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ABSTRACT. Tools for the automatic decomposition of a surface into shape features will
facilitate the editing, matching, texturing, morphing, compression, and simplification of 3D
shapes. Different features, such as flats, limbs, tips, pits, and various blending shapes that
transition between them may be characterized in terms of local curvature and other differ-
ential properties of the surface or in terms of a global skeletal organization of the volume it
encloses. Unfortunately, both solutions are extremely sensitive to small perturbations in the
surface smoothness and to quantization effects when they operate on triangulated surfaces.
Thus, we propose a multi-resolution approach, which not only estimates the curvature of
a vertex over neighborhoods of variable size, but also takes into account the topology of
the surface in that neighborhood. Our approach is based on blowing a spherical bubble
at each vertex and studying how the intersection of that bubble with the surface evolves.
We describe an efficient approach for computing these characteristics for a sampled set of
bubble radii and for using them to identify features, based on easily formulated filters, that
may capture the needs of a particular application.

keywords: Shape description, shape decomposition, multi-scale shape feature extrac-
tion, shape indexing.

1. INTRODUCTION

Shape analysis and coding are challenging problems in Computer Vision and Graph-
ics. An ideal shape description should be able to capture and compute the main features
of a given shape and organize them into an abstract representation which can be used to
automate processes such as matching, retrieval or comparison of shapes. We have tackled
the problem in the context of 3D objects represented by triangular meshes, having in mind
that a good shape description should be able to distinguish between global and local fea-
tures and should be based on geometric properties of the shape which are invariant under
rotation, translation and scaling [6]. To characterize a shape we have used the paradigm of
blowing bubbles: a set of spheres of increasing radius ��� , ���	��
�����
�� is drawn, whose
centers are at each vertex of the mesh, and whose radius represents the scale at which the
shape is analyzed. The number of connected components of the intersection curve between
each bubble and the surface gives a first qualitative characterization of the shape in a 3D
neighborhood of each vertex. Then, the evolution of the ratio of the length of these com-
ponents to the radius of the spheres is used to refine the classification and detect specific
features such as sharp protrusions or wells, mounts or dips, blends or branching parts. For
example, for a thin limb, that intersection will start simply connected and will rapidly split
into two components. For a point on the tip of a limb, that intersection will usually simply
remain connected, but the ratio of its length to the radius of the bubble will be decreasing.
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For a point on a blend, that ratio will exceed
���

. An example of the resulting decomposi-
tion is given in Figure 1.

FIGURE 1. Shape decomposition using blowing bubbles.

The achieved description provides an insight on the presence of features together with
their morphological type, persistence at scale variation, amplitude and/or size. The decom-
position is algorithmically simple, independent on the orientation of the object in space and
equally distributed in all directions. The multi-scale approach and the chosen descriptors
define a view-independent decomposition and reduce the influence of noise on the shape
evaluation. The number of radii and the interval given by the minimum and maximum
radius define the scope of the description for the input surface and the step between con-
secutive scales. The choice of these parameters determines the final decomposition which
is improved if a-priori knowledge about the size of the features to be extracted is available.
In this paper we focus on the method adopted for the segmentation, while a possible ap-
plication of the results can be found in [13], where a skeleton describing a shape from the
point of view of its sharpest protrusions is presented.

The paper is organized as follows: in Section 2 previous work relevant for the described
method is briefly reviewed. Basic concepts on differential geometry delineate, in Section
3, the theoretical background of the used geometric descriptors. The approach to shape
classification is presented in Section 4. The algorithm description and details of the method
are described in Section 5, while the mesh decomposition strategy is analyzed in Section
6. Finally, Section 7 includes critical considerations and remarks.

2. PREVIOUS WORK

An abstract description of a shape usually combines a set of primitives, that are relevant
to the specific context, and is defined in terms of their type and intrinsic shape parameters.

As suggested in [12], methods for shape description can be classified into two broad cat-
egories: those considering only the local properties of the boundary of the shape, and those
measuring properties of the enclosed volume. Typically, boundary-based methods evalu-
ate accurate and mathematically well-defined local characteristics, such as critical points
or curvature. They may also identify specific loci on the surface, such as curvature extrema
or ridges, but they generally lack in providing a global view of the shape. Furthermore,
they typically work at a single resolution and thus do not organize features into a hierarchy
of global and local details.

