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Abstract

In this paper, we give upper and lower bounds on the number of Steiner points required to

onstrut a stritly onvex quadrilateral mesh for a planar point set. In partiular, we show that

3⌊n

2
⌋ internal Steiner points are always suÆient for a onvex quadrilateral mesh of n points in

the plane. Furthermore, for any given n ≥ 4, there are point sets for whih ⌈n−3

2
⌉ − 1 Steiner

points are neessary for a onvex quadrilateral mesh.

1 Introduction

Disrete approximations of a surfae or volume are neessary in numerous appliations. Some

examples are models of human organs in medial imaging, terrain models in GIS, or models of

parts in a CAD/CAM system. These appliations typially assume that the geometri domain

under onsideration is divided into small, simple piees alled �nite elements. The olletion of

�nite elements is referred to as a mesh. For several appliations, quadrilateral/hexahedral mesh

elements are preferred over triangles/tetrahedra owing to their numerous bene�ts, both geometri

and numerial; for example, quadrilateral meshes give lower approximation errors in �nite ele-

ment methods for elastiity analysis [1, 3℄ or metal forming proesses [13℄. However, muh less

is known about quadrilateralizations and hexahedralizations and in general, high-quality quadri-

lateral/hexahedral (quad/hex) meshes are harder to generate than good triangular/tetrahedral

(tri/tet) ones. Indeed, there are several important open questions, both ombinatorial as well as

algorithmi, about quad/hex meshes for sets of objets suh as polygons, points, et., even in two

dimensions. Whereas triangulations of polygons and two-dimensional (2D) point sets and tetra-

hedralizations of three-dimensional (3D) point sets and onvex polyhedra always exist (not so for

non-onvex polyhedra [24℄), quadrilateralizations of 2D point sets do not. Hene it beomes nees-

sary to add extra points, alled Steiner points, to the geometri domain. This raises the issue of

bounding the number of Steiner points, and hene the mesh omplexity, while also providing guar-

antees on the quality of element shape. Suh problems are espeially relevant for appliations in

sattered data interpolation [8, 15, 16℄, whih require quadrilateral meshes that modify the original

data as little as possible, i.e., add few Steiner points.
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2 LOWER BOUND 2

A theoretial treatment of quadrilateral/hexahedral meshes has only reently begun [4, 7, 10,

19, 20, 21, 22℄. Some work on quadrangulations

1

of restrited lasses of polygons has been done in

the omputational geometry ommunity [9, 14, 17, 23℄. However, there are numerous unresolved

questions. For example, even the fundamental question of deiding if a 2D set of points admits a

onvex quadrangulation without the addition of Steiner points, is unsolved. A survey of results on

quadrangulations of planar sets appears in [25℄.

Any planar point set an be quadrangulated with at most one Steiner point, whih is required

only if the number of points on the onvex hull is odd [7℄. For planar simple n-gons, ⌊n/4⌋ internal

Steiner points suÆe to quadrangulate the polygon [22℄. In both ases, the quadrilaterals of the

resulting mesh will be, in general, non-onvex. However, for many appliations, an important

requirement is that the quadrangulation be stritly onvex, i.e., every quadrilateral of the mesh

must have interior angles stritly less than 180◦. A natural problem then is to onstrut stritly

onvex quadrilateral meshes for planar geometri domains, suh as polygons or point sets, with

a bounded number of Steiner points. Some results on onvex quadrangulations of planar simple

polygons are known. For example, it was shown in [11℄ that any simple n-gon an be deomposed

into at most 5(n − 2)/3 stritly onvex quadrilaterals and that n − 2 are sometimes neessary.

Furthermore, irle-paking tehniques [4, 5, 18℄ have been used to generate, for a simple polygon,

quadrilateral meshes in whih no quadrilateral has angle greater than 120◦. For planar point sets,

experimental results on the use of some heuristis to onstrut quadrangulations with many onvex

quadrangles appear in [6℄. In [12℄, it is shown that a related optimization problem, namely �nding

a minimum weight onvex quadrangulation (i.e. where the sum of the edge lengths is minimized)

an be found in polynomial time for point sets onstrained to lie on a �xed number of onvex

layers.

In this paper, we study the problem of onstruting a stritly onvex quadrilateral mesh for

a planar point set using a bounded number of Steiner points. We use \onvex-quadrangulate" to

mean \obtain a stritly onvex quadrangulation for". If the number of extreme points of the set is

even, it is always possible to onvex-quadrangulate the set using Steiner points whih are all internal

to the onvex hull. If the number of points on the onvex hull is odd, the same is true, assuming

that in the quadrangulation we are allowed to have exatly one triangle. We provide upper and

lower bounds on the number of Steiner points required for a stritly onvex quadrangulation of a

planar point set. In partiular, in Setion 2, we prove that for any n ≥ 4, ⌈n−3

2
⌉− 1 Steiner points

may sometimes be neessary to onvex-quadrangulate a set of n points. In Setion 3, we prove that

3⌊n
2
⌋ internal Steiner points are always suÆient to onvex-quadrangulate any set of n points.

