
Labeled Search Trees and Amortized Analysis:

Improved Upper Bounds for NP-hard Problems∗

Jianer Chen† Iyad A. Kanj‡ Ge Xia†

Abstract

A sequence of exact algorithms to solve the Vertex Cover and Maximum Independent

Set problems have been proposed in the literature. All these algorithms appeal to a very
conservative analysis that considers the size of the search tree, under a worst-case scenario,
to derive an upper bound on the running time of the algorithm. In this paper we propose a
different approach to analyze the size of the search tree. We use amortized analysis to show how
simple algorithms, if analyzed properly, may perform much better than the upper bounds on
their running time derived by considering only a worst-case scenario. This approach allows us
to present a simple algorithm of running time O(1.194kk2 + n) for the parameterized Vertex

Cover problem on degree-3 graphs, and a simple algorithm of running time O(1.1255n) for
the Maximum Independent Set problem on degree-3 graphs. Both algorithms improve the
previous best algorithms for the problems.

Key words. vertex cover, independent set, exact algorithm, parameterized algorithm

1 Introduction

Recently, there has been considerable interest in developing improved exact algorithms for solving
well-known NP-hard problems [8, 15]. This line of efforts was motivated by both practical and
theoretical research in computational sciences. Practically, there are certain applications that
require solving NP-hard problems precisely [11], while theoretically, this line of research may lead
to a deeper understanding of the structure of NP-hard problems [5, 10, 12, 14].
Two of the most extensively studied problems in this line of research are the Maximum In-

dependent Set and the Vertex Cover problems. There has been steady research in the last
two decades on improved algorithms for Maximum Independent Set (given a graph G, find a
maximum independent set in G) [3, 13, 19, 20, 23]. For general graphs, the best algorithm for
Maximum Independent Set is due to Robson [19], whose algorithm runs in time O(1.211n).
Beigel [3] developed an algorithm of running time O(1.083e) for the problem, where e is the num-
ber of edges in the graph. Applying this algorithm to degree-3 graphs, we get the currently best
algorithm of running time O(1.1259n) for Maximum Independent Set on degree-3 graphs.
TheVertex Cover problem (given a graph G and a parameter k, decide if G has a vertex cover

of k vertices) has drawn much attention recently in the study of parameterized complexity of NP-
hard problems [10]. This is also due to its applications in fields like computational biochemistry [16].
Since the development of the first parameterized algorithm by Sam Buss, which has running time

∗A preliminary version of this work was presented at The Fourteenth International Symposium on Algorithms and

Computation (ISAAC 2003), Kyoto, Japan, December 15 – December 17, 2003, and published in Lecture Notes in

Computer Science 2906, pp. 148-157, 2003.
†Supported in part by NSF under the grants CCR-0311590 and CCF-0430683. Department of Computer Science,

Texas A&M University, College Station, TX 77843-3112. Email: {chen,gexia}@cs.tamu.edu.
‡The Corresponding author. School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301

Email: ikanj@cs.depaul.edu. Supported in part by DePaul University Competitive Research Grant.

1

O(kn+ 2kk2k+2) and was decribed in [4], there has been an impressive list of improved algorithms
for the problem [2, 6, 7, 9, 18, 21]. Currently, the best parameterized algorithm for Vertex Cover

has running time O(kn+ 1.285k) for general graphs [6], and the best parameterized algorithm for
Vertex Cover on degree-3 graphs has running time O(kn+ 1.237k) [7].
The most popular technique for solving NP-hard problems precisely is the branch-and-search

process, which can be depicted by a search tree model described as follows. Each node of the
search tree is associated with an instance of the problem. At a node α in the tree the search
process considers a local structure in the problem instance associated with α, and enumerates
some feasible partial solutions to the instance based on the specific local structure. Each such
enumeration induces a new reduced problem instance that is associated with a child of the node α in
the search tree. The search process is then applied recursively to the children of α. The complexity
of a branch-and-search process, which is roughly the size of the search tree, depends mainly on two
things: how effectively the feasible partial solutions are enumerated, and how efficiently the instance
size is reduced. In particular, all exact algorithms proposed in the literature for the Maximum

Independent Set problem and the Vertex Cover problem are based on this strategy, and most
improvements were obtained by more effective enumerations of feasible partial solutions and/or
more efficient reductions in the size of the problem instance [2, 6, 19, 23].
A desirable local structure may not exist at a stage of the branch-and-search process. In this

case, the branch-and-search process has to pick a less favorable local structure and make a less
effective branch and/or less efficient instance-size reduction. Most proposed branch-and-search
algorithms for NP-hard problems were analyzed based on the worst-case performance. That is, the
computational complexity of the algorithm was derived based on the worst local structure occurring
in the search process. This worst-case analysis for a branch-and-search process is very conservative
— the worst cases can appear very rarely in the entire process, while most other cases permit much
better branching and reductions.
In the current paper, we suggest new methods to analyze the branch-and-search process. First

of all, we label the nodes of a search tree to record the reduction in the parameter size for each
branching process. We then perform an amortized analysis on each path in the search tree. This
allows us to capture the following notion: an operation by itself may be very costly in terms of the
size of the search tree that it corresponds to, however, this operation might be very beneficial in
terms of introducing many efficient branches and reductions in the entire process. Therefore, the
expensive operation can be well balanced by the induced efficient operations.
This analysis has also enabled us to consider new algorithm strategies in a branch-and-search

process. In particular, now we do not have to always strictly avoid expensive operations. To
illustrate our analysis and algorithmic techniques, we propose a very simple branch-and-search
algorithm for Vertex Cover on degree-3 graphs, abbreviated VC-3. The algorithm also induces
a new algorithm for Maximum Independent Set on degree-3 graphs, abbreviated IS-3. Using
the new analysis and algorithmic strategies, we are able to show that the new algorithms improve
the best existing algorithms in the literature. More specifically, our algorithm for VC-3 runs in
time O(n+ 1.194kk2), improving the previous best algorithm of running time O(kn+ 1.237k) [7],
and our algorithm for IS-3 runs in time O(1.1255n), improving the previous best algorithm of
running time O(1.1259n) [3].
We would like to further comment on why we picked VC-3 and IS-3 as our candidates. As

we mentioned before, Vertex Cover and Maximum Independent Set are among the most
extensively studied NP-hard problems with many proposed algorithms [2, 4, 6, 9, 13, 18, 19, 20, 21,
23]. In particular, Vertex Cover andMaximum Independent Set on graphs of degrees 3 and 4
have received a lot of attention recently [3, 6, 7]. In spite of the restriction imposed on graph degrees

2

(being bounded by 3 or 4), improvements on the previous upper bounds for these problems can be
challenging and meticulous. Moreover, most of the algorithms for Vertex Cover and Maximum

Independent Set on general graphs end up reducing the problem to that on low-degree graphs
[6, 18, 19]. Thus, a simple and uniform algorithm that induces significant improvements on the
existing bounds for these problems is of high interest, and shows the power and effectiveness of the
new analysis and algorithmic methods. In addition, recent research has shown that these problems
are “complete” in terms of their worst case running time for a large group of well-known NP-hard
problems [5, 12, 14]. More specifically, combining the results in [12], [14], and [5], one can show
that if IS-3 can be solved in time O((1+ ε)n), or if VC-3 can be solved in time (1+ ε)kp(n) (p is a
polynomial), for every constant ε > 0, then k-SAT, Maximum Independent Set, and Vertex

Cover can all be solved in subexponential time, which seems very unlikely. Hence, it is believed
that there are constants c1, c2 > 0, such that IS-3 and VC-3 have no exact algorithms of running
time O((1 + c1)

n) and (1 + c2)
kp(n), respectively. Thus, further improvement in the base of the

exponential function in the running time of the algorithms that solve these problems may lead to
better understanding of the problems and their associated complexity class.

2 The main algorithm

Let G = (V,E) be an undirected graph. Denote by |G| the number of vertices in G. A subgraph
H of G is induced by a subset VH of vertices in G if H consists of the vertex set VH and all edges
in G that have both ends in VH . A subgraph H of G is an induced subgraph if it is induced by a
subset of vertices in G. For a subgraph H of G, denote by G−H the subgraph of G obtained by
removing all vertices in H. For a vertex u in G, denote by N(u) the set of neighbors of u and by
d(u) the degree of u. A set C of vertices in G is a vertex cover for G if every edge in G has at
least one endpoint in C. Denote by τ(G) the size of a minimum vertex cover of the graph G. An
instance of the Vertex Cover problem consists of a pair (G, k) asking whether τ(G) ≤ k. The
VC-3 problem is the Vertex Cover problem on graphs whose vertex degree is bounded by 3.
We will assume, without loss of generality, that the graph G in an instance (G, k) of VC-3 contains
no isolated vertices (such vertices can be removed in O(|G|) preprocessing time). The number of
edges |E| in G then satisfies |E| ≥ |G|/2 (note that G may not be connected). The degree of G is
bounded by 3, and hence, every vertex in G can cover at most three edges. This means that, in
order for a vertex cover of size k to exist in G, k must be at least as large as |E|/3 (and hence,
k ≥ |G|/6); otherwise, we can report that the answer to the instance (G, k) is negative.
The following proposition from [7] is based on a theorem by Nemhauser and Trotter [17].

Proposition 2.1 ([7]) There is an algorithm of running time O(k
√
k) that, given an instance

(G, k) of the VC-3 problem, constructs another instance (G1, k1) of VC-3 with k1 ≤ k and |G1| ≤
2k1, such that τ(G) ≤ k if and only if τ(G1) ≤ k1.

Proposition 2.1 allows us to assume, without loss of generality, that in an instance (G, k) of the
VC-3 problem, the graph G contains at most 2k vertices.
Let v be a degree-2 vertex in the graph with two neighbors u and w such that u and w are not

adjacent. We construct a new graph G′ as follows: remove the vertices v, u, and w and introduce
a new vertex v0 that is adjacent to all neighbors of u and w in G (of course except the vertex v).
We say that the graph G′ is obtained from the graph G by folding the vertex v. See Figure 1 for
an illustration of this operation. We have the following lemma [6].

3

t
v

t
u

t
w

t
v0©©

©
HH

H

¢
¢

x1
A
A

x2
¢
¢

y1
A
A

y2
´
´
´

x1
¶
¶

x2
S

S

y1
Q

Q
Q

y2

-

Figure 1: Vertex folding

Lemma 2.2 ([6]) Let G′ be a graph obtained by folding a degree-2 vertex v in a graph G, where
the two neighbors of v are not adjacent to each other. Then τ(G) = τ(G′) + 1.

Following the terminology of Tutte [24], we define the binding set of an induced subgraph H
of a graph G to be the set of vertices in H that have neighbors not in H. We first discuss how a
small induced subgraph with a small binding set helps identifying vertices that are in a minimum
vertex cover.

Lemma 2.3 Let (G, k) be an instance of VC-3 where G has no vertex of degree less than 2. If

G has an induced subgraph H with a binding set of at most 2 vertices and 4 ≤ |H| ≤ 50,1 then in

constant time we can construct an instance (G′, k′) of VC-3 with a reduced parameter k′ < k, such
that G has a vertex cover of k vertices if and only if G′ has a vertex cover of k′ vertices.

Proof. First we discuss the case where the binding set of H consists of one vertex v. Consider
the algorithm BindingSet1() in Figure 2. The algorithm runs in constant time since |H| ≤ 50. If
H has a minimum vertex cover containing the vertex v, then let CH be this vertex cover, otherwise
let CH be any minimum vertex cover of H. In both cases, removing the vertex set CH from the
graph G (and all isolated vertices resulted from this process) gives the graph G′. Thus, it suffices
to show that there is a minimum vertex cover C of the graph G that contains the entire set CH : in
this case C − CH makes a minimum vertex cover for the graph G′ and |C − CH | = τ(G)− τ(H).

