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Abstract

In this paper, we give upper and lower bounds on the number of Steiner points required to


onstru
t a stri
tly 
onvex quadrilateral mesh for a planar point set. In parti
ular, we show that

3⌊n

2
⌋ internal Steiner points are always suÆ
ient for a 
onvex quadrilateral mesh of n points in

the plane. Furthermore, for any given n ≥ 4, there are point sets for whi
h ⌈n−3

2
⌉ − 1 Steiner

points are ne
essary for a 
onvex quadrilateral mesh.

1 Introduction

Dis
rete approximations of a surfa
e or volume are ne
essary in numerous appli
ations. Some

examples are models of human organs in medi
al imaging, terrain models in GIS, or models of

parts in a CAD/CAM system. These appli
ations typi
ally assume that the geometri
 domain

under 
onsideration is divided into small, simple pie
es 
alled �nite elements. The 
olle
tion of

�nite elements is referred to as a mesh. For several appli
ations, quadrilateral/hexahedral mesh

elements are preferred over triangles/tetrahedra owing to their numerous bene�ts, both geometri


and numeri
al; for example, quadrilateral meshes give lower approximation errors in �nite ele-

ment methods for elasti
ity analysis [1, 3℄ or metal forming pro
esses [13℄. However, mu
h less

is known about quadrilateralizations and hexahedralizations and in general, high-quality quadri-

lateral/hexahedral (quad/hex) meshes are harder to generate than good triangular/tetrahedral

(tri/tet) ones. Indeed, there are several important open questions, both 
ombinatorial as well as

algorithmi
, about quad/hex meshes for sets of obje
ts su
h as polygons, points, et
., even in two

dimensions. Whereas triangulations of polygons and two-dimensional (2D) point sets and tetra-

hedralizations of three-dimensional (3D) point sets and 
onvex polyhedra always exist (not so for

non-
onvex polyhedra [24℄), quadrilateralizations of 2D point sets do not. Hen
e it be
omes ne
es-

sary to add extra points, 
alled Steiner points, to the geometri
 domain. This raises the issue of

bounding the number of Steiner points, and hen
e the mesh 
omplexity, while also providing guar-

antees on the quality of element shape. Su
h problems are espe
ially relevant for appli
ations in

s
attered data interpolation [8, 15, 16℄, whi
h require quadrilateral meshes that modify the original

data as little as possible, i.e., add few Steiner points.
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A theoreti
al treatment of quadrilateral/hexahedral meshes has only re
ently begun [4, 7, 10,

19, 20, 21, 22℄. Some work on quadrangulations

1

of restri
ted 
lasses of polygons has been done in

the 
omputational geometry 
ommunity [9, 14, 17, 23℄. However, there are numerous unresolved

questions. For example, even the fundamental question of de
iding if a 2D set of points admits a


onvex quadrangulation without the addition of Steiner points, is unsolved. A survey of results on

quadrangulations of planar sets appears in [25℄.

Any planar point set 
an be quadrangulated with at most one Steiner point, whi
h is required

only if the number of points on the 
onvex hull is odd [7℄. For planar simple n-gons, ⌊n/4⌋ internal

Steiner points suÆ
e to quadrangulate the polygon [22℄. In both 
ases, the quadrilaterals of the

resulting mesh will be, in general, non-
onvex. However, for many appli
ations, an important

requirement is that the quadrangulation be stri
tly 
onvex, i.e., every quadrilateral of the mesh

must have interior angles stri
tly less than 180◦. A natural problem then is to 
onstru
t stri
tly


onvex quadrilateral meshes for planar geometri
 domains, su
h as polygons or point sets, with

a bounded number of Steiner points. Some results on 
onvex quadrangulations of planar simple

polygons are known. For example, it was shown in [11℄ that any simple n-gon 
an be de
omposed

into at most 5(n − 2)/3 stri
tly 
onvex quadrilaterals and that n − 2 are sometimes ne
essary.

Furthermore, 
ir
le-pa
king te
hniques [4, 5, 18℄ have been used to generate, for a simple polygon,

quadrilateral meshes in whi
h no quadrilateral has angle greater than 120◦. For planar point sets,

experimental results on the use of some heuristi
s to 
onstru
t quadrangulations with many 
onvex

quadrangles appear in [6℄. In [12℄, it is shown that a related optimization problem, namely �nding

a minimum weight 
onvex quadrangulation (i.e. where the sum of the edge lengths is minimized)


an be found in polynomial time for point sets 
onstrained to lie on a �xed number of 
onvex

layers.

In this paper, we study the problem of 
onstru
ting a stri
tly 
onvex quadrilateral mesh for

a planar point set using a bounded number of Steiner points. We use \
onvex-quadrangulate" to

mean \obtain a stri
tly 
onvex quadrangulation for". If the number of extreme points of the set is

even, it is always possible to 
onvex-quadrangulate the set using Steiner points whi
h are all internal

to the 
onvex hull. If the number of points on the 
onvex hull is odd, the same is true, assuming

that in the quadrangulation we are allowed to have exa
tly one triangle. We provide upper and

lower bounds on the number of Steiner points required for a stri
tly 
onvex quadrangulation of a

planar point set. In parti
ular, in Se
tion 2, we prove that for any n ≥ 4, ⌈n−3

2
⌉− 1 Steiner points

may sometimes be ne
essary to 
onvex-quadrangulate a set of n points. In Se
tion 3, we prove that

3⌊n
2
⌋ internal Steiner points are always suÆ
ient to 
onvex-quadrangulate any set of n points.

