifact, e.g., in the form of executable scripts. To express
dependencies between components, the dependsOn
attribute can be used where one or more other components
can be referenced. Further types of relations and, thus, rela-
tion types can be expressed using certain properties of a
component.

5.1.5 Mapping to Terraform

In Terraform, resources are used to describe elements of
a deployment model, e.g., compute instances, virtual net-
works, or software components. Each resource is assigned
to a resource type that determines the kind of element that
is managed and specifies properties in the form of so-called
attributes. Several resource types are provided by Terraform
and custom resource types can be written in Go. Resources
and resource types are mapped to components and component
types respectively. The supported artifacts that implement a
component depend on the resource type. In addition, provi-
sioners can be defined that are executed as part of the creation
or destruction of a resource. For example, the remote-exec
provisioner can be used to define arbitrary operations that
are executed on a resource after its creation, e.g., download-
ing and installing an Apache Tomcat server on a provisioned
EC2 instance. Explicit dependencies between resources can
be expressed by the use of the depends_on attribute. Further,
modules can be used to create logical, reusable groups of
resources. Input Variables on modules are mapped to prop-
erties and are used to parameterize and customize modules.
For example, each stack of the reference scenario can be
expressed by a Terraform module specifying the required
resources. Hence, modules are mapped to components and
component types in EDMM.

5.1.6 Mapping to SaltStack

SaltStack is a flexible orchestration and configuration man-
agement tool, which uses so-called fop files to create a
deployment model. Top files contain formulas and states.
Formulas are independent and reusable entities and map to
component types in EDMM. For example, one can create
a Tomcat formula that encapsulates the logic to install and
start a Tomcat web server. Further, a formula can define a
set of configuration values that map to properties in EDMM.
Moreover, a logical group of states defined in formulas are
expressing operations which in turn relate to artifacts that
implement these. Using their DSL syntax, arbitrary logic in

The essential deployment metamodel: a systematic review of deployment automation technologies 71

the form of states can be supplied to reach a desired state. By
using a formula in a deployment model a component is cre-
ated according to our metamodel. Relations in SaltStack are,
on the one hand, derived by the sequence of used formulas
in a deployment model. On the other hand, states can depend
on other stats defined by certain formulas, which results in a
certain execution order.

5.1.7 Mapping to Juju

Jujuis atopology-based application modeling tool based on a
declarative YAML DSL. All instructions and artifacts neces-
sary for deploying and configuring application components
are defined in charms, which map to component types in the
EDMM as they are reusable entities having a certain seman-
tic. Each charm provides a set of configuration values that
can be set during deployment, which are mapped to proper-
ties. Further, a charm defines actions, implemented as scripts,
that are triggered by the runtime during deployment. These
are respectively mapped to operations and artifacts, whereas
artifacts that implement components are carried out by these
operations. Charms can be used in bundles, which implies
that a component of a certain component type inside a deploy-
ment model is used. In Juju, there can be relations following a
“depends on” semantic by expressing requirements and capa-
bilities on charms. For example, charm defines that it requires
a database and, correspondingly, a database charm is capa-
ble of satisfying this requirements. This can be expressed
using the relations keyword in the model. A compound
deployment including multiple charms, their configuration,
and relations can be described in a Juju bundle.

5.1.8 Mapping to Cloudify

The DSL defined and used by Cloudify is based on the
TOSCA YAML profile [30]. However, the standard is not
completely met. Similar to OpenStack Heat, built-in types
encompassing Cloudify basic types can be used to model
components. Further components types can be made available
using plugins. In Cloudify, node types and node templates
are mapped to component types and components respectively
according to the EDMM definitions. Using Cloudify’s life-
cycle interface, i.e., operations allow to create, start, stop,
and terminate physical resources. Node types define proper-
ties, implement operations, and define deployment as well as
implementation artifacts. Built-in relation types, for exam-
ple, define a depends_on or connected_to relation
between components. In contrast to all other considered tech-
nologies, further relation types can be defined. To realize the
reference scenario from Fig. 1, the AWS and Azure plug-
ins are required. These plugins provide all types, operations,
and artifacts to model the required components as well as

to interact with the respective cloud provider application-
programming-interfaces (API).

