
Minimizing Total Flow Time and Total Completion Time withImmediate Dispat
hingNir Avrahami � Yossi Azar yFebruary 5, 2003Abstra
tWe 
onsider the problem of s
heduling jobs arriving over time in a multipro
essorsetting, with immediate dispat
hing, disallowing job migration. The goal is to minimizeboth the total 
ow time (total time in the system) and the total 
ompletion time.Previous studies have shown that while preemption (interrupt a job and later 
ontinueits exe
ution) is inherent to make a s
heduling algorithm eÆ
ient, migration (
ontinue theexe
ution on a di�erent ma
hine) is not. Still, the 
urrent non-migratory online algorithmssu�er from a need for a 
entral queue of unassigned jobs whi
h is a "no option" in large
omputing system, su
h as the Web.We introdu
e a simple online non-migratory algorithm IMD, whi
h employs immediatedispat
hing, i.e., it immediately assigns released jobs to one of the ma
hines. We show thatthe performan
e of this algorithm is within a logarithmi
 fa
tor of the optimal migratoryo�ine algorithm, with respe
t to the total 
ow time, and within a small 
onstant fa
tor ofthe optimal migratory o�ine algorithm, with respe
t to the total 
ompletion time. Thissolves an open problem suggested by Awerbu
h et al [STOC99℄.1 Introdu
tionAlmost all 
lassi
al work on s
heduling of jobs released over time in a multipro
essor settingassumes that unassigned jobs are held in a 
entral queue. The de
ision on assignment of a jobis not done upon its arrival but postponed until the dispat
her a
quires enough information. Inmany 
ases, su
h as in large 
omputing systems (e.g. the WEB), this is impossible sin
e the thenumber of unassigned jobs (with their asso
iated data) may be large, requiring huge amountof resour
es (e.g. memory). Moreover, the delay in transferring the job to the appropriatema
hine may be large resulting in dramati
 deterioration of the performan
e. Hen
e, thear
hite
ture of many systems requires from the dispat
her to assign a job immediately uponits arrival to one of the ma
hines without maintaining a 
entral queue. Ea
h job is kept in thequeue of the ma
hine it was assigned to.�Department of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: nirav�post.tau.a
.il.yDepartment of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: azar�post.tau.a
.il.Resear
h supported in part by the Israel S
ien
e Foundation and by the IST Program of the EU.1



In the 
lassi
al multipro
essor s
heduling problem, preemptive and non-preemptive s
hed-ules are often 
onsidered, in the 
ontext of minimizing the two most basi
 performan
e mea-sures, the total 
ow time (overall time the jobs are spending in the system) and total 
ompletiontime. These measures 
apture both the overall quality of servi
e of the system and fairnessof servi
e. Sin
e preemption was shown to be inherent to the problem of minimizing thetotal 
ow time (as noted below), while it is problemati
 in real multipro
essors systems, anintermediate model whi
h disallows migration was 
onsidered. Current non-migratory onlinealgorithms, whi
h were devised to work in this model, tend to delay the assignment of jobs, inorder to avoid early 
ommitment to ma
hines, hen
e they are required to maintain a pool ofunassigned jobs. As already mentioned this may be "no option" in many ar
hite
tures. Hen
e,the obvious question is whether one 
an devise an eÆ
ient algorithm that dispat
hes ea
h jobto a ma
hines upon its release time. Note that this results in splitting the multipro
essors
heduling problem into two axis: the assignment problem and the single ma
hine s
hedulingproblem. Our somewhat surprising result shows that we 
an a
tually a
hieve almost the sameperforman
e for total 
ow time and for total 
ompletion time in the immediate dispat
hingmodel as in the model that maintains a 
entral queue.Our results: multiple pro
essors with immediate dispat
hing. We introdu
e asimple non-migratory online algorithm IMD, whi
h employs immediate dispat
hing, i.e., itimmediately assigns released jobs to one of the ma
hines. We show that:� The total 
ow time of algorithm IMD is within the O(minflogP; logng) fa
tor of thetotal 
ow time of the optimal migratory o�ine algorithm. This solves an open problemsuggested by Awerbu
h et al [2℄.� The total 
ompletion time of algorithm IMD is at most 7 times the total 
ompletiontime of the optimal migratory o�ine algorithm.� For the measure of total 
ompletion time, preemption 
an be eliminated from algorithmIMD, resulting in algorithm IMD0 whi
h is at most 14 times the total 
ompletion timeof the optimal migratory o�ine algorithm.Existing work: total 
ow time. Surveys on approximation algorithms for s
heduling
an be found in [9, 12℄. In the non-preemptive 
ase it is impossible to a
hieve a "reasonable"approximation for the total 
ow time. Spe
i�
ally, even for one ma
hine one 
annot a
hievean approximation fa
tor of O(n 12��) unless NP = P where n is the number of jobs [11℄. Form > 1 it is impossible to a
hieve O(n 13��) approximation fa
tor unless NP = P [13℄. Thus,preemption really seems to be essential. Minimizing the total 
ow time on one ma
hine withpreemption 
an be done optimally in polynomial time using the natural algorithm shortestremaining pro
essing time (SRPT ) [3℄. For more than one ma
hine the preemptive problembe
omes NP -hard [7℄. Leonardi and Raz [13℄ showed that SRPT a
hieves logarithmi
 approx-imation for the multipro
essor 
ase, showing a tight bound of O(log(minfn=m;Pg)) on m > 1ma
hines with n jobs, where P denotes the ratio between the pro
essing time of the longestand the shortest jobs. In the o�ine setting, it is not known if better approximation fa
tors
an be rea
hed. In fa
t, in the online setting SRPT is optimal, i.e., no algorithm 
an a
hievea better bound up to a 
onstant fa
tor [13℄. Note that SRPT requires migration. In additionit de
ides to assign a job from a 
entral pool only when a ma
hine be
omes empty.2