2 Lower bound

In this se
tion we des
ribe a parti
ular 
on�guration of m + 3 ≥ 4 points whi
h requires at least

⌈m
2
⌉ − 1 Steiner points to be 
onvex-quadrangulated. We also show a 
onvex-quadrangulation of

the set that uses 
lose to that few Steiner points.

Description of the configuration of points: The 
on�guration of m+ 3 points 
onsists of m+ 1 points

pla
ed along a line ℓ, with one point above the line and another point below the line, su
h that

1

In this paper, we use the term quadrangulation inter
hangeably with quadrilateralization. Both terms are


ommon in the meshing literature.
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the 
onvex hull of the set has 4 verti
es, namely the extreme points on the line and the top and

bottom points (see Figure 1). We refer to the verti
es on ℓ as line verti
es. We will refer to the

entire 
on�guration as S.

Figure 1: The point set S has m+ 1 points along the line, plus the top and the

bottom points. Its 
onvex hull is a quadrangle.

Consider any stri
tly 
onvex quadrangulation C of the set. Sin
e all the quadrangles in C are

stri
tly 
onvex, ea
h point on ℓ must belong to at least one edge of the quadrangulation lying

stri
tly above the line, and at least one edge lying stri
tly below the line. Quadrangulation edges

in
ident on an input point and lying above (below) ℓ will be 
alled upward (downward) edges.

PSfrag repla
ements
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Figure 2: Relevant upward and downward edges.

Consider two 
onse
utive points a1 and a2 on ℓ with a1 to the left of a2. Let u1 be the 
lo
kwise

last upward edge in
ident on a1, and let u2 be the 
ounter
lo
kwise last upward edge in
ident on

a2. Symmetri
ally, let d1 be the 
ounter
lo
kwise last downward edge in
ident on a1 and let d2

be the 
lo
kwise last downward edge in
ident on a2 (see Figure 2). If (a1, a2) is an edge of C,

then it must form one quadrangle of C together with u1 and u2, and another one with d1 and d2.

We 
all these two fa
es squares. If (a1, a2) is not an edge of C, u1 and d1 must belong to the

same quadrangle, and so must also u2 and d2. If these two quadrangles are the same, we 
all it

a diamond. If they are di�erent, we 
all them a pair of half-diamonds. These three 
ases are

illustrated in Figure 3.

2.1. Theorem. The point set S requires at least ⌈m
2
⌉−1 Steiner points to be 
onvex-quadrangulated.
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Figure 3: Squares, diamonds and half-diamonds.

Proof. Consider the graph G = (V, E) formed by taking the union of all the squares, diamonds

and half-diamonds, together with the 
onvex hull edges. This graph, whi
h is a subgraph of C, is

planar and its fa
es 
onsist of the squares, the diamonds, the half-diamonds, and possibly some

other fa
es that we will 
all \extra fa
es". Its edges are all square, diamond, half-diamond, or


onvex hull edges. Let q be the number of squares, d the number of diamonds and h the number

of half-diamonds. We have

m =
q

2
+ d+

h

2
. (1)

Let v, e, f denote the number of verti
es, edges and fa
es of G. Let s be the number of verti
es

that did not belong to the original set, i.e., the number of Steiner points in C. Let x be the number

of extra fa
es. We have v ≤ m+ 3+ s (be
ause not every Steiner point need be a vertex of G), and

f = q + d+ h+ x. Sin
e G is planar, we 
an apply Euler's formula and (1) as follows:

v+ f = e+ 2

(m+ 3+ s) + (q+ d+ h+ x) ≥ e+ 2

s ≥ e−
3

2
q − 2d−

3

2
h− x− 1

Now, if we 
an prove that

e ≥
7

4
q+

5

2
d+

7

4
h+ x, (2)

we will obtain that

s ≥ e−
3

2
q− 2d−

3

2
h− x− 1

≥ (
7

4
−

3

2
)q+ (

5

2
− 2)d + (

7

4
−

3

2
)h− 1

=
q

4
+

d

2
+

h

4
− 1 =

m

2
− 1

≥
⌈m

2

⌉

− 1 (be
ause s must be an integer).

The general s
heme to establish (2) will be to partition the edges of (quadrangles in) G into

three sets, and then 
harge ea
h edge to the fa
es bounded by the edge. The 
lassi�
ation of edges

and the 
harging s
heme are as follows:
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� Line edges: edges with both endpoints on the line ℓ. Ea
h su
h edge is shared by a pair of

squares. Ea
h square gets 
harged 1/2.

� Steiner edges: edges with neither endpoint on the line ℓ. Ea
h su
h edge 
harges 1/2 to ea
h

of the fa
es that it bounds.

� Verti
al edges: edges with exa
tly one endpoint on the line ℓ.

– If a verti
al edge is shared by two diamonds, ea
h diamond gets 
harged 1/2.

– If it is shared by a diamond and an extra fa
e, the diamond gets 
harged 3/4 and the

extra fa
e gets 
harged 1/4.

– If it belongs to a square or a half-diamond, the square or half-diamond gets 
harged 3/8,

and the other fa
e gets 
harged 5/8. Noti
e that in this last 
ase the total 
harge is

less than 1 when the edge is shared by squares and/or half-diamonds.

As a result, ea
h fa
e of G gets 
harged in the following way:

� Ea
h extra fa
e is 
harged at least 1, sin
e it has at least four edges (re
all that G is a subgraph

of the quadrangulation C) and is 
harged at least 1/4 from ea
h edge.

