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An FPTAS for Quickest Multicommodity Flows with
Inflow-Dependent Transit Times1

Alex Hall,2 Katharina Langkau,3 and Martin Skutella4

Abstract. Given a network with capacities and transit times on the arcs, the quickest flow problem asks for
a “flow over time” that satisfies given demands within minimal time. In the setting of flows over time, flow on
arcs may vary over time and the transit time of an arc is the time it takes for flow to travel through this arc. In
most real-world applications (such as, e.g., road traffic, communication networks, production systems, etc.),
transit times are not fixed but depend on the current flow situation in the network. We consider the model where
the transit time of an arc is given as a non-decreasing function of the rate of inflow into the arc. We prove that
the quickest s–t-flow problem is NP-hard in this setting and give various approximation results, including a
fully polynomial time approximation scheme (FPTAS) for the quickest multicommodity flow problem with
bounded cost.
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1. Introduction. Flows over time were introduced more than 40 years ago by Ford
and Fulkerson [7], [8]. Given a directed graph with capacities and transit times on the
arcs, a source node s, a sink node t , and a time horizon T , they consider the problem
of sending the maximum possible amount of flow from s to t within T time units. A
flow over time specifies a flow rate for each arc at each point in time. The capacity of an
arc is an upper bound on this flow rate, i.e., on the amount of flow that can be sent into
the arc during each unit of time. Flow on an arc progresses at a constant speed which is
determined by its transit time.

Known results for flows over time with constant transit times. Ford and Fulkerson show
that the maximum s–t-flow over time problem can be solved by essentially one static
min-cost flow computation in the given network, where transit times are interpreted as
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costs. An arbitrary path decomposition of such a static min-cost flow can be turned into
a flow over time by sending flow at the given flow rate into each path as long as there
is enough time left for the flow on a path to arrive at the sink before time T . A flow
featuring this structure is called “temporally repeated.”

A problem closely related to the maximum s–t-flow over time problem is the quickest
s–t-flow problem. Here, the flow value (or “demand”) is fixed and the task is to find a
flow over time with minimal time horizon T . Clearly, this problem can be solved in
polynomial time by incorporating the algorithm of Ford and Fulkerson into a binary
search framework. Burkard et al. [2] give a strongly polynomial algorithm for the quickest
s–t-flow problem which is based on the parametric search method of Megiddo [22].
Hoppe and Tardos [15], [16] study the quickest trans-shipment problem which, given
supplies and demands at the nodes, asks for a flow over time that zeros all supplies
and demands within minimal time. They give a polynomial time algorithm which is,
however, based on a submodular function minimization routine.

The latter fact already indicates that flow over time problems are, in general, con-
siderably harder than their static counterparts in classical network flow theory. The best
evidence for this allegation is maybe provided by a surprising result of Klinz and Woeg-
inger [18]. They show that computing a quickest s–t-flow of minimum cost in a network
with cost coefficients on the arcs is already NP-hard in series–parallel networks. More-
over, it is even strongly NP-hard to find a quickest temporally repeated s–t-flow of
minimum cost.

Only recently, Hall et al. [10] have shown that computing quickest multicommodity
flows is NP-hard, even on series–parallel networks. They also take a closer look at the
common distinction between the settings where storage of flow at intermediate nodes is
allowed and where storage is not allowed. The NP-hardness result holds for both settings.
For the case where storage at intermediate nodes is not possible they give an entirely
different reduction which proves that this case is even strongly NP-hard and that no fully
polynomial time approximation scheme (FPTAS) exists, unless P = NP.

On the other hand, Ford and Fulkerson [7], [8] introduce the concept of time-expanded
networks which allows us to solve many flow over time problems in pseudopolynomial
time. The node set of a time-expanded network consists of several copies of the node set
of the underlying graph building a “time layer”. The number of time layers is equal to
the integral time horizon T and thus pseudopolynomial in the input size. Copies of an
arc of the underlying graph join copies of its endnodes in time layers whose distances
equal the transit time of that arc. Ford and Fulkerson observe that a flow over time in the
given graph corresponds to a static flow in the time-expanded network, and vice versa.
Thus, many flow over time problems can be solved by static flow computations in the
time-expanded network.

Fleischer and Skutella [4], [6] come up with so-called “condensed” time-expanded
networks which are of polynomial size and can be used to compute provably good
multicommodity flows over time with costs in polynomial time. In particular, they present
an FPTAS for the quickest multicommodity flow problem with bounded cost [4]–[6].
Using completely different techniques, they also show that 2-approximate temporally
repeated flows can be obtained from a static, length-bounded flow computation in the
given graph [4], [6]. The advantage of the latter solutions is that they have a very simple
structure and also do not use storage of flow at intermediate nodes.
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Flow-dependent transit times. So far we have considered the setting of flows over
time where transit times of arcs are fixed. In many practical applications, however, the
latter assumption is not realistic since transit times vary with the flow situation on an
arc. We refer to [1], [23], and [24] for an overview and further references. Usually, the
correlation of the transit time and the flow situation on an arc is highly complex. It is a
major challenge to come up with a mathematical model that, on the one hand, captures the
real behavior as realistically as possible and, on the other hand, can be solved efficiently
even on large networks.

Köhler and Skutella [20] consider a model where, at any moment in time, the actual
speed of flow on an arc depends on the current amount of flow on the arc. Under this
assumption, they give a 2-approximation algorithm for the quickest s–t-flow problem
and show that no polynomial time approximation scheme (PTAS) exists, unless P = NP.
A simpler model is studied by Carey and Subrahmanian [3]. They assume that the transit
time on an arc only depends on the current rate of inflow into the arc and propose a
time-expanded network whose arcs somehow reflect this behavior. Köhler et al. [19]
give a 2-approximation algorithm for the quickest s–t-flow problem in the setting of
inflow-dependent transit times. The algorithm uses the algorithm of Ford and Fulkerson
[7], [8] on a so-called “bow graph” with fixed transit times on the arcs. In the bow graph,
every arc of the original graph is replaced by a bunch of parallel arcs corresponding to
different transit times. The quickest flow problem in the bow graph is a relaxation of
the quickest flow problem with inflow-dependent transit times. Note that this connection
was already mentioned in the early 1960s in a graduate report by Jorgensen [17, page 9].

