Thisis apre-published version

Online Scheduling with Partial Job Values: Does Timesharing or
Randomization Help?

Francis Y. L. Chin * Stanley P. Y. Fung

Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong.
{chin, pyfung} Q@csis.hku.hk

Abstract

We study the following online preemptive scheduling problem: given a set of jobs with
release times, deadlines, processing times and weights, schedule them so as to maximize the
total value obtained. Unlike traditional scheduling problems, partially completed jobs can
get, partial values proportional to their amounts processed. Recently Chrobak et al. gave
improved lower and upper bounds [1.236, 1.8] on the competitive ratio for this problem, the
upper bound being achieved by using timesharing to simulate two equal-speed processors.
In this paper we (1) give a new algorithm MIXED-k with competitive ratio 1/(1 — (kL_H)’”)
which approaches e/(e — 1) ~ 1.582 when k — oo, by using timesharing to simulate k equal-
speed processors; (2) give an equivalent but much more practical algorithm MIX, which is
e/(e —1)-competitive (independent of k), by timesharing the processor with different speeds
(depending on the job weights), and use its interesting properties to devise an efficient
implementation; (3) improve the lower bound to 1.25 by showing an identical lower bound
for randomized algorithms; and (4) prove a lower bound of 1.618 on the competitive ratio

when timesharing is not allowed, thus answering an open problem raised by Chang and Yap,

showing that timesharing provably helps in giving better algorithms for this problem.

Keywords: On-line algorithms, scheduling, partial job values, timesharing, lower bounds.

*This work is supported in parts by an Earmarked Research Grant (RGC).

1 Introduction

Scheduling problems have many different kinds of objective functions, such as minimizing the
makespan, completion time, flow time, etc. One of the objective functions is to maximize the
total value received for completing the jobs, and partially-processed jobs (i.e., those cannot be
completed before the deadline) receive no value. In this paper we consider a variation of the
objective function in which partially-processed jobs also get a value proportional to the amount
processed. Chang and Yap gave an application in multimedia content transmission over a
network with low bandwidth [5]. A related problem known as imprecise computation has been
studied in real-time systems literature [11], in which a number of different applications were
pointed out, including numerical computation, heuristic search, database query processing, etc.

The algorithm needs to schedule the jobs online, i.e., the jobs are only known when they
arrive and the algorithm cannot make changes to the schedule in the past. Online algorithms are
usually analyzed in terms of their competitive ratios, introduced in [13]. An online algorithm
is called c-competitive if, for any instance of jobs, the value produced by the online algorithm
is at least 1/c that of the offline optimal algorithm. Competitive analysis and various forms of
online scheduling are discussed in detail in [4, 12].

We first define some terms. A request (or job) is specified by a 4-tuple (s,d,p, w) where s
is the release time, d is the deadline, p is the processing time (i.e., length), and w is the weight
(also called ‘value density’, i.e., the value received per unit time of processing) of the job. For
a job g, these parameters are sometimes denoted by s(q), d(q),p(q) and w(gq). These are known
immediately when the job arrives. The span of a job is the time interval [s(q),d(q)]. Scheduling
is done in a uniprocessor setting, i.e., at most one job can be processed at any time moment.
Preemption is allowed at no penalty (jobs are resumed at the point last preempted). A job
is active if it is released, not yet completed and its deadline has not been reached. A job ¢
processed for a total time I(q) gets a value (also called ‘profit’) I(q) x w(q).

For the traditional all-or-no-value model, tight bounds are known; the competitive ratio
cannot be better than (1 ++/B)? [2], and this ratio is achieved by Algorithm D" [10], where
B denotes the importance ratio, i.e., the ratio of maximum to minimum job weights. For the

partial job value model, two heuristics are described in [5]:

e FIRSTFIT: always serves the heaviest job.

e ENDFIT: starting from the heaviest job, allocates each job to the latest possible times-

lot(s) within its span.

Both heuristics are shown to be 2-competitive and the bounds are tight. In fact, ENDFIT
always gives the offline optimal schedule.

In [7], a 1.8-competitive algorithm MIXED was given for the partial job value model. The
algorithm makes use of timesharing, i.e., it allows more than one job running on the processor in
parallel, each at reduced speeds so that the sum of processing speeds at any time does not exceed
the processor speed. This can be simulated by alternating the jobs at a very high frequency.
In MIXED, two jobs are running in parallel (each with half the speed): one is the heaviest job,
while the other is the earliest deadline job among those active ones whose weights are above a
certain threshold. The two may actually be the same job, in which case that job is processed
with full speed.