5.2 EDMM to ProvS-technology mapping

We hereby show how the EDMM can be semantically
mapped to AWS CloudFormation and Azure Resource Man-
ager. In contrast to GP, these technologies only support
single-cloud deployments as they only support the services
of the respective cloud provider.

5.2.1 Mapping to AWS CloudFormation

AWS CloudFormation is the deployment and management
service by AWS and uses a JSON or YAML templates to cre-
ate deployment models. In the template, resources are used to
express components. AWS provides a set of built-in resource
types, referred as component types, that specify the seman-
tics of components, e.g., defining properties supported by a
resource. CloudFormation enables to create reusable com-
ponent types by defining stacks that can be in turn used in
other templates. Each stack of the reference scenario in Fig. 1
can be modeled by one or more resources. For example, the
AWS SQS and Lambda service an be used to implement the
depicted JMS 1.1 Queue and Order Worker components. To
deploy the Admin App an AWS EC2 instance can be defined
where one can specify the required installation and config-
uration steps as an operations, provided in separate files.
The semantic of relations is restricted as only one type of
inter-component dependency can be specified, by using the
attribute dependsOn on resources.

5.2.2 Mapping to Azure Resource Manager

In Azure Resource Manager (ARM), JSON templates describe
the configuration of Azure resources and services. Azure ser-
vices (e.g., compute instances, databases, or middleware)
are modeled as resources. The structure and semantics of
a resource (e.g., its supported properties and artifacts) are
defined by built-in resource types. Hence, resource and
resource type map to component and component type in the
EDMM. For example, the MongoDB configuration hosted on
Azure Cosmos DB can be expressed using a resource of type
Microsoft.DocumentDB/databaseAccounts.
Relations between resources can be specified using the
dependsOn element defining a dependency to one or more
resources. The resources of a deployment can either be
defined in a single template or divided into multiple ones in
order to create purpose-specific, reusable templates. As ARM
templates are logical and reusable units, they are mapped
to components and component types in the EDMM. Post-
deployment configurations, software installations, or other
actions to configure a VM, can be achieved through virtual

@ Springer

72

M. Wurster et al.

machine extensions, which are semantically mapped to oper-
ations in the EDMM.

5.3 EDMM to PlatS-technology mapping

We hereby show how the EDMM can be semantically
mapped to Kubernetes, CFEngine, and Docker Compose. In
contrast to GP, these technologies are restricted to specific
services (XaaS support) and to the use of specific platform
bundles for realizing components.

5.3.1 Mapping to Kubernetes

With Kubernetes, developers can specify the deployment
model of a multi-service application by indicating the “pods”
to run, one for each service forming the application. Their
desired configuration can then be specified by defining
“deployments”, each targeting a different subset of pods.
For instance, each component in our reference application
(cf. Fig. 1) should be placed in a different pod, and its
desired configuration could be specified by defining a differ-
ent deployment targeting its corresponding pod. Kubernetes
hence provides a predefined set of component types allowing
to define reusable units of pods, deployments, and services
(components of an application). Kubernetes also supports a
predefined set of relation types in the form of specifying
which pods are targeted by which deployment or service.
Attributes specifying the desired configuration for pods,
deployments, and services are mapped to properties in the
EDMM. In Kubernetes, artifacts for implementing compo-
nents are reflected by container images, which contain the
complete stack starting from the operating system to the
application-specific component, depending on application
requirements [35]. Moreover, container images also encapsu-
late operations representing the logic to install and configure
the components. Therefore, container images are platform
bundles as they are the unit of deployment.

