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Abstract Collaborative Embedded Systems (CES) typ-

ically operate in highly dynamic contexts that cannot be

completely predicted during design time. These systems

are subject to a wide range of uncertainties occurring

at runtime, which can be distinguished in aleatory or

epistemic. While aleatory uncertainty refers to stochas-

ticity that is present in natural or physical processes

and systems, epistemic uncertainty refers to the knowl-

edge that is available to the system, for example, in

the form of an ontology, being insufficient for the func-

tionalities that require certain knowledge. Even though

both of these two kinds of uncertainties are relevant

for CES, epistemic uncertainties are especially impor-

tant, since forming Collaborative System Groups (CSGs)

requires a structured exchange of information. In the au-
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tonomous driving domain for instance, the information

exchange between different CES of different vehicles may

be related to own or environmental behavior, goals or

functionalities. By today, the systematic identification

of epistemic uncertainties sourced in the information

exchange is insufficiently explored, as only some spe-

cialized classifications for uncertainties in the area of

self-adaptive systems exist. This paper contributes an

epistemic uncertainty classification scheme for runtime

information exchange (EURECA) in collaborative sys-

tem groups. By using this classification scheme, it is

possible to identify the relevant epistemic sources of un-

certainties for a CES during Requirements Engineering.

Keywords Uncertainty, Requirements Engineering,

Runtime Information Exchange, Collaboration

1 Introduction

In the past, embedded systems had predominantly static

relations to their context. In the future, however, it can

be expected that they will increasingly operate within

collaborative networks [1]. Embedded systems that dy-

namically collaborate with each other are referred to

as collaborative embedded systems (CESs). The groups

that are being formed by CESs to achieve specific goals

are called collaborative system groups (CSGs), e.g. ve-

hicles forming a platoon to save fuel when travelling

to a common destination [2]. The prerequisite for such

collaboration is that CESs communicate with each other.

Much research has been dedicated to uncertainties that

occur at the runtime of cyber-physical systems or self-

adaptive systems, and how they can be classified (see

Section 2). A source of uncertainty that has not been

systematically addressed yet is the communication act

itself, that is a receiver being uncertain with respect
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to the information that a sender wants to convey. For

instance, when a vehicle in a platoon proposes a new

target speed of 60 by sending a message including only

the number ’60’, it might be unclear whether the num-

ber is referring to miles per hour or kilometers per hour.

Another example would be the presence of unknown

concepts in a message, for example, the sender referring

to the concept “speed” in a message, while the receiver

is only aware of the concept “velocity”.

This contribution introduces an approach for address-

ing communication-induced epistemic uncertainties. On

the one hand, the approach provides a classification

scheme for such uncertainties. On the other hand, it

provides a method for applying the scheme as a checklist

to support the systematic analysis of potential uncer-

tainties in the communication of CESs. This is based on

scenarios and can be integrated into the requirements

engineering of such systems in order to explicitly take un-

certainty into account. The analysis of consequences, e.g.

hazards, that may arise from communication-induced

uncertainties is not in the scope of our approach. How-

ever, it is positioned to provide structured inputs to
such scenario analyses. We employ the autonomous driv-

ing domain as a running example as well as for the

exemplary application of our approach. The approach,

however, is designed to be applicable for all application

domains of CSGs. As such, preliminary validation has

been performed for two additional domains - factory
automation and energy distribution.

This paper is structured as follows: Section 2 presents

the body of research regarding runtime uncertainties to

put our research into context. In Section 3, we discuss

uncertainties that may arise within CSGs. Subsequently,
we introduce our approach in Section 4. In Section 5,

we present an exemplary application of our approach

within the autonomous driving domain. We conclude

the paper in Section 6 with a conclusion and outlook.

2 State of the Art – Runtime Uncertainty

The term uncertainty has been broadly discussed across
many disciplines and sciences. In the literature there are

many different given definitions and considered perspec-

tives when it comes to defining and classifying uncertain-

ties. For example, Walker et al. [3] consider uncertainty

from a decision making point of view, to support making

decisions in the presence of uncertainty. Refsgaard et al.

[4] discuss uncertainty in the area of natural environ-

ment modelling. Foreseeably, in the area of computer
science and software engineering, uncertainty is most

notably discussed in the context of self-adaptive systems

[5–9] and cyber-physical systems [10]. In these systems

uncertainties have a central role, which stems from the

manifestation of the dynamic nature of the systems.

2.1 Uncertainty Fundamentals

Cailliau and Lamsweerde [11] differentiate two essential

levels of uncertainties: physical uncertainty and knowl-

edge uncertainty. Physical uncertainty represents all the

uncertainties that may occur in the system, for example,

the failure of a sensor, or in the system context. Knowl-

edge uncertainty denotes uncertainty that relates to the

estimation of physical uncertainty values by experts.

Furthermore, [3] and [7] also cover the distinction be-

tween physical uncertainty and knowledge uncertainty,

here referred to as aleatory and epistemic uncertainty

instead. Uncertainty is classified as aleatory, if there

is no foreseeable possibility for reducing it. Aleatory

uncertainty refers to uncertainty due to the inherent

stochasticity that is present in natural, physical pro-

cesses and systems [12]. On the contrary, uncertainty is

classified as epistemic, if there exists a possibility the

uncertainty to be reduced by gathering more data or by
refining models [13].

2.2 Classifying Runtime Uncertainties

In addition to the general categorization of uncertain-

ties, which have been summarized in the previous

Section, there are few more detailed taxonomies for

classifying uncertainties that particularly focus on

uncertainties that can occur at runtime. These have

been, most notably, proposed in the context of adaptive

systems, where uncertainty plays a major role and

motivates the need for self-adaptation capabilities

and associated engineering challenges [14]. All these

classifications put a special emphasis on the time when

the uncertainties occur, which is particularly important

considering the importance of the role that time has

in the above-mentioned systems. Moreover, all of the

classifications introduce and focus on one or more

uncertainty dimensions.

