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Compressing Two-Dimensional Routing Tables!
Subhash Suri,> Tuomas Sandholm,? and Priyank Warkhede*

Abstract. We consider an algorithmic problem that arises in the context of routing tables used by Internet
routers. The Internet addressing scheme is hierarchical, where a group of hosts are identified by a prefix that is
common to all the hosts in that group. Each host machine has a unique 32-bit address. Thus, all traffic between
a source group s and a destination group d can be routed along a particular route ¢ by maintaining a routing
entry (s, d, ¢) at all intermediate routers, where s and d are binary bit strings. Many different routing tables
can achieve the same routing behavior. In this paper we show how to compute the most compact routing table.
In particular, we consider the following optimization problem: given a routing table D with N entries of the
form (s, d, c¢), determine a conflict-free routing table with fewest entries that has the same routing behavior as
D. If the source and destination fields have up to w bits, and there are at most K different route values, then
our algorithm runs in worst-case time O (NK w?).
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1. Introduction. We consider an algorithmic problem that arises in the context of
routing tables used by Internet routers. In the Internet address scheme, each subnetwork
is assigned a network address, and each host in that network uses the network address
as its prefix. (In Internet Protocol version 4, each host address is 32 bits; the network
address is between 8 and 32 bits long. In IP version 6, the hosts will be assigned 128 bit
long addresses.) For the sake of generality, we assume that each host address is w bits
long. Taking a geometric view, a network address prefix corresponds to a contiguous
interval of the discrete line [0, 2* — 1]. The routers in the current Internet route packets
based only on the destination address of the packet. Thus, each router maintains a routing
table, containing a set of network address prefixes; associated with each prefix is a “next
hop” label, which is the router to which the packet is forwarded. For instance, an entry
(10100, A) says that a packet whose destination address starts with 10100 should be
forwarded to router A; the router A will forward the packet closer to the packet’s ultimate
destination. (The symbol “x” is the wild card character.)

Destination-based routing has its limitations, especially in delivering quality of ser-
vice. One suggested remedy is to base the routing decision on additional fields in the
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packet header. One of the most important field is the source host. For instance, this would
permit selective routing to provide a high bandwidth connection between two different
sites of a company. Such refined forwarding is part of the next generation Internet design,
and falls within the broader scope of layer four packet classification, where packets are
routed using arbitrary fields of the packet header [1], [9], [10], [12], [15], [16], [17].
Routers capable of packet classification can implement many advanced services, such
as firewall access control, Virtual Private Networks, and quality of service routing.

In this paper we focus on a particular problem that arises in the context of using two-
dimensional routing tables—many different routing tables can achieve the same routing
behavior, and we want to determine the one with the smallest number of routing entries.
The problem turns out to be geometric in nature, because a two-dimensional routing
table corresponds to a set of rectangles.

1.1. Two-Dimensional Routing Tables. ~We are concerned with routing tables that spec-
ify routing behavior on tuples. We use the source and destination fields in our examples,
although our ideas apply to any two prefix fields in Internet protocol networks.

We call a pair (src, dest) afilter, where src and dest are bit strings of maximum length
w. (In the Internet context, these are network address prefixes.) A two-dimensional
routing entry is a tuple ((src, dest), action), where action is the routing action associated
with the filter (src, dest). The routing action typically is the address of the next hop router
to which the packet should be sent, but its exact semantics is irrelevant to our abstract
framework; in some applications, the action could also take the form of “do not forward
the packet” which is useful for access control: a service provider, or network manager,
may not permit certain filters to pass through its network [3], [4].

We say that a filter (src, dest) matches a packet P if src is a prefix of the packet’s
source address, and dest is a prefix of the packet’s destination address. (In other words,
the packet originates from the network src and is destined for network dest.) As an
example, a packet with header (0011, 1100) matches the filter (00x, 1x), but not the
filter (00%, 10x). Let D denote a table of N two-dimensional routing entries. Given
packet header P, it is possible that more than one filter entries of D match P, in which
case we define the best matching filter, as follows. Suppose two filters, F| and F,, match
P. We say that F) is a better match than F; if each field of P has an equal or longer match
with F) than F;. The best matching filter of P is the filter that is a better match than any
other matching filter in D. For instance, if we consider a packet header (0011, 1100), and
two filter entries ;7 = (001%, 110%) and F, = (00, 1x), then Fj is the best matching
filter for the packet.