BindingSet1(G,H, v) {∗ {v} is the binding set of the induced subgraph H of G ∗}

if H has a minimum vertex cover containing the vertex v then
G′ = G−H; k′ = k − τ(H);

else G′ = G− (H − {v}); k′ = k − τ(H).

Figure 2: Removing an induced subgraph whose binding set has only one vertex

Let CG be any minimum vertex cover of G, then CG ∩ VH is a vertex cover for H, and hence
|CG ∩ VH | ≥ τ(H). If the minimum vertex cover CH of H contains v, then replacing CG ∩ VH in
CG by CH gives a minimum vertex cover for G that contains CH . On the other hand, suppose
CH does not contain v, i.e., H has no minimum vertex cover containing v. Then in case v 6∈ CG,
replacing CG ∩ VH in CG by CH gives a minimum vertex cover for G that contains CH ; while in
case v ∈ CG, |CG ∩ VH | ≥ τ(H) + 1, and replacing CG ∩ VH in CG by CH plus the vertex v gives
a minimum vertex cover of G that contains CH . Thus, in both cases, there is a minimum vertex
cover of G that contains CH . This proves the lemma for the case where H has a binding set of one
vertex.

1The constant 50 used here can be replaced by any sufficiently large constant without affecting the correctness of
the results in this paper.

4

Now suppose the binding set of H has two vertices u and v. Consider the algorithm in Figure 3,
which examines all possible situations in which vertices u and v are contained in minimum vertex
covers of H.

BindingSet2(G,H, u, v) {∗ {u, v} is the binding set of the induced subgraph H of G ∗}

1. if H has a minimum vertex cover C1 containing both u and v

then G′ = G−H; k′ = k − τ(H);
2. else if H has a minimum vertex cover C2 containing u but no minimum vertex cover containing v

then G′ = G− (H − {v}); k′ = k − τ(H);
3. else if H has a minimum vertex cover C3 containing v but no minimum vertex cover containing u

then G′ = G− (H − {u}); k′ = k − τ(H);
4. else if H has a minimum vertex cover C4 containing u and a minimum vertex cover C ′

4 containing v

then G′ = G− (H − {u, v}); k′ = k − τ(H) + 1; if [u, v] is not an edge, add an edge [u, v] to G′;
5. else {∗ every minimum vertex cover of H contains neither u nor v ∗}

let CH be a smallest vertex cover of H that contains both u and v;
if |CH | = τ(H) + 2 then G′ = G− (H − {u, v}); k′ = k − τ(H);

else G′ = G− (H − {u, v}); k′ = k − τ(H) + 1;
add a new vertex w and two edges [w, u] and [w, v] to the graph G′.

Figure 3: Removing an induced subgraph whose binding set consists of two vertices

For each of the cases 1-3, we only need to verify that the corresponding minimum vertex cover of
H is entirely contained in a minimum vertex cover of G. For this, let CG be any minimum vertex
cover of the graph G. In case 1, replacing CG∩VH in CG by C1 gives a minimum vertex cover of G
that contains C1. For case 2, if CG does not contain v, then replacing CG ∩ VH in CG by C2 gives
a minimum vertex cover for G; while if CG contains v then |CG ∩ VH | ≥ τ(H) + 1 (since H has no
minimum vertex cover containing v), thus replacing CG ∩ VH in CG by C2 plus v gives a minimum
vertex cover of G. The proof for case 3 is completely similar to that for case 2.
Consider case 4. Since [u, v] is an edge in G′, every vertex cover of G′ must contain at least

one of u and v. Moreover, if G has a minimum vertex cover C that contains neither u nor v, then
replacing C∩VH in C by C4 gives a minimum vertex cover of G that contains u. Thus, the graph G
has a minimum vertex cover CG that contains at least one of u and v. If CG contains u but not v,
replacing CG∩VH in CG by C4 gives a minimum vertex cover C

′
G forG satisfying that (C

′
G−C4)∪{u}

is a minimum vertex cover for G′. Therefore, τ(G′) = τ(G)−|C4|+1 = τ(G)− τ(H)+1. The case
in which CG contains v but not u can be verified similarly using C ′

4 instead of C4. Finally, suppose
that CG contains both u and v. Since case 1 has been excluded and CG ∩ VH is a vertex cover for
H that contains both u and v, we have |CG ∩VH | ≥ τ(H)+ 1. Therefore, replacing CG ∩VH in CG

by C4 plus v gives a minimum vertex cover C
′′
G for G satisfying that (C

′′
G−C4)∪{u} is a minimum

vertex cover for the graph G′. Thus again τ(G′) = τ(G)− τ(H) + 1.
For case 5, let CH be any minimum vertex cover of H. First consider the subcase |CH | =

τ(H)+2. Let CG be any minimum vertex cover of G. If CG contains u but not v, then |CG∩VH | ≥
τ(H) + 1 (since no minimum vertex cover of H contains u), so replacing CG ∩ VH in CG by CH

plus u gives a minimum vertex cover of G. The case that CG contains v but not u can be verified
similarly. Finally, if CG contains both u and v, then |CG ∩ VH | ≥ |CH | = τ(H) + 2, and replacing
CG ∩ VH in CG by CH plus u and v gives a minimum vertex cover for G. Therefore, in case
|CH | = τ(H) + 2, we can simply remove CH and reduce the parameter by τ(H). Now consider the
subcase |CH | = τ(H) + 1. In this case, the graph G has a minimum vertex cover CG that either

5

contains both u and v or contains neither: if a minimum vertex cover C of G contains exactly one
of u and v, then |C ∩ VH | ≥ τ(H) + 1 and replacing C ∩ VH in C by CH gives a minimum vertex
cover of G containing both u and v. Moreover, because of the new degree-2 vertex w, the graph
G′ has a minimum vertex cover C that either contains both u and v or contains neither. If CG

contains both u and v, replacing CG ∩ VH in CG by CH gives a minimum vertex cover C ′
G of G

satisfying that (C ′
G−CH)∪ {u, v} is a minimum vertex cover for G′ of size τ(G)− τ(H) + 1, while

in case CG contains neither u nor v, the set (CG − CG ∩ VH) ∪ {w} is a minimum vertex cover for
G′ of size τ(G)− τ(H) + 1.
Finally, we note that since |H| ≥ 4 and G has no vertex of degree less than 2, we have τ(H) ≥ 2.

Therefore, in all cases we have k′ < k.

We note that the condition that the vertex degree is bounded by 3 is not used in the proof
of Lemma 2.3. Therefore, the lemma remains valid for instances of the general Vertex Cover

problem.
Before we present our main algorithm, we introduce some definitions and terminologies.

Definition 2.4 Let G be a graph in which no vertex has degree larger than 3.
(1) A vertex folding operation is safe if it does not create vertices of degree larger than 3.
(2) A cycle of length l in G is an alternating cycle if it contains exactly bl/2c degree-2 vertices

of which no two are adjacent.
(3) An alternating tree T in G is a tree that is an induced subgraph in G such that all degree-1

vertices in T are of degree 3 in G and no two adjacent vertices in T are of the same degree in G.
An alternating tree T is maximal if no alternating tree contains T as a proper subgraph.

Our main algorithm is a branch-and-search process, given in Figure 4. Each stage of the
algorithm starts with an instance (G, k) of VC-3, and tries to reduce the parameter k by identifying
a set S of vertices that are entirely contained in a minimum vertex cover of G, and including the
vertex set S in the objective minimum vertex cover for G, which will be called the partial cover for
G, then recursively works on the reduced instances. The subroutine Fold(v) simply applies the
safe folding operation to a degree-2 vertex v. We also implicitly assume that after each step, the
algorithm calls a subroutine Clean, which eliminates all isolated vertices and degree-1 vertices (a
degree-1 vertex is eliminated by including its neighbor in the partial cover), and updates the graph
G, the partial cover, and the parameter k accordingly. In particular, we will assume that at the
beginning of each step, the graph contains no vertices of degree less than 2.
If a vertex set S is identified such that either there is a minimum vertex cover containing the

entire S or there is a minimum vertex cover containing no vertex in S, then we can branch on the

set S. This means that the algorithm constructs two instances of VC-3, one by including the set
S in the partial cover and the other by excluding the set S from the partial cover, and in the latter
case, every vertex that is adjacent to a vertex in S should be included in the partial cover. The
algorithm then recursively works on the two reduced instances.
We explain how each step in the subroutine Reducing is done efficiently. The conditions in

step A and step C can be verified by checking each degree-2 vertex and each edge in the graph G,
respectively. The conditions in step B can be verified by partitioning the graph G into connected
components. The conditions in step E can be checked in linear time using the following procedure.
First we apply a linear time algorithm (see [1], section 5.3) to the graph G, which identifies all cut-
points and constructs all 2-connected components of G. By examining each 2-connected component,
we can check if there is any induced subgraph with a binding set of a single vertex that satisfies the
conditions in step E. Similarly, applying the linear time algorithm in [22] to the graph G identifies

6

VC3-solver
Input: an instance (G, k) of VC-3

Output: a vertex cover C of G of size bounded by k in case it exists

1. while Reducing is applicable do apply Reducing;
2. if there is a maximal alternating tree T of at least 4 vertices in G

then branch on the vertices in T that are of degree 3 in G;
3. else if there is a degree-2 vertex v then branch on the two neighbors of v;
4. else branch on a degree-3 vertex v.

Reducing
A. while there exists a degree-2 vertex v such that folding v is safe do Fold(v);
B. if G has a component H with |H| ≤ 50 then include a minimum vertex cover of H in the cover;
C. else if there are two adjacent triangles (u, v, w) and (u, v, z) then include v in the cover;
D. else if there is an alternating cycle K in G then include all degree-3 vertices on K in the cover;
E. else if G has an induced subgraph H with a binding set of at most two vertices, and such that
4 ≤ |H| ≤ 50 then call the subroutine BindingSet1() or BindingSet2().

Figure 4: The algorithm VC3-solver

all cut-pairs, and constructs all the 3-connected components in G. By examining each 3-connected
component, we can find out if there is any induced subgraph with a binding set of two vertices
that satisfies the conditions in step E. To check the conditions for step D, we run the following
subroutine: first remove from G the set T of all edges whose two ends are of degree 3 in G and
“smooth” each degree-2 vertex v in G by removing v and adding a new edge connecting its two
neighbors. Let the resulting graph be G′. Now every alternating cycle C in the original graph G
corresponds either to a cycle in G′ (in this case C is of even length) or to an edge [u, v] in T where
u and v belong to the same connected component of G′ (in this case, C is of odd length). Since
the number of edges in G is bounded by O(k), all these conditions can be verified in time O(k).
An explanation for step 2 of the algorithm VC3-solver is needed. Because of step 1, there

is no alternating cycle in the graph G. Since an alternating tree of at least 4 vertices contains
at least one degree-3 vertex in G that is of degree larger than 1 in the tree, we can check each
degree-3 vertex in G that has at least two degree-2 neighbors. A simple breadth-first-search style
construction from such a degree-3 vertex will give a maximal alternating tree in linear time.

Theorem 2.5 The algorithm VC3-solver solves the VC-3 problem correctly.