Awerbu
h et al [2℄ presented an online non-migratory algorithm, whi
h performs almostas well as the best known o�ine algorithm (SRPT ) for the preemptive problem that usesmigration. This algorithm performs by at most O(minflogP; log ng) fa
tor of the optimaltotal 
ow time of any (possibly migratory) s
hedule. Chekuri et al. [5℄ designed a variant ofthe above algorithm whi
h slightly improves the performan
e ratio to O(minflogP; log(n=m)g)and mat
hes the performan
e bound of SRPT . The above algorithms over
ome the problem ofmigration. However, many jobs may be kept in a 
entral pool until it is justi�ed to assign themto ma
hines. Postponing the assignment jobs by the dispat
her and maintaining them in the
entral pool is 
ru
ial for their algorithms. As already mentioned, non-immediate dispat
hingis not an option in many systems due to the sizes of the jobs and the delay in the network.Existing work: total 
ompletion time. For a single ma
hine with preemption SRPTis optimal. In the multipro
essor setting SRPT is 2 
ompetitive [14℄. Without preemption thebest online deterministi
 algorithm for a single ma
hine is 2 
ompetitive [14, 10℄. Moreover,this is optimal [10℄. The best randomized algorithm is e=(e � 1) 
ompetitive [6℄ and this isoptimal [15℄. In the multipro
essor setting (without preemption) the best algorithm is 2:89
ompetitive [4, 8℄. In the o�ine problem a PTAS for minimizing the total 
ompletion timewas given for the preemptive and non-preemptive versions for a single and multiple ma
hine[1℄. All known algorithms for total 
ompletion time prior to our work require postponing thede
ision of the assignment and hen
e maintain a 
entral pool.Te
hniques. One may tempt to think that the natural approa
h for designing an imme-diate dispat
hing algorithm should be based on SRPT or the non-migratory algorithm witha 
entral queue. Spe
i�
ally, we may try to predi
t for ea
h job upon its arrival on whi
hma
hine those algorithms would have assigned the job and dispat
h the job immediately tothat ma
hine. The predi
tion would be based on the given 
urrent information, i.e., the exa
tresidual size of all 
urrent jobs, assuming no additional jobs will arrive. Unfortunately, it ispossible to show that this approa
h results in algorithms with poor performan
e. Hen
e a newalgorithm had to be developed.In 
ontrast to previous algorithms (e.g SRPT ) our algorithm IMD prefers to ignore some ofthe given information, redu
ing the 
ommuni
ation traÆ
 and simplifying its implementation.The main idea of IMD is to assign ea
h job immediately on its release time so as to balan
ethe a

umulative volume of all similar jobs from time zero until the 
urrent time. Hen
e, itignores the information of whi
h jobs were already 
ompleted and the 
urrent residual volumeof jobs left to be pro
essed. Moreover, algorithm IMD ignores the exa
t release times of thejobs and would produ
e the same assignment even for di�erent release times of the jobs as longas their relative arrival order is maintained. Hen
e, IMD maintains only a small amount ofinformation about previous assignments. Moreover, the 
lo
k of the dispat
her does not needto be syn
hronized with the 
lo
ks of the pro
essors. Interestingly, by ignoring informationwe are able to show that the residual volume of jobs left to be pro
essed at any other giventime will almost be the same on any ma
hine, implying that the idle times are also balan
edbetween the ma
hines.Sin
e on a single ma
hine SRPT is optimal, the best algorithm that uses immediate assign-ment will use SRPT on ea
h ma
hine separately, independently of the assignment strategy.Aside from the assignment strategy, whi
h is the 
ore of the algorithm, we also use a di�er-ent (less e�e
tive) s
heduling approa
h for ea
h ma
hine separately, in order to simplify the3



analysis of the 
ow time performan
e. The total 
ow time analysis basi
ally 
ombines newideas with ideas used in [2, 5℄. The algorithm of [2℄ also uses 
lassi�
ation of jobs to 
lasses.However, that 
lassi�
ation is done a