To date no non-timesharing algorithms have a competitive ratio better than 2 if the im-
portance ratio B approaches oo. (To be precise, a (2[log B] + 3)/([log B] + 2)-competitive
algorithm is given in [6].) Thus it seems the improvement of the 1.8-competitive algorithm
stems from timesharing (in fact we show that timesharing does help later in this paper). It is
natural to ask why only two jobs are processed simultaneously in MIXED; if timesharing does
help, why not try to schedule more jobs concurrently? In Section 2 we generalize the MIXED

algorithm to have a competitive ratio - for any k where £ is the number of equal-speed

1
(&)
processors we simulate. This bound is tight, and tends to e/(e — 1) as k tends to infinity. Seem-
ingly, the number of jobs running in parallel should be at most the number of currently active
jobs; however MIXED-k needs a very large k to be close to e/(e — 1)-competitive even if the
number of jobs is small. Since it is impractical to have k£ much larger than the number of jobs,
the bound might seem only theoretically interesting but unachievable. However in Section 3 we
further give an equivalent algorithm MIX that is simple to execute in practice and is always
e/(e—1)-competitive, independent of k£ '. Intuitively, the timesharing jobs with different weights

should not be processed at the same speed; the heavier jobs should get a larger share of the

processing power while the lighter jobs get less. This is unlike MIXED in [7] in which if two jobs

!The same algorithm is recently independently discovered by Chrobak et al. in the revised version of [7].

are running in parallel, they each run at half the speed, independent of their weights. We will
show later that MIX will assign different processing speeds to jobs with different weights (to be
precise, each job weight relative to others). Moreover, MIX runs in O(min(m, £logmlog(m/{)))
time per re-scheduling, where m is the number of currently active jobs and £ is the number of
changes in the schedule.

A question raised in [5] is whether timesharing helps in reducing the competitive ratio.
In Section 4 we prove a lower bound of 1.618 for algorithms that do not use timesharing,
thus showing that timesharing provably helps in this problem. Another question raised in
[5] is about whether randomization helps in this problem. Although we give no randomized
algorithms in this paper, we prove in Section 5 a lower bound of 1.25 on the competitive ratio
for any randomized algorithms. This also implies an improved deterministic lower bound for

the problem, an improvement of the previously known lower bound result of 1.236.

2 An Improved Timesharing Algorithm

2.1 The Algorithm

The MIXED algorithm [7] can be thought of using two (virtual) processors, each with half the
speed. In this section, we describe and analyze a natural extension of MIXED: instead of two
processors, we simulate k& equal-speed processors where k is any positive integer.

Our new algorithm MIXED-k is as follows. We simulate k processors P, P, ..., Py, each
getting 1/k of the total processor time (i.e., runs at speed 1/k). At any time, processor P; runs
the job which has the earliest deadline among those that have weights > «;w;, where w; is the
weight of the currently heaviest active job. «; (1 = a3 > ag > ... > a; > 0) are constants to
be specified later. The fact that a; = 1 means P; always schedules the heaviest job. Note that
it may happen that more than one processor picks the same job, in which case that job runs
at a higher speed (e.g. speed 2/k if it is picked up by two processors). The schedule remains

unchanged until some job is completed, some job reaches its deadline, or a new job arrives.

2.2 Analysis

Let S(t) denote the job running by Algorithm S at time ¢. Define doneg(q,t) to be the amount
of job ¢ done by time ¢ using Algorithm S. Without leading to any confusion, S may stand
for the algorithm or the schedule produced by the algorithm interchangably. A schedule S is
called canonical if, for any two times t; and ¢ (t1 < t2), the following is satisfied: if ¢; = S(t1),
and g2 = S(t2) is not null, then either (i) s(g2) > t1, or (ii) ¢; is not null and d(q1) < d(g2).
Intuitively, it means that among the active jobs at any time, S will either do the one with the
earliest deadline 2 , or discard it forever. Let OPT denote the offline optimal schedule. As
stated in [7], any schedule (including OPT) can be converted into a canonical schedule. In the
proof we will use this property of OPT.

We will use the following charging scheme in the proof of competitiveness, which is similar
to that in [7]. We charge the values of infinitesimally small time periods (i.e. the ‘value rates’
or weights) from OPT to those in MIXED-k. Let F': 8 — R be a function mapping each time
in OPT to a time in MIXED-£. F' is defined as follows. For any time ¢, let ¢ be the job running
in OPT at time ¢. If donepopr(q,t) > doneps(q,t) (where M denotes our algorithm MIXED-£),
F(t) = t and the value rate charged is w(g). Otherwise, F(t) = u where u < ¢ is the earliest
time such that doneppr(q,t) = donenr(q,u) and the value rate charged is v(q)w(q), where v(q)
is the speed share of which ¢ is running in MIXED-£ at time w. (That is, if ¢ out of k processors
are running ¢, then v(q) = i/k.) See Figure 1. It is easy to see that all values in OPT are
charged under mapping F'. We need to make sure that sum of values charged to any particular
time in MIXED-k is not ‘too large’ (compared to the value it gets). We are going to bound
the competitive ratio by bounding the ratio of the charges assigned to MIXED-£ to the value
attained, for any time ¢.

Suppose at time ¢, ¢p is the job running in OPT, and ¢...qx are jobs running at Pi...Pj.
Note that ¢;’s may not be distinct; in the following the notation ¢, = ¢, means g, and ¢, are the

same job. For clarity define w; = w(q;). By definition we have ayuy < w; < wy fori =1,2,..., k.

