
Maximum Matchings in Planar Graphs via

Gaussian Elimination ?

Marcin Mucha and Piotr Sankowski
{mucha,sank}@mimuw.edu.pl

Institute of Informatics, Warsaw University,
Banacha 2, 02-097, Warsaw, Poland

Abstract. We present a randomized algorithm for finding maximum
matchings in planar graphs in time O(nω/2), where ω is the exponent
of the best known matrix multiplication algorithm. Since ω < 2.38, this
algorithm breaks through the O(n1.5) barrier for the matching problem.
This is the first result of this kind for general planar graphs.
We also present an algorithm for generating perfect matchings in planar
graphs uniformly at random using O(nω/2) arithmetic operations.
Our algorithms are based on the Gaussian elimination approach to max-
imum matchings introduced in [1].

1 Introduction

A matching in an undirected graph G = (V, E) is a subset M ⊆ E, such that
no two edges in M are incident. Let n = |V |, m = |E|. A perfect matching is a
matching of cardinality n/2. The problems of finding a Maximum Matching (i.e. a
matching of maximum size) and, as a special case, finding a Perfect Matching if
one exists, are two of the most fundamental algorithmic graph problems.

Solving these problems in time polynomial in n remained an elusive goal for
a long time until Edmonds [2] gave the first algorithm. Several other algorithms
have been found since then, the fastest of them being the algorithm of Micali and
Vazirani [3], Blum [4] and Gabow and Tarjan [5]. The first of these algorithms
is in fact a modification of the Edmonds algorithm, the other two use different
techniques, but all of them run in time O(m

√
n), which gives O(n2.5) for dense

graphs.
The matching problems seem to be inherently easier for planar graphs. For

a start, these graphs have O(n) edges, so O(m
√

n) = O(n1.5). But there is more
to it. Using the duality-based reduction of maximum flow with multiple sources
and sinks to single source shortest paths problem (see [6]), Klein et al. [7] were
able to give an algorithm finding perfect matchings in bipartite planar graphs
in time O(n

4

3 log n). This reduction, however, does not carry over to the case of
general planar graphs.

We have recently shown [1], that extending the randomized technique of
Lovász [8] leads to an O(nω) algorithm for finding maximum matching in general

? Research supported by KBN grant 4T11C04425.

graphs. In this paper we use similar techniques, together with separator based
decomposition of planar graphs and the fast nested dissection algorithm, to show
that maximum matchings in planar graphs can be found in time O(nω/2).

Remark 1. In case of ω = 2 additional polylogarithmic factor appears, so in the
remainder of this paper we assume for simplicity, that ω > 2.

There is one point to notice here. The O(nω) algorithm for general graphs
presented in [1] is faster than the standard maximum matching algorithms only
if the Coppersmith-Winograd matrix multiplication is used (see [9]). On the
other hand, for our O(nω/2) algorithm to be faster than the standard algorithms
applied to planar graphs, it is enough to use any o(n3) matrix multiplication
algorithm, e.g. the classic algorithm of Strassen [10]. This suggests that our
results not only constitute a theoretical breakthrough, but might also give a
new practical approach to solving the maximum matching problem in planar
graphs.

The same techniques can be used to generate perfect matchings in planar
graphs uniformly at random using O(nω/2) arithmetic operations. This improves
on the result of Wilson [11].

The rest of the paper is organized as follows. In the next section we recall
some well known results concerning the algebraic approach to the maximum
matching problem and the key ideas from [1]. In section 3 we recall the separator
theorem for planar graphs and the fast nested dissection algorithm and show
how these can be used to test planar graphs for perfect matchings with O(nω/2)
operations. In Section 4, we present an algorithm for finding perfect matchings
in planar graphs with O(nω/2) operations, and in Section 5 we show how to
extend it to an algorithm finding maximum matchings. In all these algorithms
we use multivariate rational functions arithmetic and so their time complexity
is in fact much larger than O(nω/2). This issue is addressed in Section 6, where
we show, that all the computations can be performed over a finite field Zp, for
a random prime p = Θ(n4). In Section 7 we present an algorithm for generating
perfect matchings in planar graphs uniformly at random.

2 Preliminaries

2.1 Matchings, Adjacency Matrices and Their Inverses

Let G = (V, E) be a graph and let n = |V | and V = {v1, . . . , vn}. A skew
symmetric adjacency matrix of G is a n × n matrix Ã(G) such that

Ã(G)i,j =















xi,j if (vi, vj) ∈ E and i < j

−xi,j if (vi, vj) ∈ E and i > j

0 otherwise

,

where the xi,j are unique variables corresponding to the edges of G. For Ẽ =

{xi,j : (vi, vj) ∈ E}, let Z[Ẽ] be the ring of polynomials with integral coefficients

and variables from Ẽ, and let Z(Ẽ) be its field of fractions, i.e. field of rational
functions with integral coefficients and variables from Ẽ. For example, Ã(G) is
a matrix over Z(Ẽ).

Tutte [12] observed the following

Theorem 2. The symbolic determinant det Ã(G) is non-zero iff G has a perfect
matching.

Lovász[8] generalized this to

Theorem 3. The rank of the skew symmetric adjacency matrix Ã(G) is equal
to twice the size of maximum matching of G.

Let G be a graph having a perfect matching and let Ã = Ã(G) be its skew
symmetric adjacency matrix. By Theorem 2, Ã is invertible. Rabin and Vazi-
rani [13] showed that

Theorem 4. (Ã−1)j,i 6= 0 iff the graph G − {vi, vj} has a perfect matching.