ording to the residual sizes of the jobs at any given time,meaning that the 
lassi�
ation of a job 
hanges along the pro
ess. In 
ontrast, it is 
ru
ialfor our algorithm to use a di�erent 
lassi�
ation, whi
h is similar to the group partition in [5℄,and is based on a job size on its arrival. Hen
e, our 
lassi�
ation does not 
hange along thepro
ess.As for the the total 
ompletion time, one should also noti
e that our algorithm ta
kles theproblem using a te
hnique that is substantially di�erent from the standard te
hniques, su
has: SRPT , time partitioning into intervals (GreedyInterval) or by solving some migratorys
hedule and 
onverting it into a non-migratory s
hedule.The model. We are given a set J of n jobs and a set of m identi
al ma
hines. Ea
h job jis assigned a pair (rj ; pj) where rj is the release time of the job and pj is its pro
essing time. Inour model the assignment of job j to some ma
hine should be immediate on its release time rj ,but it needn't be exe
uted immediately on assignment. Our model allows preemption but doesnot allow migration. The s
heduling algorithm de
ides whi
h of the jobs should be exe
uted atea
h time. Clearly a ma
hine 
an pro
ess at most one job in any given time and a job 
annotbe pro
essed before its release time. For a given s
hedule de�ne Cj to be the 
ompletion timeof job j in this s
hedule. The 
ow time of job j for this s
hedule is Fj = Cj�rj. The total 
owtime F is Pj2J Fj , and the total 
ompletion time C is Pj2J Cj. The goal of the s
hedulingalgorithm is to minimize the total 
ow time (or 
ompletion time) for ea
h given instan
e ofthe problem. In the o�ine version of the problem all the jobs are known in advan
e. In theonline version of the problem ea
h job is introdu
ed at its release time and the algorithm basesits de
ision only upon the jobs that were already released.2 De�nitions and NotationsWe start by giving a few de�nitions and notation, whi
h will be useful both for the algorithmde�nition and analysis.� We �rst de�ne the 
lass of a job j to be k, if its size on its arrival pj is in [2k; 2k+1).Note that the 
lassi�
ation to 
lasses does not 
hange during the pro
ess (similar to thegroup partition in [5℄). Denote by kmin and kmax the extremes of the jobs 
lasses.� T is used to denote the time period where all the m ma
hines are busy (non idle).� Denote by P the ratio of the longest job to the shortest one.� Several fun
tion of time are used:{ U(t) denotes the 
umulative sum of size of jobs arrived prior to t (sum of their sizeon their arrival).{ P (t) denotes the total volume of jobs that have already been pro
essed till time t.{ R(t) denotes the total remaining volume of jobs to be pro
essed at time t.{ 
(t) denotes the number of non-idle ma
hines at time t.4



{ Æ(t) denotes the number of jobs (with ri � t), whi
h are alive at time t (i.e., not�nished yet).{ n(t) denotes the number of jobs released by time t.{ 
(t) denotes the number of 
ompleted jobs by time t.{ J(t) denotes the set of jobs that were �nished by time t.We note that if a fun
tion is used without the time parameter t then it refers to thefun
tion at the end of the s
hedule.� Several fun
tion modi�ers are used:{ For a generi
 fun
tion f , the notation fS refers to the value of f when the s
heduler isS. We denote our s
heduler by IMD, while the optimal migratory o�ine s
hedulerwill be denoted by OPT . We may omit this supers
ript when it refers to IMD.{ For a generi
 fun
tion f , the notations f=k, f<k et
. refer to the fun
tion f restri
tedto the set of jobs that belong to the subs
ript 
lasses.{ For a generi
 fun
tion f , the notation f i refers to the fun
tion f restri
ted to the setof jobs that were assigned to the ith ma
hine. When the s
heduler is OPT , fOPT;iis de�ned as the average 1mfOPT .{ For a generi
 fun
tion f , we use f ij as a short form of f i � f j.{ For a generi
 fun
tion f(t) we use �f(t) = f(t)� fOPT (t) denoting the di�eren
ebetween our s
heduler and the optimal o�ine s
heduler.{ For a generi
 fun
tion f(t) we use f(J; t) when the input set of jobs J is not 
learfrom the 
ontext.3 The AlgorithmRe
all from the above de�nitions that jobs are 
lassi�ed a

ording to their sizes. Job is of
lass k if its size is between 2k and 2k+1. Also, by the de�nitions above U i=k(t) denotes thetotal 
umulative sum of the original size of jobs that arrived prior to t and were assigned tothe ma
hine i. Next we de�ne our immediate dispat
hing algorithm:Algorithm IMD:� On arrival time t of a new job of 
lass k, assign it to a ma
hine i with minimum U i=k(t).� Condu
ted SRPT on ea
h ma
hine separately.The algorithm IMD balan
es the total volume of jobs of a spe
i�
 
lass that were everassigned to the ma
hines. We note that the assignment de
isions are independent of the exa
trelease times of the previous jobs and only depend on their order. Hen
e, the assignmentde
isions are not based on the 
urrent status of the jobs in the queues of the ma
hines.
5