Lemma 1 If F(t) = t, qn is the largest-indexed job that charges to time t, and qo # qm, then

wy < apwy.

2 Assume ties on deadlines are broken consistently for OPT and MIXED-k.

OPT

Ft)=t
Fity=t

MIXED-k » -
qrunning atP; ,i=1,2,... k

time = t t

Figure 1: Charging scheme.

Proof. Since F(t) = t, qop must be unfinished in MIXED-k at time ¢. g, must charge from a
later time in OPT. Since OPT is canonical, d(qy) < d(gm), but P, picks g, instead of qo, it

must be the case that wy < a,,w;. O

Lemma 2 If F(t) =t and qo = qm for some m > 0, then ¢m, Gm+1,---, G cannot charge to time

t from a later time in OPT.

Proof. Since F(t) = t, doneopr(qm,t) > donepr(qm,t), thus doneopr(gm,u) > doners(qm,t)
for all u > t. Therefore g, cannot charge to time ¢ from a later time in OPT.

Consider any ¢;, m +1 < ¢ < k. If g; charges to ¢ from a later time, then since OPT is
canonical, d(qy) < d(q;), and w(qo) = w(gm) > apmwy > a;w;. Thus P; should pick ¢y (or other
jobs with earlier deadlines) instead of ¢;. The only possibility is then ¢; = go(= ¢), but then

q; cannot charge to ¢ by the same reason as ¢,, above. O

Theorem 1 MIXED-k is -competitive, and the bound is tight.

1 ()t
Proof. Consider the charges to MIXED-k at any time £.

1
- - sl +...+w
Case 1. F(t) < t. The competitive ratio is ¢ < ’f(L k) =1
E(wl + ...+ wk)

Case 2. F(t) = t. Note that wy < w; since gp must be unfinished (F(t) =¢) and P; picks w;.

Case 2.1. qp is not one of qi, ..., qx. Suppose ¢, is the job with the largest index that charges
tot, 1 <m < k. By Lemma 1, wy < apw;. Thus

wq + %(wm + ...+ wy) < kamwy + >0 w; B ko wi — Zi-“:mﬂ w;

c < < = +1
F(we + -+ wi) Y w; Yr L w;
ko, wy, — Zf:m_,_l oW = (k+ VDam + am-1 + ... + 1
- i ity P

If there is no such m, then we also have wg < wi; = aywy, so

e < wo < ka1w1 . ka1 (k + 1)0(1
- %(’UJ}c + ...+ ’UJ1) T oopwy + ...+ apun Zi’czl o Zi’czl o

Case 2.2. ¢y = (at least) one of ¢;. Let m be the smallest 7 such that gy = ¢;, i.e. g0 = qm
but go # ¢; for any 1 < 5 < m. Then ¢y, ¢m+1,-..,qr cannot charge to ¢t from a later time
(Lemma 2), i.e., only q1,...,¢m—1 may charge to time ¢ from a later time. Let g; be the one

among these jobs that charge to ¢ with the largest index. Then since gy # ¢;, wo < ajwy

wo + %(’UJ]' + ...+ ’UJ1)
F(wg + ... + w1)

then wy < wy = aywi, which is also the same as Case 2.1.

(Lemma 1), and ¢ <

which is the same as Case 2.1. If there is no such 7,

Therefore in all cases the competitive ratio is bounded by

max<(k+1)a1 (k+1Das+ a1 (k+1)az+as+aq (k—i—l)ak—l—akl—i—...—i—al)
Yo PN ’ 2 T P

By successive substitution and a; = 1, it could be shown that all the above expressions are

equal when o; = (kiﬂ)ifl. The competitive ratio in this case becomes
kE+1 kE+1 1
CSSF T ki I—(k/Gh))F k
im0 () GRS - ()t

We now show this bound is tight. Consider a set of k instances. For each 1 < m < k, the
following instance (Fig. 2) consists of k£ + 1 jobs (where € is a very small positive number):
(0,1,1, aty, — €);
fori=1,2,....,m, (0,1 +(m+1—-14)/k,1/k,q;);
fori=m+1,...,k, (0,1 — (i —m)e, 1/k, ;).
OPT schedules the long a;, — € job in time [0,1] and then the short jobs ayy, ..., @; in the
remaining time. MIXED-k schedules the short i, ..., @ jobs in time [0,1], just completing all

of them at ¢ = 1 (since each has length 1/k and speed 1/k). Thus each instance corresponds

(k+Dam+am—1+...+a1

[e%]

to a competitive ratio of . Therefore the bounds are achievable. In fact

the choice of «;’s is the best possible: setting «;’s as in the algorithm gives - for all

1
k
1_(k+1)

expressions, and changing any «; will increase the value of at least one of the expressions. O

Corollary 1 Algorithms FIRSTFIT [5] and MIXED [17] are special cases of MIXED-k with
k=1 and 2, and with competitive ratios 2 and 1.8 respectively. Theorem 1 also gives a correct

competitive ratio for them.