The very first classification that has been proposed

by Walker et al. [3] (2003), targeting uncertainties in

model-based decision support, which is closely related

to the decision making and actions performed by soft-

ware systems at runtime. As we will see below, more

recent and software-specific classifications actually build

upon [3]. Walker et al. identify three dimensions of un-

certainties: nature, location, and level. Nature refers to

the distinction of aleatory and epistemic uncertainty,

which has been already discussed in the previous sub-

section. The location identifies where the uncertainties

manifest. The level of uncertainty classifies uncertainty

according to lack of knowledge and lack of awareness

of knowledge deficits. Namely, in our classification we
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map the information exchange to Walker’s location di-

mension, and we refer to their level dimension as lack

of knowledge. Additionally, we provide a schema based

on representation of knowledge using ontologies.

Ramirez et al. [6] (2012) propose a taxonomy and

describe potential sources of uncertainties on three dif-

ferent levels, according to the life cycle phase in which

uncertainty can occur: the requirements level, design

level, and runtime level. During the development of

the system, the sources of uncertainties mainly refer

to consequences of deficiencies in conducting the devel-

opment activities, such as ambiguous requirements, or

an inadequate design. For instance, such uncertainties

may be rooted in insufficient requirements negotiation

or the inherent volatility of requirements. In contrast,
runtime uncertainties affect the decision making of the

envisioned system during operation. The sources of un-

certainties at the higher levels, subsume the sources of

uncertainties on the lower levels. Therefore, if the source

of uncertainty is not resolved at the lower level (for

example, on the requirements level), then it propagates

to the higher ones (design level, and potentially runtime

level). According to [6], potential sources of runtime

uncertainties are mainly related to interactions between

the system and its context, including sensor noise, in-

accuracy of sensor measurements, or an unpredictable

system environment. We focus on the system’s ability to

exchange information during operation, hence, runtime

uncertainties in respect to Ramirez’s taxonomy.

Perez-Palacin and Mirandola [7] (2014) focus on

uncertainties that can be present in (formal) models

used during development and at runtime to guide self-

adaptation. Their taxonomy of model uncertainty is
based on [3], and they further extend the identified

sources of uncertainties in [5]. Primarily, they adopt

two dimensions out of the three-dimensional taxonomy

proposed by Walker et al. in [3]: nature (aleatory and

epistemic uncertainty) and location. The location of an

uncertainty identifies the place where uncertainty is vis-

ible in a model, for example, uncertainty can be related

to the information a modeling language should be able

to express and its limitations, to the way the reality is

represented using prescribed modeling elements, or to

the properties of model elements to be used for further
analyses [7]. Among all of the proposed uncertainty clas-

sifications and taxonomies, Perez-Palacin’s taxonomy is

the closest to our contribution. The different uncertainty

locations mentioned in their work have a lot in common

with the distinction of different levels in our information

exchange representation.

The most recent and sophisticated classifications are

given by Mahdavi-Hezavehi et al. [8] (2017), which has

been elicited from a systematic literature review, and

by Camara et al. [9], which can be seen as an extension

of the first taxonomy by Mahdavi-Hezavehi. Both give

one of the most prominent classifications, identify and

categorize plenty of previous works on uncertainty.

Mahdavi-Hezavehi et al. [8] first identify an initial

uncertainty dimensions classification schema and ini-

tial source classification schema, based on the previous

literature, in particular the work by Perez-Palacin et

al. [7], Refsgaard et al. [4], David Garlan [15], Esfahani

and Malek [5], and Ramirez et al. [6]. The initial uncer-

tainty dimensions classification schema comprises four

uncertainty dimensions: location (where the uncertainty

manifests within the complexity of the model), nature

(whether the uncertainty is due to the imperfection of

the knowledge, or due to the inherent variability of the

event), level/spectrum (where the uncertainty mani-

fests along the spectrum between knowledge and igno-

rance), and sources (refers to the variety of uncertainties

sources). The initial source classification schema com-

prises three uncertainty sources: model (uncertainties

originating from system models), goals (uncertainties
emerging from the systems goals and their obscurities),

and environment (uncertainties originating from differ-

ent environmental circumstances). They extended and

completed both the dimension schema and source clas-

sifications schema based on data they extracted from

their primary study.

Therefore, both taxonomies distinguish five dimen-

sions of uncertainties: location, source, nature, level,

and emerging time. Hence, the classifications extend

the initial three-dimensional concept from [3], and in-

corporate the source and emerging time (design-time

or runtime) as fourth and fifth dimension. Additionally,

Mahdavi-Hezavehi et al. extended the initial source clas-

sification schema to following generic classes of uncer-
tainty sources: model uncertainty, adaptation functions

uncertainty, goals uncertainty, environment uncertainty,

resources uncertainty and managed system uncertainty.

In the last three [7–9] classifications, the uncertainty

sources are always use-case specific and there is no

alternative in using the classifications without using their

model specifications (context model, resource model

or goal model). However, in CES practice, there will

be models defined by an external entity—industry, for

example. Sometimes there might be even models that

are not envisioned yet. This leaves open the question

whether it is meaningful to classify uncertainty sources

by using a specific kind of model. In our work, we are

proposing a classification scheme that can be used to

identify uncertainty sources in any kind of model.

Our approach provides a classification schema for

types of epistemic uncertainties at runtime, with special

emphasis on uncertainties originating from information
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exchange in collaborating systems, which has not been

addressed by another uncertainty classification to the

best of our knowledge.

