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Abstract

We consider the problem of scheduling jobs arriving over time in a multiprocessor
setting, with immediate dispatching, disallowing job migration. The goal is to minimize
both the total flow time (total time in the system) and the total completion time.

Previous studies have shown that while preemption (interrupt a job and later continue
its execution) is inherent to make a scheduling algorithm efficient, migration (continue the
execution on a different machine) is not. Still, the current non-migratory online algorithms
suffer from a need for a central queue of unassigned jobs which is a "no option” in large
computing system, such as the Web.

We introduce a simple online non-migratory algorithm I'M D, which employs immediate
dispatching, i.e., it immediately assigns released jobs to one of the machines. We show that
the performance of this algorithm is within a logarithmic factor of the optimal migratory
offline algorithm, with respect to the total flow time, and within a small constant factor of
the optimal migratory offline algorithm, with respect to the total completion time. This
solves an open problem suggested by Awerbuch et al [STOC99].

1 Introduction

Almost all classical work on scheduling of jobs released over time in a multiprocessor setting
assumes that unassigned jobs are held in a central queue. The decision on assignment of a job
is not done upon its arrival but postponed until the dispatcher acquires enough information. In
many cases, such as in large computing systems (e.g. the WEB), this is impossible since the the
number of unassigned jobs (with their associated data) may be large, requiring huge amount
of resources (e.g. memory). Moreover, the delay in transferring the job to the appropriate
machine may be large resulting in dramatic deterioration of the performance. Hence, the
architecture of many systems requires from the dispatcher to assign a job immediately upon
its arrival to one of the machines without maintaining a central queue. Each job is kept in the
queue of the machine it was assigned to.
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In the classical multiprocessor scheduling problem, preemptive and non-preemptive sched-
ules are often considered, in the context of minimizing the two most basic performance mea-
sures, the total flow time (overall time the jobs are spending in the system) and total completion
time. These measures capture both the overall quality of service of the system and fairness
of service. Since preemption was shown to be inherent to the problem of minimizing the
total flow time (as noted below), while it is problematic in real multiprocessors systems, an
intermediate model which disallows migration was considered. Current non-migratory online
algorithms, which were devised to work in this model, tend to delay the assignment of jobs, in
order to avoid early commitment to machines, hence they are required to maintain a pool of
unassigned jobs. As already mentioned this may be "no option” in many architectures. Hence,
the obvious question is whether one can devise an efficient algorithm that dispatches each job
to a machines upon its release time. Note that this results in splitting the multiprocessor
scheduling problem into two axis: the assignment problem and the single machine scheduling
problem. Our somewhat surprising result shows that we can actually achieve almost the same
performance for total flow time and for total completion time in the immediate dispatching
model as in the model that maintains a central queue.

Our results: multiple processors with immediate dispatching. We introduce a
simple non-migratory online algorithm IM D, which employs ¢mmediate dispatching, i.e., it
immediately assigns released jobs to one of the machines. We show that:

e The total flow time of algorithm /M D is within the O(min{log P,logn}) factor of the
total flow time of the optimal migratory offline algorithm. This solves an open problem
suggested by Awerbuch et al [2].

e The total completion time of algorithm IM D is at most 7 times the total completion
time of the optimal migratory offline algorithm.

e For the measure of total completion time, preemption can be eliminated from algorithm
IMD, resulting in algorithm IM D’ which is at most 14 times the total completion time
of the optimal migratory offline algorithm.

