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Abstract

In this paper, we give upper and lower bounds on the number of Steiner points required to
construct a strictly convex quadrilateral mesh for a planar point set. In particular, we show that
3| 5| internal Steiner points are always sufficient for a convex quadrilateral mesh of n points in
the plane. Furthermore, for any given n > 4, there are point sets for which (“7_3] — 1 Steiner
points are necessary for a convex quadrilateral mesh.

1 Introduction

Discrete approximations of a surface or volume are necessary in numerous applications. Some
examples are models of human organs in medical imaging, terrain models in GIS, or models of
parts in a CAD/CAM system. These applications typically assume that the geometric domain
under consideration is divided into small, simple pieces called finite elements. The collection of
finite elements is referred to as a mesh. For several applications, quadrilateral/hezahedral mesh
elements are preferred over triangles/tetrahedra owing to their numerous benefits, both geometric
and numerical; for example, quadrilateral meshes give lower approximation errors in finite ele-
ment methods for elasticity analysis [fl, B] or metal forming processes [[3]. However, much less
is known about quadrilateralizations and hexahedralizations and in general, high-quality quadri-
lateral/hexahedral (quad/hex) meshes are harder to generate than good triangular/tetrahedral
(tri/tet) ones. Indeed, there are several important open questions, both combinatorial as well as
algorithmic, about quad/hex meshes for sets of objects such as polygons, points, etc., even in two
dimensions. Whereas triangulations of polygons and two-dimensional (2D) point sets and tetra-
hedralizations of three-dimensional (3D) point sets and convex polyhedra always exist (not so for
non-convex polyhedra [P4]), quadrilateralizations of 2D point sets do not. Hence it becomes neces-
sary to add extra points, called Steiner points, to the geometric domain. This raises the issue of
bounding the number of Steiner points, and hence the mesh complexity, while also providing guar-
antees on the quality of element shape. Such problems are especially relevant for applications in
scattered data interpolation [f, [[§, [Lf], which require quadrilateral meshes that modify the original
data as little as possible, i.e., add few Steiner points.
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A theoretical treatment of quadrilateral/hexahedral meshes has only recently begun [, fi, L0,
iid, 24, BT, PJ. Some work on quadrangulationsf] of restricted classes of polygons has been done in
the computational geometry community [f, [[4, [[7, B3]. However, there are numerous unresolved
questions. For example, even the fundamental question of deciding if a 2D set of points admits a
convex quadrangulation without the addition of Steiner points, is unsolved. A survey of results on
quadrangulations of planar sets appears in [R§].

Any planar point set can be quadrangulated with at most one Steiner point, which is required
only if the number of points on the convex hull is odd [[7]. For planar simple n-gons, |n/4] internal
Steiner points suffice to quadrangulate the polygon [RJ]. In both cases, the quadrilaterals of the
resulting mesh will be, in general, non-convex. However, for many applications, an important
requirement is that the quadrangulation be strictly convez, i.e., every quadrilateral of the mesh
must have interior angles strictly less than 180°. A natural problem then is to construct strictly
convex quadrilateral meshes for planar geometric domains, such as polygons or point sets, with
a bounded number of Steiner points. Some results on convex quadrangulations of planar simple
polygons are known. For example, it was shown in [[[]] that any simple n-gon can be decomposed
into at most 5(n — 2)/3 strictly convex quadrilaterals and that n — 2 are sometimes necessary.
Furthermore, circle-packing techniques [4, [, [L§] have been used to generate, for a simple polygon,
quadrilateral meshes in which no quadrilateral has angle greater than 120°. For planar point sets,
experimental results on the use of some heuristics to construct quadrangulations with many convex
quadrangles appear in [f]. In [1J], it is shown that a related optimization problem, namely finding
a minimum weight convex quadrangulation (i.e. where the sum of the edge lengths is minimized)
can be found in polynomial time for point sets constrained to lie on a fixed number of convex
layers.

In this paper, we study the problem of constructing a strictly convex quadrilateral mesh for
a planar point set using a bounded number of Steiner points. We use “convex-quadrangulate” to
mean “obtain a strictly convex quadrangulation for”. If the number of extreme points of the set is
even, it is always possible to convex-quadrangulate the set using Steiner points which are all internal
to the convex hull. If the number of points on the convex hull is odd, the same is true, assuming
that in the quadrangulation we are allowed to have exactly one triangle. We provide upper and
lower bounds on the number of Steiner points required for a strictly convex quadrangulation of a
planar point set. In particular, in Section fl, we prove that for any n > 4, [“7_3} — 1 Steiner points
may sometimes be necessary to convex-quadrangulate a set of n points. In Section [, we prove that
3| % internal Steiner points are always sufficient to convex-quadrangulate any set of n points.

