Skip to main content
Log in

Disk Embeddings of Planar Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a planar graph $G=(V,E)$ and a rooted forest ${\FF}=(V_{\FF}, A_{\FF})$ with leaf set $V$, we wish to decide whether $G$ has a plane embedding $\GG$ satisfying the following condition: There are $|V_{\FF}|-|V|$ pairwise noncrossing Jordan curves in the plane one-to-one corresponding to the nonleaf vertices of ${\FF}$ such that for every nonleaf vertex $f$ of ${\FF}$, the interior of the curve $\JJ_f$ corresponding to $f$ contains all the leaf descendants of $f$ in ${\FF}$ but contains no other leaves of ${\FF}$. This problem arises from theoretical studies in geographic database systems. It is unknown whether this problem can be solved in polynomial time. This paper presents an almost linear-time algorithm for a nontrivial special case where the set of leaf descendants of each nonleaf vertex $f$ in ${\FF}$ induces a connected subgraph of $G$.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Zhong Chen or Xin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZZ., He, X. Disk Embeddings of Planar Graphs. Algorithmica 38, 539–576 (2004). https://doi.org/10.1007/s00453-003-1055-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-003-1055-0

Navigation