5.3.2 Mapping to CFEngine

CFEngine assumes an already running computing infras-
tructure and, therefore, is assigned to the PlatS deployment
technologies. In CFEngine, everything is a promise. Promises
are used to define the desired state that should be reached,
e.g., a package to be installed or a process to be started. Fur-
ther, bundles can be used to logically group promises and
are, therefore, mapped to operations in EDMM. Bodies are
used to create reusable parts of promises and are mapped
to component types. Bodies can also define properties and
once they are used in a deployment model a concrete com-
ponent is created. There can be explicit relations between
components that specify the required execution order using
the depends_on property on promises.

@ Springer

5.3.3 Mapping to Docker Compose

Docker Compose permits specifying the deployment model
of a multi-container Docker application in a single file. The
file is organized in “services”, which are used to specity the
components (i.e., its containers) of an application. Relations
between components are expressed using the depends_on
keyword. Mapping this to our metamodel, the only compo-
nent type and relation type are expressed by “services” and
by the depends_on attribute, respectively. Docker Com-
pose predefines the set of properties that can be associated
with the services forming an application. Properties can be
associated to each service in a Docker Compose file and spec-
ify the desired configuration. Artifacts and operations are a
special case since they have to be packaged as a so-called
platform bundle. The artifact implementing a component as
well as the logic to install and configure it must be supplied
through a Docker image, either retrieved from a repository
or built based on a Dockerfile. For example, to deploy
the Order App the complete stack starting from the operating
system to the application-specific component must be linked
into a Docker image.

5.4 EDMM to TOSCA

As various technologies support the TOSCA standard,
i.e., OpenTOSCA [7], ALIEN 4 Cloud [1], Cloudify, and
TosKer [10], this section presents a mapping of EDMM to
TOSCA—although it was out of scope of this paper due to its
rank. EDMM only uses a subset of entities specified by the
standard: Service templates are used to express deployment
models, while components and component types are referred
as node templates and node types, respectively. TOSCA
allows the definition of arbitrary relations and relation types,
called relationship template and relationship type, but defines
a certain set of normative types every compliant orchestrator
needs to support, i.e., hosted_on and connected_to.
Node types and relationship types support the definition of
properties as they are used to define semantics. Further, oper-
ations in EDMM are mapped to management operations,
which are realized by implementation artifacts. In contrast,
there are deployment artifacts that are mapped to artifacts
required for the execution of a component.

6 Related work

In this section we discuss closely related work on reviews
and comparisons regarding cloud computing deployment
technologies and their respective meta modeling results.
Weerasiri et al. [41] introduced a taxonomy for cloud
resource orchestration based on a survey examining eleven
cloud orchestration approaches. They describe the notion of

The essential deployment metamodel: a systematic review of deployment automation technologies 73

a Resource Entity Model consisting of entities, relationships,
and constraints. The Resource Entity Model shows on a high
level the structure of a cloud application. However, to auto-
mate a deployment more information are required, e.g., what
artifacts have to be installed and how. Therefore, we have
examined the semantics of used deployment technologies and
formulated a metamodel containing the common elements.

A detailed comparison of six different Infrastructure-as-
Code platforms has been conducted by Masek et al. [26].
They distinguish between “configuration management” tools,
designed to install and manage software on existing nodes,
and “orchestration tools”, designed to provision the servers
themselves and leaving the job of configuring nodes to
other tools. Also, Wettinger et al. [42] introduce a sim-
ilar classification by differentiating between node-centric
and environment-centric artifacts. Node-centric artifacts are
deployment models that are executed on single nodes, such
as Chef or Ansible, whereas environment-centric artifacts
are deployment models that are executed on a higher level
including more that one node, such as Terraform. In both
works, the essence is that these two categories are not mutu-
ally exclusive. Most configuration management tools can do
some degree of provisioning and most orchestration tools can
do some degree of configuration management or can even
integrate other tools. We derived a different grouping criteria
resulting from our review in order to make a clear assignment
for each technology.

Besides the variety of tools, there are also standards in the
field of application deployment. Markoska et al. [25] give an
brief overview about different cloud deployment technolo-
gies and standards, such as AWS CloudFormation, TOSCA,
CAMP, and others. Di Martino et al. [17] focuses only on the
TOSCA standard and OpenStack Heat templates for a quali-
tative comparison. Further, Bergmayr et al. [6] provide a very
detailed overview and comparison of different cloud model-
ing languages (CML). They conducted a systematic review
of CMLs, their features, and discuss core domain concepts
of such. However, these studies do not review a variety of
used deployment automation technologies and, further, do
not abstract to a commonly denominated metamodel.