2 Lower bound

In this section we describe a particular configuration of m 4+ 3 > 4 points which requires at least
[5F] — 1 Steiner points to be convex-quadrangulated. We also show a convex-quadrangulation of
the set that uses close to that few Steiner points.

Description of the configuration of points: The configuration of m + 3 points consists of m + 1 points
placed along a line £, with one point above the line and another point below the line, such that

In this paper, we use the term quadrangulation interchangeably with quadrilateralization. Both terms are
common in the meshing literature.
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the convex hull of the set has 4 vertices, namely the extreme points on the line and the top and
bottom points (see Figure [[). We refer to the vertices on { as line vertices. We will refer to the
entire configuration as S.

0 - -0 -0 -0 -0 -0 -0 -0 -C- -0 -0 -0 -C- -0 -0 -0

‘o

Figure 1: The point set S has m + 1 points along the line, plus the top and the
bottom points. Its convex hull is a quadrangle.

Consider any strictly convex quadrangulation C of the set. Since all the quadrangles in C are
strictly convex, each point on { must belong to at least one edge of the quadrangulation lying
strictly above the line, and at least one edge lying strictly below the line. Quadrangulation edges
incident on an input point and lying above (below) ¢ will be called upward (downward) edges.

Figure 2: Relevant upward and downward edges.

Consider two consecutive points a; and a; on £ with a; to the left of a,. Let u; be the clockwise
last upward edge incident on a;, and let u, be the counterclockwise last upward edge incident on
a,. Symmetrically, let d; be the counterclockwise last downward edge incident on a; and let d;
be the clockwise last downward edge incident on a, (see Figure [). If (a7, a;) is an edge of C,
then it must form one quadrangle of C together with u; and u;, and another one with d; and d,.
We call these two faces squares. If (a;,a;) is not an edge of C, u; and d; must belong to the
same quadrangle, and so must also u; and d;. If these two quadrangles are the same, we call it
a diamond. If they are different, we call them a pair of half-diamonds. These three cases are
illustrated in Figure §.

2.1. Theorem. The point set S requires at least [5F|—1 Steiner points to be convez-quadrangulated.
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Figure 3: Squares, diamonds and half-diamonds.

Proof. Consider the graph G = (V,E) formed by taking the union of all the squares, diamonds
and half-diamonds, together with the convex hull edges. This graph, which is a subgraph of C, is
planar and its faces consist of the squares, the diamonds, the half-diamonds, and possibly some
other faces that we will call “extra faces”. Its edges are all square, diamond, half-diamond, or
convex hull edges. Let q be the number of squares, d the number of diamonds and h the number
of half-diamonds. We have

_q h
m—z—i-d—i-z. (1)

Let v, e, f denote the number of vertices, edges and faces of G. Let s be the number of vertices
that did not belong to the original set, i.e., the number of Steiner points in C. Let x be the number
of extra faces. We have v < m+ 3+ s (because not every Steiner point need be a vertex of G), and
f=q+d+h+x. Since G is planar, we can apply Euler’s formula and ([l) as follows:

v+f=e+2
(m+3+s)+(gq+d+h+x)>e+2

3 3
> — _Z — —h — —

Now, if we can prove that

7 5 7
> e Z
e_4q+2d+4h+x, (2)
we will obtain that
sEe—%q—Zd—%h—x—]
7 3 5 7 3
> (L _ 2 L R | A
>(§-3)a+ (3 -2d+(§-h—1
_49,4,h y_m_
=4 tyty1=5"1
> {TW —1 (because s must be an integer).

The general scheme to establish ([]) will be to partition the edges of (quadrangles in) G into

three sets, and then charge each edge to the faces bounded by the edge. The classification of edges
and the charging scheme are as follows:
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e Line edges: edges with both endpoints on the line {. Each such edge is shared by a pair of
squares. Fach square gets charged 1/2.

e Steiner edges: edges with neither endpoint on the line {. Each such edge charges 1/2 to each
of the faces that it bounds.

e Vertical edges: edges with exactly one endpoint on the line {.

- If a vertical edge is shared by two diamonds, each diamond gets charged 1/2.

- If it is shared by a diamond and an extra face, the diamond gets charged 3/4 and the
extra face gets charged 1/4.

- If it belongs to a square or a half-diamond, the square or half-diamond gets charged 3/8,
and the other face gets charged 5/8. Notice that in this last case the total charge is
less than 1 when the edge is shared by squares and/or half-diamonds.

As a result, each face of G gets charged in the following way:

e Each extra face is charged at least 1, since it has at least four edges (recall that G is a subgraph
of the quadrangulation C) and is charged at least 1/4 from each edge.