Existing work: total flow time. Surveys on approximation algorithms for scheduling
can be found in [9, 12]. In the non-preemptive case it is impossible to achieve a ”reasonable”
approximation for the total flow time. Specifically, even for one machine one cannot achieve
an approximation factor of O(n%*) unless NP = P where n is the number of jobs [11]. For
m > 1 it is impossible to achieve O(n%*) approximation factor unless NP = P [13]. Thus,
preemption really seems to be essential. Minimizing the total flow time on one machine with
preemption can be done optimally in polynomial time using the natural algorithm shortest
remaining processing time (SRPT') [3]. For more than one machine the preemptive problem
becomes N P-hard [7]. Leonardi and Raz [13] showed that SRPT achieves logarithmic approx-
imation for the multiprocessor case, showing a tight bound of O(log(min{n/m, P})) on m > 1
machines with n jobs, where P denotes the ratio between the processing time of the longest
and the shortest jobs. In the offline setting, it is not known if better approximation factors
can be reached. In fact, in the online setting SRPT is optimal, i.e., no algorithm can achieve
a better bound up to a constant factor [13]. Note that SRPT requires migration. In addition
it decides to assign a job from a central pool only when a machine becomes empty.



Awerbuch et al [2] presented an online non-migratory algorithm, which performs almost
as well as the best known offline algorithm (SRPT') for the preemptive problem that uses
migration. This algorithm performs by at most O(min{log P,logn}) factor of the optimal
total flow time of any (possibly migratory) schedule. Chekuri et al. [5] designed a variant of
the above algorithm which slightly improves the performance ratio to O(min{log P, log(n/m)})
and matches the performance bound of SRPT. The above algorithms overcome the problem of
migration. However, many jobs may be kept in a central pool until it is justified to assign them
to machines. Postponing the assignment jobs by the dispatcher and maintaining them in the
central pool is crucial for their algorithms. As already mentioned, non-immediate dispatching
is not an option in many systems due to the sizes of the jobs and the delay in the network.

Existing work: total completion time. For a single machine with preemption SRPT
is optimal. In the multiprocessor setting SRPT is 2 competitive [14]. Without preemption the
best online deterministic algorithm for a single machine is 2 competitive [14, 10]. Moreover,
this is optimal [10]. The best randomized algorithm is e/(e — 1) competitive [6] and this is
optimal [15]. In the multiprocessor setting (without preemption) the best algorithm is 2.89
competitive [4, 8]. In the offline problem a PTAS for minimizing the total completion time
was given for the preemptive and non-preemptive versions for a single and multiple machine
[1]. All known algorithms for total completion time prior to our work require postponing the
decision of the assignment and hence maintain a central pool.

Techniques. One may tempt to think that the natural approach for designing an imme-
diate dispatching algorithm should be based on SRPT or the non-migratory algorithm with
a central queue. Specifically, we may try to predict for each job upon its arrival on which
machine those algorithms would have assigned the job and dispatch the job immediately to
that machine. The prediction would be based on the given current information, i.e., the exact
residual size of all current jobs, assuming no additional jobs will arrive. Unfortunately, it is
possible to show that this approach results in algorithms with poor performance. Hence a new
algorithm had to be developed.

In contrast to previous algorithms (e.g SRPT) our algorithm I M D prefers to ignore some of
the given information, reducing the communication traffic and simplifying its implementation.
The main idea of IM D is to assign each job immediately on its release time so as to balance
the accumulative volume of all similar jobs from time zero until the current time. Hence, it
ignores the information of which jobs were already completed and the current residual volume
of jobs left to be processed. Moreover, algorithm IM D ignores the exact release times of the
jobs and would produce the same assignment even for different release times of the jobs as long
as their relative arrival order is maintained. Hence, IM D maintains only a small amount of
information about previous assignments. Moreover, the clock of the dispatcher does not need
to be synchronized with the clocks of the processors. Interestingly, by ignoring information
we are able to show that the residual volume of jobs left to be processed at any other given
time will almost be the same on any machine, implying that the idle times are also balanced
between the machines.

Since on a single machine SRPT is optimal, the best algorithm that uses immediate assign-
ment will use SRPT on each machine separately, independently of the assignment strategy.
Aside from the assignment strategy, which is the core of the algorithm, we also use a differ-
ent (less effective) scheduling approach for each machine separately, in order to simplify the



analysis of the flow time performance. The total flow time analysis basically combines new
ideas with ideas used in [2, 5]. The algorithm of [2] also uses classification of jobs to classes.
However, that classification is done according to the residual sizes of the jobs at any given time,
meaning that the classification of a job changes along the process. In contrast, it is crucial
for our algorithm to use a different classification, which is similar to the group partition in [5],
and is based on a job size on its arrival. Hence, our classification does not change along the
process.