Vergara-Vargas and Umafia-Acosta [40] developed a new
Architecture Description Language (ADL) that comprises
deployment aspects. One part of their ADL is to support
software deployments based on a model-driven deployment
(MDDep) approach expressing components and relations
among them. Alipour and Liu [2] focuses on a model-driven
approach presenting a Cloud Platform Independent Model in
order to deploy auto-scaling services in a cloud-agnostic way.
In general literature about software architectures (SAs), SAs
are described as structures that comprise software elements,
relations among them, and properties of both [38]. Also Chen
[13] describes in his paper a unified view to model data, con-
sisting of entities, and relationships. Thus, these elements

are similar to the parts identified by the EDMM. Further,
representing an application structure as a graph is a common
approach in research. For example, GENTL [5] is a CML
to express topologies whereas Breitenbiicher [8] proposes
a graph-based description language (DMMN) to enable the
declarative modeling of management activities [8]. However,
as they are proposing similar elements, these findings are not
based on the analysis of widely used industrial tools.

7 Conclusions and outlook

We conclude that there are three EDMM groups a technology
can be assigned to: General-purpose (GP) technologies sup-
port multi-cloud and XaaS deployments, provider-specific
(ProvS) technologies are restricted to the respective cloud
provider services, and platform-specific (PlatS) technologies
support only a subset of XaaS and require specific plat-
form bundles for deployment. A understanding of essential
deployment model elements helps to compare technologies
regarding deployment features and mechanism and supports
decision making processes when selecting an appropriate
technology for an use case. The introduced classification
and the presented EDMM technology mapping support the
migration from one deployment technology into another one.
Further, this does not only support industry to compare and
select technologies, but also helps researcher to evaluate con-
cepts in the area of deployment automation research: If new
research can be realized using EDMM, our mappings prove
that this research can be also applied to the technologies
analyzed in this paper. This significantly eases practically
validating new concepts.

Acknowledgements This work is partially funded by the Euro-
pean Union’s Horizon 2020 research and innovation project RADON
(825040), the BMWi projects IC4F (01IMA17008G) and SePiA.Pro
(01MD16013F), the DFG project ADDCompliance (636503), the POR-
FSE project AMaCA, and the project DECLware (PRA_2018_66,
University of Pisa).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. ALIEN 4 Cloud (2018) ALIEN 4 cloud official site. http:/
alien4cloud.github.io. Accessed 14 Aug 2019

2. Alipour H, Liu Y (2018) Model driven deployment of auto-scaling
services on multiple clouds. In: 2018 IEEE international conference
on software architecture companion (ICSA-C). IEEE, pp 93-96

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://alien4cloud.github.io
http://alien4cloud.github.io

74

M. Wurster et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Amazon Web Services, Inc (2018) AWS CloudFormation offi-

cial site. https://aws.amazon.com/de/cloudformation. Accessed 14
Aug 2019

Amazon Web Services, Inc (2018) AWS OpsWorks official site.
https://aws.amazon.com/de/opsworks

Andrikopoulos V, Reuter A, Gémez Sdez S, Leymann F (2014) A
GENTL approach for cloud application topologies. In: Villari M,
Zimmermann W, Lau KK (eds) Service-oriented and cloud com-
puting. ESOCC 2014. Lecture Notes in Computer Science, vol
8745. Springer, Berlin, Heidelberg

Bergmayr A, Breitenbiicher U, Ferry N, Rossini A, Solberg A,
Wimmer M, Kappel G (2018) A systematic review of cloud mod-
eling languages. ACM Comput Surv (CSUR) 51(1):1-38