Each square is charged 7/4: 1/2 from its line edge, 1/2 from its Steiner edge, and 3/8 from
each of its two vertical edges.

Each half-diamond is charged 7/4: 1/2 from each of its two Steiner edges and 3/8 from each
of its two vertical edges.

Each diamond is charged at least 5/2. Notice that if a diamond « shares one upward vertical
edge (aj,u;) with another diamond or half-diamond (3, then it must share the coincident
downward edge (a,d;) with an extra face, since no square, diamond or half-diamond could
share it. This is because (7) « obviously cannot share (aj,d;) with  because of strict
convexity, and (%) « cannot share (a;,d;) with any other diamond, square, or half-diamond
face because such a face would intersect 3. For the same reasons, if a diamond shares a
downward edge (aj,d;) with another diamond or half-diamond, the coincident upward edge
(a7,uq) must be shared with an extra face. So, if the diamond is adjacent to another diamond,
it is charged at least %—I—% = % from the two edges incident on that line vertex. If it is adjacent
to a pair of squares, it is charged g + g = %. Any other combination would charge more. In
total, the diamond gets charged at least 5/2.

This proves that

7 7 5
e > Zcharges:x—l— Zq+1h+ Ed'

2.2. Theorem. The point set S can be convez-quadrangulated with s < {mT”] Steiner points.
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Vm+1

b

Figure 4: A convex quadrangulation of S using [5] Steiner points.

Proof. It is possible to convex-quadrangulate the given point set configuration with s Steiner points,
where
> +1, fm=0 ( )
S: mil ) ifm=1 (mod4) <{mi§w
>+ 2, fm=2 (mod4) | 2
( )

mtl if m=3

A solution is presented in Figure /] , where the original points are shown in black and the Steiner
points in white. This solution can be described as follows. Let vi, 1 € {1,..., m + 1} be the points
on the line ¢, and t and b the top and bottom points. Place one Steiner point s below {, inside the
convex hull and in L(b,v;) NR(b,vy). Quadrangles bsvov; and bvy,, ; vms, both of which are
strictly convex, are part of the quadrangulation. We call the line segment vivi,; (not necessarily
part of the quadrangulation) the ith virtual edge e;. Suppose m =4k + 1, 0 < r < 3. Starting
from both ends of 1, 2k Steiner points p; are placed alternately above and below every other virtual
edge on £. More precisely, for 1 <1i < k place a Steiner point p; above (resp. below) ey; if i is odd
(resp. even). In both cases ensure p; is in the intersection of the wedges v,itvoi1 and vaisvaii1.
Connect p; to t (i odd) or s (i even), and to v,; and vi;1. Connect v, to vy;. Carry out the
analogous procedure starting with the rightmost virtual edge. After placing 2k Steiner points,
we are left with r “untreated” virtual edges e}, e5,...e;, in the center. If r < 2, we place Steiner
points as follows: one point above (resp. below) each e{ if k is odd (resp. even). If r = 3 then we
place point below (resp. above) e} if k is odd (resp. even). In all cases we insure the the Steiner
point is within the two wedges defined by the virtual edge, s and t. The strict convexity of the
quadrangles created by this procedure is ensured by placing each Steiner point in the intersection
of these two wedges. The fact that the number of Steiner points used in these quadrangulations is
off by a small constant from the bound given by our charging scheme is explained by the charges
on the extra faces (drawn shaded in Figure [f]). In these cases, the extra faces actually get charged
more than 1, whereas we count a charge of only 1 for any extra face of the quadrangulation when
proving the lower bound. ]
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m =4k +1

Figure 5: Convex quadrangulations for any parity of m (shaded faces are extra faces).

A7

Figure 6: The point set P has n/2 points on the convex hull, and n/2 interior points lying very
close to edges of the convex hull.
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Theorem P.1] uses a highly degenerate configuration, where most of the points lie on a straight
line. It turns out that the same lower bound result cannot be obtained from this point configuration
if it is perturbed: if the points do not lie on a straight line, then squares can be formed using only
input points (i.e., without using Steiner points), and so can diamonds. It turns out that there
exist analogous configurations with m + 1 points on an arbitrary upward convex curve (instead
of a straight line), where the point set can be convex-quadrangulated with a constant number of
Steiner points. We now describe a perturbable (i.e. non-degenerate) point set configuration that
requires at least 7 Steiner points for a strictly convex quadrangulation.