In order for the best matching filter to be unambiguous, the filter entries must be
consistent (or, in networking parlance, conflict-free); that is, there cannot be two filter
entries that partially overlap in the filter address space. (See Figure 1 for illustration.)
In other words, the rectangles corresponding to these filters are either disjoint or nested.
We say that a routing table D is consistent if for any two filter entries F; and F; either
F; and F; are disjoint, or one is a subset of the other.

3 Because the primary motivation for filter-based routing is to classify packets uniquely, we are interested only
in consistent routing tables. A related work [1] shows how to transform a set of possibly inconsistent classifiers
into consistent ones, by adding additional entries.
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1.2. Our Contribution. In a consistent routing table, each packet header has a unique
best matching filter. We say that two filter tables are equivalent if each possible packet
header receives the same routing action in both tables (using the best matching filter
rule). We can define the routing table compression problem as follows: given a routing
table D, compute another table D’ that is equivalent to D and has the smallest possible
number of filter entries. As an example, consider a filter table with the following four
entries: ((00%, 10x), A), ((00x%, 11x), A), ((01%, 10%), A), ((01x%, 11x), B).The small-
est equivalent table for this example has two entries: ((0x, 1x), A), (01, 11x), B).
(Figure 2 shows another example.)

Our main result is a fast algorithm for determining the optimal compression. If the
input table has N filter entries, and K distinct routing actions, and each field (source or
destination) has at most w bits, then our algorithms runs in worst-case time O (NKw?).

1.3. Previous Work. Much work has been done in the networking community on con-
gestion control and end-to-end delay bounds assuming that routers maintain filter infor-
mation [7], [8]. However, we have not seen any algorithmic work on optimizing filter
tables. Our filter compression problem bears some resemblance to the following image
compression problem, which is NP-complete [11]: given an n x n array of 0’s and 1’s
and an integer K, is there a set of K rectangles that precisely cover all the 1°s? In filter
compression, however, the rectangles of different colors can nest. The filter compression
problem with inconsistent filters, where one uses priority to define best matching filter,
is open, and we conjecture that it is NP-complete. In this paper we exploit the geometric
structure of consistent filters to develop an efficient dynamic programming algorithm.

The one-dimensional version of our algorithm solves the problem when filters are
defined simply by destination-address prefixes. This turns out to be the prefix table com-
pression problem, which, as we recently learned, was solved independently by Daves
et al. [6], preceding our work by a few months. The main focus and result of their
work is prefix compaction, while our main motivation and contribution is filter com-
pression, which is a two-dimensional problem. We do not believe that the algorithm
in [6] generalizes to filter compression, and we think our geometric interpretation and
resulting dynamic programming are central to solving the filter problem. We describe
the one-dimensional version of our dynamic program in Section 3 primarily to lay the
groundwork for the two-dimensional filter compression problem.

1.4. Organization. Our paper is organized as follows. In Section 2 we formulate the
filter compression problem as a geometric compression problem. In Section 3 we develop
our main ideas by describing our algorithm in one dimension. In Section 4 we present our
main result: the filter compression algorithm. In Section 5 we present some extensions
and experimental results. Finally, we conclude in Section 6.

2. Filter as Rectangles. We interpret each filter entry as a geometric rectangle in
the two-dimensional IP address space—the two axes are the source and the destination
addresses. Since each address uses w bits, the domain is the integer line [0, 2" — 1]
along each axis. The source and destination fields are network address prefixes, and
each such prefix encodes a contiguous range of addresses. For instance, the prefix 101x
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Fig. 1. (a) An example showing five consistent rectangles. The number at the top-right corner of each rectangle
gives its color (action). A point that lies in both rectangles 1 and 3 receives the color 3, corresponding to
the more specific match. A point lying in rectangle 4 gets the color 4. (b) An example of two inconsistent
rectangles.

corresponds to the closed interval [1010---0, 1011 ---1]. The prefix ranges have the
property that either two ranges are disjoint, or one contains the other. The range of s,
contains the range of s, precisely when s, is a prefix of s,. For instance, the range of 10x
is a superset of the range of 10110x, but the ranges of 1010% and 110x are disjoint. A
packet header has fully specified source and destination addresses, and thus corresponds
to a point in the two-dimensional space.