Proof. We first discuss the subroutine Reducing. The correctness of step B is obvious, and
the correctness of step A and step E is given by Lemma 2.2 and Lemma 2.3, respectively. For step
C, since every minimum vertex cover of G must contain at least one of u and v, by the symmetry
in the structure, we can simply include v. Finally, consider step D. Let W be the set of all degree-3
vertices in the alternating cycle K, |W | = dl/2e, where l is the length of K. Since every minimum
vertex cover CG of G contains at least dl/2e vertices in K, replacing CG ∩K in CG by W gives a
minimum vertex cover containing W . This verifies the correctness of step D.
What remains is to verify the correctness of each step in the main algorithm VC3-solver. For

this, we show that, in each of the branching steps 2–4, at least one of the outcomes of the branching
includes only vertices in a minimum vertex cover of the current graph, into the partial cover.
In step 4 we branch at a degree-3 vertex v by either including v in the cover, or excluding it and

including all its neighbors. This step is correct since for any vertex v in the graph, it is true that

7

any minimum vertex cover either contains v, or does not contain v and contains all its neighbors.
For step 3, let u and w be the two neighbors of the vertex v. Each minimum vertex cover CG of
G contains at most two of v, u, and w. If CG contains only one of v, u, and w, then the vertex in
CG must be v so both u and w are not in CG. If CG contains two of v, u, w, we can always replace
these two vertices in CG by u and w to get a minimum vertex cover of G that contains both u and
w. This verifies the correctness of step 3. Finally, consider case 2. Let W be the set of all degree-3
vertices in the alternating tree T . Suppose that G has a minimum vertex cover CG that contains
some vertex v in W but not the entire W . Let Ni be the set of vertices in T such that, for each
vertex u in Ni, the unique path from v to u in T has length i. By the definition of an alternating
tree, all vertices in Ni are of degree 2 in G if i is odd and of degree 3 in G if i is even. Since v
is in the minimum vertex cover CG, removing v makes all vertices in N1 become of degree 1. By
the observation given earlier, we can safely include all vertices in N2 in the minimum vertex cover.
Now removing all vertices in N2 makes all vertices in N3 become of degree 1, so we can include
all vertices in N4 in the minimum vertex cover, and so on. This process will eventually include all
vertices in W in the minimum vertex cover, and give a minimum vertex cover of G that contains
the entire set W . This verifies that there is a minimum vertex cover of G that either contains the
entire set W or contains no vertex in W , and proves the correctness of step 2.

The main goal of this paper is to show that the number of leaves in the search tree of the
algorithm VC3-solver on an instance (G, k) of VC-3 is O(1.194k). This will be done in Proposi-
tion 3.11. We first note that the following conditions can be assumed on the input (G, k) to the
algorithm VC3-solver.

Assumption 2.6 Let (G, k) be an instance of VC-3. We can assume that when the algorithm

VC3-solver is initially called on the instance (G, k) the following holds true: (1) the parameter k
passed is not larger than the size of a minimum vertex cover of G; and (2) G is connected.

Suppose first that G is connected. Condition (1) can be justified as follows. We start calling the
algorithm onG with k′ = 1, 2, . . . , k. The first time the algorithm returns a vertex cover of size k′, we
stop (note that the vertex cover returned in this case must be a minimum vertex cover). Otherwise,
no vertex cover of size bounded by k exists. Each call to the algorithm satisfies condition (1). It will
be shown in Proposition 3.11 that the number of the leaves in the search tree of the algorithm when
called on an instance (G, k) is O(1.194k). The number of leaves in the search tree in the previous
calls to the algorithm becomes bounded by c ·1.1941+c ·1.1942+ . . .+c ·1.194k = O(1.194k) (where
c is a positive constant). Hence, the upper bound on the number of leaves in the search tree with
the new modification to the algorithm is unchanged. Now to justify (2), suppose that there are
G1, . . . , Gr components in G with |Gi| = ni. By Proposition 2.1, we may assume that the size of a
minimum vertex cover of Gi, τ(Gi), is ≥ ni/2. We will also assume that τ(Gi) ≥ 4 (a component
Gi with τ(Gi) < 4 has its size bounded by 8, and thus can be removed in constant time). We call
the algorithm on G1, with k1 = n1/2, n1/2+1, . . . , k. The first time the algorithm returns a vertex
cover of size k1, we stop. If the algorithm fails to return a vertex cover in each of these cases, then
no vertex cover of size bounded by k exists. Otherwise, the algorithm returns a minimum vertex
cover of G1 of size 4 ≤ k1 ≤ k. Now we call the algorithm on G2 with k2 = n2/2, n2/2+1, . . . , k−k1,
and so on. It is now true that on each call to the algorithm on a graph component, conditions
(1) and (2) hold true. The number of leaves in the search tree is O(1.194k1 + · · · + 1.194kr). We
show next that 1.194k1 + · · · + 1.194kr ≤ 1.194k1+···+kr , which gives that the number of leaves in
the search tree is O(1.194k1+···+kr) = O(1.194k).

8

Since ki ≥ 4 for all i, we have 1.194ki ≥ 2. For any two numbers a ≥ 2 and b ≥ 2, we have
ab− (a+ b) = (a− 1)(b− 1)− 1 ≥ 0, which gives a+ b ≤ ab. Using this inequality repeatedly gives

1.194k1 + 1.194k2 + 1.194k3 + · · ·+ 1.194kr ≤ 1.194k1+k2 + 1.194k3 + · · ·+ 1.194kr

≤ 1.194k1+k2+k3 + · · ·+ 1.194kr

≤ · · · ≤ 1.194k1+k2+k3+···+kr .

3 Analysis of the algorithm

We analyze the time complexity of the algorithm VC3-solver in this section. Let T be the search
tree for the algorithm VC3-solver on the input instance (G, k). Let α be a node in the search tree
with an associated parameter k′. If we perform a two-sided branch at α by reducing the parameter
k′ in each branch by a and b, respectively, then such a branch will be called an (a, b) branch. We
will always assume that in an (a, b) branch, we have a ≤ b. We say that an (a, b) branch is not
worse than an (a′, b′) branch if a ≥ a′ and b ≥ b′.
Differing from the common analysis techniques based on the worst-case scenario, we present

next a novel way for analyzing the size of the search tree. This can be achieved by looking at the
set of operations performed by the algorithm as an interleaved set of operations. This allows us to
counter-balance the effect of inefficient operations with efficient ones, thus providing a better upper
bound on the size of the search tree. Our goal is to show that the number of leaves in the search
tree T is O(rk), where r ≤ 1.194 is the unique positive root of the polynomial xk −xk−3−xk−5, or
equivalently, the unique positive root of the polynomial x5 − x2 − 1.
The graph G is called clean if no vertex of degree 0 or 1 exists in G. The graph G is called nice

if it is clean and no safe folding is applicable to any vertex in G. We will divide the operations
performed by the algorithm into four categories.

1. Folding operations: the operations performed in step A of the subroutine Reducing.

2. (1, 3) branching operations: the operations performed in step 4 of VC3-solver when we
branch on a degree-3 vertex. These operations occur only when the graph becomes 3-regular.

3. (2, 5) branching operations: the operations performed in step 3 of VC3-solver when we
pick a degree-2 vertex and branch on its neighbors. Note that at this point of the algorithm
the graph is nice, and hence, no safe folding is applicable. Also, step D of Reducing is not
applicable. This means that the two vertices that we branch on have five neighbors, and the
branch in this case is a (2, 5)-branch.

4. The operations performed in: steps B-E of Reducing, step 2 of VC3-solver, and those
performed by the subroutine Clean.

The operations will be referred to by their categories. For example, a category-1 operation
denotes a folding operation, and a category-4 operation denotes one of the operations listed in
number 4 above.
Let i be an operation2 in any of the above categories. We define the following parameters for

2When looking at the search tree, a branching operation will denote the two sides of the branch, whereas when
looking at a certain path in the search tree, one side of a branching operation will be considered an operation by
itself. It should be clear from the context what is meant by a branching operation (i.e., either one side of the branch
or the whole branch).

9

operation i: ei the number of edges removed in operation i, vi the number of vertices removed
in operation i, and ki the reduction in the parameter by operation i. We define the surplus si of
operation i as follows. If i is a non-branching operation that reduces the parameter by ki, then
si = ki. If i is the a-side (resp. b-side) of a branching operation (a, b), where a ≤ b, then si = a− 3
(resp. si = b − 5). Informally speaking, si is the addition or reduction in the parameter, relative
to a (3, 5)-branch, that is gained or lost in the operation i. We define the amortized cost mi of
operation i by mi = 5ei − 6vi + 6si − 3ki. Note that if the operation i is followed by Clean, we
will combine the amortized cost of Clean with mi. Also note that for any non-branching operation
si = ki, therefore the amortized cost of such an operation is mi = 5ei − 6vi + 3ki.
The amortized cost mi defined above will be used to measure the cost related to operation

i including the benefit cost generated by operation i, the cost gained by operation i from other
previous operations, and the cost relative to attaining the target parameter reduction of the op-
eration. Based on the principle of “gain more then pay more”, we use the gain in the parameter
reduction related to the operation to measure the corresponding cost. Write si = ki − δi, where δi
is the “target value” in the parameter reduction for operation i (e.g., for an (a, b) branch, where
a ≤ b, the target value for the a-side operation is 3, and for the b-side operation is 5). Rewrite
the formula as mi = (5ei − 6vi) + 3si − 3δi. We consider the three parts in the formula for the
amortized cost mi. (A) The term (5ei − 6vi) in mi: observe that for a clean graph of n vertices
and m edges, if the edge/vertex ratio m/n is less than 6/5, then a safe folding operation is appli-
cable (see Proposition 3.13). Thus, if the operation i removes ei edges and vi vertices such that
ei/vi > 6/5 (or, equivalently 5ei− 6vi > 0), then the operation i will lower the edge/vertex ratio in
the remaining subgraph and increase the possibility of safe folding, which will benefit later steps of
the algorithm. Therefore, the term (5ei − 6vi) in mi describes the cost of the operation i that will
benefit later steps of the algorithm. (B) The surplus si: the value of si represents the gain in the
parameter reduction that is beyond the target value. Note that in the algorithm, each operation i
with a positive surplus must have taken the advantage of a certain special graph structure which
had been generated by previous operations. Moreover, after the operation i, the favored structure
disappears. Therefore, the value si can be regarded as the cost of previous operations to generate
the favored structure consumed by the operation i. For example, a safe folding operation takes the
advantage of two adjacent degree-2 vertices (which are generated by previous operations), gains a
surplus 1, but eliminates the favored structure (i.e., the two adjacent degree-2 vertices). Therefore,
the value si describes the cost of previous operations that benefited the operation i. (C) The value
δi: since the cost of the operation i spent for gaining the target parameter reduction δi is excluded
from the amortized cost, the term −δi becomes a term in the amortized cost mi.
Based on the above discussion, it is natural to define the amortized cost as a linear function

of (5ei − 6vi), si, and −δi. The remaining question is to determine the coefficients of these terms,
i.e., to determine how these terms are proportionally related. We give an intuitive explanation
here. The entity si counts the extra reduction in the parameter value, and the entity δi denotes the
targeted reduction in the parameter value. Therefore, both si and δi refer to the reduction in the
parameter value, and hence, it makes sense to give them the same coefficient in the formula for mi.
Now how is the term (5ei−6vi) related to the value si (and δi)? A careful analysis of the algorithm
(see the proofs of Proposition 3.12 and Lemma 3.14) shows that it is proper to equate a value 3 in
(5ei − 6vi) to a value 1 in si. We use the 1-side operation of a (1, 3) branch as an example. Here
we have ei = 3 and vi = 1, thus (5ei − 6vi) = 9. On the other hand, the operation creates three
degree-2 vertices, each may induce a folding that reduces the parameter by 1. Therefore, a value
9 in the term (5ei − 6vi) seems to correspond to a value 3 in the parameter reduction. The same
conclusion can be derived for the 2-side operation of a (2, 5) branch.