In particular, if (vi, vj) is an edge in G, then (Ã−1)j,i 6= 0 iff (vi, vj) is
allowed, i.e. it is contained in some perfect matching. This follows from the
formula (X−1)i,j = adj(X)i,j/ det X , where adj(X)i,j — the so called adjoint
of X — is the determinant of X with the j-th row and i-th column removed,
multiplied by (−1)i+j .

2.2 Randomization

Theorem 2 could directly be used to test graphs for having a perfect matching.
We need to compute det Ã(G) and answer “YES” if it is non-zero. Unforunately,
this solution requires Z[Ẽ] arithmetic and is thus infeasible.

There is however another, more subtle way of using Theorem 2 to test for
perfect matchings. Recall the classic lemma due to Zippel [14] and Schwartz [15]

Lemma 5 (Zippel, Schwartz). If p(x1, . . . , xm) is a non-zero polynomial of
degree d with coefficients in a field and S is a subset of the field, then the proba-
bility that p evaluates to 0 on a random element (s1, s2, . . . , sm) ∈ Sm is at most
d/|S|.

Choose a prime p = nO(1) and substitute each variable in Ã(G) with a random
element of Zp. Let us call the resulting matrix the random adjacency matrix of G

and denote it by A(G). Since det Ã(G) is a polynomial of degree n, by Lemma 5
with high probability we have det A(G) 6= 0 iff det Ã(G) 6= 0, i.e. G has a perfect
matching. This randomized testing algorithm was given by Lovász [8]. It can be
implemented to run in O(nω) time using fast matrix multiplication (where ω is
the matrix multiplication exponent, currently ω < 2.38, see Coppersmith and
Winograd [9]).

Lovász also showed that

Theorem 6. The rank of A(G) is at most twice the size of maximum matching
in G. The equality holds with probability at least 1 − (n/p).

The Lovász’s algorithm is an example of a general approach to constructing
randomized algorithms. We first develop an algorithm working over a ring of
polynomials or a field of rational functions and then use the Zippel-Schwartz
Lemma to show that it can be performed over Zp for a suitable choice of p.

In particular, this is the approach we take in this paper. In the remainder of
this section, as well as in Sections 3, 4 and 5 we describe our algorithms using
Z(Ẽ) arithmetic (even though it is computationally infeasible). The complexity
bounds for these algorithms are expressed in terms of the number of Z(Ẽ) oper-
ations. In Section 6, we show that if all the computations are performed over a
finite field Zp instead of Z(Ẽ), with high probability we still get correct results,
for sufficiently large (but polynomial in n) prime p.

2.3 Perfect Matchings via Gaussian Elimination

We now recall a technique, recently developed by the authors, of finding perfect
matchings using Gaussian elimination. This technique can be used to find an
inclusion-wise maximal allowed submatching of any matching in time O(nω),
which is a key element of our matching algorithm for planar graphs. A more
detailed exposition of the Gaussian elimination technique and faster algorithms
for matchings in bipartite and general graphs can be found in [1].

Consider a skew symmetric adjacency matrix Ã = Ã(G) of a graph G =
(V, E), where |V | = n, V = {v1, v2, . . . , vn}. If (vi, vj) ∈ E and (Ã−1)i,j 6= 0,
then (vi, vj) is an allowed edge. We may thus choose this edge as a matching
edge and try to find a perfect matching in G′ = G − {v1, v2}. The problem
with this approach is that edges that were allowed in G might not be allowed
in G′. Computing the matrix Ã(G′)−1 from scratch is out of the question as the
resulting algorithm would require O(nω+1) operations to find a perfect matching.
There is however another way of computing Ã(G′)−1, suggested by the following
well known property of Schur complement

Theorem 7 (Elimination theorem). Let

X =

(

x1,1 vT

u Y

)

X−1 =

(

x̂1,1 v̂T

û Ŷ

)

,

where x̂1,1 6= 0. Then Y −1 = Ŷ − ûv̂T /x̂1,1.

Proof. Since XX−1 = I , we have
(

x1,1x̂1,1 + vT û x1,1v̂
T + vT Ŷ

ux̂1,1 + Y û uv̂T + Y Ŷ

)

=

(

I1 0

0 In−1

)

.

Using these equalities we get

Y (Ŷ − ûv̂T /x̂1,1) = In−1 − uv̂T − Y ûv̂T /x̂1,1 =

= In−1 − uv̂T + ux̂1,1v̂
T /x̂1,1 = In−1 − uv̂T + uv̂T = In−1.

and so Y −1 = Ŷ − ûv̂T /x̂1,1 as claimed. ut

The modification of Ŷ described in this theorem is in fact a single step of the
well-known Gaussian elimination procedure. In this case, we are eliminating the
first variable (column) using the first equation (row). Similarly, we can eliminate
from X−1 any other variable (column) j using any equation (row) i, such that
(X−1)i,j 6= 0.

In [1] we show, that among consequences of Theorem 7 is a very simple O(n3)
algorithm for finding perfect matchings in general graphs (this is an easy corol-
lary) as well as O(nω) algorithms for finding perfect matchings in bipartite and
general graphs. The last of these requires some additional structural techniques.

2.4 Matching Verification

We now describe another consequence of Theorem 7, one that is crucial for our
approach to finding maximum matchings in planar graphs. In [1] we have shown
that

Theorem 8. Gaussian elimination without row or column pivoting can be done
with O(nω) operations using lazy computations.

Remark 9. The algorithm in Theorem 8 is very similar to the classic Hopcroft-
Bunch algorithm [16]. It is however more intuitive and better suited for our
purposes.

Proof. Assume that we are performing Gaussian elimination on a n×n matrix X
and after eliminating the first i−1 rows and columns, we always have Xi,i 6= 0. In
this case, we can avoid any row or column pivoting, and the following algorithm
performs Gaussian elimination of the whole matrix X in time O(nω).