A filter (s, d) corresponds to the rectangle whose projections are the ranges of s
and d in their respective dimensions. We denote this rectangle by R(s, d)—the points of
R(s, d) are precisely the packet headers that match the filter (s, d). To emphasize that we
are dealing with special rectangles, we use the term prefix rectangle. A prefix rectangle
is a cross product of two prefix ranges. We say that two prefix rectangles are consistent
if they are either disjoint or nested. The filter table D is consistent if every pair of its
entries is consistent. Figure 1 shows examples of consistent and inconsistent rectangles.

Consider a routing table D with N filter entries. These filters map to N prefix rectan-
gles in the two-dimensional space [0, 2* — 1] x [0, 2¥ — 1]. We let each distinct action,
associated with our filters, be represented by a color, where colors are integers numbered
from one to K. Thus, we can think of a filter tuple ((s, d), action;) as a prefix rectangle
with color i. Since each packet must be classified into some filter, we assume, without
loss of generality, that the prefix rectangles of D completely cover the two-dimensional
space [0, 2% — 1] x [0, 2¥ — 1]. The filter classification induced by D is the mapping
from packet headers (points) to the set of colors. Using the best matching filter rule, each
packet header receives a unique color: the color assigned to a point is the color of the
smallest (most specific) rectangle containing the point. (Refer to Figure 1.)

We can now formulate the filter compression problem. Given N prefix rectangles with
colors in {1, 2, ..., K}, determine the smallest set of consistent prefix rectangles and
their colors that induce the same coloring as the input set. Figure 2 shows an example.
We begin by considering the problem in one dimension to help us develop the main idea
for our algorithm.
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Fig. 2. An example of filter compression. (i) An input with eight rectangles, and (ii) an optimal solution using
five consistent, prefix rectangles.

3. Compressionin One Dimension. Considerasetof N prefixesD = {sy, 52, ..., Su},
where each s; is a binary bit string of length at most w, and the ith string is assigned
color ¢;, with ¢; € {1,2,..., K}. Each string s; corresponds to a contiguous interval
on the line [0, 2% — 1], which we call the prefix range of s;, and denote by R(s;). The
set of N prefix ranges partitions the line [0, 2% — 1] into at most 2N — 1 “elementary
intervals,” where each elementary interval is the interval between two consecutive range
endpoints. Assign to each elementary interval the color of the smallest range containing
that interval. Under this coloring rule, the prefix set D is a mapping from the points of
the line [0, 2¥ — 1] to the color set {1, 2, ..., K}. Given a point P, we let D(P) denote
the color assigned to P by the set D. Figure 3 shows an example, where a set of prefixes
partition the line into six elementary intervals. The colors assigned to these intervals, in
left to right order, are 2, 1, 2, 3, 2, 3. (Our problem can also be formulated in the setting
of a balanced binary tree of depth w: each address is a leaf, and a prefix is a internal
node. In two dimensions the problem deals with a product of two binary trees, one for
each dimension. We have chosen the geometric language of intervals and rectangles,
however, because we find it more intuitive.)

We say that two prefix sets D and D’ are equivalent if they induce the same coloring
on the line [0, 2% — 1]. That is, D(P) = D’'(P), for all P € [0, 2" — 1]. The one-
dimensional prefix compression problem can be formulated as follows: given a set of
prefixes D, find the smallest prefix set D’ that is equivalent to D. Figure 3(ii) shows the
optimal solution for the example in (i); the number next to each prefix range is its color.