Oy | =
o | —
Oy - € O 0y
OPT _—
MIXED-k

time-shared: oy .. oy

Horizontal lines represent job spans; thick portions represent job lengths.
Bottom two lines are the optimal and online schedules respectively.

Figure 2: Tight examples for MIXED-k.

Corollary 2 When k — oo, the competitive ratio of MIXED-k tends to e/(e — 1) ~ 1.582.

Proof. Immediate from the Theorem 1 and the fact that limy_,o (1 — 1/k)* = 1/e. O

3 An e¢/(e — 1)-competitive Algorithm

To achieve a competitive ratio of e/(e — 1) by MIXED-k, we need to simulate an infinite number
of processors, which of course is not feasible. However, note that among the infinite number of
processors, at most m distinct jobs are being scheduled, where m is the number of currently
active jobs. They occupy different fractions of the infinite number of (virtual) processors,
i.e., getting different proportions of (real) processor time, or equivalently, running at different
speeds. We are not interested in which (virtual) processor picks up which job; we only want
to know the ‘speed share’ (i.e. portion of virtual processors) obtained by each job. In this
section we discuss how to transform the above algorithm into a practical one when k£ = oo
and to calculate efficiently the speed each job can share in each re-scheduling when some job is

completed, reaches its deadline or is newly released.

3.1 The Algorithm

At any time the algorithm maintains a list of active jobs q1,q2, .., ¢ With weights w1, wo, ...,

Wp,. For simplicity assume 1 = wy > we > ... > wy,. The list is always sorted in decreasing

order of job weights. Note that w; is always 1 through normalization even though w(q;) may
be different at different times.

As ap — 1/e when k — o0, jobs lighter than 1/e & 0.37 of the currently heaviest job will
not get any processor time. Since we have an infinite number of processors, we have an infinite
number of «; values covering the range (1/e,1]. Different «; values define the sets of jobs
that can be selected by the respective processors (P; can only choose among jobs with weights
> a;w1). Note that the set of jobs grows as «; decreases. Since there are m active jobs, there
are at most m different such sets. Denote them by S; = {¢;,qi-1,..,q2,q1},1 < i < m. The
infinite number of virtual processors are therefore partitioned into m (unequal-sized) groups.
Processors in each group, although having different «;’s, pick the earliest-deadline job among
the same set of jobs, and hence will pick the same earliest-deadline job. We are going to compute
the proportion of processors got by each such set.

Consider the job set S;. Let qgp(;) be the earliest-deadline job in S;. We want to find the

proportion of processors that choose gpp(;). Since we have infinitely many «;’s, we must have

Eo\7!
o= (ghr) -

o = wiy1 for some j. Thus

Solving for j gives
Inw;q

= '
T k/(k + 1)
Since im0 frirny =~
.j im L/
T N U/ S,
i = () Jiny iy — e

This means a fraction — Inw;41 of processors have a; > w;11. Similarly a fraction of — Inw;
of processors have ; > w;. Thus the proportion of processors picking earliest-deadline job from
S; (i.e., it picks grp() is — Inwiy1 — (= Inw;) = In(w; /wit1).

The above is true if w; > w41 > 1/e. If wip1 < 1/e, or g; is the lightest job, the above
calculation does not work. In this case gpp(;) takes all the remaining portion of processors.
Jobs lighter than 1/e get no portion of processors. The general case thus can be summarized
by the formula

max(wj, 1/e) > (1)

speed share of gpp;) = In <max(w~+1 1/e)
(3 9

for 1 <4 <m (with a dummy w,,+1 = 0).

Now instead of simulating an infinite number of processors, we are reduced to three tasks.
First, find qpp(;) for each set S;. Next, for each of the m jobs (possibly non-distinct) found,
compute the portion of processor time it occupies using (1). The final task is to find out if
any gpp(;)’s are identical, in which case we need to sum up the speed shares allocated. The

algorithm is presented below.

Algorithm MIX
/* a list of currently active jobs q1, ..., ¢, is maintained in decreasing order of weights
(ties broken arbitrarily) at all times */
If a new job arrives, or if a job is finished (either completed or reached its deadline):
Step 1: insert it into/delete it from the list
Step 2: compute gpp(;) = earliest-deadline job among S; for all
Step 3: compute speed shares of each qpp(;) using (1)

Step 4: add up speed shares of duplicates

As an example, consider the instance of three jobs ¢; (0, 1, 1, 1 —€), ¢2(0, 1, 1/2, 2/3), ¢5(0,
3/2,1/2, 1) where € is very small (this is a worst-case example of the MIXED algorithm in [7]).
At t = 0, MIX will assign In(3/2) = 40.5% of processing speed to ¢; and the remaining 59.5%
to g2, and g3 receives virtually no speed as In(1/(1 — €)) & 0 (this is reasonable since its weight
is almost the same as ¢; but has a later deadline.) However MIXED in [7] will assign 50% speed

to both ¢ and g¢s.