� Ea
h square is 
harged 7/4: 1/2 from its line edge, 1/2 from its Steiner edge, and 3/8 from

ea
h of its two verti
al edges.

� Ea
h half-diamond is 
harged 7/4: 1/2 from ea
h of its two Steiner edges and 3/8 from ea
h

of its two verti
al edges.

� Ea
h diamond is 
harged at least 5/2. Noti
e that if a diamond α shares one upward verti
al

edge (a1, u1) with another diamond or half-diamond β, then it must share the 
oin
ident

downward edge (a1, d1) with an extra fa
e, sin
e no square, diamond or half-diamond 
ould

share it. This is be
ause (i) α obviously 
annot share (a1, d1) with β be
ause of stri
t


onvexity, and (ii) α 
annot share (a1, d1) with any other diamond, square, or half-diamond

fa
e be
ause su
h a fa
e would interse
t β. For the same reasons, if a diamond shares a

downward edge (a1, d1) with another diamond or half-diamond, the 
oin
ident upward edge

(a1, u1)must be shared with an extra fa
e. So, if the diamond is adja
ent to another diamond,

it is 
harged at least

1

2
+ 3

4
= 5

4
from the two edges in
ident on that line vertex. If it is adja
ent

to a pair of squares, it is 
harged

5

8
+ 5

8
= 5

4
. Any other 
ombination would 
harge more. In

total, the diamond gets 
harged at least 5/2.

This proves that

e ≥
∑


harges = x+
7

4
q +

7

4
h+

5

2
d.

�

2.2. Theorem. The point set S 
an be 
onvex-quadrangulated with s ≤
⌈

m+3

2

⌉

Steiner points.
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Figure 4: A 
onvex quadrangulation of S using ⌈m
2
⌉ Steiner points.

Proof. It is possible to 
onvex-quadrangulate the given point set 
on�guration with s Steiner points,

where

s =



























m

2
+ 1, if m ≡ 0 (mod 4)

m+1

2
+ 1, if m ≡ 1 (mod 4)

m

2
+ 2, if m ≡ 2 (mod 4)

m+1

2
, if m ≡ 3 (mod 4)



























≤

⌈

m+ 3

2

⌉

A solution is presented in Figure 4 , where the original points are shown in bla
k and the Steiner

points in white. This solution 
an be des
ribed as follows. Let vi, i ∈ {1, . . . ,m + 1} be the points

on the line ℓ, and t and b the top and bottom points. Pla
e one Steiner point s below ℓ, inside the


onvex hull and in L(b, v2) ∩ R(b, vm). Quadrangles bsv

2

v

1

and bv

m+1
v

m

s , both of whi
h are

stri
tly 
onvex, are part of the quadrangulation. We 
all the line segment vivi+1 (not ne
essarily

part of the quadrangulation) the ith virtual edge ei. Suppose m = 4k + r, 0 ≤ r ≤ 3. Starting

from both ends of l, 2k Steiner points pi are pla
ed alternately above and below every other virtual

edge on ℓ. More pre
isely, for 1 ≤ i ≤ k pla
e a Steiner point pi above (resp. below) e2i if i is odd

(resp. even). In both 
ases ensure pi is in the interse
tion of the wedges v2itv2i+1 and v2isv2i+1.

Conne
t pi to t (i odd) or s (i even), and to v2i and v2i+1. Conne
t v2i−1 to v2i. Carry out the

analogous pro
edure starting with the rightmost virtual edge. After pla
ing 2k Steiner points,

we are left with r \untreated" virtual edges e ′
1
, e ′

2
, . . . e ′

r in the 
enter. If r ≤ 2, we pla
e Steiner

points as follows: one point above (resp. below) ea
h e ′
i
if k is odd (resp. even). If r = 3 then we

pla
e point below (resp. above) e ′
2
if k is odd (resp. even). In all 
ases we insure the the Steiner

point is within the two wedges de�ned by the virtual edge, s and t. The stri
t 
onvexity of the

quadrangles 
reated by this pro
edure is ensured by pla
ing ea
h Steiner point in the interse
tion

of these two wedges. The fa
t that the number of Steiner points used in these quadrangulations is

o� by a small 
onstant from the bound given by our 
harging s
heme is explained by the 
harges

on the extra fa
es (drawn shaded in Figure 5). In these 
ases, the extra fa
es a
tually get 
harged

more than 1, whereas we 
ount a 
harge of only 1 for any extra fa
e of the quadrangulation when

proving the lower bound. �
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Figure 5: Convex quadrangulations for any parity of m (shaded fa
es are extra fa
es).
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Figure 6: The point set P has n/2 points on the 
onvex hull, and n/2 interior points lying very


lose to edges of the 
onvex hull.
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Theorem 2.1 uses a highly degenerate 
on�guration, where most of the points lie on a straight

line. It turns out that the same lower bound result 
annot be obtained from this point 
on�guration

if it is perturbed: if the points do not lie on a straight line, then squares 
an be formed using only

input points (i.e., without using Steiner points), and so 
an diamonds. It turns out that there

exist analogous 
on�gurations with m + 1 points on an arbitrary upward 
onvex 
urve (instead

of a straight line), where the point set 
an be 
onvex-quadrangulated with a 
onstant number of

Steiner points. We now des
ribe a perturbable (i.e. non-degenerate) point set 
on�guration that

requires at least

n

4
Steiner points for a stri
tly 
onvex quadrangulation.

Description of the perturbable configuration of points: Let n = 2k. Pla
e k points in 
onvex position.