Our algorithm uses dynamic programming to compute the optimal set D’. We divide
a prefix range into halves, and then try to combine their optimal solutions. One diffi-
culty with this obvious approach is that the combined cost may depend on the actual
subproblem solutions. Consider, for instance, the case where we have four equal-length
elementary intervals colored 1, 2, 3, 1. The left half subproblem has an optimal solution

2 23 2 _r s _ 3

1 3 2
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Fig. 3. An example of compression in one dimension. (i) An input with six prefix ranges, and (ii) an optimal
solution using four prefix ranges.
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{1, 2}; the right half subproblem has an optimal solution {3, 1}. However, adding them
together does not give the optimal solution. (The optimal solution consists of only three
prefixes, one each of colors 2, 3, and one with color 1 corresponding to the entire range.)
With this motivation, we introduce the concept of a background prefix.

Consider a prefix s, and its range R(s) € [0, 2¥ — 1]. Suppose we just want to solve
the coloring subproblem for the range R(s). We say that a solution G for R(s) contains
a background prefix if s € G; that is, one of the prefix ranges in G is the whole interval
R(s). The background color of G is the color of the background prefix. Figure 3(ii)
shows an example that has a background prefix with color 2, while the set of prefixes in
Figure 3(i) does not contain a background prefix. Our dynamic programming algorithm
uses the key observation that it is sufficient to consider solutions in which background
colors are well-defined.

LEMMA 3.1.  Every solution of the prefix compression problem in the range R(s) can
be modified into a solution of equal cost with a background prefix.

PROOF. Consider a solution without a background prefix. Pick a prefix p in this solution
such that the range R(p) is not contained in any other prefix’s range. Replace p by s,

and give it p’s color. |
3.1. The Dynamic Programming Algorithm. We are given a set D = {s, 52, ..., Sy}
of N prefixes, where each s; is a binary bit string of maximum length w, and the ith
string is assigned color ¢;, with ¢; € {1, 2, ..., K}. Consider the coloring induced by D

on the line [0, 2% — 1]: a point has the color of the smallest prefix range in which it lies.
(Note that the fewer the bits in a prefix s;, the longer the corresponding range R(s;) is.
The null string * corresponds to the whole range [0, 2 — 1], while a full w-bit string
maps to a point.) We start by building a partition of [0, 2* — 1] in which each piece
is monochromatic and each interval has length a binary power. That is, we recursively
divide the line [0, 2" — 1] into halves until each piece is monochromatic. Because D
has N prefixes, and each prefix has at most w bits, our final subdivision has size at
most wN.

Let pi, p2,..., pu, where M < wN, denote the prefixes that correspond to the
monochromatic intervals in the final subdivision. We call the R(p;)’s monochromatic
binary intervals. These intervals are the basic subproblems for our dynamic program’s
initialization. Given an arbitrary prefix range R(s) € [0, 2" — 1], and a color ¢ €
{1,2,..., K}, we define

cost(s, ¢) = size of a minimal prefix set for R(s) with background color c.

We initialize this cost function for the monochromatic binary intervals R(p;) as
follows. Let ¢; be the color of the interval R(p;)—that is, ¢; is the color induced on
R(p;) by the input prefix set D. Then, for each prefix p;, i = 1,2,..., M, we set
cost(pi,c;) = 1 and cost(p;,c) = oo for all ¢ # c;. The following lemma gives
the general formula for this cost function. Given a prefix s, we use s0 and s1 to denote
strings obtained by appending to s a 0 and a 1, respectively.
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LEMMA 3.2.  For any prefix s and any color c,

cost(s, ¢) = min(cost(s0, cy) + cost(s1,c1) + 1 —[c = ¢yl — [c = c1]),
€0,C1

where [x = y] evaluates to 1 if the predicate inside the brackets is true, and 0 otherwise.

PROOF. Consider each of the four cases, depending on the outcome of predicates
[c = co] and [¢ = c1]. If the background colors for the two subproblems are the
same as ¢ (¢ = ¢y = c1), then we can remove one of those prefixes from the combined
solution. If the background colors are different (cy # c1), but one of them, say cy, is the
same as ¢, then we extend the prefix corresponding to ¢y to be the background prefix
of the whole problem; if neither background color is the same as ¢, we introduce a new
prefix corresponding to s and color it c. The optimal solution for (s, ¢) is obtained by
picking the combination that gives the smallest number of prefixes. This completes the
proof. O

If the input D has N prefixes, the number of colors is K, and the prefixes are w
bits long, then the dynamic program based on Lemma 3.2 takes O (NKw) time and
space. When we implemented our algorithm, we found that the worst-case memory
requirement for this algorithm was infeasibly large to be of practical value. For instance,
for the practical values of interest N = 50,000, w = 32, and K = 256, the dynamic
program needs to construct a table of size 4 x 10%. Even assuming that each entry takes
just 1 word of memory, the worst-case memory requirement for this algorithm is 3200
MB of memory! This motivated us to look for an improved algorithm, which we describe
in the next section. Not only does the new algorithm require significantly less memory
in practice, but it is also simpler and faster in practice.