10

The above explains the main intuition behind the formulation of the amortized cost as mi =
(5ei − 6vi) + 3si − 3δi, which is equivalent to mi = 5ei − 6vi + 6si − 3ki.

Lemma 3.1 Let C0 be a connected component in G, and let m0 be the amortized cost incurred by

invoking Clean on C0. If C0 is not a tree then m0 ≥ 0, and if C0 is a tree then m0 ≥ −6.

Proof. Suppose first that C0 is a non-tree connected component in G. Let e0, v0, k0 be the
parameters of the operation of applying Clean to C0. Since Clean is a non-branching operation,
we have m0 = 5e0 − 6v0 + 3k0. If Clean removes the whole component C0, then since C0 is
connected and is not a tree, we have e0 ≥ v0. Also, k0 ≥ e0/3 since every removed edge must be
covered by the vertices that have been included in the vertex cover, and each vertex can cover at
most 3 edges. It follows that the amortized cost m0 = 5e0 − 6v0 + 3k0 ≥ 0. Now suppose that
Clean does not remove the whole component C0. Then any connected induced subgraph C ′ of C0

that is removed by Clean must have at least one edge connecting it to V (C0) − V (C ′), which is
also removed by Clean. It follows that the number of edges e′ removed when removing C ′ is at
least as large as the number of vertices v′ in C ′. Also, the reduction in the parameter k′ incurred
in C ′ is k′ ≥ e′/3 by the same argument as above. It follows that the amortized cost m′ induced
by m0 on every connected subgraph C ′ of C removed by Clean is non-negative. The amortized
cost m0 on C0 is the summation of the amortized cost on each connected subgraph removed by
Clean (this follows from the linearity of the expression for the amortized cost and the monotonicity
of addition). It follows that the amortized cost m0 incurred by cleaning a non-tree component is
always non-negative.
Suppose now that C0 is a tree. In this case Clean removes the whole component C0. It follows

that e0 = v0 − 1. This, together with k0 ≥ e0/3, gives m0 = 5e0 − 6v0 + 3k0 ≥ −6.

Lemma 3.2 A non-branching operation on a connected component of a clean graph G has a non-

negative amortized cost.

Proof. Since G is clean, every connected component of G is also clean, and hence, is not a tree.
It follows, by a similar argument to that in Lemma 3.1, that the induced amortized cost on every
connected subgraph of G removed by the operation plus Clean is non-negative. Hence, the total
amortized cost is non-negative.

Fact 3.3 A tree with exactly two degree-1 vertices is a path between the two degree-1 vertices.

Lemma 3.4 On a nice graph G, an operation i performed in step E of Reducing followed by an

invocation to Clean has a non-negative amortized cost mi. In particular, the amortized cost of step

4 of the procedure BindingSet2() is at least 6.

Proof. In step E of Reducing, the algorithm removes a subgraph from G and possibly adds
some edges and vertices to the graph. We need to verify that the amortized cost of such an
operation is non-negative. In the cases when the operation does not add any vertices or edges
to the graph, the fact that the amortized cost is non-negative follows from Lemma 3.2. We only
need to show this statement for step 4 of BindingSet2() when one edge is added, and step 5
of BindingSet2(), when one vertex and two edges are added. We show the statement for step
4 of BindingSet2(). The proof that this statement holds true for step 5 of BindingSet2() is
very similar. The operation in step 4 removes (H − {u, v}) from G and adds an edge [u, v] if this
edge does not already exist. If the edge [u, v] already exists, then no edge is added and we are

11

done. Suppose that there is no edge [u, v] in G. Note that H cannot be a tree, otherwise, since the
operation is performed on a clean connected component of the graph, H would have exactly two
degree-1 vertices namely u and v, and by Fact 3.3, H must be a chain (note that a tree with more
than one vertex must have at least two degree-1 vertices). Since |H| ≥ 4, this would imply that
there were two adjacent degree-2 vertices in the graph prior to this operation contradicting the fact
that no safe folding is applicable at this stage of the algorithm. Thus, we must have eH ≥ vH ,
where eH and vH are the number of edges and vertices in H, respectively. The operation removes
eH − 1 edges (eH edges from H, and [u, v] is added), vH − 2 vertices, and reduces the parameter
by kH . Since each of the kH vertices included in the vertex cover can cover at most 3 edges, we
must have kH ≥ (eH − 1)/3. Since the operation is a non-branching operation, its amortized cost
mi = 5(eH−1)−6(vH−2)+3kH ≥ 6eH−6vH+6 ≥ 6. Also, since prior to this operation the graph
was clean, the resulting graph is also clean, and hence, the subroutine Clean is not applicable.
This completes the proof.

Proposition 3.5 Let G be a nice graph, and let S be a collection of disjoint induced trees in G
that are joined to G− S by l edges. Then |S| ≤ 4l − 7.

Proof. It suffices to prove the proposition for the case when S contains a single induced tree T .
The proof for the general case follows by applying the statement to each induced tree in S.
For an induced tree T , let LT be the set of vertices of degree less than 2 in the tree T , and let

CT be the set of edges with one end in T and the other end in G− T . We prove, by induction on
|T |, the following statement:

Statement A. |T | ≤ 4|CT | − 7. More precisely, if a vertex in LT has degree 3 in the
graph G, then |T | ≤ 4|CT | − 10, and if all vertices in LT have degree less than 3 in G,
then |T | ≤ 4|CT | − 7.

First note that the graph G is nice, and hence, G has no vertices of degree less than 2. When
|T | = 1, if the vertex v in T has degree 3 in G then |CT | = 3, and if the vertex v has degree 2 in G
then |CT | = 2. Therefore, Statement A holds true when |T | = 1. When |T | = 2, T consists of a
single edge [u,w], and |CT | ≥ 3, since the nice graph G cannot have two adjacent degree-2 vertices
u and w. Therefore, Statement A holds true when |T | = 2.
Now consider the general case |T | ≥ 3. First suppose that there is a vertex w in LT such that

w is of degree 3 in G. Then one edge [w, u] incident on w is in T (because |T | > 1), and the other
two edges [w,w1] and [w,w2] incident on w belong to CT . Consider the tree T ′ = T − {w} in G.
We have |T ′| = |T | − 1 and |CT ′ | = |CT | − 1 (CT ′ is obtained from CT by removing the two edges
[w,w1] and [w,w2] and adding the edge [w, u]). By the inductive hypothesis, |T ′| ≤ 4|CT ′ | − 7,
which gives directly that |T | ≤ 4|CT | − 10.
Now suppose that all vertices in LT have degree 2 in G. Pick a longest path in T with endpoints

r and w. Both r and w must be in LT , and hence, have degree 2 in G. Let u be the neighbor of w
in the tree T (the vertex u must exist, and must be different from r, because |T | ≥ 3 and a longest
path in T from r to w has length at least 2).
Let the other edge incident on w be [w,w1]. Since the graph G is nice, the vertex u must be

of degree 3 in G (otherwise, w and u would be two adjacent degree-2 vertices in G). Let the edge
incident on u but not on the path joining r to w be [u, u1]. If u1 is not in T , then consider the tree
T ′ = T −{w}, and note that u is in LT ′ . We have |T ′| = |T | − 1, and |CT ′ | = |CT | (CT ′ is obtained
from CT by removing the edge [w,w1] and adding the edge [u,w]). Since u is of degree 3 in G,
by the inductive hypothesis, we have |T ′| ≤ 4|CT ′ | − 10, which gives |T | ≤ 4|CT | − 9 < 4|CT | − 7.

12

Suppose now that u1 is in the tree T . Then u1 must be in LT (otherwise, the path from r to w
would not be a longest path in T), and u1 has degree 2 in G. Consider the tree T ′′ = T − {w, u1}
in G. We have |T ′′| = |T | − 2, and |CT ′′ | = |CT | (CT ′′ is obtained from CT by removing the edge
[w,w1] and the edge joining u1 to G− T , and adding two edges [u,w] and [u, u1]). Now the vertex
u is in LT ′′ , and u is of degree 3 in G. By the inductive hypothesis, |T ′′| ≤ 4|CT ′′ |− 10, which gives
|T | ≤ 4|CT | − 8 < 4|CT | − 7.
This completes the inductive proof of Statement A and the proof of the proposition.

Lemma 3.6 On a nice graph G, an operation i performed in step 2 of VC3-solver followed by an
invocation to Clean is not worse than a (3, 5)-branch, and its amortized cost mi is non-negative.

Proof. We first prove a general result for alternating trees. Suppose that T is an alternating
tree with at least 3 vertices. Let D2 and D3 be the sets of vertices in T of degree 2 and degree 3
in G, respectively, and let x = |D3|. Let Y be the set of neighbors of D3 that are not in T , i.e.,
Y = N(D3) −D2, and let y = |Y |. We first show, by induction on |T |, that (1) |D2| = x − 1 and
hence |T | = 2x− 1; and (2) there are exactly (x+ 2) edges between T and Y .
For the base case |T | = 3, from the definition of an alternating tree, the tree T must be a chain

[u1, u2, u3] of three vertices, where u1 and u3 are of degree 1 in T and degree 3 in G, and u2 is of
degree 2 in both T and G. Moreover, there are four edges joining T to G− T , namely those edges
joining u1 and u3 to the vertices in G − T . Therefore, we have x = |D3| = 2, |D2| = 1, and the
number of edges between T and Y is 4. Thus, statements (1) and (2) hold true in this case.
We note that the case |T | = 4 is impossible: if T has three degree-1 vertices (which are of degree

3 in G), then the fourth vertex in T must be connected to all the three degree-1 vertices, and hence
cannot be of degree 2, so T is not an alternating tree; while if T has two degree-1 vertices, then the
other two vertices in T must be of degree 2 and adjacent, so again T would not be an alternating
tree.
Therefore, for a general case for an alternating tree T with |T | > 3, we must have |T | ≥ 5. Let

w be any vertex of degree 1 in T . By the definition of alternating trees, w is of degree 3 in the
graph G. The vertex w is adjacent to a degree-2 vertex u in the tree T and adjacent to two other
vertices w1 and w2 in G − T . Let the other neighbor of u in T be u1, which is a degree-3 vertex
in G. Consider the tree T ′ = T − {w, u} in G. Then |T ′| = |T | − 2 ≥ 3. Moreover, the tree T ′ is
an alternating tree: the degree-3 vertex u1 now becomes of degree 1 in T ′, and the degrees of the
vertices in T ′ still alternate. Let D′

2 and D′
3 be the sets of vertices in T ′ of degree 2 and degree 3

in G, respectively. Then |D′
2| = |D2| − 1 and |D′

3| = |D3| − 1. Moreover, the number of edges β ′

between T ′ and G−T ′ is exactly one less than the number of edges β between T and G−T (the set
of edges between T ′ and G−T ′ is obtained from the set of edges between T and G−T by removing
the two edges [w,w1] and [w,w2] and adding the edge [u1, u]). By the inductive hypothesis, we
have |D′

2| = |D′
3| − 1 and β′ = |D′

3| + 2, which gives directly that |D2| = |D3| − 1 = x − 1 and
β = |D3|+ 2 = x+ 2. This completes the proof of statements (1) and (2).
Now we are ready to prove the statement of the lemma. Since the number of vertices in an

alternating tree is 2x − 1, which is an odd number, and since |T | is assumed to be ≥ 4 in step 2
of VC3-solver, we have |T | ≥ 5, and hence, x ≥ 3. Part (2), and the fact that x ≥ 3, imply that
there are at least five edges between T and Y . Since every vertex in the graph has degree bounded
by 3, we have y ≥ 2.
If y = 2, then x ≤ 4, and the subgraph H induced by V (T) ∪ Y has size at most 9. Since no

isolated components of size ≤ 50 exist at this point of the algorithm by step B in Reducing, the
binding set of H has size bounded by 2 (the binding set of H is a subset of Y). Since 4 ≤ |H| ≤ 50,