Pla
e the remaining k points su
h that, for ea
h edge e of the 
onvex hull, there is one point

lying in the interior of the 
onvex hull, very 
lose to the midpoint of e. To be more pre
ise, if

(ai, ai+1) is an edge of the 
onvex hull, the new point bi must be lo
ated so that ai+2 ∈ L(ai, bi)

and ai−1 ∈ R(ai+1, bi), as illustrated in Figure 6. Call this point set P.

2.3. Theorem. The point set P requires at least

n

4
Steiner points to be 
onvex-quadrangulated.

Proof. By de�nition, ea
h 
onvex hull edge (ai, ai+1) must belong to one quadrangle Qi. For Qi to

be 
onvex and not 
ontain any interior point, its remaining two verti
es must belong to the region

G(i) = R(ai, bi) ∪ L(ai+1, bi); one of these verti
es may be bi (see Figure 6). Hen
e, for every


onvex hull edge there is at least one Steiner point in region G(i). Sin
e only 
onse
utive regions

interse
t, at least one Steiner point is needed for every pair of 
onvex hull edges, i.e. at least

n

4

Steiner points are needed. �

Figure 7: A 
onvex-quadrangulation of P that uses

n

4
+ 1 Steiner points.

2.4. Theorem. P 
an be 
onvex-quadrangulated with at most

n

4
+ 1 Steiner points.

Proof. Figure 7 shows a 
onvex-quadrangulation of the set that uses

n

4
+ 1 Steiner points. There

is one quadrangle for every 
onvex hull edge aiai+1. It has bi as a vertex and uses one Steiner
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point, whi
h is shared by the adja
ent 
onvex hull edge. Finally, one 
entral Steiner point is used

to 
onvex-quadrangulate the remaining interior fa
e.

In this 
on�guration n is always even. If n ≡ 2 (mod 4), then we have an odd number of points

on the 
onvex hull, and ⌈n
4
⌉ Steiner points suÆ
e to 
onvex-quadrangulate with an extra triangle,

formed by one of the 
onvex hull edge and its 
orresponding interior point. �

3 Upper bound

Given a set S of n points in the plane, 
onv(S) is the 
onvex hull of S. For a simple polygon P,

int(P) denotes the interior of P and kernel(P) is the lo
us of points in P that 
an see all of P. A


onvex quadrangulation of S is a de
omposition of 
onv(S) into stri
tly 
onvex quadrangles and

at most one triangle, su
h that no 
ell 
ontains a point of S in its interior. The verti
es of the

quadrangulation that do not belong to S are 
alled Steiner points. In what follows, angles greater

than or equal to 180◦ are re
ex angles.

PSfrag repla
ements
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Figure 8: A path triangulation of a point set

3.1. Theorem. Any set of n points 
an be 
onvex-quadrangulated using at most 3⌊n
2
⌋ Steiner

points.

Proof. Any set S of n points has a path triangulation (a triangulation whose dual graph has a

Hamiltonian path), whi
h 
an be 
onstru
ted in O(n log n) time [2, 7℄ (Figure 8 illustrates su
h a

triangulation of a point set). Denote by t the number of triangles in any triangulation of n points

with h extreme points (t = 2n − 2 − h). By pairing up the triangles along the path, we obtain

a path quadrangulation of S with possibly one unpaired triangle (see Figure 9). We will prove in

Se
tion 3.1 that it is always possible to 
onvex-quadrangulate a pair of 
onse
utive quadrangles

by using at most 3 internal Steiner points. At the end of the pro
ess we may have any of the

following situations:

� There is no unpaired triangle (i.e., h is even) and all the quadrangles have been paired up. In

this 
ase, a 
onvex-quadrangulation has been obtained with no leftover triangle. Therefore,
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Figure 9: The triangles of Figure 8 paired to form a (not ne
essarily 
onvex) quadrangulation

the number of quadrangles is q = t

2
= n− 1− h

2
, and the total number of Steiner points used

is s = 3

2
q = 3

2
(n − 1− h

2
) ≤ 3⌊n

2
⌋.

� There is one unpaired triangle (i.e., h is odd), all the quadrangles have been paired up. In

this 
ase, the number of quadrangles is q = t−1

2
, whi
h is less than in the previous 
ase. On
e

again, the number of Steiner points s = 3

2
q < 3⌊n

2
⌋.

� There is no unpaired triangle and all the quadrangles ex
ept one have been paired up. In

this 
ase, the last quadrangle 
an be 
onvex-quadrangulated, if it is not 
onvex, by adding

4 internal Steiner points (see page 22 for details). Sin
e all quadrangles ex
ept one have

been paired up, the number of Steiner points used is s = 3

2
(q − 1) + 4 = 3

2
( t
2
− 1) + 4 =

3

2
(n − 2− h

2
) + 4 ≤ 3

2
n − 3

4
h+ 1 < 3⌊n

2
⌋ sin
e h ≥ 4.

� There is one unpaired triangle, and all the quadrangles ex
ept one have been paired up.

We 
an 
onvex-quadrangulate the remaining quadrangle with 4 Steiner points as before, and

leave the triangle as it is. In this 
ase, we have q = t−1

2
and s = 3

2
(q − 1) + 4 < 3⌊n

2
⌋ (as

argued in the previous 
ase).