Conversely, interior-based methods, which assume that the surface is the boundary of
a solid, generally provide descriptions which better highlight the global structure of the
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shape. Skeletons, such as the medial axis or the Reeb graph [1, 16] belong to this class of
descriptors. The great advantage of skeletons is that they provide an abstract representation
by idealized lines that retain the connectivity of the original shape, thus reducing the com-
plexity of the representation. Usually, each arc is associated with a portion of the original
shape that corresponds to a feature. For example, in 2D the medial axis is constructed using
the paradigm of the maximal enclosed disks, whose centers define a locus of points which
describes, together with the associated radius, the width variation of the shape. The medial
axis induces a decomposition of the shape into protrusion-like features, while concavities
of the shape are not directly identified by the medial axis of the interior. Unfortunately,
the medial axis of a 3D shape is not any longer a one-dimensional graph, but it is made of
surface pieces as well. Moreover, the instability of the medial axis with respect to noise has
prevented its use in many application areas. Approaches to construct and store the medial
axis at different scales have been also proposed, which implicitly address the problem of
noise reduction as well [16, 3, 15].

Another notable example of topology-driven skeleton is given by the Reeb graph [18, 1].
The Reeb graph is a topological structure which codes a given shape by storing the evolu-
tion of criticalities of a mapping function defined on the boundary surface. In particular,
when the height function with respect to a predefined direction is chosen, the Reeb graph
describes the evolution of the contours obtained by intersecting the shape with constant
planes. The decomposition induced by the Reeb graph corresponds to a segmentation of
the solid into slices and the corresponding branches of the Reeb graph identify the con-
nected components of the surface. The description obtained using a Reeb graph approach
is suitable for matching purposes especially if the mapping function is chosen in order to
provide invariance under affine transformations. Such orientation-independent approaches
have been proposed in [10, 13]; however, they are computationally intensive and offer lit-
tle control over the scale at which the shape is analyzed. We propose here an alternative
and more efficient approach that gives us more flexibility to formulate the filters for shape
analysis, and captures the more representative properties in a more detailed description.

3. THEORETICAL BACKGROUND

This section provides definitions and concepts [4, 8, 11, 14] useful for describing our
approach. Let ��� �����	��
����

be a � � -parameterization of the surface

� � ��������� 
���������� 
���� � �"! �
The classification of local properties of

�
is traditionally based on the study of the mean

and the Gaussian curvature, which can be respectively defined as the average and the prod-
uct of the maximum and minimum principal curvatures [11].

Let us consider the normal � to the surface
�

at a point # , and the normal sections of
the surface around the normal vector, that is, the set of curves originated by intersecting the
surface with planes containing the normal � . For each of these planar curves the curvature
is classically defined as the inverse of curvature radius. If we call $&% the maximum cur-
vature of the normal sections, and $ � the minimum, then the mean curvature $ is defined
as $'� �(�)$ %+* $ � ��, � and the Gaussian curvature as -.� �/$ % $ � . The directions along
which the extrema of curvature are assumed are called principal directions. This defini-
tion formalizes the relation between the surface shape and its position with respect to the
tangent plane. For example, for elliptic-shaped surfaces, the centers of curvature of all the
normal sections will lie on the same side of the tangent plane, with positive values for the
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minimum and maximum of curvature. For hyperbolic-shaped surfaces, the centers of cur-
vature will move from one side of the surface to the other, with a negative minimum value
and a positive maximum value assumed at opposite sides with respect to the tangent plane.
Finally, for parabolic-shaped surfaces, one of the principal directions will have curvature
equal to zero, that is, along that direction the normal section will be a straight line. This is
the case, in general, of ruled surface which are also said to have no double curvature. The
planar case is obvious.

The Gaussian curvature represents a measurement at any point # of
�

which is the
excess per unit area of a small patch of the surface, i.e., how curved it is. An interesting
result is due to the Gauss-Bonnet theorem, which is introduced as follows. First of all,
given a closed curve � on a surface

�
, let ��� be the total turning that the unit tangent �

undergoes when it is carried along � , defined as the sum of the local turnings, i.e. exterior
angles [11] (see Figure 2). Then, the quantity ��� � ����� �	� is called the angle excess of the
curve � and it is related to the curvature of

�
within � , as described by the Gauss-Bonnet

formula.

Gauss-Bonnet Formula 1. Let � be a curvilinear polygon of class � � on a surface patch
of class ��
 , ���� . Suppose � has a positive orientation and its interior on the patch is
simply connected. Then

(1)
�
� $������ *

�����
-���� � �������

� � � �!�"�
where $ � is the geodesic curvature along � , # is the union of � and its interior, - is the
Gaussian curvature, � � the exterior angles of � , �$� and ��� are the curve and line elements
respectively.

Among the properties of the angle excess the following ones have a particular interest
for our approach:% �&� is independent of the chosen starting point on � ,% �&� is additive,% for any topological disk on an arbitrary surface at # , the angle excess around the

boundary is equal to the total curvature of the interior.