3 Epistemic Uncertainties in Collaborative

System Groups

3.1 Information Exchange in CSGs

In the following, we introduce some general character-

istics of collaborative embedded systems (CES), which

pose specific challenges to the consideration of differ-

ent kinds of runtime uncertainties. Such collaborative

embedded systems (CESs) operate in highly dynamic

environments. Additionally, CES collaborate when they

combine their individual capabilities to achieve a com-

mon goal. Achieving a common goal can be beyond the

capabilities of the individual systems, and thus specifi-

cally require a collaboration. When systems collaborate

to achieve a specific goal, they form a collaborative sys-

tem group (CSG). A CSG can evolve dynamically, for

example, it might include new CES, or even dissolve.

To illustrate CES and CSG throughout the paper,

we use examples from autonomous driving, which is an

interdisciplinary research area that has recently gained

much attention in the scientific community. In particular,

we focus on vehicle platooning as an exemplary use

case relevant for autonomous driving. A platoon is a

group of vehicles controlled by cooperative adaptive

cruise control (CACC) systems that utilize networking

and communication to enable collaboration among the

partaking vehicles, and can thus be considered a CSG [2].

A common goal that can be achieved through minimizing

following distances in a platoon, is reducing the fuel
consumption. Applied to heavy-duty trucks, platooning

enables fuel savings of up to 20% [16].

A CES, which is under initial consideration for a

potential engagement in a collaborating group, is called

system under consideration (SUC), and is embedded into

its operational context at runtime [17]. In the example of

a platoon, the individual CACC systems controlling the

partaking vehicles are the CES; however, to keep things

simple, we simply denote the different vehicles as CESs

under consideration. In general, the context of a system

consists of all objects that are relevant to the system,

but cannot be influenced by developers and is perceived

as given [18]. Context objects (COs) can be divided into

two different types [19]: Collaborative context objects

and non-collaborative context objects. A collaborative

context object is able to share information about itself

in a reactive or proactive manner with the SUC; for

example, the SUC calls a self-description service, or a

collaborative context object pro-actively sends a self-

description to the SUC or other CESs in a CSG, while

accessing a network. In order for their collaboration to

be initiated, CESs have to analyze each others’ infor-

mation, for instance, their specifications of functional

and quality properties. In the platooning example, dif-

ferent collaborating vehicles exchange such information

to communicate their destinations of travel [20]. Hence,

from the point of view of one vehicle, the other vehi-

cles of a platoon are collaborative context objects that

interact with it. In contrast, non-collaborative context

objects are unable to provide a machine-readable de-

scription of information that is required to collaborate
with the SUC. Nevertheless, they can be perceived by

the CESs, or they may even interact with CESs in some

non-collaborative, passive manner. For instance, a radar

sensor measuring the distance to a preceding vehicle can

be considered non-collaborative.

3.2 Epistemic Uncertainties in Vehicle Platooning

As mentioned in Section 3.1, we focus on potential un-

certainties that may occur in a platoon. There are many

control paradigms available for realizing a platoon [21],

which we do not discuss in detail. A platoon is typically

led by a platoon leader that plays a special role, and a

set of vehicles following the platoon leader [22]. Typi-

cally the vehicle with the highest safety characteristics is

determined as the leader, which is negotiated among the

vehicles [23]. One particular form for realizing a platoon

is through joining a smart ecosystem as presented in [24].

Smart ecosystems consists of actors with different goals

[25] that influence the dynamics within an ecosystem

and bring along a set of uncertainties regarding system’s

goals. Moreover, ecosystems are not formed from scratch,

already existing systems can be enhanced with software

updates that make them collaborative. An example of

a platoon formation as a smart ecosystem is through

download of software updates that enables sharing of

context information. At an entry point on a highway au-

tonomous vehicles can get software updates that enable

them to form a platoon through sharing of information

regarding the perception of the environment.

In order to illustrate what kinds of epistemic uncer-

tainties can occur in such a vehicle platoon, we consider

one specific example scenario, i.e., the joining maneuver

where a vehicle joins the platoon in the middle. The

following explanations are based on the detailed descrip-

tion provided in [22]. A vehicle detects a platoon with

roughly the same destination, and requests to join it.

The platoon leader then coordinates the formation of

a gap where the new vehicle can join the platoon. To

this end, it communicates the gap information (i.e., the

join position) to the new vehicle, which then adjusts

its speed to approach the required position. The gap
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is opened by establishing a temporal second platoon

(led by the vehicle in front of which the new vehicle is

supposed to join) reducing its speed. Eventually, the

joining vehicle is notified about the opened gap, and

changes the lane to join in.

The coordination of the joining maneuver requires

the exchange of a significant amount of information

between vehicles. For example, the joining vehicle needs

to check if its goals are compatible with the goals of

the platoon leader. Exchanged goal specifications may

include, for example, desired speed of travel (cf. [26]), or

targeted fuel or energy savings. There are other scenarios

in which information exchange is necessary to negotiate

between different vehicles. Consider a scenario wherein

an ambulance needs to arrive at a particular destination

fast, and therefore its goal is to overtake it. To this

end, the ambulance communicates its priority goal and

thereby may request the platoon to change the lane to

enable overtaking (cf. [27]).

In the scenarios sketched above, a wide range of po-

tential uncertainties can occur. In addition to aleatory

uncertainties originating from the physical surroundings,

which are out of scope of this paper, major issues arise

from epistemic uncertainties related to the information

that is exchanged between vehicles. In general, different

representations and different underlying ontologies of

the versatile kinds of information exchanged within a

platoon are potential sources for uncertainties that can

occur at runtime. This might be due to the fact that

vehicles built by different Original Equipment Manu-

facturers (OEMs) interact with each other, which is an

important challenge in autonomous driving [28,29].

In a platoon, information about the context, includ-

ing other vehicles or pedestrians, is exchanged, for ex-

ample, through a smart ecosystem as introduced above.

The perception of every vehicle differs. For example,

consider the case where a human-driven vehicle enters

the gap that has been formed for some other vehicle to

join the platoon [22]. This situation may be detected

by the joining vehicle through its on-board sensors, but

not yet realized by the platoon leader (e.g. due to com-

munication delays within the platoon, cf. [30]). As a

consequence, the perception of the gap in the middle of

a platoon by the platoon leader and the joining vehicle

differs, which leads to ambiguous information about the

context when respective information is exchanged [31].