As for the the total completion time, one should also notice that our algorithm tackles the
problem using a technique that is substantially different from the standard techniques, such
as: SRPT, time partitioning into intervals (GreedyInterval) or by solving some migratory
schedule and converting it into a non-migratory schedule.

The model. We are given a set J of n jobs and a set of m identical machines. Each job j
is assigned a pair (r;, p;) where r; is the release time of the job and p; is its processing time. In
our model the assignment of job j to some machine should be immediate on its release time r;,
but it needn’t be executed immediately on assignment. Our model allows preemption but does
not allow migration. The scheduling algorithm decides which of the jobs should be executed at
each time. Clearly a machine can process at most one job in any given time and a job cannot
be processed before its release time. For a given schedule define C; to be the completion time
of job j in this schedule. The flow time of job j for this schedule is F; = C; —r;. The total flow
time F' is } ;e ; I, and the total completion time C'is } ;¢ ; Cj. The goal of the scheduling
algorithm is to minimize the total flow time (or completion time) for each given instance of
the problem. In the offline version of the problem all the jobs are known in advance. In the
online version of the problem each job is introduced at its release time and the algorithm bases
its decision only upon the jobs that were already released.

2 Definitions and Notations

We start by giving a few definitions and notation, which will be useful both for the algorithm
definition and analysis.

e We first define the class of a job j to be k, if its size on its arrival p; is in [2F,2F+1).
Note that the classification to classes does not change during the process (similar to the
group partition in [5]). Denote by ki, and kg, the extremes of the jobs classes.

e 7 is used to denote the time period where all the m machines are busy (non idle).
e Denote by P the ratio of the longest job to the shortest one.

e Several function of time are used:

U(t) denotes the cumulative sum of size of jobs arrived prior to ¢ (sum of their size
on their arrival).

P(t) denotes the total volume of jobs that have already been processed till time ¢.

R(t) denotes the total remaining volume of jobs to be processed at time ¢.

— 7(t) denotes the number of non-idle machines at time t.



d(t) denotes the number of jobs (with r; < t), which are alive at time ¢ (i.e., not
finished yet).

n(t) denotes the number of jobs released by time .

¢(t) denotes the number of completed jobs by time ¢.
— J(t) denotes the set of jobs that were finished by time ¢.

We note that if a function is used without the time parameter ¢ then it refers to the
function at the end of the schedule.

e Several function modifiers are used:

— For a generic function f, the notation f* refers to the value of f when the scheduler is
S. We denote our scheduler by IM D, while the optimal migratory offline scheduler
will be denoted by OPT. We may omit this superscript when it refers to IM D.

— For a generic function f, the notations f_, f<x etc. refer to the function f restricted
to the set of jobs that belong to the subscript classes.

— For a generic function f, the notation f? refers to the function f restricted to the set
of jobs that were assigned to the i machine. When the scheduler is OPT, fOFT+
is defined as the average % fOPT,

— For a generic function f, we use f¥ as a short form of f* — fJ.

— For a generic function f(t) we use Af(t) = f(t) — fOPT(t) denoting the difference
between our scheduler and the optimal offline scheduler.

— For a generic function f(t) we use f(J,t) when the input set of jobs J is not clear
from the context.

3 The Algorithm

Recall from the above definitions that jobs are classified according to their sizes. Job is of
class k if its size is between 2% and 2¥*!. Also, by the definitions above UL, (t) denotes the
total cumulative sum of the original size of jobs that arrived prior to ¢ and were assigned to
the machine i. Next we define our immediate dispatching algorithm:

Algorithm IMD:

e On arrival time ¢ of a new job of class k, assign it to a machine 4 with minimum UZ, (t).

e Conducted SRPT on each machine separately.

The algorithm IM D balances the total volume of jobs of a specific class that were ever
assigned to the machines. We note that the assignment decisions are independent of the exact
release times of the previous jobs and only depend on their order. Hence, the assignment
decisions are not based on the current status of the jobs in the queues of the machines.