4 Total Flow Time AnalysisIn this se
tion we prove that the total 
ow time of algorithm IMD is within theO(minflogP; log ng) fa
tor of the total 
ow time of the optimal migratory o�ine algorithm.We state a di�erent s
heduling prin
ipal for ea
h single ma
hine (see [5℄), whi
h is 
learly lesse�e
tive than SRPT (see [3℄), and analyze it. This is done to simplify the analysis.The pro
essing on the ith ma
hine will be 
ondu
ted a

ording to the following prin
ipal:Pro
ess the job with the earliest arrival time among the set of jobs of the smallest 
lass k withun�nished jobs (Ri=k(t) > 0).We �rst observe the simple fa
t that the total 
ow time is the integral over time of thenumber of jobs that are alive (for example, see [13℄):Fa
t 4.1 For any s
heduler S, F S = Zt ÆS(t)dt :We start the analysis fo
using on the O(logP ) bound. In this part we are about to distin-guish between times where all the ma
hines are working (t 2 T ), and times where at least onema
hine is idle (t =2 T ). For ea
h of these 
ases we bound the number of alive jobs ÆIMD(t)and �nally we will 
ompute the integral of Fa
t 4.1.At this stage we show that the total remaining pro
essing time (for ea
h 
lass) is almostthe same on the di�erent ma
hines at any given time.Observation 4.2 For any time t and any two ma
hines i and j we have jU ij=k(t)j � 2k+1 andhen
e also jU ij�k(t)j � 2k+2.Proof: The �rst inequality holds sin
e all the jobs of 
lass k are of size � 2k+1. The se
ondinequality follows obviously.Lemma 4.3 For any t, the di�eren
e between the volume of jobs that have already been pro-
essed, on any two di�erent ma
hines i and j is bounded as follows: jP ij�k(t)j � 2k+2.Proof: Assume that t0 is the �rst time jP ij�k(t)j gets bigger than 2k+2, hen
e, jP ij�k(t0)j = 2k+2and for any small enough � > 0, jP ij�k(t0 + �)j > 2k+2. This means that exa
tly one of thesema
hines pro
ess jobs of 
lasses not bigger than k (otherwise the di�eren
e value does not
hange), assume it's ma
hine i. Sin
e the algorithm always pro
esses a job from the smallest
lass on ea
h ma
hine, ma
hine j must have already pro
essed all of the jobs of 
lasses � k byt0 while ma
hine i did not �nished to pro
ess all the jobs of 
lasses � k. Hen
eU j�k(t0) = P j�k(t0) < P i�k(t0) < U i�k(t0)whi
h yields 2k+2 = jP ij�k(t0)j < jU ij�k(t0)j :This 
ontradi
ts Observation 4.2. 6



Lemma 4.4 For any t, the di�eren
e between the residual volume of jobs that needs to bepro
essed, on any two di�erent ma
hines i and j is bounded as follows jRij�k(t)j � 2k+3Proof: Combining Observation 4.2, Lemma 4.3 and the fa
t that R(t) = U(t) � P (t) byde�nition, we get jRij�k(t)j � jU ij�k(t)j+ jP ij�k(t)j � 2k+3 :We handle the 
ase where at least one of the ma
hines is idle (t =2 T ), implying that theother ma
hines are not heavily loaded.Lemma 4.5 For any t =2 T , the number of jobs from the range [k1; k2℄ of 
lasses on anyma
hine i 
an be bounded as follows: Æi[k1;k2℄(t) � 9(k2 � k1 + 1).Proof: Sin
e t =2 T , there exists a ma
hine j, whi
h is idle (i.e., with Rj(t) = 0). Obviously forany k, Rj�k(t) = 0. By Lemma 4.4 we get that for any (non-idle) ma
hine i, Ri�k(t) � 2k+3,and obviously also Ri=k(t) � 2k+3 follows. Sin
e the algorithm pro
ess the job with the earliestarrival time among a set of jobs from the same 
lass k, we 
an dedu
e that on ma
hine i, thereis at most one job from 
lass k with remaining pro
essing time < 2k. Hen
e, we bound thenumber of jobs of 
lass k at this time by Æi=k(t) � Ri=k(t)2k +1 � 8+1 = 9. The result follows.Corollary 4.6 For any t =2 T , the number of jobs in the whole system 
an be bounded asfollows: Æ(t) � 9
(t)(log P + 2).Proof: The result follows immediately from Lemma 4.5 with k2 = kmax and k1 = kmin and thefa
t that the number of 
lasses kmax � kmin + 1 is smaller than logP + 2.Now, Assume none of the ma
hines is idle (t 2 T ), and let t̂ < t the earliest time s.t.[t̂; t) � T . De�ne tk to be the last time a job from a 
lass bigger than k was pro
essed in thisrange (in 
ase only jobs of 
lasses � k were pro
essed throughout [t̂; t) we set tk = t̂).Lemma 4.7 For t 2 T , �R�k(t) � �R�k(tk).Proof: By de�nition of tk, it is obvious that the algorithm pro
ess only jobs whose 
lass is atmost k in the range [tk; t) on all ma
hines, therefore the o�ine algorithm 
annot pro
ess abigger share of these jobs. Note also that the release of new jobs of 
lasses � k does not a�e
tthe value of �R�k, hen
e it may only de
rease in the range [tk; t).Lemma 4.8 For t 2 T , �R�k(tk) � m2k+3.Proof: From the de�nition of tk it follows that there exist a ma
hine i s.t. for every smallenough � > 0, Ri�k(tk � �) = 0. This is either the ma
hine that pro
essed the last job of 
lassbigger than k in the range [t̂; t) or alternatively the ma
hine that was last idle (in 
ase tk = t̂).Hen
e by Lemma 4.4, any other ma
hine j 
omplies with Rj�k(tk � �) � 2k+3, yielding also�Rj�k(tk � �) � 2k+3. Sin
e jobs whi
h arrive exa
tly at tk in
rement R also for the o�inealgorithm, not a�e
ting �R, we get �R�k(tk) � m2k+37