Epistemic uncertainties could also be related to the

goals of individual vehicles, which need to be negotiated

in a platoon (for example, for joining). Being part of

a CSG formed as a smart ecosystem, a CES interacts

with other systems that have collaborative and compet-

itive goals [25]. For instance, a platooning vehicle may

leave its current platoon after detecting another one

with more closely related goals. Uncertainties related

to misunderstanding goals of different vehicles can have

serious, hazardous effects. Due to different ontologies for

expressing goal information used by different OEMs, a

collaborating system could have a goal that is not prop-

erly understood by other vehicles in the platoon or it is

not properly declared. This creates miss-understandings

that can lead to safety-critical situations. For exam-

ple, an individual goal of a vehicle to move forward

in order to leave the platoon is communicated to the

preceding vehicle that understands it as a goal in the
platoon. As a consequence the preceding vehicle, in or-

der to drive closely to the vehicle in front, increases its

speed and causes a crash. Hence, solutions to assure

safety in case of goal uncertainties need to be in place.

Of course, in an ideal situation a single standardized

ontology would be in place (for example, to exchange

safety-related knowledge about accidents [32,33]), pre-

venting such misunderstandings. However, there are still

open research challenges regarding the interoperabil-

ity of heterogeneous collaborating vehicular systems

using different knowledge representations [34,35]. Fur-

thermore, in order to achieve competitive advantage,

an ecosystem, in our case the vehicle platoon, needs

to effectively engage with external partners in order

to maximize the benefits [36]. Hence, the classification

scheme proposed in the next section aims at supporting

the systematic identification of epistemic uncertainties

that may occur during information exchange.

4 An Uncertainty Classification Scheme for

Collaborative Embedded Systems

This chapter introduces a classification scheme that

can be applied during Requirements Engineering for

identifying and classifying epistemic uncertainties that

result from information exchange between CESs. For

this purpose, we introduce a simplified knowledge mod-

elling procedure for capturing human knowledge in an

ontology in Section 4.1. Two main classes of epistemic

uncertainties in information exchange are introduced.

Based on these definitions, Sections 4.2 and 4.3 include

definitions of specific sub-classes for each main class, be-

fore Section 4.4 introduces the structure of the epistemic

uncertainty classification scheme for runtime informa-

tion exchange (EURECA) and where it is applied in

Requirements Engineering.

4.1 Knowledge Modelling Procedure

As a special branch of knowledge engineering, ontologi-

cal engineering is concerned with the formalization of
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Fig. 1 Knowledge Modelling procedure

human knowledge in a machine readable way, i.e. an

ontology [37]. To obtain such an ontology, one has to

perform certain modelling steps, which are subsequently

described by adapting a simplified procedure of [38].

The procedure is also summarized in Figure 1 while

the red and gray color emphasize the application of the

procedure by different development teams (constructing

the SUC and, from the point of view of the SUC, the

CO, respectively).

When formalizing human knowledge, the SUC’s de-

velopers capture their real-world perception in presenta-

tion patterns first, e.g.: “vehicle must brake in case of an

obstacle in the driving lane”. Afterwards, these informal

presentation patterns are transformed into a conceptu-

alization κSUC of the SUCs domain (e.g. autonomous

driving) κSUC = (D,<) with D being relevant concepts

of the SUCs domain and < being relevant relations

between concepts of the SUCs domain.

Describing the real-world context of a vehicle

that should be communicated during runtime for in-

stance, requires a conceptualization κSUC of the real-

world concepts D = {tree, vehicle, distance, ...}, includ-

ing relations between these concepts < = [{tree ×
hasDistance × distance}, {...}]. After having defined

the developer’s real-world perception in the conceptual-

ization κSUC , one can choose, depending on the appli-

cation’s needs, a language L that should represent the

conceptualization in a machine readable format. Com-

mon languages in the field of Ontological Engineering

are, for instance, Ontology Web Language Description

Logics (OWL-DL) and First Order Logics [37]. Each

language has its own vocabulary V (e.g. atomic concepts

and atomic roles in Description Logics) denoting possible

elements for representing parts of the conceptualization

κSUC .

The transformation of the conceptualization κSUC

into the vocabulary V is called ontological commitment

KSUC = (κSUC , V ), where each part of the conceptual-

ization is mapped to an element of the vocabulary. For

the extent of this paper, we introduce a simplified for-

mal definition of a ontological language with vocabulary

VS = (C,R,A), where C is a set of concepts, R is a set

of relationship types among concepts, and A is a set of

attributes. C,R and A are defined as tuples where:

– c ∈ C; c = (tc, dc)

– r ∈ R; r = (tr, dr)

– a ∈ A; a = (ta, da)

While the term t ∈ T only relates to the former

defined D and < (e.g. ”Tree”), the formal definition

d ∈ D uses the vocabulary of the language VS in order

to describe the term with that language (e.g. describing

”Tree” in description logic).

The result of the ontological commitment is the on-

tology OSUC that can be used as a machine-readable

artifact at runtime for representing intensional, termi-

nological knowledge (T-Box or type level of knowledge,
e.g. terms and logical definitions of ”tree”) and exten-

sional, assertional knowledge (A-Box or instance level of

knowledge, e.g. recognized instances of passed by ”trees”
and their distance to the SUC) [39]. This knowledge

modelling procedure is applied by the developers of the

SUC, but also by developers of the COs, resulting in

possibly different knowledge models.

When sending messages, we assume that the CES

(i.e., SUC or a CO) transform only an excerpt of their

extensional knowledge due to performance reasons into

a message instead of sending their complete extensional
knowledge. Therefore, the message only contains infor-

mation which must be processed to extensional knowl-

edge by the receiving device again.