4 Total Flow Time Analysis

In this section we prove that the total flow time of algorithm IMD is within the
O(min{log P,logn}) factor of the total flow time of the optimal migratory offline algorithm.
We state a different scheduling principal for each single machine (see [5]), which is clearly less
effective than SRPT (see [3]), and analyze it. This is done to simplify the analysis.

The processing on the i*® machine will be conducted according to the following principal:
Process the job with the earliest arrival time among the set of jobs of the smallest class k£ with
unfinished jobs (R, (t) > 0).

We first observe the simple fact that the total flow time is the integral over time of the
number of jobs that are alive (for example, see [13]):

Fact 4.1 For any scheduler S,
FS = /6S(t)dt :
t

We start the analysis focusing on the O(log P) bound. In this part we are about to distin-
guish between times where all the machines are working (¢ € 7'), and times where at least one
machine is idle (¢t ¢ 7). For each of these cases we bound the number of alive jobs 6/ (¢)
and finally we will compute the integral of Fact 4.1.

At this stage we show that the total remaining processing time (for each class) is almost
the same on the different machines at any given time.

Observation 4.2 For any time t and any two machines i and j we have |Ul:]k(t)| < 2k gnd
hence also U2, (t)| < 2K+2.

Proof: The first inequality holds since all the jobs of class k are of size < 28+, The second
inequality follows obviously. [ |

Lemma 4.3 For any t, the difference between the volume of jobs that have already been pro-
cessed, on any two different machines i and j is bounded as follows: |PZ, (t)| < 2F+2.

Proof: Assume that tg is the first time |ng(t)| gets bigger than 212 hence, |Pijk(t0)| = 2k+2
and for any small enough € > 0, |Pijk(t0 + €)| > 2¥*+2. This means that exactly one of these
machines process jobs of classes not bigger than k (otherwise the difference value does not
change), assume it’s machine 7. Since the algorithm always processes a job from the smallest
class on each machine, machine j must have already processed all of the jobs of classes < k by
to while machine 4 did not finished to process all the jobs of classes < k. Hence

UL, (to) = PL,(to) < PLy(to) < Uly(to)

which yields Ny N
b+ = |ng(t0)| < |ng(t0)| .

This contradicts Observation 4.2. [ ]



Lemma 4.4 For any t, the difference between the residual volume of jobs that needs to be
processed, on any two different machines i and j is bounded as follows |RY,(t)| < 2k+3

Proof: Combining Observation 4.2, Lemma 4.3 and the fact that R(t) = U(¢) — P(¢) by
definition, we get N N 5
|RZ, (O] < [UZ, (0] + [P, ()] < 2.

We handle the case where at least one of the machines is idle (¢ ¢ T), implying that the
other machines are not heavily loaded.

Lemma 4.5 For any t ¢ T, the number of jobs from the range [k1,k2] of classes on any
machine i can be bounded as follows: (5ka o) (t) <9Y(ky — k1 +1).

Proof: Since t ¢ T, there exists a machine j, which is idle (i.e., with R/(t) = 0). Obviously for
any k, R, (t) = 0. By Lemma 4.4 we get that for any (non-idle) machine i, R%(t) < 2K+3,
and obvio_usly also RL p(t) < 2k+3 follows. Since the algorithm process the job with the earliest
arrival time among a set of jobs from the same class k, we can deduce that on machine ¢, there
is at most one job from class k with remaining processing time < 2*. Hence, we bound the

R%ﬁ(t) +1<8+4+1=9. The result follows. m

number of jobs of class k at this time by 62 (¢) <

Corollary 4.6 For any t ¢ T, the number of jobs in the whole system can be bounded as
follows: 6(t) < 9v(¢)(log P + 2).