Description of the perturbable configuration of points: Let n = 2k. Place k points in convex position.
Place the remaining k points such that, for each edge e of the convex hull, there is one point
lying in the interior of the convex hull, very close to the midpoint of e. To be more precise, if
(ai, aiy1) is an edge of the convex hull, the new point b; must be located so that a;,» € L(ay, by)
and a;i_1 € R(ay41,by), as illustrated in Figure f. Call this point set P.

2.3. Theorem. The point set P requires at least 7 Steiner points to be convez-quadrangulated.

Proof. By definition, each convex hull edge (ai, ai,1) must belong to one quadrangle Q;. For Q; to
be convex and not contain any interior point, its remaining two vertices must belong to the region
G(i) = R(ay,by) U L(aj,1,b;); one of these vertices may be b; (see Figure f|). Hence, for every
convex hull edge there is at least one Steiner point in region G(i). Since only consecutive regions
intersect, at least one Steiner point is needed for every pair of convex hull edges, i.e. at least 7
Steiner points are needed. ]

Figure 7: A convex-quadrangulation of P that uses 7 + 1 Steiner points.

2.4. Theorem. P can be convez-quadrangulated with at most 7 + 1 Steiner points.

Proof. Figure [ shows a convex-quadrangulation of the set that uses % + 1 Steiner points. There
is one quadrangle for every convex hull edge a;jai;7. It has b; as a vertex and uses one Steiner
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point, which is shared by the adjacent convex hull edge. Finally, one central Steiner point is used
to convex-quadrangulate the remaining interior face.

In this configuration n is always even. If n = 2 (mod 4), then we have an odd number of points
on the convex hull, and [ 7] Steiner points suffice to convex-quadrangulate with an extra triangle,
formed by one of the convex hull edge and its corresponding interior point. ]

3 Upper bound

Given a set S of n points in the plane, conv(S) is the convex hull of S. For a simple polygon P,
int(P) denotes the interior of P and kernel(P) is the locus of points in P that can see all of P. A
convez quadrangulation of S is a decomposition of conv(S) into strictly convex quadrangles and
at most one triangle, such that no cell contains a point of S in its interior. The vertices of the
quadrangulation that do not belong to S are called Steiner points. In what follows, angles greater
than or equal to 180° are reflez angles.

Figure 8: A path triangulation of a point set

3.1. Theorem. Any set of n points can be conver-quadrangulated using at most 3| 5| Steiner
points.

Proof. Any set S of n points has a path triangulation (a triangulation whose dual graph has a
Hamiltonian path), which can be constructed in O(nlogn) time [B, [ (Figure [ illustrates such a
triangulation of a point set). Denote by t the number of triangles in any triangulation of n points
with h extreme points (t = 2n —2 — h). By pairing up the triangles along the path, we obtain
a path quadrangulation of S with possibly one unpaired triangle (see Figure ). We will prove in
Section B.J that it is always possible to convex-quadrangulate a pair of consecutive quadrangles
by using at most 3 internal Steiner points. At the end of the process we may have any of the
following situations:

e There is no unpaired triangle (¢.e., h is even) and all the quadrangles have been paired up. In
this case, a convex-quadrangulation has been obtained with no leftover triangle. Therefore,
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Figure 9: The triangles of Figure |g paired to form a (not necessarily convex) quadrangulation

the number of quadrangles is q = % =n—1-— %, and the total number of Steiner points used
ss=3q=3n—-1-5)<3|5].

e There is one unpaired triangle (z.e., h is odd), all the quadrangles have been paired up. In
this case, the number of quadrangles is q = %, which is less than in the previous case. Once
again, the number of Steiner points s = 3q < 3|3 ].

e There is no unpaired triangle and all the quadrangles except one have been paired up. In
this case, the last quadrangle can be convex-quadrangulated, if it is not convex, by adding
4 internal Steiner points (see page PJ for details). Since all quadrangles except one have
been paired up, the number of Steiner points used is s = %(q -1 +4 = %(% —1)+4 =
Sn—2—5%)+4<3n—3h+1<3|3] since h > 4.

e There is one unpaired triangle, and all the quadrangles except one have been paired up.
We can convex-quadrangulate the remaining quadrangle with 4 Steiner points as before, and
leave the triangle as it is. In this case, we have q = 5! and s = 3(q — 1) +4 < 3|5/ (as

argued in the previous case).