Binz T, Breitenbiicher U, Haupt F, Kopp O, Leymann F, Nowak
A, Wagner S (2013) OpenTOSCA—A runtime for TOSCA-based
cloud applications. In: Proceedings of the 11th international con-
ference on service-oriented computing (ICSOC 2013). Springer,
pp 692-695

Breitenbiicher U (2016) Eine musterbasierte Methode zur Automa-
tisierung des Anwendungsmanagements. Ph.D. thesis, Universitit
Stuttgart

Brogi A, Soldani J, Wang P (2014) TOSCA in a nutshell: promises
and perspectives. In: Service-oriented and cloud computing: 3rd
European conference, ESOCC 2014, Manchester, UK, September
2-4, 2014. Proceedings, Springer, vol 8745, pp 171-186

Brogi A, Rinaldi L, Soldani J (2018) TosKer: A synergy between
TOSCA and Docker for orchestrating multicomponent applica-
tions. Softw Pract Exp 48(11):2061-2079

Burgess M, College O (1995) Cfengine: a site configuration engine.
In: USENIX computing systems

Canonical Ltd (2018) Juju Official Site. https://jujucharms.com.
Accessed 14 Aug 2019

Chen PPS (1976) The entity-relationship model—toward a unified
view of data. ACM Trans Database Syst 1(1):9-36

Cloudify Platform Ltd (2018) Cloudify Official Site. https:/
cloudify.co. Accessed 14 Aug 2019

CNCF (2018) Kubernetes Official Site. https://kubernetes.io.
Accessed 14 Aug 2019

Delaet T, Joosen W, Vanbrabant B (2010) A survey of system
configuration tools. In: Proceedings of the 24th international con-
ference on large installation system administration (LISA 2010),
USENIX

Di Martino B, Cretella G, Esposito A (2015) Defining cloud ser-
vices workflow: a comparison between TOSCA and OpenStack
Hot. In: 2015 Ninth international conference on complex, intelli-
gent, and software intensive systems (CISIS). IEEE, pp 541-546
Docker, Inc (2018) Docker Compose Documentation. https://docs.
docker.com/compose. Accessed 14 Aug 2019

Endres C, Breitenbiicher U, Falkenthal M, Kopp O, Leymann F,
Wettinger J (2017) Declarative vs. imperative: two modeling pat-
terns for the automated deployment of applications. In: Proceedings
of the 9th international conference on pervasive patterns and appli-
cations. Xpert Publishing Services (XPS), pp 22-27

HashiCorp (2018a) Terraform Official Site. https://www.terraform.
io. Accessed 14 Aug 2019

HashiCorp (2018b) Vagrant Official Site. https://www.vagrantup.
com. Accessed 14 Aug 2019

Herry H, Anderson P, Wickler G (2011) Automated planning
for configuration changes. In: Proceedings of the 25th interna-

@ Springer

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

tional conference on large installation system administration (LISA
2011). USENIX, pp 57-68

Humble J, Farley D (2010) Continuous delivery: reliable software
releases through build, test, and deployment automation. Addison-
Wesley Professional, Boston

Humble J, Molesky J (2011) Why enterprises must adopt devops
to enable continuous delivery. Cut IT J 24(8):6

Markoska E, Chorbeyv I, Ristov S, Gusev M (2015) Cloud portabil-
ity standardization overview. In: 2015 38th International conven-
tion on information and communication technology, electronics
and microelectronics (MIPRO). IEEE, pp 286-291

Masek P, Stusek M, Krejci J, Zeman K, Pokorny J, Kudlacek M
(2018) Unleashing full potential of ansible framework: University
labs administration. In: 2018 22nd conference of open innova-
tions association (FRUCT), pp 144—150. https://doi.org/10.23919/
FRUCT.2018.8468270

Microsoft, Inc (2018) Microsoft Azure ARM Official Site. https://
azure.microsoft.com/en-us/features/resource-manager. Accessed
14 Aug 2019

Morris K (2016) Infrastructure as code: managing servers in the
cloud. O’Reilly Media, Sebastopol