Starting from the Gauss-Bonnet formula and defining the total curvature of
�

as the
integral:

(2) ��' � � ��� ' -����
it can be proved that the last one is a topological invariant of compact, orientable surfaces
as described by the following theorem.

Gauss-Bonnet Theorem 1. If
�

is an orientable, compact surface of class � � , then

(3)
�(�
' -)�$� � � ��* � � �

where
* � � � is the Euler characteristic of

�
.

The definition of the curvature at each point of a triangulation is not trivial because a
triangular mesh is parameterized by a piecewise continuous function whose second deriva-
tives are, almost everywhere, null. More precisely, the curvature on a triangulation is con-
centrated along edges and at vertices, since every other point has a neighborhood homeo-
morphic to a planar Euclidean domain whose Gaussian curvature is null.
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FIGURE 2. Exterior angles ��� � ! on a closed path � .

FIGURE 3. � ����� � # � .
The angle excess can be used to evaluate the Gaussian curvature at mesh vertices [5, 17].

Let us consider the region � ����� � # � on the surface defined by the triangles incident in a ver-
tex # (see Figure 3). The boundary of ������� � # � defines a closed path on the mesh, to
which we may apply the Gauss-Bonnet formula (1). Since the geodesic curvature along
the boundary is obviously zero (edges are straight), the total curvature at # is simply quan-
tified by the sum of the exterior angles. To understand better the geometry of the situation,
we can imagine to locally cut � ����� � # � along any of the edges incident in # , and to develop
the � ����� � # � onto the plane without shrinking the surface. The sum of the exterior angles
corresponds to the sum of the angles at # in the � ����� � # � . This result is consistent with
the intrinsic nature of the Gaussian curvature since the angle excess only depends on the
angles, that is, this value does not change if the mesh is deformed preserving the distance
between points. Also, the computation of the angle excess can be performed without re-
sorting to any coordinate system, as the angles may be obtained using only the edge length
and not the vertex coordinates.

The methods proposed in the literature for curvature evaluation can be classified in
different ways but a global comparison among them is still lacking as underlined in [5, 7,
20]. These methods can be divided into two main groups: continuity-based and property-
based algorithms.
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The first ones are developed transforming the discrete case to the continuous one by
using a local fitting of the surface which enables to apply standard definitions. For exam-
ple in [9] an approximation is derived at each vertex by applying the continuous definition
to a least-square paraboloid fitting its neighboring vertices, while in [19] it is evaluated
by estimating its tensor curvature. The second class of algorithms defines equivalent de-
scriptors starting from basic properties of continuous operators but directly applied to the
discrete settings. The methods proposed in [2, 17] are based on the Laplace-Beltrami oper-
ator, the Gauss map and the Gauss-Bonnet theorem guaranteeing the validity of differential
properties such as area minimization and mean curvature flow [8]. The discrete Gaussian
curvature at a vertex # of the mesh is evaluated as

(4) -�� �
� � �������	��
 �	������

����% � ��

, that is, the local angle excess in # weighted by the area
�

of a small patch of surface
around # given by � ����� � # � or some subset of it (see Figure 3).

In spite of the introduction of a multi-resolution structure, the mentioned approaches
are usually sensitive to noise and small undulations, requiring smoothness conditions on
the input mesh. Furthermore, the smoothing process used to get stable and uniform cur-
vature estimations introduces a deficiency in the magnitude evaluation and, consequently,
difficulties in the accurate distinction between planar patches and curved surfaces with low
curvature. The local dependency of the curvature estimation (4) with respect to the � ����� � # �
of each vertex is shown in Figure 4.

FIGURE 4. Gaussian curvature and sensibility to local noise; red and
blue vertices represent elliptic and hyperboloic points.

4. GEOMETRIC AND TOPOLOGICAL CLASSIFICATION

The approach proposed here for describing a 3D shape integrates boundary and interior
information of the shape finalized at defining a complete multi-scale vertex classification.
The link between closed paths and curvature has suggested to specialize its study to the
family of closed paths built by intersecting the surface with spheres centered in each of
its points. The study of the evolution of these curves and the geometric characterization
of the mesh areas intersected by the spheres are the core of the proposed method. The
topology of the intersection curves changes according to the object shape: in Figure 5(a),
the highlighted sphere intersects the surface only at one curve, while in (b) the boundary
of the intersection area splits into two connected components. This is likely to happen, for
example, near handles and branches, or around deep pits. Therefore, the variation in the
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boundary suggests that the vertex is in the proximity of a feature, which becomes relevant
at the scale, or radius, at which the change occurs.

(a) (b)

FIGURE 5. The evolution of intersection for increasing radii.