2 Lower bound

In this setion we desribe a partiular on�guration of m + 3 ≥ 4 points whih requires at least

⌈m
2
⌉ − 1 Steiner points to be onvex-quadrangulated. We also show a onvex-quadrangulation of

the set that uses lose to that few Steiner points.

Description of the configuration of points: The on�guration of m+ 3 points onsists of m+ 1 points

plaed along a line ℓ, with one point above the line and another point below the line, suh that

1

In this paper, we use the term quadrangulation interhangeably with quadrilateralization. Both terms are

ommon in the meshing literature.
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the onvex hull of the set has 4 verties, namely the extreme points on the line and the top and

bottom points (see Figure 1). We refer to the verties on ℓ as line verties. We will refer to the

entire on�guration as S.

Figure 1: The point set S has m+ 1 points along the line, plus the top and the

bottom points. Its onvex hull is a quadrangle.

Consider any stritly onvex quadrangulation C of the set. Sine all the quadrangles in C are

stritly onvex, eah point on ℓ must belong to at least one edge of the quadrangulation lying

stritly above the line, and at least one edge lying stritly below the line. Quadrangulation edges

inident on an input point and lying above (below) ℓ will be alled upward (downward) edges.

PSfrag replaements
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Figure 2: Relevant upward and downward edges.

Consider two onseutive points a1 and a2 on ℓ with a1 to the left of a2. Let u1 be the lokwise

last upward edge inident on a1, and let u2 be the ounterlokwise last upward edge inident on

a2. Symmetrially, let d1 be the ounterlokwise last downward edge inident on a1 and let d2

be the lokwise last downward edge inident on a2 (see Figure 2). If (a1, a2) is an edge of C,

then it must form one quadrangle of C together with u1 and u2, and another one with d1 and d2.

We all these two faes squares. If (a1, a2) is not an edge of C, u1 and d1 must belong to the

same quadrangle, and so must also u2 and d2. If these two quadrangles are the same, we all it

a diamond. If they are di�erent, we all them a pair of half-diamonds. These three ases are

illustrated in Figure 3.

2.1. Theorem. The point set S requires at least ⌈m
2
⌉−1 Steiner points to be onvex-quadrangulated.
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Figure 3: Squares, diamonds and half-diamonds.

Proof. Consider the graph G = (V, E) formed by taking the union of all the squares, diamonds

and half-diamonds, together with the onvex hull edges. This graph, whih is a subgraph of C, is

planar and its faes onsist of the squares, the diamonds, the half-diamonds, and possibly some

other faes that we will all \extra faes". Its edges are all square, diamond, half-diamond, or

onvex hull edges. Let q be the number of squares, d the number of diamonds and h the number

of half-diamonds. We have

m =
q

2
+ d+

h

2
. (1)

Let v, e, f denote the number of verties, edges and faes of G. Let s be the number of verties

that did not belong to the original set, i.e., the number of Steiner points in C. Let x be the number

of extra faes. We have v ≤ m+ 3+ s (beause not every Steiner point need be a vertex of G), and

f = q + d+ h+ x. Sine G is planar, we an apply Euler's formula and (1) as follows:

v+ f = e+ 2

(m+ 3+ s) + (q+ d+ h+ x) ≥ e+ 2

s ≥ e−
3

2
q − 2d−

3

2
h− x− 1

Now, if we an prove that

e ≥
7

4
q+

5

2
d+

7

4
h+ x, (2)

we will obtain that

s ≥ e−
3

2
q− 2d−

3

2
h− x− 1

≥ (
7

4
−

3

2
)q+ (

5

2
− 2)d + (

7

4
−

3

2
)h− 1

=
q

4
+

d

2
+

h

4
− 1 =

m

2
− 1

≥
⌈m

2

⌉

− 1 (beause s must be an integer).

The general sheme to establish (2) will be to partition the edges of (quadrangles in) G into

three sets, and then harge eah edge to the faes bounded by the edge. The lassi�ation of edges

and the harging sheme are as follows:
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� Line edges: edges with both endpoints on the line ℓ. Eah suh edge is shared by a pair of

squares. Eah square gets harged 1/2.

� Steiner edges: edges with neither endpoint on the line ℓ. Eah suh edge harges 1/2 to eah

of the faes that it bounds.

� Vertial edges: edges with exatly one endpoint on the line ℓ.

– If a vertial edge is shared by two diamonds, eah diamond gets harged 1/2.

– If it is shared by a diamond and an extra fae, the diamond gets harged 3/4 and the

extra fae gets harged 1/4.

– If it belongs to a square or a half-diamond, the square or half-diamond gets harged 3/8,

and the other fae gets harged 5/8. Notie that in this last ase the total harge is

less than 1 when the edge is shared by squares and/or half-diamonds.

As a result, eah fae of G gets harged in the following way:

� Eah extra fae is harged at least 1, sine it has at least four edges (reall that G is a subgraph

of the quadrangulation C) and is harged at least 1/4 from eah edge.