Lemma 4.9 For t 2 T , �R�k(t) �m2k+3.Proof: Combining Lemmas 4.7 and 4.8 yields �R�k(t) � �R�k(tk) � m2k+3.Lemma 4.10 For t 2 T , for any ma
hine i, �Ri�k(t) � 2k+4.Proof: From Lemma 4.9 we have that: minj�Rj�k(t) � 2k+3. From Lemma 4.4 we derivealso: j�Rij�k(t)j = jRij�k(t)j � 2k+3. Combining the above yields �Ri�k(t) � minj�Rj�k(t) +j�Rij�k(t)j � 2k+4.Lemma 4.11 For any t 2 T , the number of jobs from the range [k1; k2℄ of 
lasses on anyma
hine i 
an be bounded as follows: Æi[k1;k2℄(t) � 9(k2 � k1 + 2) + 2ÆOPT;i�k2 (t).Proof: We 
ount the number of jobs on ma
hine i by 
lass, and bound it as follows:Æi[k1;k2℄(t) = k2Xj=k1 Æi=j(t)� k2Xj=k1f�Ri=j(t) +ROPT;i=j (t)2j + 1g= k2Xj=k1 �Ri�j(t)��Ri�j�1(t)2j + (k2 � k1 + 1) + k2Xj=k1 ROPT;i=j (t)2j� �Ri�k2(t)2k2 + k2�1Xj=k1 �Ri�j(t)2j+1 � �Ri�k1�1(t)2k1 + (k2 � k1 + 1) + 2ÆOPT;i[k1;k2℄(t)� 16 + k2�1Xj=k1 8 + ÆOPT;i�k1�1(t) + (k2 � k1 + 1) + 2ÆOPT;i[k1;k2℄(t)� 9(k2 � k1 + 2) + 2ÆOPT;i�k2 (t)where the se
ond line is due to the fa
t that there is at most one job on ma
hine i of ea
h
lass k with a residual volume less than 2k. The fourth line is derived from the fa
t that theresidual of ea
h job of 
lass k is smaller than 2k+1 by de�nition. The �fth line is derived byapplying Lemma 4.10.Corollary 4.12 For any t 2 T , the number of jobs in the whole system 
an be bounded asfollows: Æ(t) � 9m(logP + 3) + 2ÆOPT (t).Proof: First note that kmax�kmin+2 � logP +3. Now we apply Lemma 4.11 with k2 = kmaxand k1 = kmin and sum over all the ma
hines, whi
h yields the result.We prove the O(logP ) approximation ratio.Theorem 4.13 F IMD = O(logP ) � FOPT , i.e., algorithm IMD has a logarithmi
 approx-imation fa
tor, w.r.t the maximum ratio between jobs size, even when 
ompared to the best(possibly migratory) o�ine algorithm. 8



Proof: F IMD = Zt Æ(t)dt= Zt=2T Æ(t)dt + Zt2T Æ(t)dt� Zt=2T 9(2 + logP )
(t)dt + Zt2T (9m(log P + 3) + 2ÆOPT (t))dt= 9(2 + logP ) Zt=2T 
(t)dt+ 9(logP + 3) Zt2T 
(t)dt+ 2 Zt2T ÆOPT (t)dt� 9(logP + 3) Zt 
(t)dt+ 2 Zt ÆOPT (t)dt� (29 + 9 log P ) � FOPTwhere the �rst equality is from the de�nition of F IMD. The se
ond equality is obtained bylooking at times in whi
h none of the ma
hines is idle and at times in whi
h at least onema
hine is idle, separately. The third line uses Corollaries 4.6 and 4.12. The forth line istrue by de�nition of T . Finally, Rt 
IMD(t)dt is the total time spent pro
essing jobs by thema
hines whi
h is exa
tly the sum of all jobs. This sum is upper bounded by the total 
owtime of OPT sin
e ea
h job's 
ow time must be at least its pro
essing time.We now turn to prove the O(log n) bound. We start this part fo
using on a single ma
hinei. We de�ne �ki to be the maximal 
lass of a job assigned to i throughout the pro
ess. De�ne� ik to be the set of time units, in whi
h ma
hine i pro
essed a job of 
lass k.Lemma 4.14 The 
ow time of all jobs assigned to ma
hine i 
an be bounded as follows:F IMD;i � 18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;iProof: We 
ompute the integral of Fa
t 4.1 a