Proof: The result follows immediately from Lemma 4.5 with ks = k4, and k1 = k4, and the
fact that the number of classes kmqr — kmin + 1 is smaller than log P + 2. [ |

Now, Assume none of the machines is idle (¢t € T), and let ¢ < ¢ the earliest time s.t.
[£,¢) C T. Define ¢}, to be the last time a job from a class bigger than k& was processed in this
range (in case only jobs of classes < k were processed throughout [t,t) we set t = £).

Lemma 4.7 Fort € T, AR<j(t) < AR<j(ty).

Proof: By definition of ¢, it is obvious that the algorithm process only jobs whose class is at
most k£ in the range [tg,t) on all machines, therefore the offline algorithm cannot process a
bigger share of these jobs. Note also that the release of new jobs of classes < k does not affect
the value of AR<j, hence it may only decrease in the range [ty,t). [ |

Lemma 4.8 Fort € T, AR<y(t;) < m2k+3.

Proof: From the definition of ¢; it follows that there exist a machine ¢ s.t. for every small
enough € > 0, R, (t; —€) = 0. This is either the machine that processed the last job of class

bigger than k in the range [£,¢) or alternatively the machine that was last idle (in case t; = £).
Henge by Lemma 4.4, any other machine j complies with R]Sk(tk —€) < 2F3, yielding also
AR, (ty —€) < 2k+3 " Since jobs which arrive exactly at t; increment R also for the offline
algorithm, not affecting AR, we get AR<(t) < m2F+3 ]



Lemma 4.9 Fort € T, AR<(t) < m2kT3.
Proof: Combining Lemmas 4.7 and 4.8 yields AR<(t) < AR<(t;) < m2kT3. ]

Lemma 4.10 Fort € T, for any machine i, ARiSk(t) < 2k+4,

Proof: From Lemma 4.9 we have that: min; ARj<k(t) < 2¥+3. From Lemma 4.4 we derive
also: |ARi<jk(t)| = |Rl<]k(t)| < 2#+3. Combining the above yields ARY . (t) < min, ARj<k(t) +
[ARZ, (1)] < 20+4, =

Lemma 4.11 For any t € T, the number of jobs from the range [kl,kg] of classes on any
machine i can be bounded as follows: 6[k1 k~]( ) <9(ky — k1 +2)+ 26<k ).

Proof: We count the number of jobs on machine ¢ by class, and bound it as follows:

k2
Ol o] (1) = Z‘Slzj(t)

J=k1
k2 AR (t) + ROt

< Y 5 +1}
Jj=k1
A ) . k OPTi
|3 aRy0 —ZjAjo_l(t) TR o R=1T(t)
J=k1 =k
ARL, (t) k=L ARL (t) ARL, _(t) OPT,i
S o Yl T e e R D) 2000
J=k1
ko—1 . -
< 16+ Y0 84 62,11 (1) + (k2 — ka + 1) + 25710 (8)
J=k1

< O(ky — k1 +2) + 2020 (2)

where the second line is due to the fact that there is at most one job on machine 7 of each
class k with a residual volume less than 2¥. The fourth line is derived from the fact that the
residual of each job of class k is smaller than 2%¥*! by definition. The fifth line is derived by
applying Lemma 4.10. [ |

Corollary 4.12 For any t € T, the number of jobs in the whole system can be bounded as
follows: 6(t) < 9m(log P + 3) + 26977 (¢).

Proof: First note that kpaz — kmin +2 < log P+ 3. Now we apply Lemma 4.11 with ko = kpyap
and ky = ki, and sum over all the machines, which yields the result. [ ]

We prove the O(log P) approximation ratio.

Theorem 4.13 F'MP = O(log P) - FOFT, i.c., algorithm IMD has a logarithmic approz-
imation factor, w.r.t the mazimum ratio between jobs size, even when compared to the best
(possibly migratory) offline algorithm.