3.2. AnlImproved Dynamic Program. Intuitively, maintaining K distinct solutions, one
for each background color, for every subproblem seems like an overkill. (If we were only
interested in the value of the solution, then we could of course choose not to store the
intermediate solutions. However, they are needed for constructing the optimal prefix set.)
Yet, as we saw earlier, keeping just one optimal solution does not work. However, we
show below that storing just the background colors that give the smallest cost for each
subproblem suffices. Given a prefix s, define cost(s) = min, cost(s, c). We define L(s)
to be the list of background colors that give the minimum cost solutions for R(s):

L(s) = {c | cost(s, c;) = cost(s)}.

Again, we initialize these lists for the monochromatic binary intervals by setting
L(p) = {c(p)}. The following lemma shows how to compute these lists in a bottom-
up merge. (Recall that sO and s1 are prefixes obtained by appending 0 and 1 to the
prefix s.)

LEMMA 3.3. Suppose s is an arbitrary prefix. Then,

L(s0) N L(s1) if L(s0) N L(s1) #0,

£(s) = L(s0) U L(s1) otherwise.
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PROOF. We first consider the case L(s0)NL(s1) # @. Since all colors in the intersection
set L(s0) N L(s1) are equivalent, it would suffice to show that cost(s, ¢) < cost(s, )
whenever ¢ € L(s0) N L(s1) and ¢ € L(s0) N L(s1). It is easy to see that

cost(s, ¢) = cost(s0, ¢) + cost(s1,c) — 1.

(That is, the minimum is achieved by the first term in the expression of Lemma 3.2.)
Assume, without loss of generality, that ¢ ¢ £(s0). Then we must have cost(s0, ¢) >
1 + cost(s0, ¢), and cost(s1,c) > cost(sl,c); if ¢ € L(s1), the second inequality is
strict. Now, it is easy to check that

cost(s0, ¢) + cost(sl,c) — 1,

cost(s, ) = min _
cost(s0, ¢) + cost(s1, ¢).
Since cost(s0,c) > 1 + cost(s0, ¢), and cost(s1,c) > cost(sl, c), it follows that
cost(s, ¢) > cost(s0, ¢) + cost(s1, ¢c) > cost(s, ¢), which proves the claim.
Next, consider the case L£(s0) N L(s1) = @. In this case we show that cost(s, ¢) <
cost(s, ¢) wheneverc € L(s0)UL(s1)and¢ & L(s0)UL(s1). We assume thatc € L(s0),
and thus ¢ € L(s1). Then

cost(s, ¢) = cost(s0, ¢) + cost(s1, ¢,

forany ¢’ € L(s1). Now, since ¢ & L(s0)UL(s1), we have cost(s0, ¢) > 14cost(s0, c),
and cost(s1,c¢) > 1+ cost(s1, ¢"). Since

cost(s0, ¢) + cost(s1,c) — 1,
cost(s,¢) = min { cost(s0, ¢) + cost(s1, ¢’),
cost(s0, c) + cost(s1, ¢),

it follows that cost(s, ¢) > 1 + cost(s0, ¢) + cost(s1, ¢') > cost(s, c), which completes
the proof. |

Lemma 3.3 gives a straightforward dynamic programming algorithm. Starting from
the initial color lists of the monochromatic binary intervals, the algorithm computes the
lists for increasing longer prefix ranges. When computing the list for prefix s, we set
L(s) = L(s0) N L(s1) if L(s0) N L(s1) # @; otherwise L(s) = L(s0) U L(s1). Once
all the lists have been computed, we can determine an optimal color assignment by a
top-down traversal, as follows.