For the instantiation of extensional knowledge in a

message, the following definitions are necessary. A mes-

sage m sent by the SUC that uses the ontology OSUC

for the specification of the message content, contains a

set of information items I. Each information item i ∈ I
is a tuple i = (v, rel), where v is defined as the value

of the information item (e.g. value of an attribute a or

target and source of a relation r, or an ID as an instance

of c), and rel ∈ (C ∪R∪A) is defined as the mapping of

each information item to the ontology, specifying the se-

mantics of each value using the defined formal semantic

definition of OSUC = {C,R,A}. We can now motivate

two super-classes of epistemic uncertainties in informa-

tion exchange through the following example. A CO and

an SUC communicate by exchanging messages, while

using individual ontologies OCO and OSUC respectively,

for the semantic specification of the information items

within messages. An exemplary message could contain

information for triggering an emergency brake maneuver

when a CO identifies an obstacle and informs the SUC.

In order to convey the emergency brake information, the

CO sends an excerpt of its own extensional knowledge
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within a message m, which has been created based on

its intensional knowledge. The SUC receives the mes-

sage and processes the contained information in order

to transform it into extensional knowledge according to

its own intensional knowledge. There is no epistemic

uncertainty in information exchange, if

1. All used ontological elements of the message m are

known and consistent to both, the SUC and CO,

defined as true for the following statement: ∀ij :

(relj ∈ COCO
∧relj ∈ COSUC

)∨(relj ∈ ROCO
∧relj ∈

ROSUC
) ∨ (relj ∈ AOCO

∧ relj ∈ AOSUC
)

2. The information items within the message m: ij =

(vj , relj) are not missing or violating (semantical

inconsistency) a specification according to the defini-

tions of OSUC , and are not incomplete or inconsistent

with respect to the actual situation of the SUC

If these two conditions hold, epistemic uncertainties

sourced in the information exchange of the CO and the

SUC are inexistent since both systems share the needed

intensional knowledge to understand the information

of message m. Moreover, the message m is well formed

so that the contained information can be processed to

extensional knowledge. The cases in which condition

one is violated are presented in Section 4.2. Section 4.3

presents the cases violating the second condition. Section

5 introduces an exemplary application of each type and

instance level uncertainty. The subsequent Sections 4.2

and 4.3 therefore only hold the necessary definitions due

to the space restrictions.

4.2 Uncertainty Sources on the Type Level

The type level uncertainty cases, which are defined in

this Section, are based on a T-Box mismatch at runtime.

This may occur if CO and SUC are using different

T-Boxes for specifying and interpreting the messages

to be exchanged at runtime. Based on the simplified

modelling procedure in Section 4.1, three reasons for a

T-Box mismatch may occur:

– The ontologies OSUC and OCO do differ, because the

conceptualization κSUC and κCO already contained

different elements (see subsequent T1, T2, T3).

– The ontologies OSUC and OCO do differ, because

the ontological commitment was done differently by

the individual developers, resulting in parts of κCO

being semantically inconsistent to parts of OSUC

and vice versa (see subsequent T4).

– The ontologies OSUC and OCO do differ, because the

developers used different languages for the ontologi-

cal commitment. However, this case is not considered

here.

In order to simplify the subsequent formal definitions,

and to ease readability, we use subscript notation to

denote relevant characteristics that are required to ex-

plain the four different type level uncertainties: From

the SUC’s point of view, a message m can contain un-

known T-Box elements xu or known T-Box elements

xk, which are described by a term known to the SUC

(txOSUC
) and a logical definition of that term (dxOSUC

).

Each T-Box element can either be a concept, a relation

or an attribut (C ∪ R ∪ A) within the SUCs or COs

ontology:

xu(txOCO
, dxOCO

);xu ∈ (COCO
∪ROCO

∪AOCO
)

xk(txOSUC
, dxOSUC

);xk ∈ (COSUC
∪ROSUC

∪AOSUC
)

Figure 2 emphasizes the four different type level un-

certainties by example, which are subsequently defined.

Fig. 2 Type level uncertainty example

T1, known difference in scope: At least one onto-

logical element of the message m is not known to the

SUC, and the unknown element xu has a known rela-

tion rk to a known element xk. From the logical de-

scription of dKDS = (dxOCO
, drOSUC

, dxOSUC
) it can be

inferred that xu is a more abstract/detailed (e.g. “sub-

classing”) element than xk or from the same granularity

(e.g. “same-as”). Here, the message m is not well under-

stood, because of intensional knowledge unknown to the

SUC. Due to the known relation to the unknown ele-

ment, the SUC can at least use the semantics of drOSUC

for further reasoning or mitigation.

T2, unknown difference in scope: At least one onto-

logical element of the message m is not known to the

SUC, and the unknown element xu has an unknown

relation ru to a known element xk. From the logical

descriptions dUDS = (dxOCO
, drOCO

, dxOSUC
) it can be
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inferred that xu is somehow related to the SUC’s inten-

sional knowledge. The message m is not well understood,

because of unknown but related intensional knowledge.

Due to the fact, that there is no known relation to the

unknown element, the SUC can only use the semantics

of dxOSUC
for further reasoning or mitigation.

T3, distinct scope: At least one ontological element

of the message m is not known to the SUC, and the un-

known element xu has no known relation rk or unknown

relation ru to a known element xk, so that none of the

aforementioned cases holds. From the logical description

dxOCO
it can be inferred that xu does not have any re-

lation to the SUC’s intensional knowledge. The message

m is not well understood, due to unknown intensional

knowledge required for processing the information of

message m. Due to the fact that there is no known or

unknown relation to the unknown element, the SUC can

only use the semantics of dxOCO
for further reasoning

or mitigation.

T4, inconsistent ontological commitments: At

least one ontological element of the message

m: xIOC(txOCO
, dxOCO

); xu ∈ (COCO
∪ ROCO

∪
AOCO

) violates known formal semantic definitions of

xk(txOSUC
, dxOSUC

); xk ∈ (COSUC
∪ ROSUC

∪ AOSUC
).