Proof:

FIMD - — /6(t)dt
t

_ / s(tydt + [ o(t)dt
t¢T teT

< / 0(2 + log P)y(t)dt + / (9m(log P + 3) + 26°F7 (1)) dt
t¢T teT

= 9(2+log P)/ v(t)dt + 9(log P + 3)/ y(t)dt + 2 SOTT (t)dt
t¢T teT teT

IN

9(log P + 3) /7(t)dt +2 /6OPT(t)dt
t t
< (29 +9log P) - FOTT

where the first equality is from the definition of F/M?  The second equality is obtained by
looking at times in which none of the machines is idle and at times in which at least one
machine is idle, separately. The third line uses Corollaries 4.6 and 4.12. The forth line is
true by definition of 7. Finally, [,/ (t)dt is the total time spent processing jobs by the
machines which is exactly the sum of all jobs. This sum is upper bounded by the total flow
time of OPT since each job’s flow time must be at least its processing time. [ |

We now turn to prove the O(logn) bound. We start this part focusing on a single machine
1. We define k' to be the maximal class of a job assigned to ¢ throughout the process. Define
74, to be the set of time units, in which machine 7 processed a job of class k.

Lemma 4.14 The flow time of all jobs assigned to machine i can be bounded as follows:

ki
IMDy 7.0 L j ]
F 2318‘; (k' — j)n’; 2 + 18U},
J=Kmin

OPT,i
Ry T2

Proof: We compute the integral of Fact 4.1 according to the time partition to T]i.

FIMDy /6i(t)dt

/ \(t)at

K

Z

=kmin

o

Z / R — j+2) + 26T (1) vt
=km

Kk

Z

1=km

< <ki
i OPT,i
< —y+2)U;j+2F ‘
OPT}i
< 18 ; )nt 2 +18U[ i) T2F
.] min



where the second equality is by definition of T,i. The third line is derived from Lemmas 4.5
and 4.11. The fourth line is by |7}| = U%,. The fifth line is since the jobs of class k are smaller
than 28+1, [ ]

To continue, we use a technical lemma proved in [2] with its proof.

Lemma 4.15 Given a sequence ay,ay, ... of non-negative numbers such that ;> a; < A and
i>1 2'a; < B then 2i>1ia; < Alog(4B/A).

Proof: Define a second sequence, b; = Z]>l aj for ¢ > 1. Then it is known that A > b; >
by >> ...b;. Also, it is known that 3,5 2'a; = 351 2/(bi — bir1) = 5 2451 2°bi + by This
implies that >i>1 2h; < 2B.

The sum we are trying to upper bound is } ;> b;. This can be viewed as an optimization
problem where we try to maximize ) ;5 b; subject to 2i>1 2h; < 2B and b; < A for i > 1.
This corresponds to the maximization of a continuous function in a compact domain and any
feasible point where b; < A, b;+1 > 0 is dominated by the point we get by replacing b;, b;+1 with
b; + 2¢,b;11 — €. Therefore, it is upper bounded by assigning b; = A for 1 <7 <k and b; =0
for i > k where k is large enough such that 3 ,~; 2b; > 2B. A choice of k = [log(2B/A)] is
adequate and the sum is upper bounded by kA from which the result follows. [ |

Lemma 4.16 For any machine 1, Z?;k — j)ni:j2j < U'log(4n?)

Proof: We exchange variables by | = k' — j and define I, = n' L i 12’&4 = ni:ij. Note that
K=kmin [, < Ut and also 28 SFmin 91T = y2F <kmin glys nt, 2K = pigk,

We apply Lemma 4.15 to our problem us1ng al =1,1=0,..,K —_ Emin, A = U and

B = n'2F" and obtain Zf;km (k' — j)n 20 = Z kmin 11, < U log(47112 ) = Utlog(4n?) due

to the fact that 2¢° < U by definition of kz. [ |

We prove the O(log n) approximation ratio.

Theorem 4.17 FMP = O(logn)- FOPT i.e., algorithm IMD has a logarithmic approzima-
tion factor, w.r.t the number of jobs n, even when compared to the best (possibly migratory)
offline algorithm.