Hall and Schilling [12] suggest the rate-dependent setting which attempts to capture
more realistically the behavior of flow in road networks. Aspects such as restricting
the intermediate storage of flow and modeling congestion effects are considered. They
present a purely heuristic approach to compute rate-dependent flows, which is based on
the FPTAS presented in this paper for the inflow-dependent setting. The results of an
experimental comparison of inflow-dependent and rate-dependent flows are given.

Contribution of this paper. While, for the special case of constant transit times, quickest
s–t-flows can be computed in polynomial time [2], [7], [8], we show in Section 6 that
the problem becomes NP-hard if we allow inflow-dependent transit times. In Section 4
we generalize the 2-approximation result given in [19] to the setting with costs and
multiple commodities. Our approach is based on a new and stronger relaxation of the
quickest flow problem, which we introduce in Section 3. This relaxation is defined
in a bow graph similar to the one introduced in [19], but it uses additional “coupling
constraints” between flow values on different copies of one arc in the original graph. In
particular, this relaxation can no longer be solved by standard network flow algorithms
but requires general linear programming techniques. Nevertheless, as shown in Section 4,
the approximation technique based on length-bounded static flows presented in [4] and
[6] can be generalized to yield provably good solutions to our bow graph relaxation.
Moreover, we prove that such a solution to the relaxation can be turned into a feasible
multicommodity flow over time with inflow-dependent transit times and bounded cost.

The main contribution of this paper is an FPTAS for the quickest multicommodity
flow problem with bounded cost and inflow-dependent transit times (see Section 5). It
again uses the new bow graph relaxation introduced in Section 3 and generalizes the
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approach based on condensed time-expanded networks from [5] and [6]. Interestingly,
the time-expanded version of our bow graph relaxation essentially coincides with the
modified time-expanded graph considered by Carey and Subrahmanian [3].

Both the 2-approximation algorithm and the FPTAS are for the setting where flow can
be stored temporarily at intermediate nodes. It follows from [10] that, unless P = NP,
the latter result cannot be achieved if storage of flow at intermediate nodes is forbidden.

While approximation results and, in particular, approximation schemes are often
considered to be of purely theoretical interest, the situation is quite different here. Flow-
dependent transit times represent a crucial phenomenon inherent in many real-world
applications of network flows. Nevertheless, there are hardly any models and algorithmic
techniques known which are capable of providing reasonable solutions even for networks
of rather modest size. The FPTAS for inflow-dependent transit times presented in this
paper is based on rather simple and efficient flow computations in condensed time-
expanded networks. It therefore reveals a promising direction and raises hope for the
development of efficient and flexible tools that can deal with reasonably sized real-world
networks.

2. Preliminaries. We consider network flow problems in a directed graph G = (V, E)
with n := |V | nodes and m := |E | arcs. Each arc e ∈ E has associated with it a positive
capacity ue and a non-negative, non-decreasing transit time function τe: [0, ue]→ R

+.
There is a set of commodities K = {1, . . . , k}; every commodity i ∈ K is defined by
a source–sink pair5 (si , ti ) ∈ V × V . The objective is to send a prespecified amount
of flow di > 0, called the demand, from si to ti . Finally, each arc e has associated cost
coefficients ce,i , for i ∈ K , where ce,i is interpreted as the cost (per flow unit) for sending
flow of commodity i through the arc. For an arc e = (v,w) ∈ E , we use the notation
head(e) := w and tail(e) := v.

2.1. Static Flows. A static (multicommodity) flow x in G assigns every arc e and
commodity i a non-negative flow value xe,i such that flow conservation holds:∑

e∈δ−(v)
xe,i −

∑
e∈δ+(v)

xe,i = 0 for all v ∈ V \ {si , ti } and i ∈ K .

Here, δ+(v) and δ−(v) denote the set of arcs leaving and entering node v, respectively.
The static flow x satisfies all demands if∑

e∈δ−(ti )
xe,i −

∑
e∈δ+(ti )

xe,i = di for all i ∈ K .

It is called feasible if it obeys the capacity constraints xe := ∑
i∈K xe,i ≤ ue, for all

e ∈ E . The cost of a static flow is defined as c(x) :=∑e∈E

∑
i∈K ce,i xe,i .

5 To simplify notation, we restrict to the case of only one source and one sink for each commodity. However,
our results can be directly generalized to the case of several sources and sinks with given supplies and demands
for each commodity.
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2.2. Flows over Time with Constant Transit Times. A (multicommodity) flow over time
f in G with time horizon T is given by Lebesgue-measurable functions fe,i : [0, T )→
R
+, where fe,i (θ) is the rate of flow (per time unit) of commodity i entering arc e at

time θ . In order to simplify notation, we sometimes use fe,i (θ) for θ �∈ [0, T ), implicitly
assuming that fe,i (θ) = 0 in this case. The capacity ue is an upper bound on the rate of
flow entering arc e at any moment of time, i.e., fe(θ) ≤ ue for all θ ∈ [0, T ) and e ∈ E .
Here, fe(θ) :=∑i∈K fe,i (θ) is the total rate at which flow is entering arc e at time θ .

In the original setting of flows over time, the transit time function τe of arc e is assumed
to be constant. Then the flow fe,i (θ) of commodity i entering arc e at time θ arrives at
head(e) at time θ + τe. All arcs must be empty from time T on, i.e., fe,i (θ) = 0 for
θ ≥ T − τe. To generalize the notion of flow conservation, we define

D−v,i (ξ) :=
∑

e∈δ−(v)

∫ ξ

τe

fe,i (θ − τe) dθ

to be the total inflow of commodity i ∈ K into node v until time ξ ∈ [0, T ]. Similarly,

D+v,i (ξ) :=
∑

e∈δ+(v)

∫ ξ

0
fe,i (θ) dθ(1)

is the corresponding outflow. We consider the model with storage of flow at intermediate
nodes. That is, flow entering a node can be held back for some time before it is sent
onward. To rule out a deficit at any node, we require that the total inflow must upper
bound the total outflow for any point in time and any node other than the source:

D−v,i (ξ)− D+v,i (ξ) ≥ 0 for all ξ ∈ [0, T ), i ∈ K , and v ∈ V \{si }.(2)

Moreover, flow must not remain in any node other than the sinks at time T . Therefore,
we require that equality holds in (2) for every i ∈ K , v ∈ V \{si , ti }, at time ξ = T . The
flow over time f satisfies the multicommodity demands if

D−ti ,i (T )− D+ti ,i (T ) = di for any commodity i ∈ K .(3)

The cost of a flow over time f is defined as c( f ) :=∑e∈E

∑
i∈K ce,i

∫ T
0 fe,i (θ) dθ .