Note that the number of quadrilaterals in the quadrangulation is at most 5⌊n
2
⌋− h

2
. Note also that

the quadrangulation produ
ed by our algorithm is stri
tly 
onvex, even if the path quadrangulation


ontains degenerate quadrilaterals. �

3.1 Pairing up quadrangles

Before dis
ussing the details of how to 
onvex-quadrangulate a pair of adja
ent quadrilaterals,

we introdu
e some notation and mention a few useful fa
ts about polygons. Given two points p

and q, we will denote by L(p, q) (resp. R(p, q)) the left (resp. right) open half-plane de�ned by

the oriented line from p to q. Throughout this se
tion, verti
es of polygons will be enumerated


ounter
lo
kwise. Given a vertex v of a polygon P, we denote its su

essor (resp. prede
essor) by

v+ (resp. v−), and we write wedge(v) to mean L(v−, v) ∩ R(v+, v) ∩ int(P). If v is re
ex, wedge(v)

will denote the lo
us of points (inside P) that 
an be 
onne
ted to v forming stri
tly 
onvex angles
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at v. If v is 
onvex, wedge(v) is the interior of the visibility region of v in P. Given three points

p, q, and r, △(pqr) is the open triangle de�ned by the three points, i.e. △(pqr) = int 
onv(p, q, r).

Note that

int kernel(P) = ∩v∈PL(v, v
+) . (3)

We 
an observe the following

wedge(vi) = L(v−
i
, vi) ∩ R(v+

i
, vi)

= L(v−
i
, vi) ∩ L(vi, v

+

i
)

It follows that

int kernel(P) =
⋂

i

wedge(v2i) . (4)

Similarly, by noting that if v0 . . . vk form a re
ex 
hain,

⋂

0≤i<k

L(vi, vi+1) = L(v0, v1) ∩ L(vk−1, vk) ,

it follows that

int kernel(P) =
⋂

v 
onvex

wedge(v) . (5)

PSfrag repla
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Figure 10: The union of a pair of adja
ent quadrangles is either a hexagon or quadrangle with a

�fth interior point.

Consider a pair of 
onse
utive quadrangles in the path quadrangulation. They may share one

edge or two edges. In the �rst 
ase, their union is a hexagon, while in the se
ond 
ase it is a

quadrangle 
ontaining a �fth point in its interior (see Figure 10). In the rest of this se
tion we will

examine in detail how to 
onvex-quadrangulate the union of two quadrangles. The general s
heme

will be indu
tive, i.e. to redu
e ea
h 
ase to one requiring fewer Steiner points by the addition of a

single Steiner point. Table 1 provides a summary of all the 
ases and their interdependen
ies. Most
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rccccc

# of Steiner points

1 reflex

rcrccc

rrcccc

rccrcc

2

2

1

2 reflex

1
3

rcrcrc

rrcrcc

rrrccc 3

3 reflex

6 points

2
3

3

2

0
1

5 points

3

pair of
adjacent

quadrangles
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Table 1: S
heme of the proof.
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of the 
ases are given a mnemoni
 label des
ribing the 
y
li
 order of re
ex and 
onvex verti
es

around the polygon boundary and the total number of Steiner points ne
essary (e.g. rcrcrc-1

des
ribes the 
ase where re
ex and 
onvex verti
es alternate and one Steiner point suÆ
es to


onvex-quadrangulate the hexagon). The last 
olumn reports the number of Steiner points used

in ea
h 
ase. The arrows on the right indi
ate the redu
tions, after adding one Steiner point, from

one 
ase to another. As is suggested by Table 1, the majority of our e�ort in the remainder of this

se
tion will be devoted to proving the following theorem.

3.2. Theorem. Any hexagon 
an be 
onvex-quadrangulated by pla
ing at most 3 Steiner points

in its interior.

The 
urious reader is referred to Figure 11 for a 
onvex quadrangulation resulting from applying

our te
hniques to the point set of Figures 8, 9, and 10. In the �gure the white points are Steiner

points.
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Figure 11: A 
onvex quadrangulation resulting from applying our te
hniques to the point set of

Figures 8, 9, and 10.

3.1.1 Independent Triples

We 
all a set of verti
es of a polygon independent if no two of them are endpoints of the same edge.

We start by establishing some useful properties of independent triples of verti
es of a hexagon. All

lemmas in this se
tion hold even when re
ex angles are exa
tly equal to 180◦. Let {a, c, e } be an

independent triple for a hexagon P = abcdef.

3.3. Lemma. If △(ace) ⊂ P then △(ace) ∩ wedge(a) = △(ac ′e ′), where c ′e ′ ⊆ ce and c ′ 6= e ′
.

Proof. It suÆ
es to establish that ce ∩ wedge(a) is a non-trivial line segment. The result then

follows by 
onvexity. If a is 
onvex, then c and e are in the visibility polygon of a, i.e. in wedge(a).

Suppose then that a is re
ex. If one of c or e is 
ontained in wedge(a) then the lemma holds. If

neither c nor e belongs to wedge(a), then they 
annot both belong to R(a−, a) (resp. L(a+, a))

be
ause then a−
(resp. a+

) 
annot see c or e, whi
h is a 
ontradi
tion be
ause a−−
(resp. a++

)
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must be c or e, sin
e a, c and e are at distan
e two. Therefore, c and e must be on opposite

sides of wedge(a) (i.e., one in R(a−, a) and the other in L(a+, a)), and the segment ce must have

non-trivial interse
tion with wedge(a). �

3.4. Lemma. If △(ace) ⊂ P then wedge(a) ∩ wedge(c) ∩△(ace) 6= ∅.

Proof. This follows by applying Lemma 3.3 twi
e, and 
onvexity. �

3.5. Lemma. If △(ace) ⊂ P then △(ace) ∩ wedge(a−) ∩ wedge(a+) 6= ∅.

Proof. Note that a+
and a−

must both be 
onvex (or exa
tly 180◦). It follows that in a neighbor-

hood N(a) of the point a, we have N(a)∩wedge(a) = N(a)∩wedge(a−)∩wedge(a+), and Lemma

3.3 applies. �

3.6. Lemma. If P is starshaped and △(ace) ⊂ P, then one Steiner point suÆ
es to 
onvex-

quadrangulate P.