� Eah square is harged 7/4: 1/2 from its line edge, 1/2 from its Steiner edge, and 3/8 from

eah of its two vertial edges.

� Eah half-diamond is harged 7/4: 1/2 from eah of its two Steiner edges and 3/8 from eah

of its two vertial edges.

� Eah diamond is harged at least 5/2. Notie that if a diamond α shares one upward vertial

edge (a1, u1) with another diamond or half-diamond β, then it must share the oinident

downward edge (a1, d1) with an extra fae, sine no square, diamond or half-diamond ould

share it. This is beause (i) α obviously annot share (a1, d1) with β beause of strit

onvexity, and (ii) α annot share (a1, d1) with any other diamond, square, or half-diamond

fae beause suh a fae would interset β. For the same reasons, if a diamond shares a

downward edge (a1, d1) with another diamond or half-diamond, the oinident upward edge

(a1, u1)must be shared with an extra fae. So, if the diamond is adjaent to another diamond,

it is harged at least

1

2
+ 3

4
= 5

4
from the two edges inident on that line vertex. If it is adjaent

to a pair of squares, it is harged

5

8
+ 5

8
= 5

4
. Any other ombination would harge more. In

total, the diamond gets harged at least 5/2.

This proves that

e ≥
∑

harges = x+
7

4
q +

7

4
h+

5

2
d.

�

2.2. Theorem. The point set S an be onvex-quadrangulated with s ≤
⌈

m+3

2

⌉

Steiner points.
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Figure 4: A onvex quadrangulation of S using ⌈m
2
⌉ Steiner points.

Proof. It is possible to onvex-quadrangulate the given point set on�guration with s Steiner points,

where

s =



























m

2
+ 1, if m ≡ 0 (mod 4)

m+1

2
+ 1, if m ≡ 1 (mod 4)

m

2
+ 2, if m ≡ 2 (mod 4)

m+1

2
, if m ≡ 3 (mod 4)



























≤

⌈

m+ 3

2

⌉

A solution is presented in Figure 4 , where the original points are shown in blak and the Steiner

points in white. This solution an be desribed as follows. Let vi, i ∈ {1, . . . ,m + 1} be the points

on the line ℓ, and t and b the top and bottom points. Plae one Steiner point s below ℓ, inside the

onvex hull and in L(b, v2) ∩ R(b, vm). Quadrangles bsv

2

v

1

and bv

m+1
v

m

s , both of whih are

stritly onvex, are part of the quadrangulation. We all the line segment vivi+1 (not neessarily

part of the quadrangulation) the ith virtual edge ei. Suppose m = 4k + r, 0 ≤ r ≤ 3. Starting

from both ends of l, 2k Steiner points pi are plaed alternately above and below every other virtual

edge on ℓ. More preisely, for 1 ≤ i ≤ k plae a Steiner point pi above (resp. below) e2i if i is odd

(resp. even). In both ases ensure pi is in the intersetion of the wedges v2itv2i+1 and v2isv2i+1.

Connet pi to t (i odd) or s (i even), and to v2i and v2i+1. Connet v2i−1 to v2i. Carry out the

analogous proedure starting with the rightmost virtual edge. After plaing 2k Steiner points,

we are left with r \untreated" virtual edges e ′
1
, e ′

2
, . . . e ′

r in the enter. If r ≤ 2, we plae Steiner

points as follows: one point above (resp. below) eah e ′
i
if k is odd (resp. even). If r = 3 then we

plae point below (resp. above) e ′
2
if k is odd (resp. even). In all ases we insure the the Steiner

point is within the two wedges de�ned by the virtual edge, s and t. The strit onvexity of the

quadrangles reated by this proedure is ensured by plaing eah Steiner point in the intersetion

of these two wedges. The fat that the number of Steiner points used in these quadrangulations is

o� by a small onstant from the bound given by our harging sheme is explained by the harges

on the extra faes (drawn shaded in Figure 5). In these ases, the extra faes atually get harged

more than 1, whereas we ount a harge of only 1 for any extra fae of the quadrangulation when

proving the lower bound. �
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Figure 5: Convex quadrangulations for any parity of m (shaded faes are extra faes).
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Figure 6: The point set P has n/2 points on the onvex hull, and n/2 interior points lying very

lose to edges of the onvex hull.
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Theorem 2.1 uses a highly degenerate on�guration, where most of the points lie on a straight

line. It turns out that the same lower bound result annot be obtained from this point on�guration

if it is perturbed: if the points do not lie on a straight line, then squares an be formed using only

input points (i.e., without using Steiner points), and so an diamonds. It turns out that there

exist analogous on�gurations with m + 1 points on an arbitrary upward onvex urve (instead

of a straight line), where the point set an be onvex-quadrangulated with a onstant number of

Steiner points. We now desribe a perturbable (i.e. non-degenerate) point set on�guration that

requires at least

n

4
Steiner points for a stritly onvex quadrangulation.

Description of the perturbable configuration of points: Let n = 2k. Plae k points in onvex position.