2.3. Time-Expanded Graphs. Many flow over time problems can be solved by static
flow algorithms in time-expanded graphs [7], [8]. Given a graph G = (V, E)with integral
transit times on the arcs and an integral time horizon T , the T -time-expanded graph of
G, denoted GT , is obtained by creating T copies of V , labeled V0 through VT−1, with
the θ th copy of node v denoted v(θ), θ = 0, . . . , T − 1. For every arc e = (v,w) ∈ E
and θ = 0, . . . , T − 1 − τe, there is an arc e(θ) from v(θ) to w(θ + τe) with the same
capacity and costs as arc e. In addition, there is an infinite capacity holdover arc from
v(θ) to v(θ + 1), for all v ∈ V and θ = 0, . . . , T − 2, which models the possibility to
hold flow at node v during the time interval [θ, θ + 1).

Any static flow in this time-expanded network corresponds to a flow over time of
equal cost: interpret the flow on arc e(θ) as the flow through arc e = (v,w) that starts at
node v in the time interval [θ, θ + 1). Similarly, any flow over time completing by time
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T corresponds to a static flow in GT of the same value and cost obtained by mapping
the total flow starting on e in time interval [θ, θ + 1) to flow on arc e(θ). Thus, we may
solve a flow over time problem by solving the corresponding static flow problem in the
time-expanded network.

One drawback of this approach is that the size of GT depends linearly on T , so that if
T is not bounded by a polynomial in the input size, this is not a polynomial-time method.
However, the following useful observation can be found in [4] and [6]: If all transit times
are multiples of some large number  > 0, then instead of using the T -time-expanded
graph, we may rescale time and use a -condensed time-expanded graph that contains
only �T/� copies of V . Since in this setting every arc corresponds to a time interval
of length , capacities are multiplied by . For more details we refer to [4] and [6].

2.4. Flows over Time with Inflow-Dependent Transit Times. In the original setting of
flows over time discussed above, it is assumed that transit times are fixed throughout, so
that flow on arc e progresses at a uniform speed. In the following we will consider the
more general model of inflow-dependent transit times. Here, the transit time of an arc
may vary with the current amount of flow using this arc. Each arc e has an associated
non-negative transit time function τe which determines the time it takes for the flow to
traverse arc e. In order to define a (multicommodity) flow with inflow-dependent transit
times (τe)e∈E and time horizon T , we generalize the requirements for the flows over time
as defined above: the flow of commodity i entering arc e at time θ at rate fe,i (θ) arrives
at head(e) at time θ + τe( fe(θ)). In order to obey the time horizon T , we require for all
e ∈ E and θ ∈ [0, T ) that fe(θ) > 0 must imply θ + τe( fe(θ)) < T . The total inflow of
commodity i ∈ K into node v until time ξ ∈ [0, T ] is now given by

D−v,i (ξ) :=
∑

e∈δ−(v)

∫
θ≥0:

θ+τe ( fe (θ))≤ξ

fe,i (θ) dθ.

The definition of the total outflow (1) remains unchanged. With these slight adjustments,
the flow conservation constraints (2) and the demand constraints (3) can be directly
adopted.

We will later need the following simple observation which follows from the fact that
flow can be stored at intermediate nodes.

OBSERVATION 1. For every arc e ∈ E , let τe: [0, ue]→ R
+ and τ ′e: [0, ue]→ R

+ be
transit time functions on arc e such that τ ′e(x) ≤ τe(x) for all x ∈ [0, ue]. Then a flow
over time with inflow-dependent transit times (τe)e∈E and time horizon T also yields a
flow over time with inflow-dependent transit times (τ ′e)e∈E and time horizon T .

The quickest (multicommodity) flow problem with costs is to find a (multicommodity)
flow over time with inflow-dependent transit times in G that satisfies the demands within
minimal time T at a cost which is bounded from above by a given budget C .

3. The Bow Graph. In [19] a so-called bow graph is introduced in order to attack
inflow-dependent transit times. The bow graph is an expansion of the original graph
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according to the given transit time functions. Every arc with inflow-dependent transit
time is replaced by a bunch of arcs with fixed transit times. On the one hand, it is shown
in [19] that a flow over time with inflow-dependent transit times in the original graph can
be regarded as a flow over time (with constant transit times) in the bow graph. Hence, the
bow graph serves as a relaxation of inflow-dependent transit times. On the other hand,
it is shown that a quickest s–t-flow (with constant transit times) in the bow graph can
be turned into an s–t-flow over time with inflow-dependent transit times in the original
graph while losing only a factor of 2 on the optimal time horizon of a quickest s–t-flow
in G.

In this section we will define a bow graph that is very similar to the one defined in
[19]. However, it turns out that, in order to approximate the quickest (inflow-dependent)
multicommodity flow in G, one must not allow arbitrary flows over time in the bow graph
as a relaxation to inflow-dependent transit times. Instead, we will restrict to a certain
subclass of flows over time in the bow graph in order to get a stronger relaxation of the
problem under consideration.

Let us for the moment assume that all transit time functions are piecewise constant,
non-decreasing, and left-continuous. This transit time function of arc e is denoted by
τ s

e . It is given by breakpoints 0 = x0 < x1 < . . . < x� and corresponding transit times
τ1 < . . . < τ�. Flow entering arc e at rate x ∈ (xi−1, xi ]6 needs τi time to traverse arc
e. Later we will use the fact that general transit time functions can be approximated by
such step functions within arbitrary precision.

The bow graph, denoted GB = (V B, EB), is defined on the same node set as G, i.e.,
V B := V , and is obtained by creating several copies of an arc, one for every possible
transit time on this arc. Thus, arc e is replaced by � parallel bow arcs a1, . . . , a�. The
transit time of bow arc ai is τi and its capacity is xi , i = 1, . . . , �. We will denote the
set of bow arcs corresponding to arc e ∈ E by EB

e , and refer to EB
e as the expansion

of arc e. The cost coefficients of every arc a ∈ EB
e are identical to those of e, i.e.,

ca,i := ce,i , for i ∈ K . For every arc a ∈ EB
e , let e(a) denote the corresponding original

arc e.