The element xIOC has an inconsistent formal semantic

definition compared to xk in the sense of: (txOSUC
=

txOCO
) ∧ (dxOSUC

6= dxOCO
). The information items as-

sociated with the ontological element xIOC can therefore

not be used, since this would result in inconsistent inten-

sional knowledge of the SUC. The message m is not well

understood, due to inconsistent intensional knowledge

used for the specification of the message.

4.3 Uncertainty Sources on the Instance Level

The instance level uncertainty cases, which are defined

in this Section, are based on the actual information

specified in the message. Instance-level uncertainties may

occur if the specified information cannot be processed

to extensional knowledge (A-Box) of the SUC. Based on

the simplified modelling procedure introduced in Section

4.1, two main reasons may occur:

– Non-situation related: Information items contained

in the message m violate the SUC’s intensional

knowledge (I1), or the message m is missing for-

mal semantic specifications of contained information

items (I4).

– Situation related: Based on the actual situation of

the SUC, in which it processes the received message,

the contained information items in message m are

either situationally inconsistent (I2) or situationally

incomplete (I3).

For simplifying the definition of the four different

instance level uncertainties, we facilitate the subsequent

definitions: From the SUC’s point of view, a message

m contains a set of information items Im, containing

atomic ij (see eq. (1)). The information items that are

required by the SUC in an actual situation for executing

own functionalities are denoted by irj (see eq. (3)). Each

information item ij or irj includes a defined reference

to a type (i.e. the T-Box element), see eq. (2) and (4)

respectively:

ij ∈ Im = (vj , relj); with 0 ≤ j ≤ J (1)

relj 7→ xk(txOSUC
, dxOSUC

) (2)

irj ∈ Ireq = (vrj , relrj); with 0 ≤ rj ≤ RJ (3)

relrj 7→ xk(txOSUC
, dxOSUC

) (4)

Figure 3 summarizes the subsequently defined four

cases of instance level uncertainties.

Fig. 3 Instance level uncertainty example

I1, semantically inconsistent information: The mes-

sage m contains at least one information item ij =

(vj , relj), where the value vj violates the known formal

semantic definition of relj 7→ xk. This is independent of

the actual situation that the SUC is embedded in. In

this case, the message m is not well understood, due to

information specified inconsistently with respect to to

the intensional knowledge of the SUC.

I2, situationally incomplete information: The mes-

sage m contains a set of information items Im, and

the SUC requires a set of information items Ireq to be

contained in m. The number of information items only

partially meet the required information of the SUC, i.e.

Im ⊂ Ireq, while the required set Ireq depends on the ac-

tual situation that the SUC is embedded in. The message
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m is well understood but misses necessary information

expected in a certain situation.

I3, situationally inconsistent information: The mes-

sage m contains a set of information items Im, and the

SUC requires a set of information items to be contained

in the message Ireq. The information items of the set

Im and their specification are situationally inconsistent

to the set of required information items Ireq, so that

for at least one information item ij ∈ Im the following

statement holds true: (vj 6= vrj) ∧ (relj 6= relrj). Since

the required set Ireq depends on the actual situation

that the SUC is embedded in, this instance level un-

certainty is situation dependent. The message m is not

well understood, due to situational inconsistency.

I4, missing type membership: The message m con-

tains a set of information items Im, and the SUC is not

able to process at least one information item ij ∈ Im,

because the information item has no type relation:
ij = (vj , relj = ∅). While this is independent of ac-

tual situation in which it occurs, the message m is not

well understood, due to incomplete specification of the

information item’s type relation.

4.4 Epistemic Uncertainty Classification Scheme for

Runtime Information Exchange

Table 1 shows the structure of the epistemic uncertainty

classification scheme for runtime information exchange

(EURECA), which is subsequently described. EURECA

is a two-dimensional schema. The first column contains

all ontologies Ok that are relevant for information ex-

change with context objects during runtime of the SUC.
The second column contains all concepts cl, relations

rm and attributes an of each Ok, which are subject to

epistemic uncertainties at runtime. The next columns

contain the type and instance level uncertainties defined

in Sections 4.2 and 4.3. Each cell crossing a type or

instance level uncertainty with concepts cl, relations rm
and attributes an of Ok can be used to document an

epistemic uncertainty that may occur during runtime

and that has to be mitigated during the engineering.

To apply EURECA, the following prerequisites have to

hold:

– The ontologies Ok (e.g. goal or context ontologies)

that are used for runtime information exchange are

available and known.

– The use case scenarios that specify behavioral re-

quirements of the SUC are available and known in

order to elicit relevant crossings of type and instance

level uncertainties with concepts cl, relations rm and

attributes an of Ok.

Table 1 Epistemic uncertainty classification scheme for run-
time information exchange

With respect to the above mentioned prerequisites,

EURECA is intended to be applied during Requirements

Engineering, as soon as use case scenarios or other kinds

of behavioral requirements have been specified, which

indicate the required information to be exchanged during

runtime by SUC and COs. Please refer to [40] for a

comprehensive description on behavioral requirements

and their documentation with message sequence charts.
Furthermore, please refer to [41] for a description on

how to develop the ontologies mentioned in the first

prerequisite.

5 Classified (Epistemic) Uncertainties in

Exemplary Use Case Scenarios

This Section provides an exemplary application of the

classification scheme (EURECA) which has been intro-

duced in Section 4.4. For this, different scenarios from

vehicle platooning use case are considered (Section 3.2).