Proof. From (4), int kernel(P) = wedge(a)∩wedge(c)∩wedge(e). Ea
h pair of these wedges interse
t

△(ace), as a 
onsequen
e of Lemma 3.4. Ea
h pair of wedges interse
ts as a 
onsequen
e of

Lemma 3.5. In this 
ase we 
onsider the wedges extended to the entire plane, and not restri
ted to

the polygon. Sin
e both the triangle and the (extended) wedges are 
onvex, Helly's theorem [26℄

applies. It follows they all interse
t, i.e. the triangle △(ace) must interse
t the interior of the

kernel.

One Steiner point s 
an then be pla
ed in the interse
tion of the triangle and the kernel, and


onne
ted to the three re
ex verti
es (see Figure 12). Sin
e s belongs to the kernel, it belongs to

the wedges of the three re
ex verti
es, hen
e a, c, and e are now stri
tly 
onvex verti
es in the

quadrangulation. Sin
e s belongs to △(ace), s is 
onvex in all the quadrangles. �

3.7. Lemma. If c does not see e, and a is the only re
ex vertex other than possibly c or e, then

(a) wedge(a) ∩ wedge(c) 6= ∅, and

(b) wedge(a) ⊂ L(a, c).

Proof.

(a) Sin
e b and f are 
onvex, a ∈ △(cde), sin
e otherwise nothing 
an blo
k ce (noti
e that both

abc and aef are ears of the polygon). Similarly, the (non-
onvex) quadrangle acde must be

empty (see Figure 13). It follows that a sees { c, d, e }. We 
an 
on
lude that a ∈ R(d, c) (by

seeing d) and a ∈ L(b, c) (by seeing c and d). In other words, a ∈ wedge(c). The 
laim then

follows from the fa
t that for some neighborhood N(a), N(a) ∩ wedge(a) ⊂ wedge(c).

(b) Sin
e a ∈ △(cde), it follows that e ∈ R(a, c). Again 
onsidering the fa
t that aef forms an ear

of the polygon, we have f ∈ R(a, c). It follows that both of the 
hords de�ning wedge(a) are


ontained in L(a, c). �
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Figure 12: One Steiner point suÆ
es if △(abc) ⊂ P and P is starshaped.
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3.1.2 Proof of Theorem 3.2.

We are now ready to 
arry out the 
ase analysis des
ribed in Table 1. A hexagon may have zero,

one, two, or three re
ex verti
es; we 
onsider ea
h of these 
ases in turn. In the remainder of this

se
tion, we will use 
onvex to mean stri
tly 
onvex.

Hexagon with no reflex vertices. In this 
ase, the hexagon 
an be trivially de
omposed into two


onvex quadrangles without using any Steiner points.

Hexagon with one reflex vertex. Suppose w.l.o.g. that vertex a is re
ex.

1. (r




−0 ) If d ∈ wedge(a) then no Steiner points are needed. Conne
ting d with a will

produ
e a 
onvex quadrangulation of the hexagon, as shown in Figure 14. Note that if vertex a

is equal to 180◦, this 
ase must be satis�ed.
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Figure 14: No Steiner points needed.

2. If d 6∈ wedge(a), then d must lie on one side of wedge(a) (i.e., d ∈ L(b, a) or d ∈ R(f, a)), and

at least one of e or c, w.l.o.g. e, must lie on the same side (sin
e both e and c are 
onvex).

2.1. (r




−1 ) If ce ⊂ P, by Lemma 3.6 one Steiner point is suÆ
ient.

2.2. (r




−2 ) If c and e do not see ea
h other, two Steiner points are enough. Pla
ing a Steiner

point s in wedge(a) and 
onne
ting it to a and c de
omposes the hexagon into a quadrangle

ab
s and a hexagon as
def (see Figure 15). The quadrangle is 
onvex: a is 
onvex be
ause

s ∈ wedge(a). The vertex s is 
onvex be
ause c ∈ R(f, a) (c 6∈ L(f, a), be
ause then c and e

would see ea
h other) and hen
e c ∈ R(a, s). The hexagon as
def is as in the previous 
ase

rccccc-1 (d and f ne
essarily see ea
h other be
ause of our assumption that d and e lie on the

same side of wedge(a)) and hen
e 
an be quadrangulated with one additional Steiner point.

Hexagon with two reflex vertices. There are several di�erent 
ases, depending on the relative positions

of the two re
ex verti
es in the polygon boundary.
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Figure 15: One Steiner point redu
es 
ase rccccc-2 to 
ase rccccc-1.
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1. (r
r


) Suppose that the two re
ex verti
es are separated by a 
onvex vertex of the polygon.

Let us assume that a and c are the re
ex verti
es of the hexagon ab
def . There are two sub-
ases.

1.1. (r
r


−1 ) If both a and c 
an see e, then one Steiner point is enough. Note that sin
e e

is 
onvex △(ace) ⊂ wedge(e). By Lemma 3.4 wedge(a) ∩ wedge(c) ∩ △(ace) 6= ∅. It follows

from (4), that the hexagon is starshaped. We 
an then apply Lemma 3.6.