3.1. A Relaxation of Inflow-Dependent Transit Times. We will now discuss the rela-
tionship between flows over time with inflow-dependent transit times in G and flows
over time in the bow graph GB. Any flow over time f in G with inflow-dependent transit
times (τ s

e )e∈E and time horizon T can be interpreted as a flow over time f B in GB (with
constant transit times) with the same time horizon T : if flow is entering arc e ∈ E at
time θ with flow rate fe(θ), then, in the bow graph, this flow is sent onto the bow arc
a ∈ EB

e representing the transit time τ s
e ( fe(θ)).

Unfortunately, an arbitrary flow over time f B in GB does not correspond to a flow
over time f with inflow-dependent transit times (τ s

e )e∈E in G. In addition, we have to
require the following property: for every original arc e ∈ E and at every point in time
θ , the flow f B sends flow into at most one bow arc a ∈ EB

e . This property ensures that
flow units entering arc e at the same time θ travel through e at the same pace. A flow
over time in GB fulfilling this property is called inflow-preserving.

6 Note that the interval is left exclusive and right inclusive due to τ s
e being left-continuous.
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OBSERVATION 2. Every inflow-preserving flow over time f B in GB with time horizon
T corresponds to a flow over time f in G with inflow-dependent transit times (τ s

e )e∈E

and time horizon T , and vice versa.

Notice that the set of inflow-preserving flows over time is not convex. In particular, it
is difficult to compute inflow-preserving flows directly. Therefore, we also consider a
relaxed notion which can be interpreted as a convexification of inflow-preserving flows:
For any arc a ∈ EB, let λa(θ) := f B

a (θ)/ua denote the per capacity inflow rate into
arc a at time θ . Then a flow over time f B in GB with time horizon T is called weakly
inflow-preserving if

∑
a∈EB

e
λa(θ) ≤ 1 for all e ∈ E and θ ∈ [0, T ). Since every inflow-

preserving flow over time is also weakly inflow-preserving, it follows from Observations
1 and 2 that weakly inflow-preserving flows over time in GB constitute a relaxation of
flows over time with inflow-dependent transit times in G:

OBSERVATION 3. For every arc e ∈ E , let τ s
e : [0, ue] → R

+ and τe : [0, ue] → R
+

be transit time functions on arc e such that τ s
e is a step function with τ s

e (x) ≤ τe(x) for
all x ∈ [0, ue]. Then every flow over time with inflow-dependent transit times (τe)e∈E

and time horizon T in G yields a (weakly) inflow-preserving flow over time with time
horizon T in GB.

The basic idea of the approximation algorithms presented in this paper is to compute
weakly inflow-preserving flows over time in an appropriate bow graph and turn these
into flows over time in G with inflow-dependent transit times. The following lemma and
its corollary make this approach work. Consider the expansion of a single arc e ∈ E to
bow arcs EB

e = {a1, . . . , a�}.

LEMMA 1. Let f B be a weakly inflow-preserving flow over time with time horizon T
in EB

e and δ > 0. Then f B can be turned into an inflow-preserving flow over time f̂ B

in EB
e such that every (infinitesimal) unit of flow in f̂ B reaches head(e) at most δ time

units later than it does in f B.

PROOF. For every bow arc ai , i = 1, . . . , �, we set up a buffer bi in tail(e) for temporary
storage of flow. The buffer bi is collecting all flow in f B which is about to be shipped
through bow arc ai . It can output this flow in a first-in-first-out manner, i.e., flow units
must enter and leave the buffer in the same order. Buffer bi has only two output modes.
Either it is closed and no flow is leaving the buffer, or it is open and flow is leaving the
buffer at constant rate uai , immediately entering arc ai . In our modified solution f̂ B,
at every point in time at most one of the buffers bi , i = 1, . . . , �, will be open. This
guarantees that f̂ B is inflow-preserving.

As above, let λa(θ) := f B
a (θ)/ua be the per capacity inflow rate of f B on arc a ∈ EB

e

at time θ . We partition the time horizon into intervals of length δ̃, where δ̃ := δ/2.
Let λa, j be the average per capacity inflow rate on arc a ∈ EB

e during time interval
[( j − 1)δ̃, j δ̃), i.e.,

λa, j := 1

δ̃

∫ j δ̃

( j−1)δ̃
λa(θ) dθ, for j = 1, . . . , �T/δ̃�.
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Fig. 1. Original flow rate on bow arc a (on the left) and modified flow rate produced by buffering in tail(a)
(on the right).

We define the modified flow f̂ B as follows: During the first δ̃-round, all buffers are
closed. During each following δ̃-round, we open the buffers in a “round robin” fashion.
More precisely, during time interval [ j δ̃, ( j + 1)δ̃), we first open buffer b1 for λa1, j δ̃

time, then buffer b2 for λa2, j δ̃ time, and so on. Since f B is weakly inflow-preserving,∑�
i=1 λai , j ≤ 1 holds and the last buffer is closed again before the end of this δ̃-round.

Figure 1 illustrates how the buffer changes the original inflow rate of a single bow
arc a.

We show that the buffers are never empty while they are open. Consider bow arc ai .
During the interval [( j − 1)δ̃, j δ̃), the flow f B sends δ̃λai , j uai units of flow into bow
arc ai . This is exactly the amount of flow that the corresponding buffer bi is sending out
during the succeeding interval [ j δ̃, ( j + 1)δ̃). Hence buffer bi is never emptied and, in
particular, every unit of flow is delayed for at most 2δ̃ = δ time. Note that throughout
these modifications no flow is rerouted. We only make use of storage in nodes. Therefore,
the cost of f B remains unchanged.

For δ > 0, a flow over time f B in GB is called δ-resting if, for every node v ∈
V \{s1, . . . , sk}, all flow arriving at v is stored there for at least δ time units before it
moves on. A weakly inflow-preserving flow over time f B in GB which is δ-resting can
be easily interpreted as an inflow-preserving flow over time f̂ B: Consider a single arc
e ∈ E and its expansion EB

e . Applying Lemma 1, the flow over time f B restricted to EB
e

can be modified to an inflow-preserving flow over time such that every unit of flow is
delayed by at most δ. The resting property of f B makes up for this delay and ensures that
every such flow unit can continue its way on time. Applying Observation 2, the flow f̂ B

can then be interpreted as a flow over time f in G with inflow-dependent transit times
(τ s

e )e∈E .