OASIS (2013) Topology and orchestration specification for cloud
applications (TOSCA) version 1.0. http://docs.oasis-open.org/
tosca/TOSCA/v1.0/0s/TOSCA-v1.0-o0s.html

OASIS (2019) TOSCA simple profile in YAML version 1.2. http:/
docs.oasis-open.org/tosca/TOSCA-Simple-Profile- YAML/v1.2/
TOSCA-Simple-Profile- YAML-v1.2.html

OMG (2015) Unified modeling language (UML) version 2.5.
https://www.omg.org/spec/UML/2.5.1/PDF

OpenStack Foundation (2018) OpenStack HEAT documentation.
https://wiki.openstack.org/wiki/Heat. Accessed 14 Aug 2019
Oppenheimer D, Ganapathi A, Patterson DA (2003) Why do inter-
net services fail, and what can be done about it? In: Proceedings of
the 4th conference on USENIX symposium on internet technolo-
gies and systems (USITS 2003). USENIX

Opscode, Inc (2018) Chef official site. http://www.opscode.com/
chef. Accessed 14 Aug 2019

Pahl C, Brogi A, Soldani J, Jamshidi P (2017) Cloud container
technologies: a state-of-the-art review. IEEE Trans Cloud Comput
Puppet Labs (2018) Puppet official site. http://puppetlabs.com/
puppet/what-is-puppet. Accessed 14 Aug 2019

Red Hat, Inc (2018) Ansible official site. https://www.ansible.com.
Accessed 14 Aug 2019

Rozanski N, Woods E (2012) Software systems architecture:
working with stakeholders using viewpoints and perspectives.
Addison-Wesley, Boston

SaltStack, Inc (2018) SaltStack official site. https://www.saltstack.
com. Accessed 14 Aug 2019

Vergara-Vargas J, Umafia-Acosta H (2017) A model-driven deploy-
ment approach for scaling distributed software architectures on a
cloud computing platform. In: 2017 8th IEEE international confer-
ence on software engineering and service science (ICSESS). IEEE,
pp 99-103

Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R
(2017) A taxonomy and survey of cloud resource orchestration
techniques. ACM Comput Surv 50(2):26:1-26:41

Wettinger J, Breitenbiicher U, Kopp O, Leymann F (2016) Stream-
lining DevOps automation for cloud applications using TOSCA as
standardized metamodel. Future Gener Comput Syst 56:317-332

https://aws.amazon.com/de/cloudformation
https://aws.amazon.com/de/opsworks
https://jujucharms.com
https://cloudify.co
https://cloudify.co
https://kubernetes.io
https://docs.docker.com/compose
https://docs.docker.com/compose
https://www.terraform.io
https://www.terraform.io
https://www.vagrantup.com
https://www.vagrantup.com
https://doi.org/10.23919/FRUCT.2018.8468270
https://doi.org/10.23919/FRUCT.2018.8468270
https://azure.microsoft.com/en-us/features/resource-manager
https://azure.microsoft.com/en-us/features/resource-manager
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://www.omg.org/spec/UML/2.5.1/PDF
https://wiki.openstack.org/wiki/Heat
http://www.opscode.com/chef
http://www.opscode.com/chef
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet
https://www.ansible.com
https://www.saltstack.com
https://www.saltstack.com

The essential deployment metamodel: a systematic review of deployment automation technologies

75

Michael Wurster is a research
associate at the Institute of Archi-
tecture of Application Systems
(IAAS) at the University of
Stuttgart, Germany. He completed
his master’s degree at the Reut-
lingen University end of 2016.
His research interests lie mainly
in the DevOps-enabled provision-
ing, orchestration, and manage-
ment of highly complex and dis-
tributed application systems. Fur-
thermore, Michael has six years of
practical experience in working as
a Software Engineer focusing on

developing microservice-based systems in a DevOps-enabled organi-

zation.

vices.