Plae the remaining k points suh that, for eah edge e of the onvex hull, there is one point

lying in the interior of the onvex hull, very lose to the midpoint of e. To be more preise, if

(ai, ai+1) is an edge of the onvex hull, the new point bi must be loated so that ai+2 ∈ L(ai, bi)

and ai−1 ∈ R(ai+1, bi), as illustrated in Figure 6. Call this point set P.

2.3. Theorem. The point set P requires at least

n

4
Steiner points to be onvex-quadrangulated.

Proof. By de�nition, eah onvex hull edge (ai, ai+1) must belong to one quadrangle Qi. For Qi to

be onvex and not ontain any interior point, its remaining two verties must belong to the region

G(i) = R(ai, bi) ∪ L(ai+1, bi); one of these verties may be bi (see Figure 6). Hene, for every

onvex hull edge there is at least one Steiner point in region G(i). Sine only onseutive regions

interset, at least one Steiner point is needed for every pair of onvex hull edges, i.e. at least

n

4

Steiner points are needed. �

Figure 7: A onvex-quadrangulation of P that uses

n

4
+ 1 Steiner points.

2.4. Theorem. P an be onvex-quadrangulated with at most

n

4
+ 1 Steiner points.

Proof. Figure 7 shows a onvex-quadrangulation of the set that uses

n

4
+ 1 Steiner points. There

is one quadrangle for every onvex hull edge aiai+1. It has bi as a vertex and uses one Steiner
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point, whih is shared by the adjaent onvex hull edge. Finally, one entral Steiner point is used

to onvex-quadrangulate the remaining interior fae.

In this on�guration n is always even. If n ≡ 2 (mod 4), then we have an odd number of points

on the onvex hull, and ⌈n
4
⌉ Steiner points suÆe to onvex-quadrangulate with an extra triangle,

formed by one of the onvex hull edge and its orresponding interior point. �

3 Upper bound

Given a set S of n points in the plane, onv(S) is the onvex hull of S. For a simple polygon P,

int(P) denotes the interior of P and kernel(P) is the lous of points in P that an see all of P. A

onvex quadrangulation of S is a deomposition of onv(S) into stritly onvex quadrangles and

at most one triangle, suh that no ell ontains a point of S in its interior. The verties of the

quadrangulation that do not belong to S are alled Steiner points. In what follows, angles greater

than or equal to 180◦ are reex angles.

PSfrag replaements
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Figure 8: A path triangulation of a point set

3.1. Theorem. Any set of n points an be onvex-quadrangulated using at most 3⌊n
2
⌋ Steiner

points.

Proof. Any set S of n points has a path triangulation (a triangulation whose dual graph has a

Hamiltonian path), whih an be onstruted in O(n log n) time [2, 7℄ (Figure 8 illustrates suh a

triangulation of a point set). Denote by t the number of triangles in any triangulation of n points

with h extreme points (t = 2n − 2 − h). By pairing up the triangles along the path, we obtain

a path quadrangulation of S with possibly one unpaired triangle (see Figure 9). We will prove in

Setion 3.1 that it is always possible to onvex-quadrangulate a pair of onseutive quadrangles

by using at most 3 internal Steiner points. At the end of the proess we may have any of the

following situations:

� There is no unpaired triangle (i.e., h is even) and all the quadrangles have been paired up. In

this ase, a onvex-quadrangulation has been obtained with no leftover triangle. Therefore,
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Figure 9: The triangles of Figure 8 paired to form a (not neessarily onvex) quadrangulation

the number of quadrangles is q = t

2
= n− 1− h

2
, and the total number of Steiner points used

is s = 3

2
q = 3

2
(n − 1− h

2
) ≤ 3⌊n

2
⌋.

� There is one unpaired triangle (i.e., h is odd), all the quadrangles have been paired up. In

this ase, the number of quadrangles is q = t−1

2
, whih is less than in the previous ase. One

again, the number of Steiner points s = 3

2
q < 3⌊n

2
⌋.

� There is no unpaired triangle and all the quadrangles exept one have been paired up. In

this ase, the last quadrangle an be onvex-quadrangulated, if it is not onvex, by adding

4 internal Steiner points (see page 22 for details). Sine all quadrangles exept one have

been paired up, the number of Steiner points used is s = 3

2
(q − 1) + 4 = 3

2
( t
2
− 1) + 4 =

3

2
(n − 2− h

2
) + 4 ≤ 3

2
n − 3

4
h+ 1 < 3⌊n

2
⌋ sine h ≥ 4.

� There is one unpaired triangle, and all the quadrangles exept one have been paired up.

We an onvex-quadrangulate the remaining quadrangle with 4 Steiner points as before, and

leave the triangle as it is. In this ase, we have q = t−1

2
and s = 3

2
(q − 1) + 4 < 3⌊n

2
⌋ (as

argued in the previous ase).