3.2 Time Complexity

Algorithm MIX takes O(m) time per re-scheduling. For Step 1, the sorted list of jobs can be
easily maintained in O(m) time. For Step 2, qp p(i) can be computed incrementally since ggp(;)
= earlier-deadline job among {q;,qrp(i—1)}. Thus it takes O(m) time in total. Step 3 clearly
takes O(mn) time. Step 4 can also be done in O(m) time because the qpp(;)’s are already in
sorted order of weights; we only need to check for duplicates in adjacent items.

The above linear time bound is worst-case optimal as there are cases which the schedule is

completely changed for each re-scheduling. For example, if the heaviest job is also the earliest

10

deadline job, then it occupies all the processor time, and when it is deleted (finished) the updated
schedule needs to be recomputed and may have ©(m) jobs running at different speeds. However,
the algorithm has very interesting properties which can be utilized to give better time complexity
in some cases. For example, the job speeds are determined by the weight ratios between jobs.
Suppose qgp(;) = ¢ for i=1,2,3, gpp(1) gets speed In(w1/w2), grp(2) gets speed In(ws/ws3), and
now ¢z is deleted. Then new speed of gpp(1) = In(w1/w3) = In(wi/w2) + In(wa/w3), i.e., the
speed for qpp(g) is ‘reallocated’ to ggp(1) without affecting other job speeds, so it seems that
the update can be done in constant time in this case. Moreover, Step 2 is essentially computing
a prefiv minimum on the deadlines, i.e. miny; >y, {d(j)} for all 4, and we have the following

lemma with its proof in the Appendix.

Lemma 3 Given a set of jobs {qi1,...,qm} where each job q; is associated with a weight w; and
a deadline d;, there is a data structure that supports inserting and deleting a job (Step 1) and

computing the prefiz minimum mingy; >y, {d;} for any 1 <i <m (Step 2) in O(logm) time.

Let us now revisit the problem of computing the updated schedule. In the updated schedule,
it may happen that many gpp(;)’s are identical; we want to avoid computing all these redun-
dancies. If we plot the jobs in a graph of deadlines against weights (Fig. 3), the ‘staircase’ lines
reveal the distinct gpp(;)’s. We want to compute this staircase (that is, the ‘dominant jobs’
in the staircase, where a job is dominant if no other job has both heavier weight and earlier
deadline than it). Once this is done we can immediately know the distinct ggp(;)’s and their
speed shares in O(L) time (analogous to formula (1)), where L is the length of the output, i.e.,
number of jobs getting nonzero speeds in the updated schedule.

One obvious approach for computing the staircase is sequential search: compute the prefix
minimum of the 7 heaviest jobs for all 7. This takes O(m) queries. (By ‘a query’ we mean
using the data structure to find a particular prefix minimum.) A better method is to use
binary search: starting from the heaviest job, find the next heaviest job that has a smaller
prefix minimum deadline by binary search, using O(logm) queries. Then find the second one,
etc. This takes O(Llogm) queries and O(Llog®m) time by Lemma 3. The following lemma
(proof in Appendix) shows a better method to compute the staircase using the unbounded search

technique [3].

11

deadline

® Y%ep@)

® Yep(2)

Figure 3: The ‘staircase’.

Lemma 4 The L jobs getting nonzero speeds (the L dominant jobs of the staircase) can be

found in O(Llogmlog(m/L)) time.

This bound is better than the O(m) bound when L is small (e.g., O(log?m) when L is
constant), but at worst it gives O(m logm). We can use a simple trick to guarantee a worst case
O(m) time. While processing as above we count L, and when we discover that L > m/ log?m,
we abandon the processing and use the simple O(m)-time MIX algorithm from scratch instead.
(Note that when this happens, we need to retrieve all jobs in sorted order in O(m) time. This
can be done by threading all leaves of the tree with a linked list.)

Note that jobs lighter than 1/e get no speed and thus should not be outputted. Thus in the
algorithm, when we encounter a job with weight < 1/e for the first time, we should compute
the speed of the corresponding gpp(;) with 1 /e replacing that small weight, and then stop the
algorithm.

In fact, we can use the above method to compute just the updated part of the schedule. The
staircase only changes from the point of insertion/ deletion towards the left until it meets the
original staircase where we can stop. (The insertion or deletion of the heaviest job changes the
jobs cut off by the ‘1/e bound’ mentioned above, and they need to be updated also.) With some
careful handling, we can keep the running time with L replaced by £, the number of changes in

the schedule.

Theorem 2 Computing the new schedule can be done in O(min(m,¢logmlog(m/f))) time per

re-scheduling, where m is the number of currently active jobs and £ is the number of changes in

12

the schedule.