13

this is not possible at this point of the algorithm by step E of Reducing. It follows that y ≥ 3,
and branching in step 2 of VC3-solver on D3 gives a (|D3|, |D2| + |Y |) = (x, x − 1 + y) branch,
which is not worse than a (3, 5)-branch since both x and y are at least 3.
What is left is showing that the amortized cost mi of operation i is non-negative. Consider

first the side of the branch where we include the vertices in D3 in the partial cover. The vertices
removed by this branch are those in T whose number is vi = 2x− 1. The edges removed are those
in T plus the edges between T and Y . These edges are exactly the edges incident on the vertices
in D3. Since no two degree-3 vertices in T are adjacent, it follows that the number of edges ei
removed by the branch is 3x. Moreover, the reduction ki in the parameter is x, and the surplus
is x − 3. Now let S be the set of tree components in the resulting graph G − T , and let ti be
the number of tree components in S. By Lemma 3.1, the amortized cost of Clean on a non-tree
component is non-negative, and on a tree component is at least −6. It follows that the amortized
cost of operation i including the invocation of Clean is

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti
≥ 5(3x)− 6(2x− 1) + 6(x− 3)− 3x− 6ti
= 6x− 12− 6ti. (1)

Observe that the tree components in S are disjoint, and each tree component must be connected
by at least two edges to T (since no degree-1 vertices exist in G). It follows from this observation
that there cannot be more than b(x+ 2)/2c tree components in S, and hence, ti ≤ b(x+ 2)/2c. If
x ≥ 6, then from Inequality (1), we get mi ≥ 0. Suppose now that x ≤ 5. We claim that in this
case either there exists a non-tree component in G− T that is joined to T by at least three edges,
or there exist at least two non-tree components in G − T . If all components in G − T are tree
components, i.e., G−T = S, then S is a collection of disjoint induced trees that are joined to T by
at most x + 2 ≤ 7 edges satisfying the conditions of Proposition 3.5 with l = 7. It follows in this
case that the number of vertices in S is bounded by 21, and hence, the total number of vertices in
the graph component induced by V (T)∪ V (S) is bounded by 30. This is not possible at this point
of the algorithm due to the fact that step B in Reducing was not applicable. Now suppose that
there is exactly one non-tree component C0 in G− T that is joined by exactly two edges to T . By
a similar argument to the above, the graph induced by V (T) ∪ V (S) has at most 22 vertices (and
at least 4 vertices), and is connected to C0 by exactly two edges, which means that it has a binding
set of size at most 2. This is again not possible by step E of Reducing. It follows that the claim
holds true. An immediate consequence of this claim is that ti ≤ b(x + 2 − 3)/2c = b(x − 1)/2c.
Combining this with (1), we get mi ≥ 3x− 9 ≥ 0 because x ≥ 3.
Now on the other side of the branch we include the neighbors of D3: D2 and Y . Let eY be

the number of edges connecting the vertices of Y , and z the number of edges between the graph
induced by V (T) ∪ Y and the remaining graph. It is not difficult to verify that in this side of
the branch the number of edges ei removed is 3x + z + eY , the number of vertices vi removed is
2x− 1+ y, and the reduction in the parameter ki is x− 1+ y. Let S be the set of tree components
in (G− T)− Y , and ti the number of tree components in S. Now

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti
≥ 5(3x+ z + eY)− 6(2x− 1 + y) + 6(x− 1 + y − 5)− 3(x− 1 + y)− 6ti
≥ 6x− 3y + 5eY + 5z − 6ti − 27. (2)

Since the alternating tree is maximal, all vertices in Y have degree 3. By counting the sum of

14

the degrees of the vertices in Y , we get

3y = x+ 2 + z + 2eY . (3)

Combining (2) and (3) and noting that ti ≤ bz/2c, we get

mi ≥ 5x+ 3eY + 4z − 6ti − 29 (4)

≥ 5x+ z + 3eY − 29. (5)

If x ≥ 6, then from Inequality (5) we have mi ≥ 0. If x = 5, then from Inequality (5), the fact
that z ≥ 3 (note that if z ≤ 2 then the graph induced by V (T) ∪ Y has size bounded by 50 and
a binding set of size at most 2), Equality (3), and the fact that y is an integer, we have mi ≥ 0.
If x = 4 and z ≥ 9, then again by Inequality (5), mi ≥ 0. We are left with the cases x = 4 and
z < 9, or x = 3. If x = 3, then z ≤ 10, because there cannot be more than 5 vertices in Y each
of which has to be joined by at least one edge to T . It follows that in both cases z ≤ 10 and
|V (T)∪ Y ∪ V (S)| ≤ 50 (since |S| ≤ 33 by Proposition 3.5). By an argument similar to the above,
we must have at least two non-tree components in G− (V (T)∪Y), or a non-tree component that is
joined to Y by at least three edges. It follows that ti ≤ b(z−3)/2c. Combining this with Inequality
(4), we get

mi ≥ 5x+ 3eY + 4z − 6b(z − 3)/2c − 29 (6)

≥ 5x+ z + 3eY − 20. (7)

Since x ≥ 3 and z ≥ 3, if x = 4, z ≥ 5, or eY ≥ 2, by (7) we get mi ≥ 0. Assume now that
x = 3, z ∈ {3, 4}, and eY ∈ {0, 1}. Because x, y, z, eY are all integers, it is easy to see from (3),
that the only possible case is when x = 3, y = 3, z = 4, eY = 0. Substituting these values in (6),
we get mi ≥ 2.
It follows that branch i is not worse than a (3, 5)-branch, and the amortized cost of i including

the invocation to Clean is non-negative. This completes the proof.

Theorem 3.7 Let i be an operation performed in one of steps B-E in Reducing, or step 2 in

VC3-solver followed by an invocation to Clean. Then the amortized cost mi of i is non-negative.

Proof. By Lemma 3.2, the amortized cost corresponding to any non-branching operation is
non-negative. In particular, the amortized cost corresponding to an operation performed in any of
steps B-D of Reducing is non-negative. Lemma 3.4 shows that step E of Reducing followed by an
invocation to Clean has a non-negative amortized cost (note that Lemma 3.2 cannot be applied to
an operation in step E since such an operation may add edges and vertices to the graph). Lemma 3.6
establishes the same facts for step 2 of VC3-solver.

Proposition 3.8 Let O be an operation that removes e0 edges, v0 vertices, reduces the parameter

by k0, and has surplus s0. Let m0 = 5e0 − 6v0 + 6s0 − 3k0 be the amortized cost of operation O.
(i) If O is a category-1 operation then m0 ≥ 1.
(ii) If O is the 1-side branch in a category-2 operation then m0 = −6.
(iii) If O is the 3-side branch in a category-2 operation then m0 ≥ −6.
(iv) If O is the 2-side branch in a category-3 operation then m0 = 0.
(v) If O is the 5-side branch in a category-3 operation then m0 ≥ 1.
(vi) If O is a category-4 operation, then m0 ≥ 0.

15

Proof. A folding operation removes at least two edges and two vertices. Hence, e0 ≥ 2 and
v0 = 2. In both cases we have s0 = k0 = 1 (since there is no branching). It follows that m0 ≥ 1.
Now in the 1-side of the (1, 3)-branch it is always the case that exactly one vertex and three edges
are removed. Since s0 = −2 and k0 = 1, we have m0 = −6. Also, the remaining graph is clean, and
Clean is not applicable. Similarly for the 2-side of the (2, 5)-branch, when we branch on the two
neighbors w1 and w2 of a degree-2 vertex w, 6 edges and 3 vertices are removed, and no degree-1
vertices are created since all the other neighbors of the two vertices w1 and w2 must be of degree
3 (otherwise we would have an alternating tree of size at least 5, which is not possible since step 2
of VC3-solver was not applicable). Since s0 = −1 and k0 = 2, we have m0 = 0. In all the above
cases, the subroutine Clean is not applicable since all the remaining vertices have degrees larger
than one. This proves parts (i), (ii), (iv).
To prove part (iii), note first that in the 3-side of the (1, 3) branching we have s0 = −2

and k0 = 3. Also, we know that before this operation the graph G is 3-regular. Let u be the
degree-3 vertex that we branch on, and let v, w, z be its neighbors. Let H be the graph induced
by {u, v, w, z}. Since Reducing does not apply at this point, there cannot be more than one
edge among v, w, z (otherwise, we would have two adjacent triangles). Suppose that there exists
one edge among v, w, z. This means that there are exactly four edges connecting H to G − H.
Note that in this case no component in G − H can be a tree, otherwise, using Proposition 3.5,
the graph induced by the vertices of the tree component plus the vertices of H has size bounded
by 50, and is connected to the remaining graph by at most two edges (since the tree component
has to be connected to {v, w, z} by at least two edges), which is not possible at this stage of the
algorithm since steps B-E of Reducing do not apply. Thus, we can assume that no component
in G − H is a tree, and hence by Lemma 3.1, the amortized cost of Clean in case it is invoked
is non-negative. The number of edges and vertices removed in this case is 8 and 4, respectively,
giving m0 ≥ 5e0 − 6v0 − 21 = −5.
Now suppose that no edge exists among v, w, z, and hence, there are exactly six edges connecting

H to G − H. By a similar argument to the above, we cannot have two different components in
G − H that are trees. Thus, in the worst case, the amortized cost of Clean is at least −6 by
Lemma 3.1. The branch itself removes 9 edges and 4 vertices from the graph. Since the total
amortized cost is the sum of the amortized cost of the branch and that of Clean, it follows that
m0 ≥ 5e0 − 6v0 − 27 = −6.
Now we look at part (v) which is the 5-side of the (2, 5)-branch. Note that in this case we have

s0 = 0 and k0 = 5. Let u be the degree-2 vertex that we branch on its two neighbors v and w.
Let v1 and v2 be the neighbors of v other than u, and w1 and w2 be those of w. Observe that
since folding is not applicable, v and w must be of degree 3 and they do not share any neighbors
except u. Also, since no alternating tree of size ≥ 5 exists at this point, v1, v2, w1, w2 must be all
of degree 3. Let H be the graph induced by {u, v, w, v1, v2, w1, w2}. If there are more than two
edges among the vertices {v1, v2, w1, w2}, the graph H, which has size bounded by 50, would be
connected to G − H by at most two edges, which is not possible at this stage of the algorithm
(because no induced subgraph with a binding set of size at most two exists). If the number of edges
between {v1, v2, w1, w2} is two, then there are exactly four edges connecting H to G − H. By a
similar argument to the above, there cannot be any tree component in G−H, otherwise, there will
be at most two edges connecting H and the tree (having size bounded by 50), to the remaining
graph. The number of edges and vertices removed in this case is 12 and 7 giving m0 ≥ 3, and
the amortized cost of Clean is positive (since there is no tree component). Now suppose there is
exactly one edge between {v1, v2, w1, w2}. In this case the number of edges between H and G−H

16

is exactly six, and the number of edges and vertices removed is 13 and 7. By the same token, there
cannot be two tree components in G − H, and hence the amortized cost of Clean is at least −6
by Lemma 3.1. This gives m0 ≥ 5e0 − 6v0 − 21 = 2. If there are no edges among {v1, v2, w1, w2},
then there are exactly eight edges connecting H to G −H, and the number of edges and vertices
removed is 14 and 7. Again, we cannot have more than two tree components in G −H giving an
amortized cost of at least −12 for Clean. This gives m0 ≥ 5e0 − 6v0 − 27 = 1. It follows that in
all cases of the branch m0 ≥ 1.
To prove part (vi), note that a category-4 operation is either an operation performed in steps

B-E of Reducing followed by an invocation to Clean, an operation performed in step 2 of VC3-
solver followed by an invocation to Clean, or one that is performed in Clean. If O is an operation
that is performed in steps B-E of Reducing or in step 2 of VC3-solver, then by Theorem 3.7,
the amortized cost of O including the call to Clean is non-negative. Now if O is an operation in
Clean that does not follow an operation in steps B-E of Reducing or step 2 of VC3-solver, by
the above discussion, O must be an operation following a 3-side of a (1, 3)-branch, or a 5-side of
a (2, 5)-branch (these cover all the cases in which Clean is called). By parts (iii) and (v) above,
the negative part of the amortized cost of Clean was combined with the amortized cost of the
operation itself, and the remaining part is positive. This completes the proof.