Note that the number of quadrilaterals in the quadrangulation is at most 5⌊n
2
⌋− h

2
. Note also that

the quadrangulation produed by our algorithm is stritly onvex, even if the path quadrangulation

ontains degenerate quadrilaterals. �

3.1 Pairing up quadrangles

Before disussing the details of how to onvex-quadrangulate a pair of adjaent quadrilaterals,

we introdue some notation and mention a few useful fats about polygons. Given two points p

and q, we will denote by L(p, q) (resp. R(p, q)) the left (resp. right) open half-plane de�ned by

the oriented line from p to q. Throughout this setion, verties of polygons will be enumerated

ounterlokwise. Given a vertex v of a polygon P, we denote its suessor (resp. predeessor) by

v+ (resp. v−), and we write wedge(v) to mean L(v−, v) ∩ R(v+, v) ∩ int(P). If v is reex, wedge(v)

will denote the lous of points (inside P) that an be onneted to v forming stritly onvex angles
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at v. If v is onvex, wedge(v) is the interior of the visibility region of v in P. Given three points

p, q, and r, △(pqr) is the open triangle de�ned by the three points, i.e. △(pqr) = int onv(p, q, r).

Note that

int kernel(P) = ∩v∈PL(v, v
+) . (3)

We an observe the following

wedge(vi) = L(v−
i
, vi) ∩ R(v+

i
, vi)

= L(v−
i
, vi) ∩ L(vi, v

+

i
)

It follows that

int kernel(P) =
⋂

i

wedge(v2i) . (4)

Similarly, by noting that if v0 . . . vk form a reex hain,

⋂

0≤i<k

L(vi, vi+1) = L(v0, v1) ∩ L(vk−1, vk) ,

it follows that

int kernel(P) =
⋂

v onvex

wedge(v) . (5)
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Figure 10: The union of a pair of adjaent quadrangles is either a hexagon or quadrangle with a

�fth interior point.

Consider a pair of onseutive quadrangles in the path quadrangulation. They may share one

edge or two edges. In the �rst ase, their union is a hexagon, while in the seond ase it is a

quadrangle ontaining a �fth point in its interior (see Figure 10). In the rest of this setion we will

examine in detail how to onvex-quadrangulate the union of two quadrangles. The general sheme

will be indutive, i.e. to redue eah ase to one requiring fewer Steiner points by the addition of a

single Steiner point. Table 1 provides a summary of all the ases and their interdependenies. Most
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rccccc

# of Steiner points

1 reflex

rcrccc

rrcccc

rccrcc

2

2

1

2 reflex

1
3

rcrcrc

rrcrcc

rrrccc 3

3 reflex

6 points

2
3

3

2

0
1

5 points

3

pair of
adjacent

quadrangles
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Table 1: Sheme of the proof.
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of the ases are given a mnemoni label desribing the yli order of reex and onvex verties

around the polygon boundary and the total number of Steiner points neessary (e.g. rcrcrc-1

desribes the ase where reex and onvex verties alternate and one Steiner point suÆes to

onvex-quadrangulate the hexagon). The last olumn reports the number of Steiner points used

in eah ase. The arrows on the right indiate the redutions, after adding one Steiner point, from

one ase to another. As is suggested by Table 1, the majority of our e�ort in the remainder of this

setion will be devoted to proving the following theorem.

3.2. Theorem. Any hexagon an be onvex-quadrangulated by plaing at most 3 Steiner points

in its interior.

The urious reader is referred to Figure 11 for a onvex quadrangulation resulting from applying

our tehniques to the point set of Figures 8, 9, and 10. In the �gure the white points are Steiner

points.
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Figure 11: A onvex quadrangulation resulting from applying our tehniques to the point set of

Figures 8, 9, and 10.

3.1.1 Independent Triples

We all a set of verties of a polygon independent if no two of them are endpoints of the same edge.

We start by establishing some useful properties of independent triples of verties of a hexagon. All

lemmas in this setion hold even when reex angles are exatly equal to 180◦. Let {a, c, e } be an

independent triple for a hexagon P = abcdef.

3.3. Lemma. If △(ace) ⊂ P then △(ace) ∩ wedge(a) = △(ac ′e ′), where c ′e ′ ⊆ ce and c ′ 6= e ′
.

Proof. It suÆes to establish that ce ∩ wedge(a) is a non-trivial line segment. The result then

follows by onvexity. If a is onvex, then c and e are in the visibility polygon of a, i.e. in wedge(a).

Suppose then that a is reex. If one of c or e is ontained in wedge(a) then the lemma holds. If

neither c nor e belongs to wedge(a), then they annot both belong to R(a−, a) (resp. L(a+, a))

beause then a−
(resp. a+

) annot see c or e, whih is a ontradition beause a−−
(resp. a++

)
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must be c or e, sine a, c and e are at distane two. Therefore, c and e must be on opposite

sides of wedge(a) (i.e., one in R(a−, a) and the other in L(a+, a)), and the segment ce must have

non-trivial intersetion with wedge(a). �

3.4. Lemma. If △(ace) ⊂ P then wedge(a) ∩ wedge(c) ∩△(ace) 6= ∅.

Proof. This follows by applying Lemma 3.3 twie, and onvexity. �

3.5. Lemma. If △(ace) ⊂ P then △(ace) ∩ wedge(a−) ∩ wedge(a+) 6= ∅.

Proof. Note that a+
and a−

must both be onvex (or exatly 180◦). It follows that in a neighbor-

hood N(a) of the point a, we have N(a)∩wedge(a) = N(a)∩wedge(a−)∩wedge(a+), and Lemma

3.3 applies. �

3.6. Lemma. If P is starshaped and △(ace) ⊂ P, then one Steiner point suÆes to onvex-

quadrangulate P.