COROLLARY 1. Let f B be a weakly inflow-preserving flow over time in GB with time
horizon T which is δ-resting. Then f B can be turned into a flow over time f in G with
inflow-dependent transit times (τ s

e )e∈E and with the same time horizon and the same cost
as f B. Moreover, the flow over time f is given by piecewise constant functions ( fe)e∈E

such that the number of breakpoints of fe is bounded by 2|EB
e |�T/δ�.

4. A (2 + ε)-Approximation Algorithm for Quickest Flows. In this section we
present a fairly simple (2 + ε)-approximation algorithm for the quickest multicom-
modity flow problem with inflow-dependent transit times. The algorithm consists of the
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following three main steps. First, the original transit times (τe)e∈E are replaced by lower
step functions (τ s

e )e∈E and the corresponding bow graph GB is constructed. Then an
appropriately modified version of the (2+ ε)-approximation algorithm presented in [4]
and [6] is applied yielding a weakly inflow-preserving flow over time in GB. Finally, the
output is turned into a feasible solution to the original problem.

The bow graph GB is defined in the first step according to step functions fulfilling the
requirements stated in the following observation. We will later specify the parameters
δ, η > 0 such that the size of the resulting bow graph is polynomial in the input size
and 1/ε.

OBSERVATION 4. Let δ, η > 0. For every non-negative, non-decreasing, and left-
continuous function τ : [0, u] → R

+, there exists a step function τ s : [0, u] → R
+,

with

(i) τ s(x) ≤ τ(x) ≤ (1+ η)τ s(x)+ δ for every x ∈ [0, u], and
(ii) the number of breakpoints of τ s is bounded by �log1+η(τ (u)/δ)� + 1.

Note that the non-decreasing function τ is left-continuous if and only if sup{τ(x ′)|x ′ <
x} = τ(x). Left-continuity of τ is important, since the step function τ s needs to be left-
continuous in order to construct bow graphs as described at the beginning of Section 3.

4.1. (2 + ε)-Approximate Quickest Weakly Inflow-Preserving Flows. Fleischer and
Skutella [4], [6] propose a (2+ ε)-approximation algorithm for the quickest multicom-
modity flow problem with bounded cost and constant transit times. The method is based
on an approximate length-bounded static flow computation. The same approach can be
applied to the problem of finding a quickest weakly inflow-preserving multicommodity
flow over time with bounded cost in the bow graph.

Let f B be an optimal solution to this problem with minimal time horizon T . As
suggested in [4] and [6], we consider the static multicommodity flow xB in GB which
results from averaging the flow f B over the time interval [0, T ), i.e.,

xB
a,i := 1

T

∫ T

0
f B
a,i (θ) dθ for all a ∈ EB and i ∈ K .

As proven in [4] and [6], this static flow

(i) satisfies a fraction of 1/T of the demands covered by the flow over time f B,
(ii) has cost c(xB) = c( f B)/T , and

(iii) is T -length-bounded.

The latter property means that the flow of every commodity i ∈ K can be decomposed
into a sum of flows on si –ti -paths such that the length τ(P) := ∑

a∈P τa of any such
path P is at most T . Since f B is weakly inflow-preserving, so is xB, i.e., its per capacity
flow values λa := xB

a /ua , a ∈ EB, satisfy

(iv)
∑

a∈EB
e
λa ≤ 1 for every arc e ∈ E .

Any static flow x in GB meeting requirements (i)–(iv) can be turned into a weakly inflow-
preserving flow over time g in GB meeting the same demands at the same cost as f B
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within time 2T : Send flow into every si –ti -path P given by the length-bounded path
decomposition of x at the corresponding flow rate xP,i for exactly T time units; wait for
at most another T time units until all flow has arrived at its destination. Since ga(θ)/ua

is always upper-bounded by xa/ua , it follows from property (iv) that g is weakly inflow
preserving. Thus, g is a 2-approximate solution to the problem under consideration.

Unfortunately, computing the T -length-bounded flow x is NP-hard, even for the
special case of a single commodity [13]. Yet, as discussed in [4] and [6], the T -length-
bounded multicommodity flow problem can be approximated within arbitrary precision
in polynomial time by slightly relaxing the length bound T . We generalize this observa-
tion to length-bounded, weakly inflow-preserving flows.

Let PT
i be the set of all si –ti -paths in GB whose transit times are bounded from above

by T . Finding a static flow satisfying (i)–(iv) is equivalent to solving the linear program
shown in Figure 2.

Notice that the separation problem for the dual can be formulated as a length-
bounded shortest path problem: find a shortest si –ti -path P with respect to the arc
weights pe(a)/ua + ca,i whose length τ(P) is at most T , i.e., P ∈ PT

i . Using exactly the
same argument as in [4] and [6] the next lemma follows from the fact that the length-
bounded shortest path problem can be approximated with arbitrary precision; see, e.g.,
[14] and [21].

The primal LP:

min
∑
i∈K

∑
P∈PT

i

ci (P)xP,i

s.t.
∑

P∈PT
i

xP,i ≥ di

T
for all i ∈ K ,

∑
a∈E B

e

1

ua


∑

i∈K

∑
P∈PT

i
:

a∈P

xP,i


 ≤ 1 for all e ∈ E,

xP,i ≥ 0 for all i ∈ K , P ∈ PT
i .

The dual LP:

max
∑
i∈K

(
di

T

)
zi −

∑
e∈E

pe

s.t.
∑
a∈P

(
pe(a)

ua + ca,i

)
≥ zi for all i ∈ K , P ∈ PT

i ,

zi , pe ≥ 0 for all i ∈ K , e ∈ E .

Fig. 2. An LP formulation for the problem of finding a weakly inflow-preserving, T -length-bounded static
flow.
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LEMMA 2. Assume that there exists a weakly inflow-preserving multicommodity flow
over time with time horizon T and cost at most C . Then, for every ε > 0, a weakly
inflow-preserving multicommodity flow over time with time horizon at most (2 + ε)T
and cost at most C can be computed in time polynomial in the input size and 1/ε.