1.2. (r
r


−3 ) Otherwise, one of the re
ex verti
es, w.l.o.g. a, obstru
ts the visibility from the

other re
ex vertex to e. We show that 3 Steiner points suÆ
e. By Lemma 3.7 wedge(a) ∩

wedge(c) ∩ L(a, c) 6= ∅. Pla
e a Steiner point s in this region and 
onne
t it to a and c (see

Figure 16). The quadrangle ab
s must be 
onvex: a and c are 
onvex be
ause s belongs to

their wedges. The vertex s is 
onvex be
ause it belongs to L(a, c). The remaining hexagon

has only one re
ex vertex s, hen
e 
an be 
onvex-quadrangulated with at most 2 additional

Steiner points.

2. (rr



−2 ) If the two re
ex verti
es are 
onse
utive, then two Steiner points are always suf-

�
ient. Let a and b be the two re
ex verti
es. Noti
e that sin
e there are only two 
onse
-

utive re
ex verti
es, a must ne
essarily see e, and b must see d. Pla
e one Steiner point s in

wedge(a)∩R(a, e)∩L(b, d). This region is not empty be
ause de ∈ L(b, d), and wedge(a)∩R(a, e)


ontains a subset of the edge de (this 
an be seen by noting that either d or e belong to wedge(a),

or they lie on opposite sides of wedge(a)). Conne
t s to a and e (refer to Figure 17). The quad-

rangle asef must be 
onvex: a is 
onvex sin
e s ∈ wedge(a), and s is 
onvex be
ause s ∈ R(a, e).

The remaining hexagon has two re
ex verti
es, namely s and b, separated by a 
onvex vertex a.

Both s and b 
an see d, sin
e s ∈ L(b, d). This is the r
r


-1 
ase, whi
h requires one additional

Steiner point.
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Figure 17: One Steiner point redu
es the problem to the r
r


-1 
ase.

3. (r

r

−2 ) We are left with the 
ase in whi
h there are two 
onvex verti
es between the two

re
ex verti
es, both 
lo
kwise and 
ounter
lo
kwise. In this 
ase, two Steiner points suÆ
e.

Let a and d be the re
ex verti
es. We will use the fa
t that either the two diagonals ae and

bd are internal to the polygon or ac and df are. The reason is that if ac is obstru
ted by d,
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Figure 18: One Steiner point redu
es rccrcc-2 to rcrccc-1 
ase.

then d belongs to △(abc) (re
all that a, b, c, d are 
onse
utive) and must see b, whi
h implies

that diagonal ae 
annot be obstru
ted. A symmetri
 argument holds if df is obstru
ted by a.

Let us assume that ae and bd are internal diagonals (see Figure 18). Then one Steiner point

s 
an be pla
ed in wedge(a) ∩ R(a, e) ∩ L(b, d). This region 
an be seen to be nonempty as

follows: from the 
onvexity of f, f must belong to L(a, e) and hen
e R(a, e) ∩ wedge(a) 6= ∅.

In fa
t R(a, e) ∩ wedge(a) 
ontains a neighborhood of a, whi
h is in turn 
ontained in L(b, d).

Conne
t s to a and e. The quadrangle asef is 
onvex. The remaining polygon is the r
r


-1

type: s and d are its re
ex verti
es, and they both see b, sin
e s ∈ L(b, d).

Hexagon with three reflex vertices. Again, there are di�erent situations, depending on the relative

positions of the re
ex verti
es along the polygon boundary.

1. (r
r
r
) We start with the 
ase in whi
h the re
ex and the 
onvex verti
es alternate.

1.1. (r
r
r
−1 ) In the spe
ial 
ase that △(ace) is inside the polygon and the polygon is star

shaped, Lemma 3.6 implies that one Steiner point suÆ
es.

1.2. (r
r
r
−3 ) Otherwise, we show that 3 Steiner points suÆ
e. The region ρ = wedge(a) ∩

wedge(e)∩R(a, e) must be non-empty for the following reason: If△(ace) is inside the polygon,

then ρ is non-empty as a 
onsequen
e of Lemma 3.4. If on the other hand one of the edges

of △(ace), w.l.o.g. ac is obstru
ted, then ρ is non-empty by Lemma 3.7. Pla
e a Steiner

point s inside ρ. Conne
t s to a and e. The quadrangle efas is 
onvex. Verti
es a and e

are 
onvex by virtue of s being in the appropriate wedges. The vertex s is 
onvex be
ause

s ∈ R(a, e). The hexagon sabcde is of type rccrcc-2 (sin
e s ∈ wedge(a) ∩ wedge(e)) hen
e


an be quadrangulated with two additional Steiner points.
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2. (rr
r

) We now study the 
ase in whi
h there are exa
tly two 
onse
utive re
ex verti
es.

These polygons are always star-shaped, for the following reasons: Suppose that a, b and d are

the re
ex verti
es (refer to Figure 19). Consider the wedges of f and c. The point e must lie

on the left ray of wedge(f), and to the right of (or on) the right ray of wedge(c) (sin
e d is

re
ex). As a 
onsequen
e, these two rays must interse
t (inside P) in a point that we will 
all i.

Sin
e d is re
ex, it must lie in the segment ci, and e 
annot lie in the interior of segment fi. As

a 
onsequen
e, some portion of the edge ef must belong to wedge(f) ∩ wedge(c) ∩ wedge(e) =

int kernel(P), (see (5)). We have two 
ases depending on whether e sees at least one of a and b.
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Figure 19: Proving that the rr
r

 polygons are starshaped.
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Figure 20: One Steiner point redu
es the problem to the r
r
r
-1 
ase.