4 A Lower Bound for Non-timesharing Algorithms

In practice, timesharing can be achieved by switching the jobs at a very high frequency. This is a
major drawback since it is costly. We might disallow timesharing by specifying that an algorithm
cannot change its job at infinitesimally small time intervals. However, most (non-timesharing)
heuristics may change their job at event points (i.e., times with jobs released /completed /reached
their deadlines), and two event points may be very close to each other (depending on the job
parameters). Some heuristics like ENDFIT may even change its job at times other than event
points. To cater for this, let X = {z;} contains all the time parameters of all ‘residue’ jobs (the
part of the unprocessed job) released so far. Assuming current time = 0, then X contains the
relative deadlines and remaining processing times of the jobs. For a non-timesharing algorithm,
the earliest time it can change its job is when new job(s) arrive, or the time that can be
formed by adding/subtracting numbers in X; in other words, all times of the form ¥a;z; where
a; € {—1,0,1}. In particular, if all time parameters of jobs are integers, then non-timesharing
algorithms can only change its job at integral times. It is not difficult to see that FIRSTFIT
and ENDFIT are non-timesharing under this definition.

We show that in the non-timesharing case there is a stronger lower bound than the currently
best bound for the case with timesharing allowed (it is shown that the bound is 1.25 in Section

5).

Theorem 3 No deterministic non-timesharing algorithm can have competitive ratio better than

¢, where ¢ = (v/5+1)/2 =~ 1.618 is the golden ratio.

Proof. The proof modifies the technique used in [7]. We show that no online algorithms can have
competitive ratio ¢ —e for any € > 0. Let o = v/5—2. Define a sequence {vi} 1vo = 1,v1 = ¢+e,
and v; 11 = (v; —v;_1)/o for i > 1. Solving the recurrence gives v; = (1 — €)@’ + e(¢ + 1) for
i > 0. Note that limy_, o (vg/vk—1) = ¢ + 1, and > ;9 v; = (vp—1 — v9)/0. These facts will be
needed later.

In the following the adversary will give jobs with all time parameters being integers. Thus

with our non-timesharing definition above, any non-timesharing algorithm can only schedule

13

_weights

b o Y
G M
Y e I
o ———
] v,
qj: o V3

t=0 1 2 3 ‘4\ rrrrr

Figure 4: Lower bound construction.

one job at any integral timeslot.

At each integer time 7 = 0,1, 2,..., the adversary releases two jobs ¢;(i,7 + 1,1,v;),q}(i,7 +
2,1,v;11) (see Fig. 4). Let k be a sufficiently large integer. If there is an integer time 1 < j < k
such that the algorithm does q;_l in the slot finishing in time j, the adversary stops releasing
further jobs. In this case optimal value = vy +... +v;_2 +2v;_1 +v;, while the online algorithm

gets at most vg +v1 + ... + vj_2 + v;. Thus the competitive ratio

c > (U1+1)2+...+1)j)+1)j_1:1+ 21)j_1—1 14 21)j_1—1
- (U() +v+ ...+ ’Uj) —Uj—1 (’U[) + v+ ... +’Uj) — V-1 vy + v + Ujfalfl —vj_1
- 14 o(2vj_1 — 1) 14 20(vj_1 —1/2)
o+ov+(1—-0o)vj_1—1 (1-0)(vj—1 =1/2) +ovi1 + (0 —1)/2
20(vi_1—1/2 20 20 1
B 1+(1_)((71—1//2))+ S e e (1 3¢)
o)(vj1 o€ o o€ o1+ 725
2 2 2 2
> 1=) > 1 = ()% > e
1—0 1—0c 1—0 1—0

Otherwise, the adversary releases all jobs up to time & — 1, and at time k releases job ¢
only. In this case optimal value = (v + ... + vi) + v, while the online algorithm gets at most

vy + v1 + ... + vi. Thus the competitive ratio

— -1 1
Zvl+ +'Uk+Uk:1 Vg — Vo 14 Vk _>1+¢+ — 4
vg+ v + ... + Uk vg + U1 + ... +Ug 1+v + (vg—1 — 1)/o 1/o

Thus no algorithms can be better than ¢-competitive. O

The competitive ratio 1.58 achieved by MIX is lower than the 1.618 lower bound for the
non-timesharing case. This shows that (in this partial job value model) timesharing is provably

better than non-timesharing, and their competitive ratios can be significantly different.

14

5 Lower Bound for Randomized Algorithms

In [5] the deterministic lower bound of 2(2 — v/2) ~ 1.17 on the competitive ratio was given
for this problem, and Chrobak et al. improved it to v/5 — 1 ~ 1.236 [7]. In this section we
prove a randomized lower bound for this problem which is better than the above bounds, thus
improving the deterministic lower bound at the same time.

We make use of Yao’s principle [14]. Basically, it enables us to find a lower bound of
randomized algorithms by finding a probability distribution of instances, such that we can
bound the ratio of the expected offline optimal value to the expected online value of the best

deterministic algorithm. This ratio will then be a lower bound of randomized algorithms (see
[4])-

Theorem 4 No randomized (and hence deterministic) algorithms can be better than 1.25-

competitive.