ELIMINATE-ROWS-AND-COLUMNS(X,p, q):

1. if q = p then
– lazily elimnate the p-th row and the p-th column of X

– return

2. let m := b p+q
2

c
3. ELIMINATE-ROWS-AND-COLUMNS(p,m)
4. UPDATE({m + 1, ..., q}, {m + 1, ..., n})
5. UPDATE({q + 1, ..., n}, {m + 1, . . . , q})
6. ELIMINATE-ROWS-AND-COLUMNS(m+ 1, q)

ELIMINATE(X):

1. ELIMINATE-ROWS-AND-COLUMNS(X,1, n)

Fig. 1. Elimination with no pivoting.

By “lazy elimination” we mean storing the expression of the form uvT /c
describing the changes required in the remaining submatrix without actually

performing them. These changes are then executed in batches during the calls
to UPDATE(R, C) which updates the XR,C submatrix. Suppose that k changes
where accumulated for the submatrix XR,C and then UPDATE(R, C) was called.
Let these changes be u1v

T
1 /c1, u2v

T
2 /c2, . . . , ukvT

k /ck, the accumulated change of
XR,C is

u1v
T
1 /c1 + u2v

T
2 /c2 + . . . , ukvT

k /ck = UV,

where U is a |R| × k matrix with columns u1, u2, . . . , uk and V is a k × |C|
matrix with rows vT

1 /c1, v
T
2 /c2, . . . , v

T
k /ck. The matrix UV can be found using

fast matrix multiplication.
Let us consider the call to ELIMINATE-ROWS-AND-COLUMNS(X, p, q),

and let j = q − m + 1. The cost of the updates in the call is proportional to
the cost of multiplying the 2j × 2j matrix by a 2j × n matrix. By splitting
the second matrix into 2j × 2j square submatrices, this can be done in time
n/2j(2j)ω = n(2j)ω−1. Now, every j appears n/2j times, so we get the total
time complexity of

dlog ne
∑

j=0

n/2jn(2j)ω−1 = n2

dlog ne
∑

j=0

(2ω−2)j ≤ n2(2ω−2)dlog ne = O(nω).

This algorithm has a very interesting application

Theorem 10. Let G be a graph having a perfect matching. For any matching M
of G, an inclusion-wise maximal allowed (i.e. extendable to a perfect matching)
submatching M ′ of M can be found using O(nω) operations.

Proof. Let M = {(v1, v2), (v3, v4), . . . , (vk−1, vk)} and let vk+1, vk+2, . . . , vn be
the unmatched vertices. We compute the inverse Ã(G)−1 and permute its rows
and columns so that the row order is v1,v2,v3,v4, . . . , vn and the column order is
v2,v1,v4,v3, . . . , vn, vn−1. Now, perform Gaussian elimination of the first k rows
and k columns using the algorithm of Theorem 8, but if the eliminated element
is zero just skip to the next row/column pair. The eliminated rows and columns
correspond to a maximal submatching M ′ of M . ut

2.5 Degree reduction

We now recall a well-known technique of “vertex splitting” (see for example [11]).

Theorem 11. The problem of finding perfect (maximum) matchings in planar
graphs is reducible in O(n) time to the problem of finding perfect (maximum)
matchings in planar graphs with maximum vertex degree 3. This reduction adds
O(n) new vertices.

Proof. Suppose that G has a vertex v with degree > 3. Let N(v) be the set of
neighbours of v. We choose 2 neighbours w1, w2 ∈ N(v) and replace v with three
vertices v1, v2, v3 as shown in Fig. 2. Let Ĝ be the resulting graph. There is a
a one-to-one mapping between perfect matchings in G and in Ĝ. Reducing the

Fig. 2. Vertex splitting. On the left is a high degree vertex v. It is matched in the perfect
matching with one of its neighbours w2. On the right is the graph after splitting this
vertex into v1, v2, v3. Now v3 is matched with w2 and v1 is matched with v2. Perfect
matchings in the two graphs are in one to one correspondence.

degrees of all vertices to ≤ 3 requires only O(m) = O(n) splitting operations, so
the resulting graph has O(n) vertices.

Even if G has no perfect matching, we can still use this reduction. There is
an easy translation of maximum matchings in the original graph G to maximum
matchings in the bounded degree graph Ĝ and vice verse (it is not one-to-one,
though). Notice that the number of unmatched vertices in a maximum matching
is the same for G and Ĝ. ut

Throughout the rest of this paper we restrict ourselves to graphs with degree
bounded by 3.

3 Testing Planar Graphs for Perfect Matching

In this section we show how planar graphs can be tested for perfect matching
using O(nω/2) operations. We use the nested dissection algorithm which performs
Gaussian elimination using O(nω/2) operations for a special class of matrices.
The results presented in the next subsection are due to Lipton and Tarjan [17],
and Lipton, Rose and Tarjan[18]. We follow the presentation in [19] as it is best
suited for our purposes.

3.1 Sparse LU Factorization via Nested Dissection

We say that a graph G = (V, E) has a s(n)-separator family (with respect to
some constant n0) if either |V | ≤ n0, or by deleting a set S of vertices such
that |S| ≤ s(|V |), we may partition G into two disconnected subgraphs with the
vertex sets V1 and V2, such that |Vi| ≤ 2/3|V |, i = 1, 2, and furthermore each of
the two subgraphs of G defined by the vertex sets S ∪ Vi, i = 1, 2 also has an
s(n)-separator family. The set S in this definition is called an s(n)-separator in G
(we also use the name small separators for O(

√
n)-separators) and the partition

resulting from recursive application of this definition is the s(n)-separator tree.
Partition of a subgraph of G defines its children in the tree.