Proof: We sum over the different machines contribution to the total flow.

m
FIMD — ZFIMD,Z'

IA

2{18 Z Jnl; 2 + 18U g+ 2FOTT
Z 1 ] kmzn

< 18) U'log(4n') + 18U + 2F9F"
=1

m
< O(logn) Y U +20F°"T = O(log n) FOPT
i=1
where the second line is due to Lemma 4.14 and the third line is due to Lemma 4.16. [ ]
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5 Total Completion Time Analysis

We prove that the total completion time of algorithm IMD is at most 7 times the total
completion time of the optimal migratory offline algorithm. Later we show how to eliminate the
preemption and construct an algorithm IM D’ which is at most 14 times the total completion
time of the optimal migratory offline algorithm. The analysis of this section appears in the
Appendix.

6 Conclusions

In this paper we considered the problem of finding a preemptive schedule that optimizes both
the total flow time and the total completion time of a set of jobs released over time, when the
assignment of jobs to machines should be immediate disallowing job migration. We presented
a new online algorithm that is still within a logarithmic factor of the best (possibly migratory)
offline algorithm with respect to the total flow time. This algorithm also achieves a small
constant approximation factor of the best offline algorithm with respect to the total completion
time.
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7 Appendix: Total Completion Time Analysis

In this section we prove the ratio of 7 for algorithm I'MD and 14 for the non-preemptive
algorithm IM D'. We start by defining a fair schedule. We say that a schedule S is fair, if for
any two jobs 4 and j with p; = pj, 1 finishes before j if and only if r; < r;. We now argue that
there is a fair optimal schedule.

Lemma 7.1 For any schedule S, there exist another schedule S’, which is fair and which is
not worse than S, with respect to the total completion time.

Proof: We transform the schedule S into S’ in stages. At each stage we choose a pair of jobs
¢ and j, with p; = p; and 7; < r;, which is not scheduled fairly, i.e., job j finishes before job .
We denote by T3 the time period when only one of these jobs was processed. Let T ; be the
time period when only job 7 was processed and let T ; be the time period when only job 5 was
processed. We assign the first |1 ;| time units of 77 to job ¢ and the last |77 ;| units of T} to
job 7. First note that this assignment is feasible, moreover this pair is scheduled fairly, while
only improving the completion time of the first job to be completed of the two (the second
job completion time remains unchanged). After a finite number of stages this process stops,
yielding S’. ]

Corollary 7.2 For any input jobs set J, there is a fair optimal schedule.
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Proof: By Lemma, 7.1 there is another schedule S’, which is not worse than OPT with respect
to the total completion time that is also fair. Obviously S’ is also optimal. [ |

By Corollary 7.2, we can choose OPT to denote an optimal offline algorithm, which yields
a schedule that is fair.
Recall that the input set of jobs is J = {(r;,p;)}}_,. We compare the performance of /M D

and OPT on J by examining the performance of OPT when running on another input set .J.
We define this set by J = {(2r}, 2ki+1)}?:1, where k; is the class of the §* job in J.

Lemma 7.3 For any input set of jobs J, COPT(J) < 200FT ().

Proof: Let Jp = {(2rj,2p;)}7_,. It is clear that any schedule on J can be translated by simple
scaling to a schedule on J; and vice versa, hence COPT(Jy) = 2CPTT(J). On the other hand
we have that 2Fit1 < 2p;, therefore any schedule on J; is also a valid schedule on J yielding
COPT(J) < COPT(Jy). Combining the above arguments yields COPT(J) < COPT(J,) =
200PT( ). n

We now observe that the total completion time can be computed as an integral over time
of the number of jobs that were not completed yet:

Observation 7.4 For any scheduler S, C¥ = [,n — c5(J,t)dt .

In view of this observation, we turn to show that for any ¢, algorithm /M D completes by
time 3.5t at least the amount of jobs completed by OPT by time ¢ when it runs on J.

Recall that JOF T(j ,t) is the set of jobs that OPT finishes by time ¢ when the input set of
jobs is J. We denote the corresponding jobs from J by J*(t).

Lemma 7.5 For any time t, cOTT(J,t) = IMP(J*(t),3.5t).