Note that the number of quadrilaterals in the quadrangulation is at most 5| 3| — 2. Note also that
the quadrangulation produced by our algorithm is strictly convex, even if the path quadrangulation
contains degenerate quadrilaterals. ]

3.1 Pairing up quadrangles

Before discussing the details of how to convex-quadrangulate a pair of adjacent quadrilaterals,
we introduce some notation and mention a few useful facts about polygons. Given two points p
and q, we will denote by L(p,q) (resp. R(p,q)) the left (resp. right) open half-plane defined by
the oriented line from p to q. Throughout this section, vertices of polygons will be enumerated
counterclockwise. Given a vertex v of a polygon P, we denote its successor (resp. predecessor) by
vt (resp. v7), and we write wedge(v) to mean L(v—,v) NR(v",v) Nint(P). If v is reflex, wedge(v)
will denote the locus of points (inside P) that can be connected to v forming strictly convex angles
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at v. If v is convex, wedge(v) is the interior of the visibility region of v in P. Given three points
P, q, and 1, A(pqr) is the open triangle defined by the three points, i.e. A(pqr) = int conv(p, q,1).
Note that

int kernel(P) = N,epL(v,v7). (3)
We can observe the following
wedge(vi) = L(vi,vi) N R(v{,vi)
= L(V;,Vl) N L(VI,V?)

It follows that

int kernel(P) = ﬂ wedge(vai) . (4)
i
Similarly, by noting that if vy ... vy form a reflex chain,
() Lviyviy) = L{vo,vi) N L(vic1,vid)
0<i<k
it follows that
int kernel(P) = ﬂ wedge(v) . (5)

vV convex

Figure 10: The union of a pair of adjacent quadrangles is either a hexagon or quadrangle with a
fifth interior point.

Consider a pair of consecutive quadrangles in the path quadrangulation. They may share one
edge or two edges. In the first case, their union is a hexagon, while in the second case it is a
quadrangle containing a fifth point in its interior (see Figure [[0). In the rest of this section we will
examine in detail how to convex-quadrangulate the union of two quadrangles. The general scheme
will be inductive, i.e. to reduce each case to one requiring fewer Steiner points by the addition of a
single Steiner point. Table [l| provides a summary of all the cases and their interdependencies. Most
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# of Steiner points
0
1
)
o)
rcrcce 4 1

2 reflex< rrcccc— 2
6 points rccrec — 2

1 reflex——~rccec

1

i of rererc = 3

adjacent 2
quadrangles 3reflex/—rrerec < 3)>

rrrccc——3

5 points 3

Table 1: Scheme of the proof.
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of the cases are given a mnemonic label describing the cyclic order of reflex and convex vertices
around the polygon boundary and the total number of Steiner points necessary (e.g. rcrerc-1
describes the case where reflex and convex vertices alternate and one Steiner point suffices to
convex-quadrangulate the hexagon). The last column reports the number of Steiner points used
in each case. The arrows on the right indicate the reductions, after adding one Steiner point, from
one case to another. As is suggested by Table [l, the majority of our effort in the remainder of this
section will be devoted to proving the following theorem.

3.2. Theorem. Any hezagon can be convez-quadrangulated by placing at most 3 Steiner points
in its interior.

The curious reader is referred to Figure [1]] for a convex quadrangulation resulting from applying
our techniques to the point set of Figures [, [, and [[J. In the figure the white points are Steiner
points.

Figure 11: A convex quadrangulation resulting from applying our techniques to the point set of

Figures B, f, and [L0.

3.1.1 Independent Triples

We call a set of vertices of a polygon independent if no two of them are endpoints of the same edge.
We start by establishing some useful properties of independent triples of vertices of a hexagon. All
lemmas in this section hold even when reflex angles are exactly equal to 180°. Let {a,c,e} be an
independent triple for a hexagon P = abcdef.

3.3. Lemma. If A(ace) C P then /A(ace) N wedge(a) = A(ac’e’), where c’e’ C ce and ¢’ # €’.

Proof. It suffices to establish that ce N wedge(a) is a non-trivial line segment. The result then
follows by convexity. If a is convex, then ¢ and e are in the visibility polygon of a, i.e. in wedge(a).
Suppose then that a is reflex. If one of ¢ or e is contained in wedge(a) then the lemma holds. If
neither ¢ nor e belongs to wedge(a), then they cannot both belong to R(a™,a) (resp. L(a™, a))
because then a™ (resp. a™) cannot see ¢ or e, which is a contradiction because a=— (resp. a’™)
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must be ¢ or e, since a, ¢ and e are at distance two. Therefore, ¢ and e must be on opposite
sides of wedge(a) (i.e., one in R(a™, a) and the other in L(a*, a)), and the segment ce must have
non-trivial intersection with wedge(a). m

3.4. Lemma. If A\(ace) C P then wedge(a) N wedge(c) N A(ace) # 0.
Proof. This follows by applying Lemma B.3 twice, and convexity. ]
3.5. Lemma. If A(ace) C P then A(ace) Nwedge(a) N wedge(a™) # 0.