2.1. (rr
r

−2 ) If e sees at least a, two Steiner points suÆ
e. In parti
ular the region kernel(P)∩

R(a, e)∩L(b, d) (see Figure 20) 
annot be empty, for the following reason: The fa
t that e and
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Figure 21: One Steiner point redu
es the problem to the rr
r

-2 
ase.

a see ea
h other implies that f ∈ L(a, e) and b, c, d ∈ R(a, e). Hen
e ae ⊂ wedge(f)∩wedge(e).

On the other hand, wedge(c) must interse
t ae, sin
e e lies to its right (be
ause d is re
ex)

and similarly a lies to its left. Let a ′e ′
be the interse
tion of wedge(c) with ae (see Figure 20).

Sin
e a ′e ′ ⊆ kernel(P) and a ′e ′ ∈ L(b, d) (be
ause b belongs to segment ca ′
and d belongs

to segment ce ′
), it follows that kernel(P) ∩ R(a, e) ∩ L(b, d) 6= ∅. Pla
e a Steiner point s in

the region, and 
onne
t it to a and e. The quadrangle asef is 
onvex: a is 
onvex be
ause

s ∈ wedge(a), and s is 
onvex be
ause s ∈ R(a, e). The hexagon ab
des is of the r
r
r
-1 type

be
ause s, b, d are mutually visible (sin
e s ∈ L(b, d)).

2.2. (rr
r

−3 ) If e sees neither a nor b, then three Steiner points suÆ
e.

In fa
t, we 
an redu
e the problem to the previous one, after adding one Steiner point s in the

region wedge(e) ∩ R(f, d) (see Figure 21), whi
h must be non-empty. The point s 
an then be


onne
ted to f and d. The quadrangle sdef is 
onvex: d is 
onvex be
ause s ∈ wedge(d), and

s is 
onvex be
ause s ∈ R(f, d). The remaining hexagon is of the kind rr
r

-2, sin
e d 
an

see both a and b, be
ause s ∈ wedge(e).
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es the problem to the rr
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-2 
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3 UPPER BOUND 22

3. (rrr


) We are left with the 
ase in whi
h the three re
ex verti
es are 
onse
utive. This 
ase


an be solved with three Steiner points. In fa
t, it 
an be redu
ed to the rr
r

-2 
ase after

adding one Steiner point. Suppose that the three re
ex verti
es are a, b and c. Pla
e a Steiner

point s in the region wedge(a) ∩ R(a, e) ∩ L(b, e), whi
h is trivially non-empty. Conne
ting s

with a and e gives rise to the 
onvex quadrangle asef : a is 
onvex be
ause s ∈ wedge(a), and

s is 
onvex be
ause s ∈ R(a, e). The remaining hexagon is of the rr
r

-2 type, sin
e e sees b

and c, be
ause s ∈ L(b, e) (see Figure 22) .

This 
ompletes the proof of Theorem 3.2. It remains to 
onsider the 
ase when the union of

two quadrangles is not a hexagon.

3.1.3 Quadrangle with one interior point.

As stated earlier, when two quadrangles share two edges, their union is a quadrangle whi
h 
ontains

one of the verti
es of the original quadrangles in its interior. We will show that three Steiner points

suÆ
e to 
onvex-quadrangulate this polygon, thus establishing the following theorem:

3.8. Theorem. Any union of two quadrangles 
an be 
onvex-quadrangulated with at most three

Steiner points.

Proof. We 
onsider here only the 
ase where the union is not a hexagon. Let us 
all the four

verti
es of the union quadrangle r, a, b and c, where r is the only (possibly) re
ex vertex. Let

i be the interior point. Sin
e only r may be re
ex, i must see either a or c , be
ause r 
annot

obstru
t its view to both. Suppose that i sees a, as illustrated in Figure 23. Sin
e i ∈ wedge(a),
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Figure 23: One Steiner point redu
es the problem to the rr



 
ase.

wedge(r)∩L(r, i)∩L(a, i) 6= ∅. Pla
e one Steiner point s in the region. Then the quadrangle rais in


onvex: r is 
onvex be
ause s ∈ wedge(r), i is 
onvex be
ause s ∈ L(a, i), and s is 
onvex be
ause

s ∈ L(r, i) ∩ wedge(r). On the other hand, the hexagon siab
r is a rr



 hexagon, whi
h 
an be


onvex-quadrangulated with two Steiner points. �
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Ea
h of the 
ases des
ribed in this se
tion runs in 
onstant time, thus:

3.9. Theorem. A stri
tly 
onvex quadrilateral mesh of n points using at most 3⌊n
2
⌋ Steiner

points 
an be 
omputed in O(n log n) time.

4 Concluding Remarks

We have given upper and lower bounds on the number of Steiner points required to 
onstru
t a


onvex quadrangulation for a planar set of points. Both bounds are 
onstru
tive, and the upper

bound yields a straightforward O(n log n) time algorithm. The obvious open problem is that of

redu
ing the gap between the lower and upper bounds. One way to redu
e the upper bound may

be by 
onstru
ting a 
onvex quadrangulation of the point set dire
tly, rather than by 
onverting

a triangulation (by 
ombining triangles and then quadrangles) as we do now. Also, it would be

interesting to explore the possibility of improving (raising) the lower bound for a non-degenerate

point set by 
ombining in some way the two point set 
on�gurations given in Se
tion 2.
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