Given a set of radii � � 
�� � ��
����
�� , each vertex of the mesh will eventually be clas-
sified with a � -dimensional vector of morphological labels, each corresponding to its type
at the related scale. Shape features of the mesh are then identified by connected regions
of vertices with the same label at a given scale, and the geometric parameters computed to
assign the label will characterize the feature. For example, a tip and a mount are both char-
acterized by one intersection curve, but they can be distinguished measuring the curvature
induced by the intersection curve on the surface (see Figure 6).

(a) (b)

FIGURE 6. A tip measured for a small radius (a) becomes a mount at a
larger radius (b).

Features which are identified by two intersection curves are further characterized by
measuring the relative curve length and by checking if they define a volume which is inside
or outside the shape (see Figure 7). These parameters, together with the persistence of type
through the scale values, can be used to distinguish global and local features with respect
to the scale range.
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(a) (b)

FIGURE 7. A handle (a) is distinguished by a narrow pit or through hole (b).

With reference to the properties of the obtained intersection curve � � # 
�� � � at scale
� � , # is classified according to the number of connected components of � � # 
�� � � , curva-
ture if � � # 
�� �)� has only one component, relative length if � � # 
���� � has two components,
and a concavity/convexity check in all cases. These classification criteria will be treated
separately in the following sections. The combination of these classifications leads to a
complete characterization of vertices, which expresses both geometric and morphological
properties of the surface. As far as this paper is concerned, only the decomposition is fully
described with less emphasis on the construction of the region adjacency graph which en-
codes the segmentation. In the following, the main steps of the classification procedure
are detailed. Then, the descriptors used to refine each class are introduced. We distinguish
between geometric descriptors, which are the surface curvature and the relative length of
the intersection curves, and the so-called status descriptors which distinguish between con-
cave/convex or empty/full features.

4.1. Classification based on intersections. Given a 3D mesh
�

and a set of radii � � 
�� �
��
�����
 � , let � � # 
�� � � be the sphere of radius � � and center # , and � � # 
�� � � the boundary
of the region of

�
containing # delimited by the intersection curves between the mesh and� � # 
 � � � . Other regions of intersection might occur, but only the one containing # is taken

into account. The first morphological characterization of the surface at a vertex # at scale
� � is given by the number of connected components of � � # 
����)� .

We consider the following cases:% � component: the surface around # can be considered topologically equivalent to
a plane (see Figure 8(a)),% �

components: the surface around # is tubular-shaped (see Figure 8(b)),% 3 or more components: in a neighborhood of # a branching of the surface occurs
(see Figure 8(c)).

In topological terms, two components identify a handle in the object, three or more
components highlight a split. If � � # 
�� � � is made by one component, the angles excess
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is computed and the vertex is classified as sharp, smooth or blend (see Section 4.2) . If� � # 
�� � � is made by two components, their lengths are used to distinguish between conic
and cylindrical shapes. For branching parts, no further geometric parameters are computed
(see Table 1).

(a) (b) (c)

FIGURE 8. Different number of connected components in the intersec-
tion boundary.

To run the process, a set of radii must be selected for the computation of the inter-
sections. The maximum and minimum radii ( � �  � and � � � � respectively) determine an
interval which is uniformly sampled according to the number of radii the user wants to use.
This step produces the values of � ��
 ��� � 
������
 � � � ( � % � � � � � � and � � � � � �  � ).
Both � � � � and � �  � can be defined by the user by means of a slider in the GUI; other-
wise, they are automatically set proportionally to the size of the object. More precisely,
� � � � is the minimum edge length and � �  � the half of the diagonal bounding box of the
object.

4.2. Curvature characterization. As described in Section 3, when � � # 
�� � � has only one
boundary component, the curvature at a point # , at scale ��� , is the angle excess of � � # 
�� � � .
Instead of using the angle excess, we use the length of � � # 
�� � � divided by the radius � � ,
i.e.

� ������� 	�
� ���� �������&� � � # 
�� ������, � � . Note that this value has the dimension of an angle
and it always assumes a positive value. Since we want to characterize the curvature of
a surface, vertices will be labelled as sharp, smooth, or blend points according to their
approximated curvature values by establishing some thresholds on the interval � � 
 *�� � .
We can distinguish the following cases:% sharp vertices: let us consider a cone surface, with spike point # and � � ��� 
 � , ���

the half amplitude of the cone. Intersecting the cone with a sphere centered
in # and with radius � � generates a circular curve of length

��� ������� �&� � � with� � � # 
�� �)� � ��� ���!�&� � � , which is an increasing function of � ����� 
 � , ���
: the

lower the value of � , the more the surface around # tends to a cone shaped point.
Intuitively, we consider # a sharp vertex if � " � ,�# and consequently the curva-
ture threshold is set to � � �%$ ���

.% smooth/blend: to distinguish between these two situations we observe that the sur-
face is smooth in a neighborhood of a point if its curvature continuously decreases,
becomes at first flat and then blend. Now consider the intersection between the
sphere and a plane; in this trivial case the length of the intersection curve is equal
to

��� � � and
� � � # 
�� � � � � �

; it follows that the threshold which discriminates
between smooth and blend is set to �'& � ���

.
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Summarizing, the characterization of a point # at scale ��� is set as follows:% � " � � � # 
�� � � " $ ��� � # is sharp,% $ ����� � � � # 
�� � � " ��� � # is smooth,% � � � # 
�� �)��� ���
: # is blend.