We initialize the output list to root prefix s, and give it the background color ¢, for
any ¢ € L(s). By construction, one or both of £(s0) and L(s1) contain c. If c € L(s0)
but ¢ ¢ L(s1), then add to the output list prefix s1 with any color ¢’ € L(s1). Recurse
on L(s0) with background color ¢, and L(s1) with background color ¢’. Similarly, if
¢ € L(s1) but ¢ ¢ L(s0), add a new prefix sO with any color ¢’ € L(s0), and recurse
on L(s0) with background color ¢’ and L(s1) with background color c¢. Otherwise
c € L(s0) N L(s1), and we recurse on both £(s0) and L(s1) with background color c.

The worst-case time and space complexity of the entire algorithm is O (NKw), since
there are O(Nw) subproblems, and the size of a color list is at most K. Thus, from
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a worst-case point of view, the dynamic program based on Lemma 3.3 is not much
better than that of Lemma 3.2. However, in practice we found that the list sizes were
much smaller than the total number of colors, and thus the memory requirement was
substantially improved. See our experimental results in Section 5. We next describe our
main result: the dynamic programming algorithm for filter compression.

4. Optimal Filter Compression. Consider a consistent set D of N filters. Each filter
(s, d) corresponds to a rectangle R(s, d) in the two-dimensional space [0, 2" — 1] x
[0, 2% — 1]. The color of R(s,d) is the color (action) associated with filter (s, d).
Using the best matching filter rule, the set D gives a mapping from the set of points
[0, 2% — 1] x [0, 2% — 1] to the set of colors. Let D(P) denote the color assigned to
point P by D. Geometrically, D(P) is the color of the smallest rectangle containing P.
(We assume that the set of rectangles cover the domain [0, 2% — 1] x [0, 2% — 1]. This
can be enforced by adding a default filter.) Our goal is to find the smallest consistent set
of filters D’ that realizes the same coloring map as D; that is, D(P) = D’'(P) for all
points P. Our algorithm generalizes the dynamic program of the preceding section.

We start with the observation that any solution can be modified to contain a background
filter. We say that a solution D for the rectangle R(s, d) contains the background filter if
(s, d) € D.Thebackground color of D is the color assigned to the filter (s, d). Figure 2(ii)
shows an example that has a background filter of color 1; the set of filters in Figure 2(i)
does not contain a background filter. The following generalizes the background prefix
lemma.

LEMMA 4.1.  Every solution of the filter compression problem in a prefix rectangle
R(s, d) can be modified into a solution of equal cost with a background filter.

PROOF. The proof is identical to the proof of Lemma 3.1. Consider a solution without
a background filter. We pick a rectangle r in this solution that is not contained in any
other rectangle. Replace » by the background rectangle R(s, d), and give it r’s color. It
is easy to check that this modification does not alter the routing table’s behavior. O

Given a prefix rectangle R(s, d), and a color ¢ € {1, 2, ..., K}, define
cost(s, d, c) = size of a minimal filter set for R (s, d) with background color c.
The following lemma gives the general formula for this cost function. (Recall that
we use the notation x0 (resp. x1) to denote the bit string x with O (resp. 1) appended.)
Before we state and prove this lemma, we need one more definition. We say that a prefix

rectangle R’ = (s, d") spans R(s, d) along the s-axis (resp. d-axis) if s = s’ and d is a
prefix of d’ (resp. d = d’ and s is a prefix of s"). Figure 4 illustrates this definition.

LEMMA 4.2. For any rectangle R(s, d) and any color c,

cost(s, d, c) = min{cost, (s, d, c), costy(s,d, c)},
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dl

do

S

Fig. 4. F spans R(s, d) along the s-axis; G spans it along the d-axis.

where

cost, (s, d, c) = min(cost(s0, d, cy) + cost(sl,d,c;) + 1 —[c = col — [c = c1])

Cp,C1
and

costy (s, d, ¢) = min(cost(s, dO, cy) + cost(s,dl,c)) + 1 —[c = col — [c = c1]).