ording to the time partition to � ik.F IMD;i = Zt Æi(t)dt= �kiXj=kmin Zt2� ij Æi[j;�ki℄(t)dt� �kiXj=kmin Zt2� ij f9(�ki � j + 2) + 2ÆOPT;i��ki (t)gdt� �kiXj=kmin 9(�ki � j + 2)U i=j + 2FOPT;i� 18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;i9



where the se
ond equality is by de�nition of � ik. The third line is derived from Lemmas 4.5and 4.11. The fourth line is by j� ikj = U i=k. The �fth line is sin
e the jobs of 
lass k are smallerthan 2k+1.To 
ontinue, we use a te
hni
al lemma proved in [2℄ with its proof.Lemma 4.15 Given a sequen
e a1; a2; ::: of non-negative numbers su
h that Pi�1 ai � A andPi�1 2iai � B then Pi�1 iai � A log(4B=A).Proof: De�ne a se
ond sequen
e, bi = Pj�i aj for i � 1. Then it is known that A � b1 �b2 �� : : : bi. Also, it is known that Pi�1 2iai = Pi�1 2i(bi � bi+1) = 12Pi�1 2ibi + b1. Thisimplies that Pi�1 2ibi � 2B.The sum we are trying to upper bound is Pi�1 bi. This 
an be viewed as an optimizationproblem where we try to maximize Pi�1 bi subje
t to Pi�1 2ibi � 2B and bi � A for i � 1.This 
orresponds to the maximization of a 
ontinuous fun
tion in a 
ompa
t domain and anyfeasible point where bi < A; bi+1 > 0 is dominated by the point we get by repla
ing bi; bi+1 withbi + 2�; bi+1 � �. Therefore, it is upper bounded by assigning bi = A for 1 � i � k and bi = 0for i > k where k is large enough su
h that Pi�1 2ibi � 2B. A 
hoi
e of k = dlog(2B=A)e isadequate and the sum is upper bounded by kA from whi
h the result follows.Lemma 4.16 For any ma
hine i, P�kij=kmin(�ki � j)ni=j2j � U i log(4ni)Proof: We ex
hange variables by l = �ki � j and de�ne Il = ni=�ki�l2�ki�l = ni=j2j . Note thatP�ki�kminl=0 Il � U i and also P�ki�kminl=0 2lIl =P�ki�kminl=0 2lni�ki�l2�ki�l = ni2�ki .We apply Lemma 4.15 to our problem using al = Il, l = 0; : : : ; �ki � kmin, A = U i andB = ni2�ki and obtain P�kij=kmin(�ki � j)ni=j2j =P�ki�kminl=0 lIl � U i log(4ni2�kiU i ) = U i log(4ni) dueto the fa
t that 2�ki � U i by de�nition of �ki.We prove the O(log n) approximation ratio.Theorem 4.17 F IMD = O(log n) �FOPT , i.e., algorithm IMD has a logarithmi
 approxima-tion fa
tor, w.r.t the number of jobs n, even when 
ompared to the best (possibly migratory)o�ine algorithm.Proof: We sum over the di�erent ma
hines 
ontribution to the total 
ow.F IMD = mXi=1 F IMD;i� mXi=1f18 �kiXj=kmin(�ki � j)ni=j2j + 18U i[kmin;�ki℄ + 2FOPT;ig� 18 mXi=1U i log(4ni) + 18U + 2FOPT� O(logn) mXi=1 U i + 20FOPT = O(log n)FOPTwhere the se
ond line is due to Lemma 4.14 and the third line is due to Lemma 4.16.10



5 Total Completion Time AnalysisWe prove that the total 
ompletion time of algorithm IMD is at most 7 times the total
ompletion time of the optimalmigratory o�ine algorithm. Later we show how to eliminate thepreemption and 
onstru
t an algorithm IMD0 whi
h is at most 14 times the total 
ompletiontime of the optimal migratory o�ine algorithm. The analysis of this se
tion appears in theAppendix.6 Con
lusionsIn this paper we 
onsidered the problem of �nding a preemptive s
hedule that optimizes boththe total 
ow time and the total 
ompletion time of a set of jobs released over time, when theassignment of jobs to ma
hines should be immediate disallowing job migration. We presenteda new online algorithm that is still within a logarithmi
 fa
tor of the best (possibly migratory)o�ine algorithm with respe
t to the total 
ow time. This algorithm also a
hieves a small
onstant approximation fa
tor of the best o�ine algorithm with respe
t to the total 
ompletiontime.Referen
es[1℄ F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis,M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation s
hemes forminimizing average weighted 
ompletion time with release dates. In IEEE Symposium onFoundations of Computer S
ien
e, pages 32{44, 1999.[2℄ B. Awerbu
h, Y. Azar, S. Leonardi, and O. Regev. Minimizing the 
ow time withoutmigration. In Pro
. 31st ACM Symp. on Theory of Computing, pages 198{205, 1999.[3℄ K.R. Baker. Introdu
tion to Sequen
ing and S
heduling. Wiley, 1974.[4℄ S. Chakrabarti, C. A. Phillips, A. S. S
hulz, D. B. Shmoys, C. Stein, and J. Wein. Improveds
heduling algorithms for minsum 
riteria. In Pro
. 23rd International Colloquium onAutomata, Languages and Programming, pages 646{657, 1996.[5℄ C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted 
ow time. InPro
. 33rd ACM Symp. on Theory of Computing, pages 84{93, 2001.[6℄ C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation te
hniques foraverage 
ompletion time s
heduling. In Pro
. 8th ACM-SIAM Symposium on Dis
reteAlgorithms, pages 609{618, 1997.[7℄ J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean 
ow time with release time
onstraint. Theoreti
al Computer S
ien
e, 75(3):347{355, 1990.[8℄ L. Hall, D. Shmoys, and J. Wein. S
heduling to minimize average 
ompletion time: O�-lineand on-line algorithms. In Pro
. of 7th ACM-SIAM Symposium on Dis
rete Algorithms,pages 142{151, 1996. 11