For example, see Figure 9.

FIGURE 9. Several cases of one intersection curve: note the relation
between the intersection curve lenght and the curvature of the surface in
the neighborhood of the center of the sphere.

4.3. Relative length characterization. Now consider the case of two connected compo-
nents in the intersection curve � � # 
�� �)� . As mentioned above, this means that # lies on
a region of the surface having an elongated shape, like a tubular protrusion or a handle
around a hole in the object. We can specialize this remark as follows: if the length of
the two intersection components is nearly the same, the shape at the scale � � can be ap-
proximately considered cylindrical; if one is much longer than the other, it means that the
shape may be seen as a conic part (see Figure 10). Let � % and � � be the two intersec-
tion components, and �)% , � � their lengths with ��%  � � . The shape is considered conical if
��%  � � � , cylindrical otherwise. The related threshold is � � � � , � thus guaranteeing that
the amount � � ,���% (belonging to � � 
�� � ) uniquely determines whether the local shape of the
surface around # is cylindrical or conic.

4.4. Status characterization. The extraction of morphological features on a surface is
based on different operators each of them providing a specific, e.g. geometric, topological,
approach to its description. For instance, in the case of one connected components in� � # 
�� � � , to discriminate between convex and concave vertices would lead to classify a
sharp point as a peak or a pit, a smooth point as a mount or a dip. Obviously, the distinction
between convex and concave does not make sense for blend points. For vertices with two
or more connected components in � � # 
 � � � , it is checked if the surface intersected by the
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(a) (b)

FIGURE 10. Example of conical (a) and cylindrical (b) parts of a trian-
gular mesh.

sphere encloses a volume which is inside or outside the object. In other words, a criterion
is used for distinguishing a handle from a deep tubular depression of the object.

Let us consider the case of one component first. As for curvature computation, concav-
ity/convexity evaluation at a vertex # of a triangular mesh is strongly affected by noise and
it depends on the local topology of the ������� � # � . The local approach is depicted in Figure
11: a given edge � shared by triangles � % , � � of a mesh is convex (resp. concave) if the
angle formed by � % , � � , inside the object, is less (resp. more) than

�
.

FIGURE 11. Edge concavity or convexity criterion.

Consequently, a given vertex # is defined strictly convex (resp. strictly concave) if all the
incident edges in # are convex (concave). Because in most cases the incident edges in # are
both convex and concave, the previous classification cannot be applied. Furthermore, point
coordinates can be slightly affected by noise resulting in a complete different classification.
For these reasons, the method adopted for assigning a convex or concave label to a vertex #
at scale � � again uses the intersection between the mesh and the sphere. In the case of one
connected component of the intersection curve, the center of mass � of � and the average
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normal � of the intersected triangles are computed. The vertex # is considered concave
(convex) at scale � � , if # lies below (resp. above) � , that is � % � � � # � � � (resp.

� � ),
where ‘ % ‘ denotes the inner product. We refer to Figure 12 for an easier understanding.

FIGURE 12. Configuration of the intersection curve normals around a
concave point.

Suppose now that � � # 
�� � � has two intersection components. Again we can distinguish
between the case in which the local shape is a tubular protrusion or a tubular well of the
surface (see Figure 13), in analogy with the property of convex/concave mentioned above
for points generating one intersection curve.

FIGURE 13. Example of a tubular through hole on a triangular mesh.

If the number of connected components of the intersection curve are two as in Figure
14(a), we consider the orientation of each component of � � # 
����)� as naturally induced by
the triangle orientation (see Figure 14(b)). It happens that if # lies on a tubular protrusion
of the surface, the normal vector of the average plane related to each connected compo-
nent of � � # 
�� � � is directed towards # (see Figure 14(c)) according to the right-hand rule;
if # appears on a tubular depression of the object, the vectors have opposite directions.
This statement holds for three or more connected components too, thus it is possible to
discriminate between a branch on the outer surface or a splitting cavity.
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(a) (b) (c)

FIGURE 14. (a), (b) Curve orientation derived by triangle orientation,
(c) average normal of intersecting curves.