€0,C1

PROOF. The proof is similar to the proof of Lemma 3.2. No consistent solution can
contain rectangles spanning R(s, d) in both directions. If an optimal solution with back-
ground color ¢ has no rectangle spanning R(s, d) along the s-axis, then we can split
it into left and right subsolutions exactly as in the one-dimensional case, and its cost
will be cost, (s, d, c). Similarly, if an optimal solution has no rectangle spanning R(s, d)
along the d-axis, then we can split it into top and bottom subsolutions, and its cost will
be costy (s, d, c¢). This completes the proof. O

4.1. An Improved Algorithm. As in the one-dimensional case, the dynamic program
of Lemma 4.2 can be improved in practice (though not in the worst case) by maintaining
the list of only those background colors that give optimal solutions. Define cost(s, d) =
min, cost(s, d, ¢). Let L(s, d) denote the list of colors that achieve minimum cost for
the coloring subproblem R(s, d):

L(s,d) = {c | cost(s,d, c) = cost(s,d)}.

In the following we refer to the elements of D as input rectangles. Define L, (s, d)
to be the set of background colors that allow an optimal solution that splits R(s, d)
horizontally. Similarly, define £, (s, d) to be the set of background colors that allow an
optimal solution that splits R(s, d) vertically. We define cost;, (s, d) and cost, (s, d) as
the costs of these solutions.
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FILTERCOMPRESS (s, d, D)

1. (x All background colors are equally good. )
If no rectangle in D lies entirely inside R(s, d), then set L(s, d) = {c},
where c is the color of rectangle R(s, d); set cost(s, d) = 1, and return.
2. (x Compute the cost of a vertical split. )
Set cost, (s, d) = oo.
If no rectangle in D spans R(s, d) along the s-axis, then
FILTERCOMPRESS (50, d, D)
FILTERCOMPRESS (s1, d, D)
if L(s0,d) N L(s1,d) # @ then
Ly(s,d) = L(s0,d)N L(s1,d)
costy(s,d) = cost(s0, d) + cost(s1,d) — 1
else
Ly(s,d) = L(s0,d)U L(s1,d)
cost, (s, d) = cost(s0, d) + cost(s1, d)
3. (x Compute the cost of a horizontal split. *)
In this case we compute L, (s, d) and cost), (s, d) exactly as the step above.
4. (x Take the cheaper of the two splits. *)
if cost, (s, d) > cost; (s, d) then
cost(s,d) = cost, (s, d)
L(s,d) = Ly(s,d)
else if cost, (s, d) < costy (s, d) then
cost(s,d) = cost,(s, d)
L(s,d)=L,(s,d)
else
cost(s,d) = cost,(s,d)
L(s,d) = Ly(s,d)U Ly(s,d)

The initial call to our algorithm is FILTERCOMPRESS (x, *, D), where * is the empty
prefix. We now argue the correctness of the algorithm.

The base case of the algorithm occurs when every point in R(s, d) is assigned the
same color. In this case our algorithm simply returns the single filter for that rectangle.
Steps 2 and 3, respectively, deal with cases when the optimal solution has a vertical split
or a horizontal split. Since a consistent optimal solution cannot have rectangles spanning
R(s, d) both horizontally as well as vertically, at least one of these two cases must occur.
The algorithm in each of these cases is just the one-dimensional prefix compression
algorithm, which we discussed in Section 4.1. Finally, in Step 4, we choose the better of
the two solutions found by the vertical or the horizontal splits.

Next, we analyze the running time of the algorithm. As is the standard practice with
dynamic programming algorithms, we tabulate the solutions to the subproblems, so we do
not solve the same subproblem over and over again. We assume the reader is familiar with
this memoization; an interested reader may refer to the textbook by Cormen et al. [5] for
details. A subproblem FILTERCOMPRESS (s, d, D) makes a recursive call only if R(s, d)
contains at least one input rectangle of D inside it. The total number of subproblems is
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O (Nw); the cost of deciding if a rectangular region is spanned by some filter is O (w);
and the cost of maintaining color lists per subproblem is O (K). Thus, the total time and
space complexity of the algorithm is O (NKw?) in the worst case.

THEOREM 4.3.  Given a consistent set of N filters, with K distinct colors and at most
w-bit prefixes, we can compute an optimal filter compression in O (NKw?) worst case
time.