Lower bounds. If all transit time functions τe are constant, the (2+ ε)-approximation
algorithm in Lemma 2 and the one presented in [4] and [6] basically coincide. In [4] and
[6] an example is given which shows that the performance guarantee of both algorithms
is not better than 2. More precisely, for every k ∈ N, a k-commodity problem is defined
for which the algorithm has a performance ratio of (2k − 1)/k.

The following instance shows that even in the single source, single sink case, the
approximation ratio of the discussed algorithm cannot be better than 4/3. The example
consists of a single arc e = (s, t). The transit time of e is 0 if flow is entering at rate
xe ≤ 1, and it is 1 if flow is entering at rate xe ∈ (1, 2]. We want to send 2 units of flow
from s to t as quickly as possible. A quickest weakly inflow-preserving flow finishes
within T = 3

2 simply by sending flow at rate 2 during the time interval [0, 1
2 ), and at rate

1 during the time interval [ 1
2 ,

3
2 ). Note that this flow is even inflow-preserving.

A weakly inflow-preserving flow over time f B which is generated from a path de-
composition of a static flow as described above needs at least 2 time units. To see this,
consider the corresponding bow graph GB consisting of two parallel arcs a1 and a2,
where a1 has transit time 0 and capacity 1, and a2 has transit time 1 and capacity 2. Let
λi be the per capacity flow rate of f B on ai . Then, for T ≥ 1, the flow f B manages to
send λ1T + 2λ2(T − 1) flow units from s to t within time T . It is easily checked that f B

needs at least time T = 2 to satisfy the demand.

4.2. (2+ε)-Approximate Quickest Flows with Inflow-Dependent Transit Times. So far,
we have presented an algorithm to compute a (2+ε)-approximate solution to the quickest
multicommodity flow problem in the relaxed model of weakly inflow-preserving flows
over time. Such a solution has a simple structure, namely it is generated from a path
decomposition of a static flow in the bow graph. We will use this property to turn such a
flow into a solution to the original problem. Throughout this modification we will make
sure that the time horizon only increases by a small factor.

Let f B be a weakly inflow-preserving multicommodity flow over time with time hori-
zon T B in GB, which is generated from a static flow xB as described in the last section.
In particular, xB is weakly inflow-preserving and has a length-bounded path decompo-
sition. Let Pi denote the set of si –ti -paths from the length-bounded path decomposition
of xB and P :=⋃k

i=1 Pi .

LEMMA 3. The flow over time f B can be turned into a flow over time f in G with
inflow-dependent transit times (τe)e∈E and time horizon T , where T is bounded from
above by (1+ η)T B + 2nδ.

PROOF. We increase transit times in GB in order to emulate the original transit times
(τe)e∈E . For every arc a ∈ EB, let τ̃a := (1+η)τa+δ be the new transit time along a. Note
that this corresponds to constructing the bow graph according to step functions (τ̃ s

e )e∈E ,
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where τ̃ s
e (x) := (1+η)τ s

e (x)+δ for every x ∈ [0, ue]. Consider a path P ∈ P . The flow
f B sends flow at constant rate xP into P for a certain time period. Before increasing transit
times, flow traveling along P needed τ(P) := ∑

a∈P τa time to reach its destination.
After the increase, this time goes up to τ̃ (P) := ∑a∈P τ̃a ≤ (1 + η)τ(P) + nδ. Since
τ(P) is bounded from above by T B, the transit time of every unit of flow increases by
at most ηT B + nδ.

We repeat this procedure, but this time we increase the transit time of every arc a ∈ EB

by another additive factor of δ. This way, we obtain a weakly inflow-preserving flow
over time f̂ B in the bow graph constructed with respect to transit times (τ̃ s

e )e∈E which is
δ-resting and whose time horizon is bounded by (1+η)T B+2nδ. Notice that throughout
these modifications no flow is rerouted. We only make use of storage in nodes. Therefore,
the cost of f B remains unchanged. Applying Corollary 1, this yields a flow over time f
with inflow-dependent transit times (τ̃ s

e )e∈E in G. Observation 1 implies that f can be
interpreted as a flow over time with inflow-dependent transit times (τe)e∈E in G which
concludes the proof.

We are now ready to state the main result of this section.

THEOREM 1. For the quickest multicommodity flow problem with inflow-dependent
transit times and bounded cost, there exists a polynomial time algorithm that, for any
ε > 0, finds a solution of the same cost as optimal with time horizon at most 2+ ε times
the optimal time horizon T ∗.

PROOF. We can compute in polynomial time a lower bound L on T ∗ such that L ≤ T ∗ ≤
p(n)kL , for some polynomial p. Namely, it is proven in [19] that for every commodity
i , a lower bound Li on the optimal time horizon Ti for sending commodity i such that
Li ≤ Ti ≤ p(n)Li can be computed in polynomial time. Setting L := maxi Li yields
the desired bound.

We fix η to ε/8 and δ to εL/(12n). For every arc e ∈ E , we pick lower step functions
according to Observation 4(i). As already observed in [19], the number of breakpoints
of τ s

e is then in O(log(n/ε)/ε) and thus polynomially bounded. The latter is a direct
consequence of Observation 4(ii) and the fact that without loss of generality we can
set the capacity of every arc e ∈ E to u′e := max{x ∈ [0, ue]|τe(x) ≤ p(n)kL}. We
then construct the bow graph GB with respect to these step functions. Because of the
relaxation property of GB (see Observation 3), the time horizon T B of a quickest weakly
inflow-preserving flow in GB is a lower bound on T ∗. If T B ≤ L , then using Lemma 2
with T = L we can compute a weakly inflow-preserving multicommodity flow over time
with time horizon at most (2 + ε/4)L ≤ (2 + ε/4)T ∗. Otherwise L ≤ T B ≤ p(n)kL
holds. Using geometric mean binary search together with Lemma 2, we can compute a
weakly inflow-preserving multicommodity flow over time with time horizon T such that
T ≤ (2+ ε/4)T B ≤ (2+ ε/4)T ∗.

Applying Lemma 3, this flow over time can be turned into a flow over time f with
inflow-dependent transit times in G. Its time horizon is bounded by (1+η)(2+ε/4)T ∗+
2nδ = (1+ ε/8)(2+ ε/4)T ∗ + ε/6L ≤ (2+ ε)T ∗. Recall that f is given by piecewise
constant functions ( fe)e∈E . Corollary 1 implies that the number of breakpoints of each
such function is indeed polynomial in the input size and 1/ε.
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We have shown in this section that a (2+ε)-approximation algorithm for the quickest
multicommodity flow problem can be derived using length-bounded static flows in a
suitable bow graph. The examples at the end of Section 4.1 show that the performance
ratio of the described algorithm is not better than 2 in the multicommodity case, and not
better than 4/3 in the single commodity case.