In our example, we illustrate a vehicle platoon driv-

ing on a highway. As our focus is on epistemic uncer-

tainties, the information exchange between the vehicles

is considered. In particular, we focus on the joining

maneuver (Section 3.2): A vehicle on the highway, not

part of a platoon yet, would like to join the platoon

under consideration and approaches it. As most of the

important decisions are managed by a platoon leader,

it is considered as SUC in all successive scenarios, and

the joining vehicle is considered to be the CO for the

SUC. The SUC is considered to be powered by internal

combustion (IC) engine and the (potentially) joining

vehicle being powered by electric motor. This gives rise

to a wide range of potential uncertainties, as the infor-

mation exchanged for joining a platoon contain vehicle

specifications, which may significantly differ for each

engine type.

The common outset to all subsequent scenarios is

that the CO has to request the platoon leader to join

the platoon. Hereby, SUC and CO exchange messages

to establish a CSG. Despite the fact that there will be

various information being exchanged, our focus for the

subsequent scenarios is limited to the information ex-



10 Constantin Hildebrandt et al.

Table 2 EURECA scheme for the application scenario of
vehicle platooning. TLU = type level uncertainty, ILU =
instance level uncertainty

change pertaining to goal specification. To negotiate the

goals, and coordinate the joining procedure, the SUC

demands the CO to share some relevant goal specifica-

tions, like its ”desired fuel consumption”. As our focus is

on information exchange (i.e. the payload of a protocol),

we avoid technical details of the specific communication

protocol, which are related to, e.g. how messages are

structured, or how required fields and type descriptions
of a message can be identified by individual vehicles.

Table 2 gives an overview of the different concepts,

relations, and attributes relevant to the platooning sce-

nario used for illustration. The table also illustrates the

use of EURECA for guiding uncertainty identification

during Requirements Engineering: Each cell referencing

a scenario (S1-S7) indicates a relevant uncertainty iden-

tified during requirements elicitation, which somehow

manifests in a certain concept, relation, or attribute

considered in the development of a software-intensive

system that processes information exchanged in a pla-

toon (such as a CACC, see Section 3.2). For each filled

cell we provide a description of an exemplary scenario

(S1-S7), in which the respective uncertainty may occur,

in the following subsections. We expect the modelling

of each scenario to be done, for instance, in a message

sequence chart (MSC) indicating the information ex-

change between SUC and CO. Due to space restrictions,

we do not show the MSCs depicting each scenario sub-

sequently.

5.1 Scenarios Illustrating Type Level Uncertainties

T1, known difference in scope: In this scenario (S1), the

platoon leader (SUC) receives a message m specified

using a known concept c1 with a known relation r4 to

an unknown concept cu.

xk = c1 = (tc1 = “MinimizeEnergyConsumption”,

dc1 = s(tc1))

rk = r4 = (tr4 = “SupportingGoal”, dr4 = [c1]× [cu])

cu = (tcu = “IncreaseDownhillRecuperation”,

dcu = s(tcu))

Where the definitions dxz of concepts are defined by

a function s that assigns certain semantics to the term

txz
respectively. We do not elaborate in detail on the

function s as it depends on the language (e.g. based on

temporal logics) chosen to formally represent goals.

SUC and CO have a shared goal (expressed by the

concept c1, i.e. reducing their energy consumption),

but the CO has an additional goal cu related to c1
by r4. The term tcu is specific for the electric vehicle

as it describes its goal concept to increase downhill

recuperation through its electrical engine. Hence, the
SUC cannot interpret message m due to a difference in

scope, which is, however, known because there exists a

known relation r4 shared by SUC and CO.

T2, unknown difference in scope: In the case of an

unknown difference in scope, let us consider the scenario

S2, where the SUC knows the goal c4 to arrive at the

destination of travel in an optimal state so that further

trips are possible:

xk = c4 = (tc4 = “OptimalVehicleStateAtDestination”,

dc4 = s(tc4))

Both SUC and CO prefer having some energy left in

the vehicle (either fuel or electric power) after reaching

the destination. However, the CO provides some further

information item containing a specification of a desired

state of charge (au) with some relation ru, according to

the following definitions that are unknown to the SUC:

ru = (tru = “HasStateOfCharge”, dru = [c4]× [au])

au = (tau
= “StateOfCharge”, dau

= [0, 1])

As a consequence, messages that contain informa-

tion items using these definitions cannot be interpreted

because the IC engine powered vehicles ontology only

refers to a certain amount of fuel left instead of a battery

charge level.

T3, distinct scope: To illustrate a completely distinct

scope of two ontologies, let us assume a scenario S3 in

which the SUC has the goal to reach the next fuel station

c5 along the planned route that has to be negotiated

with the CO. From the CO, however, the SUC receives

a message specified according to an unknown concept
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c3 with an unknown relation r3 and unknown attribute

a3, which are specific for electric vehicles:

cu = (tcu = “ReachNextChargingStation”, dcu = s(tcu))

ru = (tru = “HasRechargeP lugType′′, dru = [cu]× [au])

au = (tau = “PlugType”, dau = {“IEC 62196-2 Type 1”,

“IEC 62196-2 Type 2”, “IEC 62196-2 Type 3”})

Both, SUC and CO want to reach their next refuel

/ recharge station. However, each of them has different

and distinctly defined concepts, relations and associated

attributes, resulting in not understanding each other. In

particular, the CO specifies the goal to reach the next

charging station, with different relevant attributes such

as the required charging plug type.

T4, Inconsistent ontological commitments: To illus-

trate the case T4, we consider a scenario S4, which is

concerned with exchange of messages containing infor-

mation items that the SUC and the CO can understand

according to their ontologies. The SUC receives a mes-

sage including an information item referencing c1 (see
above) with a known relation r2 and known attribute

a1, which can be mapped to the SUCs ontology OSUC :

rk = r2 = (tr2 = “HasMaxConsumption”,

dr2 = [c1]× [a1])

xk = a1 = (ta1
= “MaxEnergyConsumption”,

da1
= float: [liters/100km; max. 100, min.2])

However, the ontology of the CO differs in the sense that

it includes another, differing definition of the attribute

a1 due to the fact that electric vehicles define their

energy consumption in a different unit (kWh/km):

xIOC = a1 = (ta1
= “MaxEnergyConsumption”,

da1
= float: [kWh/km; max. 70, min. 5])

Both attribute definitions involve numeric real val-

ues in certain intervals, (using “float” as data type),

but their semantics and logical implication is different,

resulting in misinterpretation and thereby uncertainty.