Proof. From (4), int kernel(P) = wedge(a)∩wedge(c)∩wedge(e). Eah pair of these wedges interset

△(ace), as a onsequene of Lemma 3.4. Eah pair of wedges intersets as a onsequene of

Lemma 3.5. In this ase we onsider the wedges extended to the entire plane, and not restrited to

the polygon. Sine both the triangle and the (extended) wedges are onvex, Helly's theorem [26℄

applies. It follows they all interset, i.e. the triangle △(ace) must interset the interior of the

kernel.

One Steiner point s an then be plaed in the intersetion of the triangle and the kernel, and

onneted to the three reex verties (see Figure 12). Sine s belongs to the kernel, it belongs to

the wedges of the three reex verties, hene a, c, and e are now stritly onvex verties in the

quadrangulation. Sine s belongs to △(ace), s is onvex in all the quadrangles. �

3.7. Lemma. If c does not see e, and a is the only reex vertex other than possibly c or e, then

(a) wedge(a) ∩ wedge(c) 6= ∅, and

(b) wedge(a) ⊂ L(a, c).

Proof.

(a) Sine b and f are onvex, a ∈ △(cde), sine otherwise nothing an blok ce (notie that both

abc and aef are ears of the polygon). Similarly, the (non-onvex) quadrangle acde must be

empty (see Figure 13). It follows that a sees { c, d, e }. We an onlude that a ∈ R(d, c) (by

seeing d) and a ∈ L(b, c) (by seeing c and d). In other words, a ∈ wedge(c). The laim then

follows from the fat that for some neighborhood N(a), N(a) ∩ wedge(a) ⊂ wedge(c).

(b) Sine a ∈ △(cde), it follows that e ∈ R(a, c). Again onsidering the fat that aef forms an ear

of the polygon, we have f ∈ R(a, c). It follows that both of the hords de�ning wedge(a) are

ontained in L(a, c). �
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Figure 12: One Steiner point suÆes if △(abc) ⊂ P and P is starshaped.
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3 UPPER BOUND 16

3.1.2 Proof of Theorem 3.2.

We are now ready to arry out the ase analysis desribed in Table 1. A hexagon may have zero,

one, two, or three reex verties; we onsider eah of these ases in turn. In the remainder of this

setion, we will use onvex to mean stritly onvex.

Hexagon with no reflex vertices. In this ase, the hexagon an be trivially deomposed into two

onvex quadrangles without using any Steiner points.

Hexagon with one reflex vertex. Suppose w.l.o.g. that vertex a is reex.

1. (r−0 ) If d ∈ wedge(a) then no Steiner points are needed. Conneting d with a will

produe a onvex quadrangulation of the hexagon, as shown in Figure 14. Note that if vertex a

is equal to 180◦, this ase must be satis�ed.
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Figure 14: No Steiner points needed.

2. If d 6∈ wedge(a), then d must lie on one side of wedge(a) (i.e., d ∈ L(b, a) or d ∈ R(f, a)), and

at least one of e or c, w.l.o.g. e, must lie on the same side (sine both e and c are onvex).

2.1. (r−1 ) If ce ⊂ P, by Lemma 3.6 one Steiner point is suÆient.

2.2. (r−2 ) If c and e do not see eah other, two Steiner points are enough. Plaing a Steiner

point s in wedge(a) and onneting it to a and c deomposes the hexagon into a quadrangle

abs and a hexagon asdef (see Figure 15). The quadrangle is onvex: a is onvex beause

s ∈ wedge(a). The vertex s is onvex beause c ∈ R(f, a) (c 6∈ L(f, a), beause then c and e

would see eah other) and hene c ∈ R(a, s). The hexagon asdef is as in the previous ase

rccccc-1 (d and f neessarily see eah other beause of our assumption that d and e lie on the

same side of wedge(a)) and hene an be quadrangulated with one additional Steiner point.

Hexagon with two reflex vertices. There are several di�erent ases, depending on the relative positions

of the two reex verties in the polygon boundary.
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Figure 15: One Steiner point redues ase rccccc-2 to ase rccccc-1.
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Figure 16: One Steiner point redues the problem to the one reex vertex ase.
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1. (rr) Suppose that the two reex verties are separated by a onvex vertex of the polygon.

Let us assume that a and c are the reex verties of the hexagon abdef . There are two sub-ases.