The following theorem of Lipton, Rose and Tarjan [17] gives an important
example of graphs having O(

√
n)-separator families

Theorem 12 (Separator theorem). Planar graphs have O(
√

n)-separator fa-
milies. Moreover, an O(

√
n)-separator tree for a planar graph can be found in

time O(n log n).

Let X be an n × n matrix. The graph G(X) corresponding to A is defined
as follows: G(X) = (V, E), V = {1, 2, . . . , n}, E = {{i, j}| i 6= j and (Xi,j 6=
0 or Xj,i 6= 0)}. The existence of O(

√
n)-separator family for G(X) makes faster

Gaussian elimination possible as the following theorem of Lipton and Tarjan
shows

Theorem 13 (Nested dissection). Let X be a symmetric positive definite
matrix and let G(X) have a O(

√
n)-separator family. Given a O(

√
n) separator

tree for G(X), Gaussian elimination on X can be performed in time O(nω/2)
using the so-called nested dissection. The resulting LU factorization of X is given
by matrices L and D, X = LDLT , where matrix L is unit lower-triangular and
has O(n log n) non-zero entries and matrix D is diagonal.

Remark 14. The assumption of X being symmetric positive definite is needed
to assure that no diagonal zeros will appear, so that no row or column pivoting
is neccessary during the elimination. If we can guarantee this in some other way,
then the assumption can be omitted.

We are not going to present the details of this algorithm. The basic idea is to
permute rows and columns of X using the O(

√
n)-separator tree. Vertices of the

top-level separator S correspond to the last |S| rows and last |S| columns, etc..
When Gaussian elimination is performed in this order, matrix remains sparse
throughout the elimination.

Since we are going to perform Gaussian elimination on matrices over Z(Ẽ),
we need to find a way to apply Theorem 13 to such matrices. The usual notion
of positive definiteness does not make sense in this case, so let us call a matrix
X over Z(Ẽ) symmetric positive definite if it is of the form X = Y Y T for some
non-singular Y .

We have the following

Fact 15 (Symbolic nested dissection). Theorem 13 holds for matrices over
Z(Ẽ).

Proof. Let X = Y Y T be a symmetric positive definite matrix over Z(Ẽ). Ac-
cording to Remark 14 we only need to guarantee that no diagonal zeros appear
during the elimination of X . Since det Y 6= 0, there exist a substitution v of
variables in Ẽ, such that det Yv 6= 0, where Yv is Y after the substitution v.

Since Yv is non-singular, Xv = YvY T
v is symmetric positive definite in the

usual sense. By Theorem 13 there are no diagonal zeros during the elimination
of Xv. The same has to be true for X , since entries of of Xv are just substituted
versions of entries of X .

3.2 The Testing Algorithm

Testing a general graph G for having a perfect matching requires performing
Gaussian elimination on the matrix Ã = Ã(G) (in order to compute its determi-
nant). In case of planar graphs and planar matrices, we want to get an O(nω/2)
algorithm, so we have to use the nested dissection algorithm to perform the elim-
ination. In order to use it however, we need to guarantee that there are no zeros
on the diagonal during the elimination, and the only known method of doing
this requires finding a perfect matching first. This approach does not look very
promising. Instead, we will work on the matrix B̃ = ÃÃT .

Notice that if Ã is non-singular (i.e. G has a perfect matching), then B̃ is
symmetric positive definite. In order to use Fact 15, we need to show that G(B̃)
and all its subgraphs have small separators. This is not true in general, but it is
true if G is a bounded degree graph. Let S be a small separator in G(Ã) = G,
and consider the set T containing all vertices of S and all their neighbours. We
call T a thick separator corresponding to S. Notice that B̃i,j can be non-zero
only if there exists a path of length 2 between vi and vj . Thus T is a separator

in G(B̃). T is also a small separator, because G has bounded degree and so
|T | ≤ 4|S| = O(

√
n). In the same manner small separators can be found in any

subgraph of G(B̃), so Gaussian elimination on the matrix B̃ can be performed
using the nested dissection algorithm with O(nω/2) operations.

We are now ready to present the testing algorithm for planar graphs (see
Fig. 3).

PLANAR-TEST-PERFECT-MATCHING(G):

1. reduce the degrees of vertices in G;
2. compute B̃ = ÃÃT ;
3. run nested dissection on B̃;
4. G has a perfect matching iff the algorithm succeeds i.e. finds an

LU factorization;

Fig. 3. An algorithm for testing if a planar graph has a perfect matching.

If the nested dissection algorithm finds an LU factorization of B̃, then B̃
is non-singular, and so Ã is non-singular, thus G has a perfect matching. If,
however, the nested dissection fails i.e. there appears zero on the diagonal during
the elimination, then B̃ is not positive definite, and so Ã is singular.

4 Finding Perfect Matchings in Planar Graphs

In this section we present an algorithm for finding perfect matchings in pla-
nar graphs. In Section 5 we show that the more general problem of finding a
maximum matching reduces to the problem of finding a perfect matching.

4.1 The General Idea

For any matrix X , let XR,C denote a submatrix of X corresponding to rows R
and columns C.

The general idea of the matching algorithm is presented in Fig. 4.

PLANAR-PERFECT-MATCHING(G):

1. run PLANAR-TEST-PERFECT-MATCHING(G);
2. let S be a small separator in G and let T be the corresponding

thick separator;
3. find (Ã(G)−1)T,T ;
4. using the FIND-ALLOWED-SEPARATOR-MATCHING proce-

dure, find an allowed matching M incident on all vertices of S;
5. find perfect matchings in connected components of G − V (M);

Fig. 4. An algorithm for finding perfect matchings in planar graphs.