Based on Proposition 3.8, we give in Figure 5 the parameters for any operation i in the four
categories. If operation i is a category-4 operation (or one side of a category-4 operation), then we
denote its surplus by si, reduction in the parameter by ki, and amortized cost by mi. For every
operation, a lower bound on its amortized cost is given in the last column of the table.

(2, 5) branching
5-side

2-side

(1, 3) branching
3-side

1-side

Folding

Operations reduction in k surplus amortized cost

A category-4 operation i

1 1

1 −2
3 −2
2 −1
5 0
ki si

1

−6
−6
0

1
0

Figure 5: The parameters of the operations

Each non-root node α in a search tree T for the algorithm VC3-solver uniquely specifies the
operation in the algorithm from the parent of α to α. Therefore, each operation in the algorithm
can be uniquely referred to by the corresponding node in the tree T . To simplify the description,
we also assume that the root of T has a “virtual” parent associated with the input (G, k) to the
algorithm, and that the root of T specifies a “dummy” operation whose parameter reduction,
surplus, and amortized cost, are all equal to 0. Thus, every node in the search tree (including the
root) has a parent. By saying the operations on a path P in the search tree T , we will be referring
to the operations specified by the nodes on P . The reader should note the distinction between the
operation specified by a node and the instance (G′, k′) associated with the node (i.e, the resulting
graph G′ and the parameter value k′ at the node). In particular, the operation specified by a node
is actually the operation applied to the instance associated with the parent of the node.

17

Definition 3.9 In a search tree T of the algorithm VC3-solver, we assign to each node α a label
whose value is equal to the parameter reduction of the operation specified by the node α. More
precisely, if the operation from the parent of a node α in T to α is the a-side (resp. the b-side)
of an (a, b) branch, then the label of α is a (resp. b); if the operation from the parent of α to α
is a non-branching operation that reduces the parameter value by c, then the label of α is c. As
discussed above, the root of T specifies a dummy operation whose parameter reduction is 0, and
hence, the label of the root is 0.

Let P be a path in a search tree T . Denote by x1(P) the number of nodes on P with label
1, specifying the 1-side operations of (1, 3) branches. Similarly, denote by x3(P) and x2(P) the
number of nodes on P with labels 3 and 2, specifying the 3-side operations of (1, 3) branches and
the 2-side operation of (2, 5) branches, respectively. Finally, denote by d(P) the sum of the surplus
of all other operations (i.e., the operations in categories 1 and 4) on the path.

Definition 3.10 Let P be a path in a search tree T of the algorithm VC3-solver. The surplus
of the path P , denoted by Surp(P), is equal to the sum of the surplus of all the operations on P :
Surp(P) = d(P)−(2x1(P)+2x3(P)+x2(P)). The path P is said to be compressible if Surp(P) ≥ 0.

To justify the formula given in the definition of Surp(P), note that d(P) is the sum of the
surplus of the category-1 and category-4 operations on P . Each side of a (1, 3) branch has surplus
−2, and the total surplus of the category-2 operations on P is −2x1(P)−2x3(P). The 2-side (resp.
the 5-side) of a (2, 5) branch has surplus −1 (resp. 0), and the total surplus of the category-3
operations on P is −x2(P). This justifies why the given formula for Surp(P) captures the total
value of the surplus on the whole path P . Intuitively speaking, in comparison to a (3, 5) branch,
the 1-side (resp. the 3-side) of a (1, 3) branch “loses” a value 2 in the parameter reduction when
compared with the 3-side (resp. the 5-side) of the (3, 5) branch, and the 2-side of a (2, 5) branch
“loses” a value 1 in the parameter reduction when compared with the 3-side of the (3, 5) branch.
On the other hand, the value d(P) corresponds to the “extra” parameter reduction we gain in
comparison to (3, 5) branches. Therefore, the surplus Surp(P) of a path P measures how much the
“extra” gain in the parameter value can make up for the losses along the path.

Proposition 3.11 Let T be the search tree for the algorithm VC3-solver on input (G, k). If

every root-leaf path in T is compressible, then the number of leaves in T is bounded by rk0 , where
r0 ≤ 1.194 is the unique positive root of the polynomial x5 − x2 − 1.

Proof. First note that according to the algorithm VC3-solver, each branch node in T is either
a (1, 3) branch, a (2, 5) branch, or an (a, b) branch that is not worse than a (3, 5) branch (see
Lemma 3.6). We say that a search tree T0 is normalized if: (1) for every 1-child node α in T0, the
child of α is a leaf; and (2) every branch node in T0 is either a (1, 3), a (2, 5), or a (3, 5) branch.
We can use the following procedure to convert a general search tree T into a normalized search
tree T0, with a one-to-one correspondence between the root-leaf paths in the two trees, and such
that the corresponding root-leaf paths in the two trees have the same surplus. Let the leaves of
the original search tree T be α1, . . ., αt. We first construct, based on the tree T , a search tree
T ′ with leaves α′

1, . . ., α
′
t, as follows. For each i, let the path from the root to the leaf αi in T

be Pi. If d(Pi) = 0, then leave the path Pi unchanged and let α′
i in T ′ be αi. If d(Pi) > 0, then

add to Pi a new leaf α
′
i with label d(Pi) and make α′

i the unique child of αi (thus αi becomes a
1-child non-leaf node in T ′). To obtain the normalized tree T0, we further perform the following
two operations on T ′: (1) convert each (a, b) branch node α that is not worse than a (3, 5) branch

18

into a (3, 5) branch by giving the label 3 (resp. the label 5) to the child of α corresponding to the
a-side (resp. b-side) of α; (2) remove all non-branching nodes: for each 1-child node α in the tree
with a child β, where β is not a new leaf created in T ′, remove the edge [α, β], merge the two nodes
α and β, and assign a label to the resulting (new) node equal to the label of α (this corresponds to
removing the non-branching operation specified by β). The resulting tree T0, with leaves α′

1, . . .,
α′
t, is a normalized search tree.
Let Pi be the path from the root to the leaf αi in T and let P ′

i be the path from the root to
the leaf α′

i in T0. Since no (1, 3) branch nodes or (2, 5) branch nodes are changed or re-labeled in
the above procedure, we have x1(Pi) = x1(P

′
i), x3(Pi) = x3(P

′
i), and x2(Pi) = x2(P

′
i). Moreover, if

d(Pi) = 0, then the operations in steps (1) and (2) above are not applicable to Pi. Therefore, the
path P ′

i is the same as Pi, and d(P ′
i) = 0. On the other hand, if d(Pi) > 0, then by our construction,

the only node on P ′
i that is not a (1, 3), a (2, 5), or a (3, 5) branch is the 1-child node whose child is

the leaf α′
i with a label d(Pi). Thus, d(P

′
i) = d(Pi), and the paths Pi and P ′

i have the same surplus.
From the above discussion, for each general search tree satisfying the condition in the propo-

sition, there is a normalized search tree with the same number of leaves that also satisfies the
condition in the proposition. Thus, it suffices to prove the proposition for normalized search trees.
We do this by induction on the number of nodes in a normalized search tree T . The proposition
certainly holds true if the tree T consists of a single node or has only one leaf. Now assume that
|T | > 1 and that T has more than one leaf. Since T is normalized, the root α of T must be a
branch node, which is either a (1, 3), a (2, 5), or a (3, 5) branch node.
Suppose the root α of T is a (1, 3) branch. Let β1 and β3 be the children of α labeled 1 and

3, respectively. Let T1 be the subtree rooted at β1 in T . Every path Pi from the root α to a leaf
αi in T1 contains the node β1, and hence x1(Pi) ≥ 1. Since the path Pi is compressible, we have
Surp(Pi) = d(Pi) − (2x1(Pi) + 2x3(Pi) + x2(Pi)) ≥ 0. It follows that d(Pi) ≥ 2, and the label of
the leaf αi is at least 2. Therefore, in the tree T we can “shift” 2 units from the label of each leaf
in the subtree T1 to the node β1, by adding 2 units to the label of β1 and subtracting 2 units from
the label of every leaf in T1. Now the label of β1 becomes 3. Similarly, we can add 2 units to the
label of the node β3 and subtract 2 units from the label of every leaf in the subtree rooted at β3.
This makes the label of β3 become 5. Note that the resulting search tree is still normalized, with
the difference that the root α now becomes a (3, 5) branch node, and that the label of each leaf in
T is decreased by 2. In particular, each root-leaf path Pi in the resulting tree is still compressible
(with the value x1(Pi) or x3(Pi) decreased by 1 and the value d(Pi) decreased by 2).
Similarly, if the root α of the tree T is a (2, 5) branch with its label-2 child β2 corresponding

to the 2-side of the branch, then we can decrease the label of each leaf in the subtree rooted at
β2 by 1, add 1 to the label of β2, and make the root α a (3, 5) branch. All root-leaf paths remain
compressible.
Therefore, we can always end up with a normalized search tree T whose root is a (3, 5) branch

in which all root-leaf paths are compressible. Let γ3 be the child of α labeled by 3 and γ5 be the
child of α labeled by 5. Consider the subtree T3 rooted at γ3. By re-setting the label of γ3 to
0, the subtree T3 becomes a valid normalized search tree for the algorithm VC3-solver on input
(G′, k − 3), where G′ is the graph resulting from G by the operation specified by γ3. Moreover,
each root-leaf path in T3 is compressible since the node γ3 in T is not a child of a (1, 3) branch or
a (2, 5) branch node. Now by the inductive hypothesis, the number of leaves in T3 is bounded by
rk−3
0 , where r0 is the unique positive root of the polynomial x

5 − x2 − 1. Similarly, re-setting the
label of γ5 to 0 makes the subtree rooted at γ5 a valid normalized search tree with no more than
rk−5
0 leaves. Adding the number of the leaves in the two subtrees, we get that the number of leaves
in the search tree T is bounded by rk−3

0 + rk−5
0 . Since the polynomial xk − xk−3 − xk−5 and the

19

polynomial x5 − x2 − 1 have the same positive root r0, we get r
k
0 = rk−3

0 + rk−5
0 , which proves that

the number of leaves in the search tree T is bounded by rk0 . This completes the inductive proof
and the proof of the proposition.

By Proposition 3.11, what remains to show is that every root-leaf path in a search tree for the
algorithm VC3-solver is compressible. We start with the following proposition.

Proposition 3.12 Let P = (αi, αi+1, . . . , αi+l), l > 0, be a subpath of a root-leaf path in a search

tree T for the algorithm VC3-solver. If αi+l is the only node on the path P whose associated

graph is 3-regular, then the path P is compressible.