[9℄ L.A. Hall. Approximation algorithms for s
heduling. In D.S. Ho
hbaum, editor, Approx-imation algorithms for NP-hard problems, pages 1{45. PWS publishing 
ompany, 1997.[10℄ J. A. Hoogeveen and Arjen P. A. Vestjens. Optimal on-line algorithms for single-ma
hines
heduling. In Pro
. 5th Conf. Integer Programming and Combinatorial Optimization,pages 404{414, 1996.[11℄ H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproxima-bility results for minimizing total 
ow time on a single ma
hing. In Pro
eedings of theTwenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 418{426,Philadelphia, Pennsylvania, 1996.[12℄ E.L. Lawler, J.K Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequen
ing ands
heduling: algorithms and 
omplexity. In Handbooks in operations resear
h and manage-ment s
ien
e, volume 4, pages 445{522. North Holland, 1993.[13℄ S. Leonardi and D. Raz. Approximating total 
ow time on parallel ma
hines. In Pro-
eedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages110{119, El Paso, Texas, 1997.[14℄ C. Phillips, C. Stein, and J. Wein. Minimizing average 
ompletion time in the presen
eof release dates. In Pro
. 4th Workshop on Algorithms and Data Stru
tures, pages 86{97,1995.[15℄ L. Stougie and A. Vestjens. Randomized on-line s
heduling: How low 
an't you go, 1997.7 Appendix: Total Completion Time AnalysisIn this se
tion we prove the ratio of 7 for algorithm IMD and 14 for the non-preemptivealgorithm IMD0. We start by de�ning a fair s
hedule. We say that a s
hedule S is fair, if forany two jobs i and j with pi = pj, i �nishes before j if and only if ri � rj . We now argue thatthere is a fair optimal s
hedule.Lemma 7.1 For any s
hedule S, there exist another s
hedule S0, whi
h is fair and whi
h isnot worse than S, with respe
t to the total 
ompletion time.Proof: We transform the s
hedule S into S0 in stages. At ea
h stage we 
hoose a pair of jobsi and j, with pi = pj and ri < rj, whi
h is not s
heduled fairly, i.e., job j �nishes before job i.We denote by T1 the time period when only one of these jobs was pro
essed. Let T1;i be thetime period when only job i was pro
essed and let T1;j be the time period when only job j waspro
essed. We assign the �rst jT1;ij time units of T1 to job i and the last jT1;j j units of T1 tojob j. First note that this assignment is feasible, moreover this pair is s
heduled fairly, whileonly improving the 
ompletion time of the �rst job to be 
ompleted of the two (the se
ondjob 
ompletion time remains un
hanged). After a �nite number of stages this pro
ess stops,yielding S0.Corollary 7.2 For any input jobs set J , there is a fair optimal s
hedule.12