1.1. (rr−1 ) If both a and c an see e, then one Steiner point is enough. Note that sine e

is onvex △(ace) ⊂ wedge(e). By Lemma 3.4 wedge(a) ∩ wedge(c) ∩ △(ace) 6= ∅. It follows

from (4), that the hexagon is starshaped. We an then apply Lemma 3.6.

1.2. (rr−3 ) Otherwise, one of the reex verties, w.l.o.g. a, obstruts the visibility from the

other reex vertex to e. We show that 3 Steiner points suÆe. By Lemma 3.7 wedge(a) ∩

wedge(c) ∩ L(a, c) 6= ∅. Plae a Steiner point s in this region and onnet it to a and c (see

Figure 16). The quadrangle abs must be onvex: a and c are onvex beause s belongs to

their wedges. The vertex s is onvex beause it belongs to L(a, c). The remaining hexagon

has only one reex vertex s, hene an be onvex-quadrangulated with at most 2 additional

Steiner points.

2. (rr−2 ) If the two reex verties are onseutive, then two Steiner points are always suf-

�ient. Let a and b be the two reex verties. Notie that sine there are only two onse-

utive reex verties, a must neessarily see e, and b must see d. Plae one Steiner point s in

wedge(a)∩R(a, e)∩L(b, d). This region is not empty beause de ∈ L(b, d), and wedge(a)∩R(a, e)

ontains a subset of the edge de (this an be seen by noting that either d or e belong to wedge(a),

or they lie on opposite sides of wedge(a)). Connet s to a and e (refer to Figure 17). The quad-

rangle asef must be onvex: a is onvex sine s ∈ wedge(a), and s is onvex beause s ∈ R(a, e).

The remaining hexagon has two reex verties, namely s and b, separated by a onvex vertex a.

Both s and b an see d, sine s ∈ L(b, d). This is the rr-1 ase, whih requires one additional

Steiner point.

PSfrag replaements

a

b

c
d

e

f

s

i

r

a ′

e ′

Figure 17: One Steiner point redues the problem to the rr-1 ase.

3. (rr−2 ) We are left with the ase in whih there are two onvex verties between the two

reex verties, both lokwise and ounterlokwise. In this ase, two Steiner points suÆe.

Let a and d be the reex verties. We will use the fat that either the two diagonals ae and

bd are internal to the polygon or ac and df are. The reason is that if ac is obstruted by d,
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Figure 18: One Steiner point redues rccrcc-2 to rcrccc-1 ase.

then d belongs to △(abc) (reall that a, b, c, d are onseutive) and must see b, whih implies

that diagonal ae annot be obstruted. A symmetri argument holds if df is obstruted by a.

Let us assume that ae and bd are internal diagonals (see Figure 18). Then one Steiner point

s an be plaed in wedge(a) ∩ R(a, e) ∩ L(b, d). This region an be seen to be nonempty as

follows: from the onvexity of f, f must belong to L(a, e) and hene R(a, e) ∩ wedge(a) 6= ∅.

In fat R(a, e) ∩ wedge(a) ontains a neighborhood of a, whih is in turn ontained in L(b, d).

Connet s to a and e. The quadrangle asef is onvex. The remaining polygon is the rr-1

type: s and d are its reex verties, and they both see b, sine s ∈ L(b, d).

Hexagon with three reflex vertices. Again, there are di�erent situations, depending on the relative

positions of the reex verties along the polygon boundary.

1. (rrr) We start with the ase in whih the reex and the onvex verties alternate.

1.1. (rrr−1 ) In the speial ase that △(ace) is inside the polygon and the polygon is star

shaped, Lemma 3.6 implies that one Steiner point suÆes.

1.2. (rrr−3 ) Otherwise, we show that 3 Steiner points suÆe. The region ρ = wedge(a) ∩

wedge(e)∩R(a, e) must be non-empty for the following reason: If△(ace) is inside the polygon,

then ρ is non-empty as a onsequene of Lemma 3.4. If on the other hand one of the edges

of △(ace), w.l.o.g. ac is obstruted, then ρ is non-empty by Lemma 3.7. Plae a Steiner

point s inside ρ. Connet s to a and e. The quadrangle efas is onvex. Verties a and e

are onvex by virtue of s being in the appropriate wedges. The vertex s is onvex beause

s ∈ R(a, e). The hexagon sabcde is of type rccrcc-2 (sine s ∈ wedge(a) ∩ wedge(e)) hene

an be quadrangulated with two additional Steiner points.
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2. (rrr) We now study the ase in whih there are exatly two onseutive reex verties.

These polygons are always star-shaped, for the following reasons: Suppose that a, b and d are

the reex verties (refer to Figure 19). Consider the wedges of f and c. The point e must lie

on the left ray of wedge(f), and to the right of (or on) the right ray of wedge(c) (sine d is

reex). As a onsequene, these two rays must interset (inside P) in a point that we will all i.