Proof. Let (Gi−1, ki−1) be the instance associated with the parent node αi−1 of αi in T , where
the graph Gi−1 has ni−1 vertices and mi−1 edges (recall that the root of T also has a virtual parent
associated with the input instance to the algorithm). Let Gi+l be the graph associated with the
node αi+l where Gi+l has ni+l vertices and mi+l edges. Since the graph Gi+l is 3-regular, we have
mi+l/ni+l = 3/2. Let m

′ = mi−1−mi+l, n
′ = ni−1−ni+l. Since mi−1/ni−1 ≤ 3/2 (the graph Gi−1

has degree bounded by 3), we have m′/n′ ≤ 3/2.
Let xf be the number of folding operations on P , Ef the number of edges removed, Vf the

number of vertices removed, Sf the surplus, and Kf the reduction of the parameter, in all folding
operations on P . In a similar way, define x1, E1, V1, S1, K1, for the 1-side of the (1, 3) branches;
x3, E3, V3, S3, K3, for the 3-side of the (1, 3) branches; x2, E2, V2, S2, K2 for the 2-side of the
(2, 5) branches; x5, E5, V5, S5, K5, for the 5-side of the (2, 5) branches; and xr, Er, Vr, Sr, Kr, for
the category-4 operations on P . Since m′/n′ ≤ 3/2, we can write

Ef + E1 + E3 + E2 + E5 + Er

Vf + V1 + V3 + V2 + V5 + Vr
≤ 3
2
. (8)

Arranging (8), we get

3Vf − 2Ef ≥ (2E1 − 3V1) + (2E3 − 3V3) + (2E2 − 3V2) + (2E5 − 3V5) + (2Er − 3Vr). (9)

From the definition of the amortized cost, and by the monotonicity of addition, we can define the
amortized cost for each type of operations, λ (λ = 1, 2, 3, 5, r, f), by: Mλ = 5Eλ−6Vλ+6Sλ−3Kλ.
Since the total Kλ vertices included in the partial cover for any type of operations λ must cover all
the Eλ edges removed by that type, and since each vertex can cover at most three edges, Kλ ≥ Eλ/3.
Hence, 2Eλ − 3Vλ ≥ −3Sλ +Mλ/2. Using this inequality and the parameters of the operations
given in Figure 5, we get: 3Vf − 2Ef ≤ 5

2xf , 2E1 − 3V1 ≥ 3x1, 2E3 − 3V3 ≥ 3x3, 2E2 − 3V2 ≥ 3x2,
2E5 − 3V5 ≥ 1

2x5, 2Er − 3Vr ≥ −3Sr +Mr/2. Substituting these bounds in Inequality (9) and
arranging it we get:

xf + Sr ≥ x2 + (x1 + x3) + x5/6 + xf/6 +Mr/6. (10)

Since the graph Gi+l associated with the node αi+l is 3-regular, it is not difficult to verify the
following: Either we must have at least one folding operation along P , or at least one operation
of those described in step 4 of BindingSet2(). This is true since these are the only operations
that could make the graph become 3-regular. (The only way to create a 3-regular graph during
the execution of the algorithm is either by a folding operation or by an operation in step 4 of
BindingSet2(), which adds an edge to the resulting graph. All the other operations remove some
vertices from the graph, which has degree bounded by 3, and hence cannot result in a 3-regular
graph.) Since every category-4 operation has a non-negative amortized cost by Proposition 3.8,

20

and since the amortized cost of the operation in step 4 of BindingSet2() was proved to be at least
6 in Lemma 3.4, it follows that if the operation in step 4 of BindingSet2() is performed, then we
must have Mr ≥ 6. Therefore, we either have xf ≥ 1, or Mr ≥ 6. Since xf + Sr is an integer, from
Inequality (10), we get

xf + Sr ≥ x2 + (x1 + x3) + 1. (11)

Note that if a node α specifies an operation corresponding to the 1-side or the 3-side of a
(1, 3) branch, then the graph associated with the parent of α must be 3-regular (see step 4 of the
algorithm VC3-solver). Since αi+l is the only node on the path P whose associated graph is
3-regular, and since αi+l is the last node on the path, there is at most one node (i.e., node αi)
on the path P that may specify the 1-side or the 3-side operation of a (1, 3) branch, and hence,
x1 + x3 ≤ 1. Combining this observation with Inequality (11), we get

xf + Sr ≥ x2 + 2(x1 + x3). (12)

Using the same notations given before Definition 3.10, we have d(P) = xf + Sr, x2 = x2(P),
x1 = x1(P), x3 = x3(P), and (xf + Sr) − (x2 + 2(x1 + x3)) is the surplus of the path P . Thus,
Inequality (12) gives that Surp(P) ≥ 0, and hence the path P is compressible.

Proposition 3.13 Let G be a nice graph with n vertices and m edges. Then m/n ≥ 6/5.

Proof. The nice graph G contains no vertices of degree less than 2. Let n2 and n3 be the number
of degree-2 and degree-3 vertices in G, respectively. Then 2m = 2n2 + 3n3 = 2n + n3. Since the
nice graph G contains no adjacent degree-2 vertices, we have 3n3 ≥ 2n2. Combining these two
relations we get the desired result.

Lemma 3.14 Every root-leaf path in a search tree T of the algorithm VC3-solver is compressible.

Proof. For an input (G, k) to the algorithm VC3-solver, if the graph G is 3-regular, then we
subdivide an edge of G by two degree-2 vertices. Let the resulting graph be G′. Since the graph
G can be obtained from G′ by folding a degree-2 vertex in G′, by Lemma 2.2, G has a vertex
cover of size k if and only if G′ has a vertex cover of size k + 1. Therefore, we can instead apply
the algorithm to the instance (G′, k′ = k + 1), where G′ is not a 3-regular graph. Note that after
subdividing an edge in G to obtain G′, G′ is connected, and τ(G′) = τ(G)+1. Since the parameter
k in the instance (G, k) is assumed to be not larger than τ(G) by condition (1) in Assumption 2.6,
the parameter k′ is also not larger than τ(G′). Therefore conditions (1) and (2) in Assumption 2.6
still hold on the graph G′. Moreover, since G′ has two more vertices than G, and the parameter
k′ = k+1, G′ satisfies the assumption given by Proposition 2.1, namely that the number of vertices
in G′ is bounded by 2k′. By doing this operation, the order of the running time of the algorithm
is not affected. Thus, we can always assume that the graph associated with the root of the search
tree T is not a 3-regular graph.
For any root-leaf path P ′ = (α′

1, α
′
2, . . . , α

′
t) in the search tree T , let α′

i1
, α′

i2
, . . ., α′

ir be the
nodes on P ′ whose associated graphs are 3-regular. Note that it is impossible for two graphs
associated with two consecutive nodes on P ′ to be both 3-regular — the only operation applicable
to a 3-regular graph is step 4 in the algorithm VC3-solver that does not result in a 3-regular
graph. Thus, each of the subpaths (α′

ij−1+1, . . . , α
′
ij
) on P ′, j = 1, . . . , r (here we let α′

i0+1 be α′
1),

satisfies the condition in Proposition 3.12 and is compressible, which equivalently means that the
path has a non-negative surplus. Therefore, in order to prove the lemma, it suffices to show that

21

the subpath P = (α′
ir+1, . . . , α

′
t) has a non-negative surplus, and hence is compressible. To simplify

the notations, we rename the nodes on P and let P = (α1, α2, . . . , αs) (if the root-leaf path P ′

contains no node associated with a 3-regular graph, we let P = P ′).
Let (G0, k0) be the instance associated with the parent of α1 (note that the root of T also has

a virtual parent whose associated instance is the original input to the algorithm), where the graph
G0 has n0 vertices and m0 edges. Since the degree of G0 is bounded by 3, we have

m0/n0 ≤ 3/2. (13)

If α1 is the root of T , then (G0, k0) is the original input instance to the algorithm. In this case,
by Proposition 2.1, we have k0 ≥ n0/2. On the other hand, If α1 is not the root of T , then the
graph G0 associated with the parent node of α1 is 3-regular, and 2m0 = 3n0. Since each vertex
can cover at most 3 edges, we must have 3k0 ≥ m0 (otherwise the answer to the instance (G0, k0)
is negative). This also gives us k0 ≥ n0/2. Therefore, in all cases, we have

k0 ≥ n0/2. (14)

Case 1. All the nodes on the path P are non-branching nodes.
Suppose that the parameter reduction and the surplus of the operation specified by the first

node α1 on P are k1 and s1, respectively. By the definition of the surplus, we have s1 ≥ k1−5. The
instance associated with α1 is (G1, k0−k1) for some graph G1. By condition (1) in Assumption 2.6,
the original parameter k is not larger than the size of a minimum vertex cover of G. Therefore the
parameter value k0−k1 associated with α1 is not larger than the size of a minimum vertex cover of
G1, otherwise the original parameter k would be larger than the size of a minimum vertex cover of
G. It follows that when the algorithm terminates at node αs along the path P in the search tree,
either the computed cover is a minimum vertex cover, and hence, the reduction in the parameter
along the path α2, . . ., αs is exactly equal to k0 − k1; or the size of the resulting cover for G1 has
exceeded the parameter k0−k1, and hence, the reduction in the parameter along the path α2, . . ., αs
is greater than k0 − k1. Note that all the nodes on P , except α1, specify non-branching operations
whose parameter reduction and surplus are equal. Therefore, the reduction in the parameter, or
equivalently the sum of the surplus, of the nodes α2, . . ., αs is at least k0− k1. Adding the surplus
of the node α1, we get

Surp(P) ≥ s1 + (k0 − k1) ≥ (k1 − 5) + (k0 − k1) = k0 − 5. (15)

Observe that we have k0 ≥ 25. In fact, if k0 ≤ 24, then by Inequality (14), n0 ≤ 2k0 < 50. In
such case step B of Reducing would be applicable to (G0, k0), and the parent node of α1 would
not be a branch node. Combining the fact that k0 ≥ 25 with Inequality (15), we conclude that in
this case Surp(P) ≥ 20.