Proof: By Lemma 7.1 there is another s
hedule S0, whi
h is not worse than OPT with respe
tto the total 
ompletion time that is also fair. Obviously S0 is also optimal.By Corollary 7.2, we 
an 
hoose OPT to denote an optimal o�ine algorithm, whi
h yieldsa s
hedule that is fair.Re
all that the input set of jobs is J = f(rj ; pj)gnj=1. We 
ompare the performan
e of IMDand OPT on J by examining the performan
e of OPT when running on another input set Ĵ .We de�ne this set by Ĵ = f(2rj ; 2kj+1)gnj=1, where kj is the 
lass of the jth job in J .Lemma 7.3 For any input set of jobs J , COPT (Ĵ) � 2COPT (J).Proof: Let J2 = f(2rj ; 2pj)gnj=1. It is 
lear that any s
hedule on J 
an be translated by simples
aling to a s
hedule on J2 and vi
e versa, hen
e COPT (J2) = 2COPT (J). On the other handwe have that 2kj+1 � 2pj , therefore any s
hedule on J2 is also a valid s
hedule on Ĵ yieldingCOPT (Ĵ) � COPT (J2). Combining the above arguments yields COPT (Ĵ) � COPT (J2) =2COPT (J).We now observe that the total 
ompletion time 
an be 
omputed as an integral over timeof the number of jobs that were not 
ompleted yet:Observation 7.4 For any s
heduler S, CS = Rt n� 
S(J; t)dt :In view of this observation, we turn to show that for any t, algorithm IMD 
ompletes bytime 3:5t at least the amount of jobs 
ompleted by OPT by time t when it runs on Ĵ .Re
all that JOPT (Ĵ ; t) is the set of jobs that OPT �nishes by time t when the input set ofjobs is Ĵ . We denote the 
orresponding jobs from J by J�(t).Lemma 7.5 For any time t, 
OPT (Ĵ ; t) = 
IMD(J�(t); 3:5t).Proof: First note that by de�nition 
OPT (Ĵ ; t) = jJOPT (Ĵ ; t)j = jJ�(t)j, furthermore, it is 
learthat for any other time t0, jJ�(t)j � 
IMD(J�(t); t0), hen
e 
OPT (Ĵ ; t) � 
IMD(J�(t); 3:5t). Itis left to prove that 
OPT (Ĵ ; t) � 
IMD(J�(t); 3:5t).Note that all the jobs in J�(t) are released before time t2 . By de�nition all the jobs inJ�(t) are smaller than their 
orresponding jobs in JOPT (Ĵ ; t), 
onsequently U(J�(t); t2) �U(JOPT (Ĵ ; t); t). By standard averaging argument, we dedu
e that minifU i(J�(t); t2)g �1mU(JOPT (Ĵ ; t); t) � t.Let klow and khigh be the extreme 
lasses of jobs in J�(t). Hen
e, the biggest job inJOPT (Ĵ ; t) is of size 2khigh+1. Sin
e OPT �nishes its 
orresponding job by time t, we also havethat 2khigh+1 � t.Applying lemma 4.2, we bound the total volume di�eren
e between the ma
hines as follows:U i(J�(t); t2) = U i�khigh(J�(t); t2) � U j�khigh(J�(t); t2 ) + 2khigh+2 � U j(J�(t); t2) + 2khigh+2 :Combining the above arguments yields:maxi fU i(J�(t); t2)g � mini fU i(J�(t); t2)g+ 2khigh+2 � t+ 2t = 3t :13



Thus, algorithm IMD �nishes to pro
ess all the jobs of J�(t) before time 3:5t, even if itstarts pro
essing jobs only at time t2 . Therefore, 
OPT (Ĵ ; t) � 
IMD(J�(t); 3:5t). This provesthe lemma.Lemma 7.6 For any time t, 
IMD(J�(t); t) � 
IMD(J; t).Proof: Note that not only J�(t) � J , but J�(t) is 
lass-wise pre�x of J , i.e. the arrival timeof any job of 
lass k in J�(t) is at most the arrival time of any job of this 
lass in J n J�(t)(by our 
hoi
e of a fair OPT s
hedule). Hen
e, the assignment of the jobs in J�(t) by IMDremains the same, when it runs on J . Therefore the job set that IMD assigns to ea
h ma
hinewhen running on J is a superset of the jobs it assigned when it ran only on J�(t). Note thatalgorithm IMD uses SRPT on ea
h ma
hine in order to s
hedule the input jobs, moreover itis well known that 
SRPT (J1; t) � 
SRPT (J2; t) for any t and J1 � J2 (see [14℄), hen
e, for anytime t, ea
h ma
hine 
ompletes at least the same number of jobs it 
ompleted on J�(t) . Thelemma follows.Corollary 7.7 For any time t, 
OPT (Ĵ ; t) � 
IMD(J; 3:5t).Proof: Combining Lemmas 7.5 and 7.6 yields 
OPT (Ĵ ; t) = 
IMD(J�(t); 3:5t) � 
IMD(J; 3:5t).Lemma 7.8 CIMD(J) � 3:5 � COPT (Ĵ).Proof: We 
ompute the total 
ompletion time.CIMD(J) = Zt n� 
IMD(J; t)dt = Zu[n� 
IMD(J; 3:5u)℄3:5du� 3:5 Zu n� 
OPT (Ĵ ; u)du = 3:5 � COPT (Ĵ)where the �rst and the last equalities are by Observation 7.4. The se
ond equality is obtainedby the variables 
hange 3:5u = t. The inequality is due to Corollary 7.7.We turn to prove the main result of this se
tion.Theorem 7.9 CIMD(J) � 7�COPT (J), i.e., algorithm IMD has a small 
onstant approxima-tion fa
tor even when 
ompare to the best (possibly migratory) o�ine algorithm, with respe
tto the total 
ompletion time.Proof: Combining Lemmas 7.3 and 7.8 yields: CIMD(J) � 3:5 � COPT (Ĵ) � 7 � COPT (J) :Note that the preemptive algorithm IMD 
an be 
onverted into a non-preemptive algo-rithm IMD0 by applying some single ma
hine 'preemptive to non-preemptive' 
onversion toea
h of the ma
hines separately. Su
h a 
onversion algorithm was introdu
ed in [14℄, whi
hbasi
ally list-s
hedules the jobs a

ording to their 
ompletion time in the preemptive s
hedule.This 
onversion results in losing only a 
onstant fa
tor of 2 in our approximation, resulting ina non-preemptive s
hedule generated using immediate dispat
hing, with a 14 approximationfa
tor of the best possibly migratory o�ine algorithm with respe
t to the total 
ompletiontime. 14