To find a perfect matching in a planar graph, we find a small separator,
match its vertices in an allowed way (i.e. one that can be extended to the set of
all vertices), and then solve the problem for each of the connected components
created by removing the endpoints of this matching. In the remainder of this
section, we show that we can perform steps 3. and 4. using O(nω/2) operations.
This gives the complexity bound of O(nω/2) operations for the whole algorithm
as well.

4.2 Computing the Important Part of Ã(G)−1

We could easily find (Ã(G)−1)T,T if we had an LU factorization of Ã = Ã(G).

Unfortunately, Ã is not symmetric positive definite, so we cannot use the fast
nested dissection algorithm to factorize Ã. In the testing phase we find n × n
matrices L and D such that ÃÃT = LDLT , where L is unit lower-triangular and
D is diagonal. We now show how L and D can be used to compute (Ã−1)T,T in

time O(nω/2). Let us represent Ã, L and D as block matrices

Ã =

(

Ã1,1 Ã1,2

Ã2,1 Ã2,2

)

, D =

(

D1,1 0

0 D2,2

)

,

L =

(

L1,1 0

L2,1 L2,2

)

, L−1 =

(

L−1
1,1 0

−L−1
2,2L2,1L

−1
1,1 L−1

2,2

)

,

where lower right blocks in all matrices correspond to the vertices of the thick
separator T , for example ÃT,T = Ã2,2. Since ÃÃT = LDLT , we have

(ÃT)−1 = (LT)−1D−1L−1Ã,

where the interesting part of (ÃT)−1 is

(ÃT)−1
T,T = ((LT)−1)T,V D−1L−1ÃV,T =

= (LT
2,2)

−1D−1
2,2(L

−1)T,V ÃV,T =

= (LT
2,2)

−1D−1
2,2L

−1
2,2Ã2,2 + (LT

2,2)
−1D−1

2,2(L
−1)2,1Ã1,2.

The first component can be easily computed with O(nω/2) operations using fast
matrix multiplication. The second component can be written as

(LT
2,2)

−1D−1
2,2(L

−1)2,1Ã1,2 = −(LT
2,2)

−1D−1
2,2L

−1
2,2L2,1L

−1
1,1Ã1,2

and the only hard part here is to compute X = −L2,1L
−1
1,1Ã1,2. Consider the

matrix

B =

(

L1,1 Ã1,2

L2,1 0

)

.

When Gaussian elimination is performed on the non-separator columns and ver-
tices of B, the lower right submatrix becomes X . This is a well known property
of the Schur complement. The elimination can be performed with use of the
nested dissection algorithm in time O(nω/2). The idea here is that the separator
tree for ÃÃT is a valid separator tree for L, thus also for B. The new non-zero
entries of L introduced by Gaussian elimination (so called fill-in), correspond
to the edges that can only go upwards in the separator tree, from child to one
of its ancestors (see [20]). Notice, that since L1,1 is lower-diagonal, there are no
problems with diagonal zeros, even though B is not symmetric positive definite.

4.3 Matching the Separator Vertices

We now show how the separator vertices can be matched using the matching
verification algorithm. Consider the procedure presented in Fig. 5.

FIND-ALLOWED-SEPARATOR-MATCHING:

1. let M = ∅;
2. let GT = (T, E(T) − E(T − S));
3. let MG be any inclusion-wise maximal matching in GT using only

allowed edges;
4. run the verification algorithm of Theorem 10 on (Ã−1)T,T to find

a maximal allowed submatching M ′

G of MG;
5. add M ′

G to M ;
6. remove the vertices matched by M ′

G from GT ;
7. mark edges in MG − M ′

G as not allowed;
8. if M does not match all vertices of S go to step 3.;

Fig. 5. A procedure for finding allowed submatching of the separator.

The verification algorithm finds a maximal allowed submatching M ′
G of MG

using O(nω/2) operations. It works on the matrix Ã(G)−1, but it never uses any
values from outside the submatrix (Ã(G)−1)T,T corresponding to the vertices of

T , so we only have to compute this submatrix. Let Ã′ be the result of running the
verification algorithm on the matrix (Ã−1)T,T . Notice that due to Theorem 7,

Ã′
T ′,T ′ = (Ã(G−V (M ′

G))−1)T ′,T ′ , where T ′ is obtained from T by removing the
vertices matched by M ′

G. Thus the inverse does not need to be computed from
scratch in each iteration of the loop.

Now, consider the allowed matching M covering S, found by the above al-
gorithm. Notice that any edge e of M is either incident on at last one edge of
the inclusion-wise maximal matching MG or is contained in MG, because of the
maximality of MG. If e is in MG, it is chosen in step 4, otherwise one of the
edges incident to e is marked as not allowed. Every edge e ∈ M has at most 4
incident edges, so the loop is executed at most 5 times and the whole procedure
requires O(nω/2) operations.

5 Maximum vs. Perfect Matchings

We now show that the problem of finding a maximum matching can be reduced
to the problem of finding a perfect matching using O(nω/2) operations. The
problem is to find the largest subset W ⊆ V , such that the induced G[W]
has a perfect matching. Notice that this is equivalent to finding the largest
subset W ⊆ V , such that ÃW,W is non-singular. The basic idea is to use the
nested dissection algorithm. We first show that non-singular submatrices of AAT

correspond to non-singular submatrices of A (note that Lemma 16, Theorem 17
and Theorem 18 are all well known facts).

Lemma 16. The matrix AAT has the same rank as A.