5. An FPTAS for Quickest Flows. In this section we present an FPTAS for the quick-
est multicommodity flow problem with inflow-dependent transit times and bounded cost.
We use ideas similar to the ones employed in [5] and [6] for the problem with fixed transit
times. The FPTAS is based on a static weakly inflow-preserving flow computation in a
condensed time-expanded bow graph.

5.1. Preliminary Definitions. To state our algorithm and prove its correctness, we
define the following three bow graphs, which are derived from G = (V, E) with transit
time functions (τe)e∈E , given a time horizon T and a small constant ε > 0.

• G↓: the lower bow graph is constructed from the lower step functions τ↓e (x) :=
�τe(x)/�, for e ∈ E , x ∈ [0, ue], where  := ε2T/n (we always assume that
n/ε2 is integral such that T is a multiple of ). That is, τe(x) is rounded down to the
nearest multiple of . By the choice of , the size of G↓ is polynomially bounded
since we can delete all arcs with transit times greater than T .
• G↑: the upper bow graph is constructed from G↓ by lengthening the transit time of

each arc by . The corresponding transit time step functions are given by τ↑e (x) :=
τ
↓
e (x)+, for e ∈ E , x ∈ [0, ue].

• G⇑: the 2-lengthened bow graph is constructed analogously to G↑ except that the
transit times are lengthened by 2, i.e., τ⇑e (x) := τ↓e (x)+2, for e ∈ E , x ∈ [0, ue].

Let the fan graph GF = (V F , E F ) be the -condensed time-expansion of G⇑ for
time horizon T (see Section 2.3). Each arc e = (v,w) ∈ E is represented in the bow
graph G⇑ by its expansion E⇑e . Thus, the fan graph contains, for each time θ ∈ S :=
{0,, . . . , T −}, a “fan” of arcs

E F
e (θ) := {a(θ) | a ∈ E⇑e , θ + τ⇑a ∈ S},

where a(θ) = (v(θ), w(θ+τ⇑a )). Furthermore, there are holdover arcs (v(θ), v(θ+))
of infinite capacity to simulate intermediate storage at nodes, for all v ∈ V .

For a static flow x in GF and θ ∈ S, we define λa(θ) := xa(θ)/ua(θ) to be the per
capacity inflow value on arc a(θ) ∈ E F . With these definitions, the concept of weakly
inflow-preserving flows directly carries over to static flows x in GF, i.e., x is weakly
inflow-preserving if∑

a∈E⇑e

λa(θ) ≤ 1 for all e ∈ E and θ ∈ S.(4)

Moreover, the problem of computing a weakly inflow-preserving static flow in GF can
easily be formulated as a linear program. Take a standard network flow formulation
and add extra constraints (4). In particular, such a flow can be computed in polynomial
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time. Note that any weakly inflow-preserving static flow in GF corresponds to a weakly
inflow-preserving flow over time in G⇑, and vice versa (see Section 2.3).

5.2. The Algorithm and Its Running Time. Let T ∗ denote the time horizon of a quickest
flow with inflow-dependent transit times in G. We can now give an overview of our
algorithm which yields a flow over time with time horizon at most (1 + O(ε))T ∗, for
any given ε > 0. In the following, let T̄ := (1+ 6ε)T ∗.

FPTAS

(1) Guess T such that T̄ ≤ T ≤ (1+ ε)T̄ holds (binary search).
(2) Construct the fan graph GF with respect to T . Compute a weakly inflow-preserving

static multicommodity flow in GF satisfying all demands at cost bounded by the
budget C .

(3) Interpret this static flow as a weakly inflow-preserving flow over time in G⇑.
Modify this flow to make it inflow-preserving in G↑ and, from this, derive a flow
over time in G with inflow-dependent transit times and time horizon at most T .

We proceed as follows: First we discuss issues related to the running time of the
algorithm and detail how step 3 is implemented. Then, in Section 5.3, we prove that a
static flow in GF with the properties claimed in step 2 actually exists.

Using the (2 + ε)-approximation from Section 4, one can obtain upper and lower
bounds on T̄ = (1 + 6ε)T ∗ within a constant factor of each other. Thus, the estimate
T can be found within O(log(1/ε)) geometric mean binary search steps. The fan graph
GF constructed in step 2 contains n/ε2 time layers and thus n2/ε2 nodes and O(mn2/ε4)

arcs.7 Therefore, the static flow in GF can be computed in time polynomial in n, m,
and 1/ε. We now go into the details of step 3. As mentioned before, interpreting the
static flow in GF as a weakly inflow-preserving flow over time in G⇑ is done in the
canonical way, as described in Section 2.3. If we now shorten all arcs of G⇑ by (which
gives bow graph G↑), we obtain a weakly inflow-preserving flow over time in G↑which
is -resting. Applying Corollary 1, we derive an inflow-preserving flow over time in
G↑. Finally, by Observation 1, we get a flow over time in G with inflow-dependent
transit times (τe)e∈E with time horizon at most T = (1 + O(ε))T ∗. Clearly, step 3 can
also be done in time polynomial in n, m, and 1/ε. This concludes the discussion of the
algorithm’s running time.

5.3. Analysis of the Algorithm. In this section we prove that our algorithm actually is
an FPTAS by showing that a feasible flow as claimed in step 2 exists. Without loss of
generality, we can assume in the remainder of this section that T = T̄ = (1 + 6ε)T ∗;
notice that the topology of the fan graph GF does not depend on the exact choice of
T and that its arc capacities only increase with increasing T . Moreover, for technical
reasons we assume that ε ≤ 1

6 in the following.