5. ALGORITHM AND IMPLEMENTATION DETAILS

This section deals with the implementation details of the algorithm used for the sphere-
mesh intersection which is the core of the shape characterization. Throughout the discus-
sion we refer to the pseudo-code given at the end of the section.

The mesh is encoded by mean of a triangle-based data structure, which stores:% for each triangle, its three vertices and its three adjacent triangles, which represent
the Triangle-Vertex and Triangle-Triangle relations, respectively% for each vertex, its coordinates and one (arbitrary) of its incident triangles.

Actually the Vertex-Triangle relation ( � � ) associating to a vertex all its incident triangles
is necessary to navigate the mesh, but the memory space required can be strongly optimised
by coding just one of those triangles per vertex (partial Vertex-Triangle relation or � ��� ).
The total ��� relation can then be retrieved in linear time by iteratively apply the � �
relation starting from the stored triangle. A scheme of the data structure is given in Figure
15. The storage of this data structure requires � ����� �������
	�� �����	 �$� � *�� � ����� �������
	�� � � ��� � *
����� �������
	�� � � ��� � , since vertices and triangles occur in the � � , ��� and � ��� structures as
integers.

For each vertex � the computation of the intersection curves between the mesh and a set
of � spheres centered in � with increasing radii � % , ���� , � � is computed as follows:% one of the triangles incident in � is inserted in the queue � (this operation takes

constant time if we have the � ��� data structure) and it is marked as visited;% a triangle � is extracted from � and the main loop is repeated until � is empty;% the algorithm checks if the spheres intersect � : for each radius � � , if at least
two vertices # , � of � , distinct from � , satisfy the conditions � # � ��� � " ��� ,
��� � ��� �  ��� , � is intersected by the sphere � ��� 
 � �)� . This operation takes con-
stant time. In this case, � is considered as a seed triangle for tracing the whole
line of intersection whose continuation is searched in the triangles adjacent to� . The function intersection is thus invoked to complete the intersection curve
starting from � and moving on its neighbours intersected by �+� � 
�� � � . The curve����� � � 
�� � � is calculated considering the intersection points between the sphere
and each edge of � . More precisely, given an edge � � 
 � �

of � , we can parameterize
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(a)

(b)

FIGURE 15. Data structure organization; the information for the vertex
� � and the triangle ��� is highlighted as shown in (b).

it as � � � ��� � � � * � � � � � � , � " � " � ; the intersection points, if any, are located
as � � ��� � , � � � % � with ��� , � % solutions in � � 
� � of the equation � � � � � � � � �� � � �
of degree two in the unknown � . As shown in Figure 16, the length of � ��� 
 � � � , is
given by the sum of the composing arc lengths, each one belonging to an intersect-
ing triangle, and given by � ��� where � is the angle

�
��# � , � 
 � being the intersection

points. The call of this function increases the number of connected components of
the intersection line for a given radius. Moreover, the neighbours of the intersec-
tion triangles traversed but not marked, that is, those which lay outside � ��� 
 � �)�
but inside �+� � 
�� � � , are inserted in � ;% If � is not an intersection triangle and it lies inside the sphere of maximum radius� ��� 
 � � � , its neighbor triangles (if not marked) are inserted in � ; otherwise, it is
simply discarded.

The construction of a connected component of the intersection line may take as many
constant operations as the number of intersection triangles, i.e. � � � � � in the worst case.
However, in this implementation each triangle is visited only once: marking triangles when
they are inserted in � avoids to consider them more than once, and the intersection triangles
traversed during the execution of intersection are not stored in � . Therefore, the main loop
takes � � � � � , that is � � � � � ; doing this operation on the whole mesh takes � � � � � � time.
Note that if the step between the radii is low with respect to the average edge length, a
triangle can be easily intersected by more than one sphere, and the function intersection
could be invoked on the same triangle as many times as the number of radii. Anyway,
once the number � of radii is chosen this is a constant value, so that the loop (L) does not
increase the complexity.
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FIGURE 16. Approximated length of the intersection paths.

main() �
� ��� ;
(num. connected comp. for � � )=0;
for all � � � �

��� � ��� ��� � � ;
// main loop
while( ������ ) �� = first element removed from � ;

(L) for ( � � � � % 
�����
�� � )
if ( � ��� 
 � � ��� � � � � � � � � ��� � � " ���

& � � � � � � �  ��� ) �
intersection( � 
 � � , � );
( 	 connec. comp. for � � ) ++ ;

!
!

for all � � � � � � � �
if( � � is not marked 
 ( ��� � ����� � � � � � � � � � � � � " � � )

��� � � � ;!
intersection( � , � � , � ) �� � = intersectionLength( � , � � , � );� � � �� �!� ;
do � � � � �� � � � ��� � � � � � ��� � : � � � � ��� 
 � � � ���� � += intersectionLength( � � � ��� , � � );

if( � � is not marked & ( ��� � � � � ����
 � � : � � � � � � " � �  � ) )
��� � � � ;!

while( � � � ��� �� � );!
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TABLE 1. Morphological feature characterization.