Proof. We will prove that ker(A) = ker(AT A). Let v be such that (AT A)v = 0.
We have

0 = vT (AT A)v = (vT AT)(Av) = (Av)T (Av),

so Av = 0. ut

We will also need the following classic theorem of Frobenius (see [21])

Theorem 17 (Frobenius Theorem). Let A be an n×n skew-symmetric ma-
trix and let X, Y ⊆ {1, . . . , n} such that |X | = |Y | = rank(A). Then

det(AX,X) det(AY,Y) = (−1)|X| det 2(AX,Y).

Now, we are ready to prove the following

Theorem 18. If (AAT)W,W is non-singular and |W | = rank(AAT), then AW,W

is also non-singular.

Proof. We have (AAT)W,W = AW,V AT
V,W , so rank(AW,V) = rank(AAT). By

Lemma 16, this is equal to rank(A). Let AW,U be any square submatrix of
AW,V of maximal rank. From Frobenius Theorem it follows that AW,W also has
maximal rank. ut

The only question now is, whether AAT always has a submatrix (AAT)W,W (i.e.,
a symmetrically placed submatrix) of maximal rank. There are many ways to
prove this fact, but we use the one that leads to an algorithm for actually finding
this submatrix.

Lemma 19. If (AAT)i,i = 0, then (AAT)i,j = (AAT)j,i = 0 for all j.

Proof. Let ei be the i-th unit vector. We have

0 = (AAT)i,i = (eT
i A)(AT ei) = (AT ei)

T (AT ei),

so AT ei = 0. But then (AAT)i,j = (eT
j A)(AT ei) = 0 for any j and the same for

(AAT)j,i. ut

Theorem 20. A submatrix (AAT)W,W of AAT of maximal rank always exists
and can be found with O(nω/2) operations using the nested dissection algorithm.

Proof. We perform the nested dissection algorithm on the matrix AAT . At any
stage of the computations, the matrix we are working on is of the form BBT for
some B. It follows from Lemma 19, that if a diagonal entry we want to eliminate
has value zero, then the row and the column corresponding to this entry consist
of only zeros. We ignore these and proceed with the elimination. The matrix
(AAT) we are looking for consists of all non-ignored rows and columns. ut

Corollary 21. For any planar graph G = (V, E) a largest subset W ⊆ V , such
that G[W] has a perfect matching, can be found with O(nω/2) operations.

We have thus argued that for planar graphs the maximum matching problem
can be reduced to the perfect matching problem with O(nω/2) operations. Since
we can solve the latter with O(nω/2) operations, we can solve the former within
the same bounds.

6 Working over a Finite Field

So far, we have shown an algorithm finding a maximum matching in a planar
graph using O(nω/2) operations in Z(Ẽ). Obviously, this cannot be implemented
efficiently. We now show, that with high probability, our matching algorithms
give the same results if performed using the finite field arithmetic Zp for a
randomly chosen prime p = Θ(n4).

Each rational function computed by our matching algorithm is a quotient of
two polynomials from Z[Ẽ]. Let F = {f1, f2 . . .} be the set of all these polynomi-
als. Since our algorithm performs O(nω/2) operations, we have |F | = O(nω/2).

For any polynomial f , let |f | — the weight of f — be the sum of the absolute
values of coefficients of f . Notice that |fg| ≤ |f ||g|, |f + g| ≤ |f | + |g|.

Our algorithm performs arithmetic operations on the polynomials in F and
tests if they are non-zero. We would now like to apply the Zippel-Schwartz
Lemma simultanously to all the polynomials in F and argue, that by substituting
variables in Ẽ with random numbers from a suitable finite field Zp, with high
probability all these tests give the correct result.

The problem with this reasoning is that the coefficients of some f ∈ F might
be all multiples of p and then f is zero over Zp, even though it is non-zero over Z.
To get around this problem we prove that the coefficients of all f ∈ F are small.
It follows, that they have a small number of prime divisors and thus, with high
probability, all f ∈ F are non-zero modulo a sufficiently large random prime p.

The following theorem is a formal statement of the above considerations.

Theorem 22. Assume that all f ∈ F have degrees of order O(n) and coefficients
of order O(n2n). Let p = Θ(n4) be a random prime. If we assign random values
from the set {1, . . . , p − 1} to the variables of polynomials in F , then with high
probability all polynomials f ∈ F have non-zero value over Zp.

Proof. We first prove that with high probability all the polynomials are not
identically zero over Zp. Every f has a non-zero coefficient of order O(n2n).
This coefficient can only have O(n) distinct prime divisors of order Θ(n4). This
gives at most O(nnω/2) = O(n3) distinct prime divisors for all polynomials since
we only consider one coefficient for each polynomial and |F | = O(nω/2). There
are Θ(n4/ logn) distinct primes of order O(n4), so with high probability all
polynomials in F have a non-zero coefficient in Zp for a random prime p of order
Θ(n4).

We can now use the Zippel-Schwartz Lemma. Since all polynomials f ∈ F
have degrees O(n), the probability of a false zero for a single polynomial is
O(n ·n−4) = O(n−3). The sum of these probabilities over all polynomials f ∈ F
is O(n−1). ut

We now proceed to show that the assumptions of this theorem are satisfied.
All the rational functions we consider are the entries of one of the following

matrices:

– the skew symmetric matrix Ã = Ã(G) and its inverse;
– ÃÃT ;
– intermediate results of Gaussian elimination performed on the above;

The case of Ã and Ã−1 has already been analyzed in [13] and it is significantly
easier, so we only consider ÃÃT and its partially eliminated versions.

Notice that the elements of ÃÃT have a very simple form

Lemma 23. Non-zero elements of ÃÃT are polynomials consisting of at most
3 different monomials with all coefficients equal to ±1.