Proof. Note that a™ and a— must both be convex (or exactly 180°). It follows that in a neighbor-
hood N(a) of the point a, we have N(a) Nwedge(a) = N(a) Nwedge(a ) Nwedge(a™), and Lemma
B.3 applies. n

3.6. Lemma. If P is starshaped and A(ace) C P, then one Steiner point suffices to convez-
quadrangulate P.

Proof. From (f), int kernel(P) = wedge(a)Nwedge(c)Nwedge(e). Each pair of these wedges intersect
A(ace), as a consequence of Lemma B.4. Each pair of wedges intersects as a consequence of
Lemma B.§. In this case we consider the wedges extended to the entire plane, and not restricted to
the polygon. Since both the triangle and the (extended) wedges are convex, Helly’s theorem [R§]
applies. It follows they all intersect, i.e. the triangle A(ace) must intersect the interior of the
kernel.

One Steiner point s can then be placed in the intersection of the triangle and the kernel, and
connected to the three reflex vertices (see Figure [[J). Since s belongs to the kernel, it belongs to
the wedges of the three reflex vertices, hence a,c, and e are now strictly convex vertices in the
quadrangulation. Since s belongs to AA(ace), s is convex in all the quadrangles. ™

3.7. Lemma. If ¢ does not see e, and a s the only reflex verter other than possibly c or e, then
(a) wedge(a) N wedge(c) # 0, and
(b) wedge(a) C L(a,c).

Proof.

(a) Since b and f are convex, a € A(cde), since otherwise nothing can block ce (notice that both
abc and aef are ears of the polygon). Similarly, the (non-convex) quadrangle acde must be
empty (see Figure [[3). It follows that a sees {c,d,e}. We can conclude that a € R(d,c) (by
seeing d) and a € L(b,c) (by seeing c and d). In other words, a € wedge(c). The claim then
follows from the fact that for some neighborhood N(a), N(a) N wedge(a) C wedge(c).

(b) Since a € A(cde), it follows that e € R(a,c). Again considering the fact that aef forms an ear
of the polygon, we have f € R(a,c). It follows that both of the chords defining wedge(a) are
contained in L(a,c). m
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b

Figure 12: One Steiner point suffices if A(abc) C P and P is starshaped.

Figure 13: Illustrating the proof of Lemma B.7

15
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3.1.2  Proof of Theorem B.3.

We are now ready to carry out the case analysis described in Table [ A hexagon may have zero,
one, two, or three reflex vertices; we consider each of these cases in turn. In the remainder of this
section, we will use conver to mean strictly convez.

Hexagon with no reflex vertices. In this case, the hexagon can be trivially decomposed into two
convex quadrangles without using any Steiner points.

Hexagon with one reflex vertex. Suppose w.l.o.g. that vertex a is reflex.

1. (rcccce—0) If d € wedge(a) then no Steiner points are needed. Connecting d with a will
produce a convex quadrangulation of the hexagon, as shown in Figure [14. Note that if vertex a
is equal to 180°, this case must be satisfied.

b

Figure 14: No Steiner points needed.

2. If d ¢ wedge(a), then d must lie on one side of wedge(a) (i.e., d € L(b,a) or d € R(f,a)), and
at least one of e or ¢, w.l.o.g. e, must lie on the same side (since both e and c are convex).

2.1. (rcccce—1) If ce C P, by Lemma [B.6 one Steiner point is sufficient.

2.2. (rcccec—2) If ¢ and e do not see each other, two Steiner points are enough. Placing a Steiner
point s in wedge(a) and connecting it to a and ¢ decomposes the hexagon into a quadrangle
abcs and a hexagon ascdef (see Figure [§). The quadrangle is convex: a is convex because
s € wedge(a). The vertex s is convex because ¢ € R(f,a) (c & L(f, a), because then ¢ and e
would see each other) and hence ¢ € R(a,s). The hexagon ascdef is as in the previous case
rccece-1 (d and f necessarily see each other because of our assumption that d and e lie on the
same side of wedge(a)) and hence can be quadrangulated with one additional Steiner point.

Hexagon with two reflex vertices. There are several different cases, depending on the relative positions
of the two reflex vertices in the polygon boundary.
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b

Figure 15: One Steiner point reduces case rccccc-2 to case rcccce-1.

Figure 16: One Steiner point reduces the problem to the one reflex vertex case.

17
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1. (rcrccc) Suppose that the two reflex vertices are separated by a convex vertex of the polygon.
Let us assume that a and c are the reflex vertices of the hexagon abcdef. There are two sub-cases.

1.1. (rcrccc—1) 1If both a and c can see e, then one Steiner point is enough. Note that since e
is convex A(ace) C wedge(e). By Lemma B.4 wedge(a) N wedge(c) N A(ace) # (. It follows
from (), that the hexagon is starshaped. We can then apply Lemma 3.6.