5. Extensions and Experimental Results

5.1. Minimizing the Bit Complexity. We have used the number of filters as our com-
plexity measure. Instead one could ask to minimize the total bit complexity of the routing
table. Algorithms that use tries or bit vectors for filter classification [2], [7], [12], [15]
are sensitive to the total number of bits in the routing database. Given a filter f = (s, d),
let b(f) denote the bit length of s plus the bit length of d. Then the bit complexity of a
routing table D = {f1, f2, ..., fu} 18 Z?:l b(f;). We could ask for a routing table of
minimum bit complexity that is equivalent to D. Our algorithms are easily modified to
optimize the bit complexity of the routing table: instead of counting 1 for each filter,
count its number of bits.

5.2. Experimental Results. We implemented our dynamic programming algorithms,
for both one- and two-dimensional compression. The algorithms were implemented in
C++ on a 300 MHz Pentium II running Windows NT. We do not have any publicly
available filter databases to test our two-dimensional algorithm, since stateful routers
are still in their infancy. On the other hand, prefix tables are widely available for large
backbone routers, so we were able to test our one-dimensional compression algorithm.
We ran our algorithm on three publicly available routing tables, obtained from the Mae-
East Exchange Point [13]. The number of prefixes in these databases varied from about
8000 (Paix) to about 41,000 (Mae-East). The total number of colors (distinct next hops)
varied from 17 to 58. Table 1 shows our results. While one-dimensional results are
no indication of the two-dimensional problem, it should be encouraging that our prefix
compression algorithm achieves compression of 30-40% even in these highly aggregated
prefix tables. It therefore appears likely that significant compression might be possible
in the routing tables, which are going to be automatically generated.

Table 1. One-dimensional prefix compression.*

Database Input Output Reduction (%) Memory (MB) Time (s)
Mae-East 41,455 23,680 42 3.8 2.73
PacBell 24,728 14,168 42 2.1 1.85
Paix 7,982 5,888 26 0.8 0.72

*The input and output are the number of prefixes. The maximum prefix length was w = 32
and the number of colors varied between 17 and 58.
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6. Concluding Remarks and Open Problems. We gave an efficient algorithm for
computing an optimal filter compression for reducing state information in IP routers. The
algorithm is relatively simple, and exploits some basic geometric properties of consistent
prefix rectangles in two dimensions. The basic dynamic programming algorithm runs
in O (NKw?) worst-case time, for N filters with K colors and w bit prefixes. While the
improved dynamic program does not reduce the worst-case complexity, it should be
substantially better in practice.

IP routers certainly need to move beyond the current best-effort service model, if they
are to be used for advanced services like audio, video, or IP telephony. Past history has
shown that highly stateful solutions like ATM (asynchronous transfer mode) have failed
to be widely adopted despite their ability to provide quality of service. Achieving similar
capabilities in IP routers with minimal per-filter state appears to be the most promising
alternative. Our hope is that algorithms like ours for filter compression will make stateful
routers more scalable, and thus more acceptable.

Several open problems are suggested by our work. First, our approach requires the
routing table to be consistent (or, in networking parlance, conflict-free)—that is, if two
filters overlap, then one contains the other. Arbitrary prefix filters may not satisfy this
restriction. In order to define the effect of an inconsistent routing table unambiguously,
we need to assign priorities to filters, and choose the matching filter with the highest
priority. This leads to the following geometric problem. Consider a set 7' of n prefix
rectangles, defined over a discrete domain U, each with a height and a color. Each
point of U is assigned the color that is visible from z = oco. We say that another set
of rectangles is equivalent to T if it gives the same color assignment on U. Develop an
efficient algorithm to find the smallest set of rectangles equivalent to 7. Our approach
does not seem to work for this problem.

Second, our algorithm does not extend to more than two dimensions. The main diffi-
culty is that even if (three-dimensional) rectangles are consistent, they cannot always be
separated using a plane split. Thus, there does not appear to be a small set of subproblems
whose solutions can be combined into larger solutions for the dynamic program. It is an
open problem whether the compression problem for routing tables with three or more
attributes is NP-Complete.
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