Proof. This follows from the fact that all vertices of G have degree at most 3
(see reduction in Subsection 2.5). ut

This gives the following bound for determinant of any submatrix of ÃÃT

Lemma 24. The determinant of any submatrix of ÃÃT is a polynomial of
weight at most O(3kk!).

Proof. The determinant of a k × k submatrix of ÃÃT is the sum of at most k!
products, each of them consisting of exactly k non-zero entries of ÃÃT . Expan-
sion of this determinant gives at most 3kk! monomials with ±1 coefficients, so
the weight of the determinant is at most O(3kk!). ut
Corollary 25. The entries of the inverse of any submatrix of ÃÃT are rational
functions with both numerator and denominator having weight of order O(3kk!).

The following well-known theorem describes the structure of a partially elimi-
nated matrix

Theorem 26. Let B be an n × n matrix, and let

B =

(

B1,1 B1,2

B2,1 B2,2

)

,

where B1,1 corresponds to the first k rows and k columns of B. Then, Gaussian
elimination of these rows and columns results in the matrix

B̂ =

(

D 0

0 B2,2 − B2,1B
−1
1,1B1,2

)

,

where D is the diagonal matrix from the LDU factorization of B1,1.

The following theorem guarantees that our matching algorithm can be run over
Zp.

Theorem 27. At any stage of the Gaussian elimination performed on the ma-
trix ÃÃT , the rational functions corresponding to non-zero entries of the une-
liminated part of ÃÃT have numerators and denominators with weight of order
O(3nn!) = O(n2n).

Proof. Assume that B = ÃÃT has block structure as described in the previous
theorem. When nested dissection is performed on B, we only need the elements
from the part of the matrix that was not yet eliminated, i.e. the elements of
X = B2,2 − B2,1B

−1
1,1B1,2. Non-zero polynomials in B2,1 and B1,2 have weights

at most 3 and non-zero entries of B−1
1,1 are rational functions with numerators and

denominators of weight O(3nn!). This gives a weight bound of O(n23n+2n!) for
numerators and denominators of entries in B2,1B

−1
1,1B1,2, which can be further

reduced to O(3n+2n!) = O(3nn!), if we notice that there are at most 9 nonzero
elements in every row and column of B. This bound holds for X as well, because
entries of B2,2 have weights at most 3. ut
Similarly to Theorem 27, we can prove the following

Theorem 28. The degrees of all polynomials f ∈ F are O(n).

7 Generating Random Matchings

In this section we consider the problem of generating perfect matchings in planar
graphs uniformly at random. Our algorithm is based on the theorem of Kasteleyn
[22], who showed how to compute the number of perfect matchings in a planar
graph. Since the reduction used in the proof of Theorem 11 maintains the number
of perfect matchings, we can assume that our graphs have degree bounded by 3.

7.1 Kastelyn Matrices

An orientation of a graph G = (V, E) is a directed graph GO = (V, E′) such
that, for each edge (u, v) ∈ E exactly one of the edges (u, v), (v, u) belongs to
E′.

Kasteleyn matrix K(GO) is an adjacency matrix of the orientation GO de-
fined as follows:

K(GO)u,v =















1 if (u, v) ∈ E′,

−1 if (v, u) ∈ E′,

0 otherwise.

Let us denote by G(U) a subgraph of G induced by the set of vertices U ⊆ V .
Kasteleyn proved the following theorem.

Theorem 29. An orientation GO of a graph G such that for every V ′ ⊆ V ,

det(K(GO(V ′))) = (# of perfect matchings of G(V ′))
2
,

exists and can be found in time linear in the size of the graph. The orientation
GO is called a pfaffian orientation of G.

7.2 The General Idea

The algorithm for generating perfect matchings uniformly at random is similar
to the algorithm for finding perfect matchings. The idea is to match separator
vertices in such a way that the random extension of this matching will give a
random matching. Let #M(G) be the number of perfect matching containing
M as submatching. We should match the separator with a maching M with

probability #M(G)
#∅(G) in order to generate a perfect matching of the whole graph

uniformly at random. The algorithm is presented in Fig. 6.

In the next subsection we show how the procedure GENERATE-RANDOM-
SEPARATOR-MATCHING can be implemented with O(n

ω

2) arithmetic oper-
ations. The matrix (K(GO)−1)T,T can be computed with O(n

ω

2) operations in
the same way as in Subsection 4.2. This gives the complexity bound of O(n

ω

2)
operations for the whole algorithm as well.

GENERATE-RANDOM-PLANAR-PERFECT-MATCHING(G):

1. run PLANAR-TEST-PERFECT-MATCHING(G);
2. find pfaffian orientation GO of G;
3. let S be a small separator in G and let T be the corresponding

thick separator;
4. find (K(GO)−1)T,T ;
5. using the GENERATE-RANDOM-SEPARATOR-MATCHING

procedure, find a matching M incident on all vertices of S;
6. generate random perfect matchings in connected components of

G − V (M);

Fig. 6. An algorithm for generating a perfect matching in planar graphs uniformly at
random.

MATCH-SEPARATOR-VERTICES(M,X, p, q):

1. if q = p then
– match the p-th vertex of the separator with one of its neighbors

r with probability #(M∪(p,r))(G)
#M(G)

,
– lazily elimnate the p-th row and the r-th column of X,
– lazily elimnate the r-th row and the p-th column of X,
– return

2. let m := b p+q
2

c
3. MATCH-SEPARATOR-VERTICES(M,X, p,m)
4. UPDATE-ADJACENT-VERTICES({m + 1, ..., q}, {m + 1, ..., n})
5. UPDATE-ADJACENT-VERTICES({q + 1, ..., n}, {m + 1, . . . , q})
6. MATCH-SEPARATOR-VERTICES(M,X, m + 1, q)

GENERATE-RANDOM-SEPARATOR-MATCHING((A−1)T,T):

1. M := ∅,
2. MATCH-SEPARATOR-VERTICES(M, (A−1)T,T , 1, |S|).

Fig. 7. An algorithm for randomly matching the separator.