Case 2. The path P contains branch nodes. Let αh be the last branch node on P .
Consider the two subpaths P1 = (α1, . . . , αh) and P2 = (αh+1, . . . , αs) of P . Let (Gh, kh) be the

instance associated with the node αh. Since all nodes in the subpath P2 are non-branching nodes,
as shown in Case 1 (see Inequality (15)), we have

Surp(P2) ≥ kh − 5. (16)

Now consider the value Surp(P1). Let xf , Ef , Vf , Kf , Sf , x1, E1, V1, K1, S1, x3, E3, V3,
K3, S3, x2, E2, V2, K2, S2, x5, E5, V5, K5, S5, xr, Er, Vr, Kr, Sr, denote the same entities as in
Proposition 3.12 along the subpath P1 = (α1, . . . , αh). We have

xf + x1 + 2x2 + 3x3 + 5x5 +Kr + kh = k0. (17)

22

This is because the operation specified by the first node α1 on the subpath P1 is applied to the
instance (G0, k0) (which is associated with the parent of α1), and the last node αh on P1 is associated
with the instance (Gh, kh), and xf + x1 +2x2 +3x3 +5x5 +Kr is the total parameter reduction of
the operations on P1.
According to our algorithm, the graph Gh associated with the branch node αh in the search tree

T is nice. Thus, if we let nh andmh be the number of vertices and edges in Gh, respectively, then by
Proposition 3.13,mh/nh ≥ 6/5. Using our notations, we havemh = m0−Ef−E1−E3−E2−E5−Er

and nh = n0 − Vf − V1 − V3 − V2 − V5 − Vr. Therefore,

m0 − Ef − E1 − E3 − E2 − E5 − Er

n0 − Vf − V1 − V3 − V2 − V5 − Vr
≥ 6
5
. (18)

In a similar way to that in Proposition 3.12, define the amortized cost for each type of operations
λ (λ = 1, 2, 3, 5, r, f), by: Mλ = 5Eλ−6Vλ+6Sλ−3Kλ. Hence, we have 5Eλ−6Vλ =Mλ+3Kλ−6Sλ.
Using this equality and the parameters of the operations given in Figure 5, we get: 6Vf−5Ef ≤ 2xf ,
5E1−6V1 ≥ 9x1, 5E3−6V3 ≥ 15x3, 5E2−6V2 ≥ 12x2, 5E5−6V5 ≥ 16x5, 5Er−6Vr ≥Mr+3Kr−6Sr.
Combining these inequalities with Inequalities (13), (14), (17), (18), and arranging the terms we
get:

5xf ≥ 6x1 + 6x2 + 6x3 + x5 +Mr − 6Sr − 3kh. (19)

Hence:

xf + Sr ≥ x2 + (x1 + x3) + x5/6 +Mr/6 + xf/6− kh/2 ≥ x2 + (x1 + x3)− kh/2. (20)

Here we have used Proposition 3.8 which gives that Mr ≥ 0. Since d(P1) = xf + Sr, x1 = x1(P1),
x2 = x2(P1), and x3 = x3(P1) (see Definition 3.10), From (20), we get

Surp(P1) = (xf + Sr)− (x2 + 2(x1 + x3)) ≥ −(x1 + x3)− kh/2. (21)

Combining this inequality with Inequality (16),

Surp(P) = Surp(P1) + Surp(P2) ≥ kh/2− (x1 + x3)− 5. (22)

As explained in Case 1, since the node αh is a branch node, the graph Gh associated with αh
must be nice and have at least 50 vertices. Since Gh is nice (and hence is clean), the number
of edges in Gh is more than 50. Since each vertex can cover at most 3 edges, we have kh ≥ 17
(otherwise the answer to the instance (Gh, kh) is negative). Moreover, no graph associated with a
node on the path P1 is 3-regular. Since a 1-side or a 3-side operation of a (1, 3) branch can only be
applied on a 3-regular graph, there is at most one node on P1 (the node α1) that may specify such
an operation. Therefore, x1+ x3 ≤ 1. Combining the last two inequalities with Inequality (22), we
get Surp(P) ≥ 0 and the path P is compressible. This completes the proof of the lemma.

Theorem 3.15 The algorithm VC3-solver runs in time O(1.194kk2 + n).

Proof. First observe that by spending O(n) time pre-processing the input instance, we can
remove vertices of degree 0 and 1. After that, it must be true that every component in the graph
is a non-tree component, and hence, at least one third of the number of vertices in each component
must be included in any vertex cover of the component. This means that the resulting parameter
k satisfies k ≥ n/3, where n is the number of vertices in the resulting graph (otherwise the answer
to the instance is negative). Then the algorithm mentioned in Proposition 2.1 is applied. This

23

algorithm runs in O(k
√
k) time. Finally the algorithm VC3-solver is invoked. Let T be the

search tree for the algorithm VC3-solver on the input instance. By Lemma 3.14, every root-leaf
path in T is compressible. Since every branching operation in T can be classified as a (1, 3), (2, 5),
or (a, b), with (a, b) not worse than a (3, 5)-branch, from Proposition 3.11 we get that the number
of leaves in T is O(rk), where r ≤ 1.194 is the positive root of the polynomial x5 − x2 − 1. It
follows that the number of root-leaf paths in T is also O(1.194k). Since every non-root node on
a given path corresponds to a reduction in the parameter value, and since the parameter to the
input instance has value k, it follows that any root-leaf path in T contains at most k + 1 nodes.
Therefore, the total number of nodes in T is O(1.194kk). At every node in the search tree T
the time spent by the algorithm is linear in the size of the graph, which is O(k). To verify that,
let us look at the operations performed by the algorithm. First, whenever Clean is invoked, the
time spent is proportional to the size of the subgraph removed, and hence is O(k). Also the time
taken by a branching operation is O(k). We explained in Section 2 how step 2 of VC3-solver
can be carried out in time O(k). We also explained in Section 2 how each step in Reducing
can be performed in time O(k). This shows that the time spent at every node in the search tree
is O(k). The running time of the algorithm is then O(n + k

√
k + 1.194kk2) = O(1.194kk2 + n),

where O(k
√
k + n) is the pre-processing time. It follows that the running time of the algorithm

VC3-solver is O(1.194kk2 + n).

4 An algorithm for IS-3

In this section we show how the algorithm for VC-3 implies an algorithm for IS-3. The approach
is exactly the same as that employed in [6], which used a less efficient algorithm for VC-3 than the
one given in this paper, to derive an algorithm for IS-3 running in time O(1.174n). The algorithm
for IS-3 presented here runs in time O(1.1255n), and slightly beats the previously most efficient
O(1.1259n)-time algorithm by Beigel [3].

Lemma 4.1 (Lemma 6.1, [6]) Let G be a connected graph of n vertices and degree bounded by

3. Then a minimum vertex cover of G contains at most (2n+ 1)/3 vertices.

Theorem 4.2 The IS-3 problem can be solved in time O(1.1255n).

Proof. Let G be a graph of degree bounded by 3. The graph Gmay not necessarily be connected.
Let C1, . . ., Ck be the connected components of G of sizes n1, . . ., nk, respectively. It is clear that
a maximum independent set of G is the union of maximum independent sets of the components
C1, · · ·, Ck. For each component Ci of G, instead of finding a maximum independent set for Ci,
we try to construct a vertex cover of ki vertices, for ki = 1, 2, At the first ki for which we
are able to construct a vertex cover of ki vertices for Ci, we know this vertex cover is a minimum
vertex cover. Thus, the complement of this vertex cover is a maximum independent set for Ci.
By Lemma 4.1, we must have ki ≤ (2ni + 1)/3. Thus, by Theorem 3.15, a maximum independent
set for the component Ci can be constructed in time O(1.194(2ni+1)/3(2ni + 1)

2/3 + ni), which is
O(1.1255ni). In conclusion, a maximum independent set in the graph G can be constructed in time
O(1.1255n1 + · · ·+1.1255nk). By an argument similar to that given in the proof of Assumption 2.6
at the end of Section 2, it follows that O(1.1255n1 + · · ·+ 1.1255nk) = O(1.1255n).

5 Conclusion

In this paper we presented algorithms for the parameterized Vertex Cover and the Maxi-

mum Independent Set problems on degree-3 graphs. Our algorithm for VC-3 runs in time

24

O(1.194kk2 + n) and improves Chen et al.’s O(1.237k + kn) time algorithm [7]. Our algorithm for
IS-3 runs in time O(1.1255n) and improves Beigel’s O(1.1259n) time algorithm [3].
We emphasize that the importance of our results lies in the techniques that we use to analyze the

size of the search tree. Despite the fact that the analysis of the algorithm is lengthy, the algorithm
itself is very simple and uniform. The algorithm distinguishes few cases to eliminate cut-vertices
and bridges from the graph. However, all these cases are solved easily and without any branching.
As a matter of fact, these cases use very simple and elegant graph-theoretic operations that can
be generalized in a straightforward manner to the Vertex Cover problem on general graphs. If
one looks carefully at the algorithm itself, the algorithm is very intuitive. Basically the overall
behavior of the algorithm can be described as follows. As long as the case can be solved without
any branching, solve it (folding, reducing, and cleaning). If none of the above applies, then either
we can do an efficient and uniform branch (alternating tree), which is a single branch that does
not distinguish any cases, or we branch arbitrarily at any vertex, and the amortized analysis shows
that this operation will be balanced by non-branching operations. The analysis of the algorithm
might be lengthy, but the techniques involved are elementary combinatorial techniques.
Finally, we indicate that our approach opens a new direction in the analysis of the running

time of exact algorithms for NP-hard problems that use the search tree method. Instead of looking
at sophisticated algorithms and deriving an easy but conservative upper bound on the size of the
search tree, we can consider instead very simple and intuitive algorithms, and perform an amortized
analysis that reflects more closely the actual size of the search tree. We believe that this method
of analysis is applicable to a variety of NP-hard problems.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley Publishing Company, Reading, MA, (1974).

[2] R. Balasubramanian, M. R. Fellows, and V. Raman, An improved fixed parameter
algorithm for vertex cover, Information Processing Letters 65, (1998), pp. 163-168.

[3] R. Beigel, Finding maximum independent sets in sparse and general graphs, in Proceedings
of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA’99), (1999), pp. 856-857.

[4] J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM Journal on Computing

22, (1993), pp. 560-572.

[5] L. Cai and D. Juedes, On the existence of subexponential-time parameterized algorithms,
Journal of Computer and System Sciences 67-4, (2003), pp. 789-807.

[6] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further improve-
ments, Journal of Algorithms 41, (2001), pp. 280-301.

[7] J. Chen, L. Liu, and W. Jia, Improvement on Vertex Cover for low-degree graphs, Networks
35, (2000), pp. 253-259.

[8] DIMACS Workshop on Faster Exact Algorithms for NP-hard problems, Princeton, NJ, (2000).

[9] R. Downey and M. Fellows, Parameterized computational feasibility, in Feasible Math-

ematics II, P. Clote and J. Remmel, eds., Boston, Birkhauser (1995), pp. 219-244.

25

[10] R. Downey and M. Fellows, Parameterized Complexity, New York, Springer, (1999).

[11] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Comput-
ing 44, (1990) pp. 279-303.

[12] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity?, Journal of Computer and System Sciences 63-4, (2001), pp. 512-530.

[13] T. Jian, An O(20.304n) algorithm for solving the maximum independent set problem, IEEE
Transactions on Computers 35, (1986) pp. 847-851.

[14] D. Johnson and M. Szegedy, What are the least tractable instances of max. independent
set?, in Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA’99),
(1999), pp. 927-928.

[15] D. S. Johnson and M. A. Tricks, Eds., “Cliques, Coloring and Satisfiability, Second DI-

MACS Implementation Challenges”, DIMACS Series on Discrete Mathematics and Theoretical
Computer Science 26, American Mathematical Society, Providence, RI, (1996).

[16] I. A. Kanj, Vertex Cover: Exact and Approximate Algorithms and Applications, Ph.D.
Dissertation, Dept. Computer Science, Texas A&M University, College Station, Texas, (2001).

[17] G. L. Nemhauser and L. E. Trotter, Vertex packing: structural properties and algo-
rithms, Mathematical Programming 8, (1975), pp. 232-248.

[18] R. Niedermeier and P. Rossmanith, Upper bounds for vertex cover further improved,
Lecture Notes in Computer Science 1563, (1999), pp. 561-570.

[19] J. M. Robson, Algorithms for maximum independent set, Journal of Algorithms 6, (1977),
pp. 425-440.

[20] M. Shindo and E. Tomita, A simple algorithm for finding a maximum clique and its
worst-case time complexity, Sys. and Comp. in Japan 21, (1990), pp. 1-13.

[21] U. Stege and M. Fellows, An improved fixed-parameter-tractable algorithm for vertex
cover, Technical Report 318, Department of Computer Science, ETH Zurich, April 1999.

[22] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM
Journal on Computing 2, (1973), pp. 135-158.

[23] R. E. Tarjan and A. E. Trojanowski, Finding a maximum independent set, SIAM
Journal on Computing 7, (1986), pp. 537-546.

[24] W. T. Tutte, Graph Theory, Addison-Wesley Publishing Company, Menlo Park, California,
(1984).

26