Label Feature Color 	 � Geometric Status

T TIP red 1
� , � � " � � convex

P PIT blue 1
� , � � " � � concave

M MOUNT orange 1 � � � � , � � " � & convex
D DIP cyan 1 � � � � , � � " � & concave
B BLEND pink 1

� , � � � � & –
L LIMB yellow 2

� � , � %  � � full
W WELL violet 2

� � , � %  � � empty
J JOINT brown 2

� � , � % � � � full
F FUNNEL gray 2

� � , � % � � � empty
S SPLIT green  � – full
H HOLLOW-Y black  � – empty

6. MESH DECOMPOSITION

The focus of this section is the integration of the different characterizations, described in
Section 4 to achieve a unique segmentation of the input mesh into morphological features
represented by closed regions with uniform properties. In Table 1, a summary of the labels
assigned to vertices, for a given scale � � , is showed. According to this classification,
each vertex is assigned a label; then, with a region-growing procedure the input mesh is
decomposed into patches which correspond to shape features relevant at scale � � .

The morphological classification associates a vector of feature labels to each vertex,
and each label describes the vertex at the corresponding scale. Selecting the scale of inter-
est, the surface can be rendered using a color-coding of the feature labels. The achieved
decomposition is an affine-invariant segmentation into disjoint, non-empty subsets which
code the geometry and shape evolution through scale changes. In Figure 17 an example
is shown; the different views display the mesh decomposition at different scales, and the
colors are those related to Table 1. For each scale, a reference sphere is also drawn.

The tools defined above permit the analysis of a shape at different scales, and to derive
information about the persistence of a shape feature across the scale range. It is also pos-
sible to define a basic query language which allows to extract features defined by relations
between morphological labels at different scales. The combination of these relations using
logical operators enables the construction of a high-level language for shape interrogation
guaranteeing a multi-task model. In fact, the user is able to extract a single shape ele-
ment using a single query, to combine them and, in future improvements, to locally modify
the geometry, by using other surface patches, or modifying the topology by changing the
structure of the adjacency graph.

Currently, a coarse feature-based query language is available, which allows the user
to submit a query like “which are the vertices whose feature type is TIP at scale � � and
MOUNT at scale ��� ?”. To this purpose, a query vector with wild card ��� , where ����� � �
specifies the requested feature type at scale � � , and the AND/OR Boolean operators are
used. For instance, suppose we used a set of ten radii; the vector [*,*,T,*,*,M,*,*,*,*] with
the AND operator specify the previous query. Here, feature labels are those in Table 1, and
the symbol ‘*’ means that, at that scale, each feature type is allowed.
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FIGURE 17. Shape segmentation on the pot at different scales.

The results obtained (see Figure 18) suggest that further improvements of the query
language will allow the extraction of higher-level features, like handles or main body of a
given object. Tubular components can be extracted choosing LIMB OR JOINT vertices;
among them, handles correspond to cycles in the region adjacency graph, and protrusions
are adjacent to TIP or MOUNT zones. Selecting points which assume TIP OR MOUNT
OR DIP OR BLEND features at most levels of detail identify the main body of the object,
and so on. Using the described language, a mesh can be analyzed in a rather flexible way.

Instead, if we are willing to extract a global shape classification which takes into ac-
count the whole range of scales into a single decomposition of the mesh, the following
voting algorithm for persistence can be used. First, the points are classified according to
the intersection connectivity, that is, according to the number of single, double or multiple
components in the intersection boundary, considering the whole range of scales. The mesh
is therefore segmented in parts which are characterized by having either almost always
one intersection, or two or more. This step provides a first insight on features which are
persistently protrusion-like, handle-like or branch-like, without distinguishing if they are
convex/concave or full/empty. In Figure 19(a), the result of this segmentation is shown,
where the blue parts are composed by vertices having only one intersection for more than
the 75% of scales, the red are those having two intersections for the same threshold. Fi-
nally the grey areas are those corresponding to shape transitions where both one and two
intersections occur approximatively in the same percentage.