Sine d is reex, it must lie in the segment ci, and e annot lie in the interior of segment fi. As

a onsequene, some portion of the edge ef must belong to wedge(f) ∩ wedge(c) ∩ wedge(e) =

int kernel(P), (see (5)). We have two ases depending on whether e sees at least one of a and b.
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Figure 19: Proving that the rrr polygons are starshaped.
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Figure 20: One Steiner point redues the problem to the rrr-1 ase.

2.1. (rrr−2 ) If e sees at least a, two Steiner points suÆe. In partiular the region kernel(P)∩

R(a, e)∩L(b, d) (see Figure 20) annot be empty, for the following reason: The fat that e and
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Figure 21: One Steiner point redues the problem to the rrr-2 ase.

a see eah other implies that f ∈ L(a, e) and b, c, d ∈ R(a, e). Hene ae ⊂ wedge(f)∩wedge(e).

On the other hand, wedge(c) must interset ae, sine e lies to its right (beause d is reex)

and similarly a lies to its left. Let a ′e ′
be the intersetion of wedge(c) with ae (see Figure 20).

Sine a ′e ′ ⊆ kernel(P) and a ′e ′ ∈ L(b, d) (beause b belongs to segment ca ′
and d belongs

to segment ce ′
), it follows that kernel(P) ∩ R(a, e) ∩ L(b, d) 6= ∅. Plae a Steiner point s in

the region, and onnet it to a and e. The quadrangle asef is onvex: a is onvex beause

s ∈ wedge(a), and s is onvex beause s ∈ R(a, e). The hexagon abdes is of the rrr-1 type

beause s, b, d are mutually visible (sine s ∈ L(b, d)).

2.2. (rrr−3 ) If e sees neither a nor b, then three Steiner points suÆe.

In fat, we an redue the problem to the previous one, after adding one Steiner point s in the

region wedge(e) ∩ R(f, d) (see Figure 21), whih must be non-empty. The point s an then be

onneted to f and d. The quadrangle sdef is onvex: d is onvex beause s ∈ wedge(d), and

s is onvex beause s ∈ R(f, d). The remaining hexagon is of the kind rrr-2, sine d an

see both a and b, beause s ∈ wedge(e).
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Figure 22: One Steiner point redues the problem to the rrr-2 ase.
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3. (rrr) We are left with the ase in whih the three reex verties are onseutive. This ase

an be solved with three Steiner points. In fat, it an be redued to the rrr-2 ase after

adding one Steiner point. Suppose that the three reex verties are a, b and c. Plae a Steiner

point s in the region wedge(a) ∩ R(a, e) ∩ L(b, e), whih is trivially non-empty. Conneting s

with a and e gives rise to the onvex quadrangle asef : a is onvex beause s ∈ wedge(a), and

s is onvex beause s ∈ R(a, e). The remaining hexagon is of the rrr-2 type, sine e sees b

and c, beause s ∈ L(b, e) (see Figure 22) .

This ompletes the proof of Theorem 3.2. It remains to onsider the ase when the union of

two quadrangles is not a hexagon.

3.1.3 Quadrangle with one interior point.

As stated earlier, when two quadrangles share two edges, their union is a quadrangle whih ontains

one of the verties of the original quadrangles in its interior. We will show that three Steiner points

suÆe to onvex-quadrangulate this polygon, thus establishing the following theorem:

3.8. Theorem. Any union of two quadrangles an be onvex-quadrangulated with at most three

Steiner points.

Proof. We onsider here only the ase where the union is not a hexagon. Let us all the four

verties of the union quadrangle r, a, b and c, where r is the only (possibly) reex vertex. Let

i be the interior point. Sine only r may be reex, i must see either a or c , beause r annot

obstrut its view to both. Suppose that i sees a, as illustrated in Figure 23. Sine i ∈ wedge(a),
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Figure 23: One Steiner point redues the problem to the rr ase.

wedge(r)∩L(r, i)∩L(a, i) 6= ∅. Plae one Steiner point s in the region. Then the quadrangle rais in

onvex: r is onvex beause s ∈ wedge(r), i is onvex beause s ∈ L(a, i), and s is onvex beause

s ∈ L(r, i) ∩ wedge(r). On the other hand, the hexagon siabr is a rr hexagon, whih an be

onvex-quadrangulated with two Steiner points. �
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Eah of the ases desribed in this setion runs in onstant time, thus:

3.9. Theorem. A stritly onvex quadrilateral mesh of n points using at most 3⌊n
2
⌋ Steiner

points an be omputed in O(n log n) time.

4 Concluding Remarks

We have given upper and lower bounds on the number of Steiner points required to onstrut a

onvex quadrangulation for a planar set of points. Both bounds are onstrutive, and the upper

bound yields a straightforward O(n log n) time algorithm. The obvious open problem is that of

reduing the gap between the lower and upper bounds. One way to redue the upper bound may

be by onstruting a onvex quadrangulation of the point set diretly, rather than by onverting

a triangulation (by ombining triangles and then quadrangles) as we do now. Also, it would be

interesting to explore the possibility of improving (raising) the lower bound for a non-degenerate

point set by ombining in some way the two point set on�gurations given in Setion 2.
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