Proof. Consider a set of n 4 1 instances:
Ji ={(0,1,1,1),(0,2,1,2)}
Ji=Ji 1 U{(i—1,4,1,27Y (i —1,i+1,1,2))} for i = 2,...,n
Jpt1 = JpU{(n,n+1,1,2")}

The instances are like those of Figure 4 (although the weights are different): .J; corresponds
to {qo,q(}, Jo corresponds to {qo, gy, q1, ¢} }, etc. We form a probability distribution of J;’s with
p; being the probability of picking J;: p; = 1/2¢ for i = 1,2,...,n and p,,1 = 1/2". Clearly
>Ypi=1

First consider the offline optimal value. It is easy to see that OPT(J;) = (2+22...4+2%) 42!
for i = 1,2,...,n, and OPT(J,11) = 2+ 2%... + 2" + 2", (Here we overload the symbols OPT

and ALG to denote values obtained instead of the schedules.) Thus

| : : 1
E[OPT] = Zi[(2+...+22)+2’*1]+2—n[2+...+2”+2"]
=1
&2 =) 2 22n —1) 42"
- Z 20 + on
i=1
5 20 3(2") -2
- Z(E_EHT
=1
on
= —+1
5 +

15

Next we consider the online algorithm. At any time interval [i — 1,4] where i is an integer,
any deterministic algorithm is faced with a heavier job and one or two lighter jobs. Suppose
it spends f; units of time in the lighter job(s) (and hence 1 — ; for the heavier job). The
Bi’s completely determine the value obtained by this algorithm (on these instances). Thus any

deterministic online algorithm ALG is specified by a set of numbers f31,...,5, , 0 < g; < 1.

ALG(J1) = [Bi+2(1—pB)]+26
ALG(J2) = [B1+2(1—B1)] + 262 +4(1 — B2)] + 452
ALG(Jn) = [Bi+2(1 =B+ + 2578 + 281 =)] + o + 27710 +27(1 = Ba)] + 2" Bn
ALG(Jnt1) = [Bi4+2(1 =B+ . +[2F 18 + 281 =)] + ... + 277180 + 27°(1 — B,)] + 27
B[ALG] = %ALG(JI) 4 iALG(Jg) I %ALG(J,%) 4 2inALG(JnH)

Rearranging E[ALG] by grouping its constant terms, coefficients of /1, etc:
Coefficient of 81 = $(1)+ 2 (=1) + (1) + ..+ 55 (- 1)+ o (-1) =3 —(F+ 5+t 5= +5+) =0

In general, for 1 <¢<n -1,

Coefficient of 8; = 3;(2°71) + 27 (2771 = 20) + .. + 5 (271 = 20) + 5 (271 = 2) = 0, and
Coefficient of 3, = 2ln(Q”*I) + 2%(2”*1 —2") =0
This shows a very interesting fact: the expected online value does not depend on which algorithm

is used. E[ALG] now only depends on the constant terms:

1 1 1 1 1
E[ALG] = -(2)+-2+4)+-2+4+8)+...+ =2+...+2")+ —=(2+...+2"+2")
2 4 8 2n 2n
= 1 % 1 n n
= 25(2+...+2)+2—n(2+...+2 +2™)
1=
2220 —1) 2(2" —1) + 2"
= Z 2 + on
i=1
& 2 2
i=1
= 2n+1
E[OPT 5n/2+1
Hence E[[1 G]] = ;Lr/z ++1 , and is arbitrarily close to 5/4 as n is very large. Thus no
randomized algorithms have competitive ratio better than 1.25. O

16

6 Concluding Remarks

In this paper we improved the upper and lower bounds on the competitive ratio of the partial
job value online scheduling problem. It is interesting that the e/(e — 1) bound appears in
many online problems (see e.g. [9]). We also showed that the ability of timesharing affects the
competitive ratio. It remains open what is the true bound of this problem. Is MIX the best
possible, or in other words, can we prove a lower bound of e/(e— 1) on the competitive ratio? It
is also not known whether there are non-timesharing algorithms beating the competitive ratio
of 2.

It is also asked in [5] whether randomized algorithms can give better competitiveness. Re-
cently it was pointed out [7] that randomization will not help for timesharing algorithms since
any randomized algorithm can be transformed into a deterministic but timesharing one: at
any time, each job is processed with speed equal to its probability of being scheduled by the
randomized algorithm. Whether randomization helps in the non-timesharing case is however

still unknown.

Acknowledgements. We would like to thank the anonymous referees for their helpful

comments.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha and F.
Wang, On the Competitiveness of On-line Real-time Task Scheduling, Real-Time Systems
4, 125-144, 1992.

[3] J. L. Bentley and A. C.-C. Yao, An Almost Optimal Algorithm for Unbounded Searching,

Information Processing Letters 5(3), 82-87, 1976.

17

[4]

[12]

[13]

A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, New York, 1998.

E. Chang and C. Yap, Competitive Online Scheduling with Level of Service, Proceedings

of Tth Annual International Computing and Combinatorics Conference, 453-462, 2001.

F. Y. L. Chin and S. P. Y. Fung, Online Scheduling with Partial Job Values and Bounded

Importance Ratio, Proceedings of International Computer Symposium, 7T87-794, 2002.