Uwe Breitenbiicher is a research
staff member and post-doc at the
Institute of Architecture of Appli-
cation Systems (IAAS) at the Uni-
versity of Stuttgart, Germany. His
research vision is to improve cloud
application provisioning and appli-
cation management by automat-
ing the application of manage-
ment patterns. Uwe was part of
the CloudCycle project, in which
the OpenTOSCA Ecosystem was
developed. His current research
interests include cyber-physical
systems, blockchains, and microser-

Michael Falkenthal is a research
associate and Ph.D. student at the
Institute of Architecture of Appli-
cation Systems (IAAS) at the Uni-
versity of Stuttgart, Germany. He
studied business information tech-
nology at the Universities of
Applied Sciences in Esslingen and
Reutlingen focusing on business
process management, services com-
puting and enterprise architecture
management. Michael gained expe-
rience in several IT transforma-
tion and migration projects at small-
to big-sized companies. His cur-

rent research interests are fundamentals on pattern language theory,
cloud computing and quantum computing.

Christoph Krieger received the
Master of Science degree in Soft-
ware Engineering from the Uni-
versity of Stuttgart in 2018. Cur-
rently, he works as a research
associate at the Institute of Archi-
tecture of Application Systems
(IAAS) at the University of
Stuttgart, Germany. His research
interests are in the area of archi-
tectural design decisions and how
their compliant realization can be
ensured during different stages of
the development life cycle.

Frank Leymann is a full profes-
sor of computer science and direc-
tor of the Institute of Architecture
of Application Systems (IAAS) at
the University of Stuttgart, Ger-
many. His research interests
include service-oriented architec-
tures and associated middleware,
workflow- and business process
management, cloud computing and
associated systems management
aspects, and patterns. Frank is co-
author of more than 400 peer-
reviewed papers, about 70 patents,
and several industry standards. He

is elected member of the Academy of Europe.

Karoline Saatkamp received the
Master of Science degree in Infor-
mation Systems from the Univer-
sity of Stuttgart and University
of Hohenheim in 2016. Currently,
she works as a research associate
at the Institute of Architecture of
Application Systems (IAAS) at
the University of Stuttgart, Ger-
many. Her research interests are
in the area of multi-cloud deploy-
ment and management, focusing
on the distribution of application
fragments and their cross-cloud
communication behavior.

Jacopo Soldani is a post-doc
researcher at the University of Pisa
(Italy). He holds a Ph.D. in Com-
puter Science (2017, University
of Pisa). His research interests
include, but are not limited to,
serviceoriented and cloud com-
puting, adaptation, coordination,
and integration of software ele-
ments, and formal methods. He
is member of the IFIP Working
Group on Service-Oriented Sys-
tems (IFIP WG 2.14/6.12/8.10)
and of the OASIS TOSCA tech-
nical committee, and he has also

been involved in several research projects on service, cloud and fog
computing both at local and EU level.

@ Springer

	The essential deployment metamodel: a systematic review of deployment automation technologies
	Abstract
	1 Introduction
	2 Review framework
	2.1 Phase 1: identify technologies
	2.2 Phase 2: technology selection
	2.3 Phase 3: technology analysis
	2.3.1 Deployment features and mechanisms
	2.3.2 Reference scenario
	2.3.3 Remarks

	3 Categorization of technologies
	4 The essential deployment metamodel
	5 EDMM technology mapping
	5.1 EDMM to GP-technology mapping
	5.1.1 Mapping to Puppet
	5.1.2 Mapping to chef
	5.1.3 Mapping to Ansible
	5.1.4 Mapping to OpenStack Heat
	5.1.5 Mapping to Terraform
	5.1.6 Mapping to SaltStack
	5.1.7 Mapping to Juju
	5.1.8 Mapping to Cloudify

	5.2 EDMM to ProvS-technology mapping
	5.2.1 Mapping to AWS CloudFormation
	5.2.2 Mapping to Azure Resource Manager

	5.3 EDMM to PlatS-technology mapping
	5.3.1 Mapping to Kubernetes
	5.3.2 Mapping to CFEngine
	5.3.3 Mapping to Docker Compose

	5.4 EDMM to TOSCA

	6 Related work
	7 Conclusions and outlook
	Acknowledgements
	References