7.3 Matching the Separator Vertices

We now show how the separator vertices can be matched using a slightly modified
matching verification algorithm. Consider the procedure presented in Fig. 5.

The procedure UPDATE-ADJACENT-VERTICES(p, q) updates the rows
and columns corresponding to the vertices of S in the range p, . . . , q and to
all neighbours of these vertices. Let us compare the algorithm to ELIMINATE
procedure from Section 2.4. Each vertex can have at most three neighbours.
Thus the size of the matrices in updates increases four times compared to Algo-
rithm ELIMINATE from Section 2.5 and so the above algorithm works in O(n

ω

2)
arithmetic operations. This updating scheme guarantees that the p-th and the
r-th rows and columns are computed explicitly before the lazy elimination.

The last remaining problem is how to compute the probablity #(M∪(p,r))(G)
#M(G) .

From Kasteleyn theorem we get

(# (M ∪ (p, r)) (G))2

(#M(G))
2 =

det(K(GO(V − V (M) − {p, r})))
det(K(GO(V − V (M))))

.

The following lemma shows how this can be computed.

Lemma 30. Before matching the p-th vertex we have,

det(K(GO(V − V (M) − {p, r})))
det(K(GO(V − V (M))))

= (A−1)p,p(A
−1)r,r − (A−1)p,r(A

−1)r,p.

Proof. If we permute the p-th and r-th row to the left side of the matrix and
the r-th and p-th column to the top, the matrix will be of the form











(A−1)p,r (A−1)p,p . . .

(A−1)r,r (A−1)r,p . . .
...

... (A−1)T−p,r,T−p,r











.

Notice that this matrix is exactly the inverse of the matrix K(GO(V −V (M))).
This follows from Theorem 7. After the elimination of the first two rows and
columns we obtain









(A−1)p,r 0 0

0 (A−1)r,p − (A−1)p,p
(A−1)r,r

(A−1)p,r

0

0 0 (Â−1)T−p,r,T−p,r









.

The matrix (Â−1)T−p,r,T−p,r is the inverse of the matrix K(GO(V − V (M) −
{p, r}). The elimination does not change the determinant of the matrix and so
we get:

det
(

A−1
T,T

)

= det
(

Â−1
)

T−p,r,T−p,r

(

(

A−1
)

r,p

(

A−1
)

p,r
−
(

A−1
)

p,p

(

A−1
)

r,r

)

,

and so,
(det K (GO (V − V (M))))

−1
=

= (det K (GO (V − V (M) − {p, r})))−1
(

(

A−1
)

r,p

(

A−1
)

p,r
−
(

A−1
)

p,p

(

A−1
)

r,r

)

.

ut

Acknowledgements

The authors would like to thank their favourite supervisor Krzysztof Diks for
numerous useful discussions.

References

1. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. 45th
Annual IEEE Symposium on Foundations of Computer Science, accepted (2004)

2. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17 (1965)
449–467

3. Micali, S., Vazirani, V.V.: An o(
p

|V ||e|) algorithm for finding maximum matching
in general graphs. In: Proceedings of the twenty first annual IEEE Symposium on
Foundations of Computer Science. (1980) 17–27

4. Blum, N.: A new approach to maximum matching in general graphs. In: Proc. 17th
ICALP. Volume 443 of LNCS., Springer-Verlag (1990) 586–597

5. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching
problems. J. ACM 38 (1991) 815–853

6. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. In:
Proc. 30th IEEE Symp. Foundations of Computer Science. (1989) 112–117

7. Klein, P., Rao, S., Rauch, M., Subramanian, S.: Faster shortest-path algorithms
for planar graphs. In: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, ACM Press (1994) 27–37

8. Lovász, L.: On determinants, matchings and random algorithms. In Budach, L.,
ed.: Fundamentals of Computation Theory, Akademie-Verlag (1979) 565–574

9. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
In: Proceedings of the nineteenth annual ACM conference on Theory of computing,
ACM Press (1987) 1–6

10. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13

(1969) 354–356
11. Wilson, D.B.: Determinant algorithms for random planar structures. In: Proceed-

ings of the eighth annual ACM-SIAM symposium on Discrete algorithms, Society
for Industrial and Applied Mathematics (1997) 258–267

12. Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22 (1947)
107–111

13. Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through
randomization. Journal of Algorithms 10 (1989) 557–567

14. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: International Sym-
posium on Symbolic and Algebraic Computation. Volume 72 of LNCS., Berlin,
Springer-Verlag (1979) 216–226

15. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM 27 (1980) 701–717

16. Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation 28 (1974) 231–236

17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J.
Applied Math. (1979) 177–189

18. Lipton, R.J., Rose, D.J., Tarjan, R.: Generalized nested dissection. SIAM J. Num.
Anal. 16 (1979) 346–358

19. Pan, V.Y., Reif, J.H.: Fast and efficient parallel solution of sparse linear systems.
SIAM J. Comput. 22 (1993) 1227–1250

20. Khaira, M.S., Miller, G.L., Sheffler, T.J.: Nested dissection: A survey. Technical
Report CS-92-106 (1992)

21. Kowalewski, G.: Einfuhrung in die Determinanten Theorie. Leipzig Verlag von
Veit & Co. (1909)

22. F. Harary, editor: Graph Theory and Theoretical Physics. Academic Press, 1967.
Chapter ”Graph Theory and Crystal Physics” by P.W. Kasteleyn.