M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichy and N. Vakhania, Pre-
emptive Scheduling in Overloaded Systems, preliminary version appeared in Proceedings of

29th International Collogium on Automata, Languages and Programming, 800-811, 2002.

C.-T. Ho, R. Agrawal, N. Megiddo and R. Srikant, Range Queries in OLAP Data Cubes,
Proceedings of ACM SIGMOD Conference on the Management of Data, 73-88, 1997.

A. Karlin, C. Kenyon and D. Randall, Dynamic TCP Acknowledgement and Other Stories

about e/(e—1), Proceedings of the Symposium on the Theory of Computing, 502-509, 2001.

G. Koren and D. Shasha, D"*": An Optimal On-line Scheduling Algorithm for Overloaded

Uniprocessor Real-time Systems, STAM Journal on Computing 24, 318-339, 1995.

J. W. S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, J.-Y. Chung and W. Zhao, Algorithms

for Scheduling Imprecise Computations, IEEE Computer 24(5), 58-68, 1991.

J. Sgall, Online Scheduling, in Online Algorithms: the State of the Art (Fiat and Woeginger
eds.), Springer-Verlag, 196-227, 1998.

D. Sleator and R. Tarjan, Amortized Efficiency of List Update and Paging Rules, Commu-
nications of the ACM 28(2), 202-208, 1985.

A. C.-C. Yao, Probabilistic Computations: Toward a Unified Measure of Complexity, Pro-

ceedings of 18th IEEE Symposium on Foundations of Computer Science, 222-227, 1977.

18

A Appendix: Proofs of Lemmas

Lemma 3 Given a set of jobs {qi, ...,qm} where each job q; is associated with a weight w; and
a deadline d;, there is a data structure that supports inserting and deleting a job (Step 1) and

computing the prefiz minimum miny, >y, {d;} for any 1 <i <m (Step 2) in O(logm) time.

Proof. We use a 2-3 tree [1] to store the jobs according to non-increasing order of job weights.
Insertions and deletions can be done in O(logm) time. We augment prefix-min deadline infor-
mation on the tree. This technique has been used in range queries in databases (see e.g. [8]).
Specifically, in every node we have a field P: for non-leaf nodes it stores the minimum of the P’s
of its children, and for leaves it stores the deadline of the corresponding jobs. Fig. 5(a) shows
such a tree. We also need to update these P values when we insert/delete jobs, but it is easy

to see that this can be done in O(logm) time.
2
3 2 2
3 7 6 8 3 . 8

ACA A A ACA KA A

w15 14 13 11 10 9 8 6 5 3 2 1 ¢3 5 4 8 7 6 9 10@8) 1
&3 5 4 8 7 6 9 10 11 8 2 12
() (b)

Figure 5: (a) A 2-3 tree storing 12 jobs, augmented with P values. (b) Finding min-deadline
among the heaviest 9 jobs. Thick edges represent edges traversed and the result is obtained by

taking the minimum of all circled P values.

Using the P values, we can, given any ¢, find the earliest-deadline job among the ¢ heaviest
jobs in O(logm) time. First, search the tree to locate the leaf corresponding to the i-th heaviest
job in O(logm) time. (Each node needs to be augmented with a field indicating the size of the
subtree rooted at it to facilitate this search.) Then along the path vy — v1 — vy ..., the prefix
minimum can be found by finding the minimum of all the P values of the left siblings of v; for

all 7, and also that of the leaf being reached. Fig. 5(b) illustrates this process. O

19

Lemma 4 The L jobs getting nonzero speeds (the L dominant jobs of the staircase) can be

found in O(Llogm]log(m/L)) time.

Proof. We only need ‘Algorithm B;’ in [3]. Suppose we have an array with elements sorted
in non-increasing order (but may have many identical elements), the current (first) element is
z, and we want to find the first (foremost) element smaller than x. We ‘probe’ the 2nd, 4th,
8th, ... element, doubling the step size each time until we encounter an element (say, the 2'-th
element) smaller than z. Then we use binary search in the interval between the 2/~!-th and
2-th elements, to find the foremost element smaller than x. Suppose it is the z;-th element.
Then the forward doubling search reaches at most the 2z1-th element, using [log(2z1)] probes.
Backward binary search adds another [log(2z1)]. So this takes at most 2[log(2z;)] probes.

In our problem, we probe into a search tree with prefix-minimum, not a sorted array, and we
want to find the dominant jobs of the staircase. Let x1,xo, ...,z denote the distances (number
of jobs) from the previous dominant job, z1+z9+...42z, = m. Probing for the i-th dominant job
takes at most 2[log(2z;)] queries, thus the total number of queries is at most Y% | 2[log(2z;)].
This is maximum when all z;’s are equal, thus the number of probes is at most 2L [log(2m/L)].
Thus we need O(Llog(m/L)) queries to the tree, taking a total of O(Llogmlog(m/L)) time.

|

20