5.2 Scenarios Depicting Instance Level Uncertainties

I1, semantically inconsistent information: In order to

illustrate the case that uncertainties may occur due

to semantically inconsistent information, we consider

a scenario S5 in which the SUC demands a refinement

of the goal c1 by means of an attribute a1 containing

a concrete floating point number value of the vehicle’s

maximum desired fuel consumption:

c1 = (tc1 = “MinimizeEnergyConsumption”, dc1 = s(tc1))

r2 = (tr2 = “hasMaxConsumption”, dr2 = [c1]× [a1])

a8 = (ta8
= “MaxFuelConsumption”,

da8
= float: [liters/100km])

However, the CO is only is able to specify the max-

imum power consumption a6, which is also known to

the SUC but used to specify different concepts than

c1, e.g. related to the vehicle’s battery or power outlet.

Nevertheless, the CO sends a message m containing an

information item i1 that specifies a6 as a refinement of

c1 to the platoon.

a6 = (ta6 = “MaxPowerConsumption”,

da6
= float: [kW ])

i1 = (v1 = (c1, a6), rel1 = r2)

The message i1 sent by the CO contains a reference

to the relation r2 (using rel1, see Section 4.1), which,

however, is inconsistent w.r.t. the semantic definition

of r1 according to the ontology OSUC of the platoon

leader, since the target of the relation r2 is defined to

be the attribute a1 only.

I2, situationally incomplete information: The case

I2 can be illustrated using the scenario S5 (see above)

as well. In this case however, instead of using a relation

inconsistent to its type definition, the CO simply does

not provide the information item that is needed for the

SUC to evaluate whether joining is granted or not. This
may be due to the reason, that the CO is unable to

specify a maximum desired fuel consumption because

of its different engine properties. Thus, an attribute
that is required to be conveyed in the message m, i.e.,

i2 = (v2, rel2 = a8) ∈ Ireq, is not received by the SUC,

and neither is the relation r2.

I3, situationally inconsistent information: Consider-

ing a scenario S6 in which the CO has successfully joined

the platoon, the SUC may periodically (e.g. once every

60 seconds) request each following vehicle to report their

status, including, e.g. their current destination of travel,

or the estimated remaining driving range, in order to

monitor the platoon stability, and to identify potential

refueling stations, if necessary.

The CO’s first report m1 contained a remaining

driving distance of 120 km, as specified by:

i3 = (v3 = 120, rel3 = a2)

a2 = (ta2
= “DistanceRemaining”, da2

= float: [km])

Afterwards, the platoon has to brake several times. As

electric vehicles recharge their battery while braking,

the CO is able to actually increase the remaining driving
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distance, while the IC engine vehicle had a decreasing

remaining driving distance. Hence, the CO’s next re-

port m2 contains a slightly increased driving range left

i4 = (v4 = 123, relj = a2). The SUC, however, uses

an ontology OSUC for IC vehicles, and thus requires

each vehicle to report a decreased driving range as time

proceeds. Hence, based on m1 the SUC expected a value

v4 ≤ 123 to be contained in m2.

I4, missing type membership: In the last scenario

S7, coordination messages are exchanged between the

SUC and the following vehicles during operation. Due to

communication failure or bad logic on the CO’s side in

general, messages might be corrupted during information

exchange. One such corrupted message m could contain

an information item i5 that does not contain a relation

to a type description rel5. For instance, consider the

following information item received by the SUC:

i5 = (v5 = 5231’33.7”N 1318’50.9”E, rel5 = ∅)

Because rel5 is missing, the SUC is not able to inter-

pret the value v5 correctly. The SUC could infer from

the string format that it is a geographical coordinate,

but the semantics to interpret the value is not known.

It could be the destination of travel, but also, e.g. the

coordinates of the closest refueling or recharging station

on the route.

6 Conclusion and Outlook

Collaborative Embedded Systems (CES) collaborate in

order to achieve common goals during runtime, where

they form groups of Collaborative Systems (CSG). These

kinds of interactions require an exchange of informa-

tion at runtime, since, for instance, commonalities on

goals have to be negotiated. Due to fact, that either

knowledge or situations can be very heterogeneous for

these kinds of systems, several epistemic uncertainties

can occur during runtime. In order to consider these

uncertainties that can occur during runtime, we defined

general sources of uncertainties located in information

exchange and introduced a two dimensional classifica-

tion schema (EURECA), which can be applied during

Requirements Engineering for identifying such uncer-

tainties. We used examples from the autonomous driving

domain to illustrate the schema. The authors intention

is, that EURECA is not limited to this domain only due

to its general structure that only requires the ontologies

used for the specification of information exchange and

a specification of behavioral requirements of the SUC

as a prerequisite. It could for instance be used in safety

analysis to identify possible failures at an early stage

and corresponding counter measures can be incorpo-

rated to avoid safety critical scenarios. However, the

actual application of the scheme to other domains and

the detailed evaluation of this application is up to future

work of the authors, which is twofold.

First, we will be concerned with building industry

applicable ontologies (e.g. goal ontologies) for the specifi-

cation of exchanged information in different domains (i.e.

autonomous driving, distributed energy resources, adapt-

able and flexible factories) and apply the scheme for

these ontologies to further evaluate it. Based on this, we

will extend the intended application of EURECA from

the requirements phase to the design and runtime phase

(e.g. models at runtime). Hereby, a developer should

be enabled to implement uncertainty awareness or even
(semi) automatic uncertainty mitigation to CESs.
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