Within each of the resulting parts, a further classification can be done considering the
related geometric characterization. For example, in Figure 19(b), the shape vertices are col-
ored with different blue saturations depending on the curvature; a darker blue corresponds
to a higher curvature. An analogous criterion is applied to vertices with two intersections
using their relative length where a lighter red is related to cylindrical-like features. A
threshold bigger than

�����
can be selected for the persistency analysis in order to achieve
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FIGURE 18. Queries with matched points depicted in red. The use of
AND, OR operators among the scales is specified. The round parenthesis
work as OR between feature at the same scale.

a stronger identification of patches with one or two intersections; this choice generally
makes transition areas grow.

(a) (b)

FIGURE 19. (a) Persistence analysis based on the number of intersection
curves, (b) the previous classification is refined by geometric informa-
tion.
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7. METHOD INSIGHTS

In this section several considerations on the algorithm are discussed comparing the
multi-resolution description with that achieved with the persistency algorithm.

With the proposed strategy, the curvature is analyzed in a neighborhood whose size
depends on � � : for small values of � � , such as the average length of the edges incident
in # , the curvature approximation resembles the discrete curvature estimation proposed
in [2] and suffers for the same problems while, for increasing values, it becomes more
stable to noise. In Figure 20, the feature decompositions obtained on the rabbit and on the
same data set with added noise are compared. The main features, like tips and limbs, are
preserved: the influence of the thresholds involved is lessened by the persistence analysis.
The multi-scale decomposition depends on the chosen set od radii, and if a too small radius
leads to noise problems on the other hand, a too large radius can give a meaningless result.
Small radii can be used to determine detail features while bigger ones are able to capture
global characteristics of the surface. From these considerations, it follows that the choice
of � � is related to the scale of the features which have to be extracted, and the use of a
set of increasing radii is suitable for performing a multi-scale analysis of the shape. The
previous considerations have been tested by evaluating the multi-resolution curvature on a
torus with two radii: � � equal to the minimum edge of the input mesh and

� ��� . Curvature
values achieved with � � corresponds to the theoretical point classification into parabolic,
hyperbolic and elliptic regions on the torus (see Figure 21(a)). Increasing the radius, i.e.
choosing

� � � , results in a similar classification where parabolic points, identified as the
boundary between hyperbolic and elliptic ones, are shifted with respect to their theoretical
position represented by the green line (see Figure 21(b), (c)) .

The multi-resolution curvature evaluation can be used for segmenting the input surface
grouping those points which share a common value with respect to a given threshold � and
a radius � � , i.e.

# 
 � belong to the same patch ���
� � � � # 
�� � � � � � ��� 
 ��� � � " � �

This approach is commonly applied by segmentation methods based on curvature. On the
other hand, the refined segmentation into morphological features is meaningful in all those
cases where the object admits a decomposition into these building patches. As underlined
in Figure 22, detailed features are better recognized using simply the multi-resolution cur-
vature evaluation, because in such case a decomposition into features, such as limbs and
tips, is not meaningful.

8. CONCLUSIONS AND FUTURE WORK

The evolution of intersection curves produced by blowing bubbles at mesh vertices has
been proved to be a good approach to characterize a shape using meaningful shape features.
Increasing the radius of the bubbles produces an easy and efficient multi-scale analysis of
the shape, which can be effectively used to produce a set of specific and flexible tools for
shape analysis. The resulting description is an affine-invariant segmentation of disjoint,
non-empty subsets and equally distributed in all directions, which codes the geometry and
shape evolution through scale changes. Finally, the decomposition is algorithmically af-
fordable and coherent with respect to previous work on these topics. The extracted infor-
mation has a more general usefulness which is suitable not only for segmentation but also
for the definition of a shape abstraction tool and of an editing model for triangular meshes.
For example, it can be used to find the seed points for the construction of an affine-invariant
skeleton [13] which represents the input for a wide class of applications such as matching
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(a) (b)

(c) (d)

FIGURE 20. (a), (b) Shape segmentation and percistence analysis on
the original rabbit, and (c), (d) on the model with added noise. Achieved
segmentations based on persistence analysis are nearly identical.

(a) (b) (c)

FIGURE 21. (a) The point classification corresponding to � � chosen as
the minimum edge: red and blue vertices locate elliptic and hyperbolic
points while the green line visualizes the theoretical parabolic line, (b),
(c) the point classification with radius

� � � .

and topological characterization of 3D-shapes. Figure 23 shows all the steps of the frame-
work. Future developments will mainly focus on the definition of a feature adjacency graph
and on the study of its evolution within the scale range required.
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(a) (b) (c)

FIGURE 22. Feature decomposition on the dragon at three different scales.
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(a)

(b) (c)

(d) (e)

FIGURE 23. Global framework: (a) curvature estimation on the horse
with different radii, (b) peak regions are extracted with a query, (c) re-
gions selected in (b) are used as seed points for extracting the skeleton,
(d), coarse persistence analysis, (e) refined persistence analysis.