1.2. (rcrccc—83) Otherwise, one of the reflex vertices, w.l.o.g. a, obstructs the visibility from the
other reflex vertex to e. We show that 3 Steiner points suffice. By Lemma .7 wedge(a) N
wedge(c) N L(a,c) # (). Place a Steiner point s in this region and connect it to a and c (see
Figure [[§). The quadrangle abcs must be convex: a and c are convex because s belongs to
their wedges. The vertex s is convex because it belongs to L(a,c). The remaining hexagon
has only one reflex vertex s, hence can be convex-quadrangulated with at most 2 additional
Steiner points.

2. (rrcccc—2) If the two reflex vertices are consecutive, then two Steiner points are always suf-
ficient. Let a and b be the two reflex vertices. Notice that since there are only two consec-
utive reflex vertices, a must necessarily see e, and b must see d. Place one Steiner point s in
wedge(a)NR(a, e)NL(b, d). This region is not empty because de € L(b, d), and wedge(a)NR(a,e)
contains a subset of the edge de (this can be seen by noting that either d or e belong to wedge(a),
or they lie on opposite sides of wedge(a)). Connect s to a and e (refer to Figure [7). The quad-
rangle asef must be convex: a is convex since s € wedge(a), and s is convex because s € R(a, e).
The remaining hexagon has two reflex vertices, namely s and b, separated by a convex vertex a.
Both s and b can see d, since s € L(b, d). This is the rcrcce-1 case, which requires one additional
Steiner point.

d

Figure 17: One Steiner point reduces the problem to the rcrcce-1 case.

3. (rccrcc—2) We are left with the case in which there are two convex vertices between the two
reflex vertices, both clockwise and counterclockwise. In this case, two Steiner points suffice.
Let a and d be the reflex vertices. We will use the fact that either the two diagonals ae and
bd are internal to the polygon or ac and df are. The reason is that if ac is obstructed by d,
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b

Figure 18: One Steiner point reduces rccrcc-2 to rcrece-1 case.

then d belongs to A(abc) (recall that a,b,c,d are consecutive) and must see b, which implies
that diagonal ae cannot be obstructed. A symmetric argument holds if df is obstructed by a.
Let us assume that ae and bd are internal diagonals (see Figure [l§). Then one Steiner point
s can be placed in wedge(a) N R(a,e) NL(b,d). This region can be seen to be nonempty as
follows: from the convexity of f, f must belong to L(a,e) and hence R(a,e) N wedge(a) # 0.
In fact R(a,e) N wedge(a) contains a neighborhood of a, which is in turn contained in L(b, d).
Connect s to a and e. The quadrangle asef is convex. The remaining polygon is the rcrcce-1
type: s and d are its reflex vertices, and they both see b, since s € (b, d).

Hexagon with three reflex vertices. Again, there are different situations, depending on the relative
positions of the reflex vertices along the polygon boundary.

1. (rcrcrc) We start with the case in which the reflex and the convex vertices alternate.

1.1. (rcrcrc—1) In the special case that A(ace) is inside the polygon and the polygon is star
shaped, Lemma B.§ implies that one Steiner point suffices.

1.2. (rcrcrc—8) Otherwise, we show that 3 Steiner points suffice. The region p = wedge(a) N
wedge(e)NR(a, e) must be non-empty for the following reason: If /A(ace) is inside the polygon,
then p is non-empty as a consequence of Lemma B.4. If on the other hand one of the edges
of A(ace), w.lo.g. ac is obstructed, then p is non-empty by Lemma B.7. Place a Steiner
point s inside p. Connect s to a and e. The quadrangle efas is convex. Vertices a and e
are convex by virtue of s being in the appropriate wedges. The vertex s is convex because
s € R(a,e). The hexagon sabcde is of type rccree-2 (since s € wedge(a) N wedge(e)) hence
can be quadrangulated with two additional Steiner points.
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2. (rrcrcc) We now study the case in which there are exactly two consecutive reflex vertices.
These polygons are always star-shaped, for the following reasons: Suppose that a, b and d are
the reflex vertices (refer to Figure [[J). Consider the wedges of f and c¢. The point e must lie
on the left ray of wedge(f), and to the right of (or on) the right ray of wedge(c) (since d is
reflex). As a consequence, these two rays must intersect (inside P) in a point that we will call i.
Since d is reflex, it must lie in the segment ci, and e cannot lie in the interior of segment fi. As
a consequence, some portion of the edge ef must belong to wedge(f) N wedge(c) N wedge(e) =
int kernel(P), (see (f)). We have two cases depending on whether e sees at least one of a and b.

c

Figure 19: Proving that the rrcrcc polygons are starshaped.