Proof: First note that by definition c?F7T (J,t) = |JOPT(J,t)| = |J*(t)|, furthermore, it is clear
that for any other time ¢/, |J*(t)| > ¢!MP(J*(t),t'), hence V7 (J,t) > '™MP(J*(t),3.5t). Tt
is left to prove that cOPT(J,t) < IMDP(J*(t), 3.5¢t).

Note that all the jobs in J*(t) are released before time % By definition all the jobs in
J*(t) are smaller than their corresponding jobs in JOFT(J,t), consequently U(J*(t), <
U(JOPT(],t),t). By standard averaging argument, we deduce that min{U*(J*(t), by <
LUJort(J,t),t) <t

Let kiow and kpign be the extreme classes of jobs in J*(t). Hence, the biggest job in
JOr T(j ,t) is of size 2Fhisn 1. Since OPT finishes its corresponding job by time ¢, we also have
that 2krignt1 < ¢,

Applying lemma 4.2, we bound the total volume difference between the machines as follows:
Ui(J*(t), %) — Uékhigh(']*(t)’ %) < U%khigh(‘]*(t)’ %) + 2knignt2 < Uj(J*(t), %) + Oknignt2

Combining the above arguments yields:

) t ) t
max{U"(J*(t), 5)} < min{U"(J*(£), 5)} + 2on 2 <+ 26 = 3¢
(2 2
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Thus, algorithm I'M D finishes to process all the jobs of J*(t) before time 3.5¢, even if it
starts processing jobs only at time % Therefore, (PP (J,t) < !™MP(J*(t),3.5t). This proves
the lemma. ]

Lemma 7.6 For any time t, c!MP(J*(t),t) < IMP(J,t).

Proof: Note that not only J*(¢) C J, but J*(¢) is class-wise prefix of J, i.e. the arrival time
of any job of class k in J*(¢) is at most the arrival time of any job of this class in J \ J*(¢)
(by our choice of a fair OPT schedule). Hence, the assignment of the jobs in J*(¢) by IM D
remains the same, when it runs on J. Therefore the job set that IM D assigns to each machine
when running on J is a superset of the jobs it assigned when it ran only on J*(¢). Note that
algorithm I'M D uses SRPT on each machine in order to schedule the input jobs, moreover it
is well known that ¢FPT(Jy,t) < ¢SRPT(Jy, t) for any t and J; C Jo (see [14]), hence, for any
time ¢, each machine completes at least the same number of jobs it completed on J*(¢) . The
lemma follows. [ |

Corollary 7.7 For any time t, cOPT(j,t) <MD (] 3.5¢).

Proof: Combining Lemmas 7.5 and 7.6 yields c?P7(J,t) = ¢!MP(J*(t),3.5t) < ! MP(J,3.5t).
|

Lemma 7.8 C'MP(J) <3.5.COP"(J).
Proof: We compute the total completion time.
CcT™MD(5) = /t n — MD (] 1yt — / n — ™MD (. 3.50)]3.5du
u
< 3.5/ n—cOPT(J,u)du = 3.5 - COPT(J)
u

where the first and the last equalities are by Observation 7.4. The second equality is obtained
by the variables change 3.5u = t. The inequality is due to Corollary 7.7. [ |

We turn to prove the main result of this section.

Theorem 7.9 C'MP(J) < 7.COFT(]), i.e., algorithm IM D has a small constant approzima-
tion factor even when compare to the best (possibly migratory) offline algorithm, with respect
to the total completion time.

Proof: Combining Lemmas 7.3 and 7.8 yields: C'MP(J) <3.5-COPT(J)<7-COPT(J). m

Note that the preemptive algorithm IM D can be converted into a non-preemptive algo-
rithm IM D' by applying some single machine ’preemptive to non-preemptive’ conversion to
each of the machines separately. Such a conversion algorithm was introduced in [14], which
basically list-schedules the jobs according to their completion time in the preemptive schedule.
This conversion results in losing only a constant factor of 2 in our approximation, resulting in
a non-preemptive schedule generated using immediate dispatching, with a 14 approximation
factor of the best possibly migratory offline algorithm with respect to the total completion
time.
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