Cc

Figure 20: One Steiner point reduces the problem to the rcrcre-1 case.

2.1. (rrcrcc—2) If e sees at least a, two Steiner points suffice. In particular the region kernel(P)N
R(a,e)NL(b,d) (see Figure P0) cannot be empty, for the following reason: The fact that e and
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2.2.

C

Figure 21: One Steiner point reduces the problem to the rrcrcc-2 case.

a see each other implies that f € L(a,e) and b,c,d € R(a,e). Hence ae C wedge(f)Nwedge(e).
On the other hand, wedge(c) must intersect ae, since e lies to its right (because d is reflex)
and similarly a lies to its left. Let a’e’ be the intersection of wedge(c) with ae (see Figure R0).
Since a’e’ C kernel(P) and a’e’ € L(b,d) (because b belongs to segment ca’ and d belongs
to segment ce’), it follows that kernel(P) N R(a,e) N L(b,d) # 0. Place a Steiner point s in
the region, and connect it to a and e. The quadrangle asef is convex: a is convex because
s € wedge(a), and s is convex because s € R(a,e). The hexagon abcdes is of the rcrcre-1 type
because s, b, d are mutually visible (since s € L(b, d)).

(rrcrcc—8) If e sees neither a nor b, then three Steiner points suffice.

In fact, we can reduce the problem to the previous one, after adding one Steiner point s in the
region wedge(e) NR(f,d) (see Figure PI)), which must be non-empty. The point s can then be
connected to f and d. The quadrangle sdef is convex: d is convex because s € wedge(d), and
s is convex because s € R(f,d). The remaining hexagon is of the kind rrcrcc-2, since d can
see both a and b, because s € wedge(e).

d

Figure 22: One Steiner point reduces the problem to the rrcrcc-2 case.
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3. (rrrccc) We are left with the case in which the three reflex vertices are consecutive. This case
can be solved with three Steiner points. In fact, it can be reduced to the rrcrcc-2 case after
adding one Steiner point. Suppose that the three reflex vertices are a, b and c. Place a Steiner
point s in the region wedge(a) N R(a,e) N L(b,e), which is trivially non-empty. Connecting s
with a and e gives rise to the convex quadrangle asef: a is convex because s € wedge(a), and
s is convex because s € R(a,e). The remaining hexagon is of the rrcrcc-2 type, since e sees b
and c, because s € L(b, e) (see Figure RJ) .

This completes the proof of Theorem B.3. It remains to consider the case when the union of
two quadrangles is not a hexagon.

3.1.3 Quadrangle with one interior point.

As stated earlier, when two quadrangles share two edges, their union is a quadrangle which contains
one of the vertices of the original quadrangles in its interior. We will show that three Steiner points
suffice to convex-quadrangulate this polygon, thus establishing the following theorem:

3.8. Theorem. Any union of two quadrangles can be convez-quadrangulated with at most three
Steiner points.

Proof. We consider here only the case where the union is not a hexagon. Let us call the four
vertices of the union quadrangle r, a, b and c, where r is the only (possibly) reflex vertex. Let
i be the interior point. Since only r may be reflex, i must see either a or ¢ , because r cannot
obstruct its view to both. Suppose that i sees a, as illustrated in Figure P3. Since i € wedge(a),

b

C a

Figure 23: One Steiner point reduces the problem to the rrcccc case.

wedge(r)NL(r,1)NL(a,1) # (). Place one Steiner point s in the region. Then the quadrangle rais in
convex: T is convex because s € wedge(r), i is convex because s € L(a,1), and s is convex because
s € L(r,1) N wedge(r). On the other hand, the hexagon siabcr is a rrcccc hexagon, which can be
convex-quadrangulated with two Steiner points. ]
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Each of the cases described in this section runs in constant time, thus:

3.9. Theorem. A strictly conver quadrilateral mesh of n points using at most 3| 5| Steiner
points can be computed in O(nlogn) time.

4 Concluding Remarks

We have given upper and lower bounds on the number of Steiner points required to construct a
convex quadrangulation for a planar set of points. Both bounds are constructive, and the upper
bound yields a straightforward O(nlogn) time algorithm. The obvious open problem is that of
reducing the gap between the lower and upper bounds. One way to reduce the upper bound may
be by constructing a convex quadrangulation of the point set directly, rather than by converting
a triangulation (by combining triangles and then quadrangles) as we do now. Also, it would be
interesting to explore the possibility of improving (raising) the lower bound for a non-degenerate
point set by combining in some way the two point set configurations given in Section [.
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