7 Note that each fan contains at most n/ε2 arcs, potentially one for each layer of GF, and each of the m arcs
in E induces n/ε2 fans.
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We transform a quickest flow in G with inflow-dependent transit times into a weakly
inflow-preserving static flow in GF without increasing its cost. This transformation is
done in several steps which are illustrated in the following diagram. The cost of the flow
remains unchanged in all three steps.

infl.-dep. flow
over time in
G, time
horizon T ∗

1©→ infl.-pres. flow
over time in
G↓, time
horizon T ∗

2©→ weakly infl.-pres.
flow over time in
G⇑, time horizon
≤ T

3©→ weakly infl.-pres.
static flow in GF,
time horizon
≤ T

With Observation 3, step 1© is easy to see. For step 3©, the flow over time in G⇑ is
interpreted as a static flow in GF as described in Section 2.3. As discussed above, since
the flow over time in G⇑ is weakly inflow-preserving, the static flow in GF is weakly
inflow-preserving, too.

Step 2© is the most interesting but also the most intricate one. By lengthening the arcs,
the flow might not remain feasible. This problem is overcome similarly to [5] and [6] by
carefully averaging flow to derive an “almost feasible” flow, then subsequently sending
less to obtain a feasible flow and finally increasing the time horizon to meet the demands.
However, in contrast to [5] and [6], our flows must have the additional property of being
weakly inflow-preserving. The proof of Lemma 5 provides a more detailed discussion
of transformation 2©, in which we stress why this property is preserved.

We first state a slight generalization of a lemma in [5] and [6]. It permits us to modify
a feasible inflow-preserving flow such that the total amount of flow sent through the
network is increased by a factor of 1+δ. Hereby, the time horizon and cost are increased
by the same factor.

LEMMA 4. Let δ > 0. Given a (weakly) inflow-preserving flow over time f in a bow
graph G B with time horizon T satisfying demands di with a budget C , there exists
a (weakly) inflow-preserving flow over time f ′ in G B which satisfies demands d ′i :=
(1+ δ)di within time T ′ := (1+ δ)T , and at cost C ′ := (1+ δ)C .

PROOF. Simply scale time by a factor 1+ δ, i.e., define a flow f ′(θ) := f (θ/(1+ δ)).
It is easy to see that f ′ has the desired properties.

Lemma 5 provides details for transformation 2©.

LEMMA 5. A weakly inflow-preserving flow over time f in G↓ with time horizon T ∗ can
be transformed into a weakly inflow-preserving flow over time in G⇑ with time horizon
at most T = (1+ 6ε)T ∗ and the same cost as f .

PROOF. In f , every infinitesimal unit of flow describes a simple path P in G↓. Notice
that cycles can be avoided by storing flow at intermediate nodes. The fact that we may
assume paths to be simple will be helpful below, when bounding the total increase of the
length of such a path P after lengthening all arcs.

An infinitesimal unit of flow additionally describes a “delay configuration” at the
nodes of its path P . That is, if P is given by nodes (v0, v1, . . . , vq), then a vector of
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non-negative delays δ = (δ1, . . . , δq−1) specifies the amount of time δj for which the
infinitesimal unit of flow is stored at node vj before it continues towards node vj+1. Let
Pδ denote the path P with delay vector δ. Then the flow over time f can be decomposed
into flows over time fPδ on paths Pδ . As suggested in [5] and [6], we average the flow
along each path Pδ and thereby define a new flow over time f̂ :

f̂ Pδ (θ) := 1

εT

∫ θ

θ−εT
fPδ (ξ ) dξ for θ ∈ [0, T ∗ + εT ).(5)

The new flow f̂ has time horizon at most T ∗ + εT ≤ (1+2ε)T ∗. It is easy to check that
f̂ satisfies all demands, has the same cost as f , and obeys capacity and flow conservation
constraints in G↓. We now interpret the flow f̂ as a flow over time in the 2-lengthened
bow graph G⇑. Notice that the definition of f̂ in (5)—as flows into paths Pδ—implies
that flow conservation still holds. However, with the new transit times τ⇑a = τ↓a + 2
for a ∈ E↓ (= E⇑), the flow f̂ is not necessarily weakly inflow-preserving anymore.
In fact, it might even violate capacity constraints. The reason is that flow on different
paths using the same arc will, in general, experience different delays such that congestion
might occur on that arc. Nevertheless, we will show that a simple rescaling of f̂ results
in a feasible weakly inflow-preserving flow over time in G⇑ that satisfies all demands at
the same cost as f .

Note that every path Pδ is simple, and therefore contains at most n − 1 arcs. By
definition of , every path Pδ is lengthened by at most n 2 ≤ 2ε2T in G⇑ compared
with G↓. Thus the time horizon of f̂ in G⇑ is bounded by (1+2ε)T ∗+2ε2T ≤ (1+3ε)T ∗.

Consider a path Pδ of the path decomposition of f , i.e., Pδ is given by a path
P = (v0, v1, . . . , vq) in G↓ and a delay vector δ. For a := (v�, v�+1) ∈ P , we define

τ↓(Pδ, a) :=
�∑

j=1

(τ
↓
(vj−1,vj )

+ δj )

to be the transit time with delay δ of the subpath (v0, v1, . . . , v�) in G↓. Similarly,
τ⇑(Pδ, a) denotes the transit time with delay δ of this subpath in G⇑. The flow in f̂
entering arc a in G⇑ at time θ can be computed as follows:

f̂a(θ) =
∑

Pδ : a∈P

f̂Pδ (θ − τ⇑(Pδ, a)) for all a ∈ E⇑.(6)

With this expression for the inflow rates, we now aim at bounding the extent by which
the weakly inflow preserving property is violated, i.e., how large the sum of the per
capacity inflow values λ̂a(θ) for a ∈ E⇑e actually is. Applying τ↓(Pδ, a) ≤ τ⇑(Pδ, a) ≤
τ↓(Pδ, a) + 2ε2T (every path is lengthened by at most n2 ≤ 2ε2T ), we obtain the
following bound:

∑
a∈E⇑e

λ̂a(θ) =
∑

a∈E⇑e

f̂a(θ)

ua

(6)=
∑

a∈E⇑e

∑
Pδ : a∈P

f̂Pδ (θ − τ⇑(Pδ, a))

ua
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(5)= 1

εT

∑
a∈E⇑e

∑
Pδ : a∈P

∫ θ−τ⇑(Pδ ,a)

θ−τ⇑(Pδ ,a)−εT

fPδ (ξ )

ua
dξ

≤ 1

εT

∑
a∈E⇑e

∑
Pδ : a∈P

∫ θ−τ↓(Pδ ,a)

θ−τ↓(Pδ ,a)−2ε2T−εT

fPδ (ξ )

ua
dξ

= 1

εT

∫ θ

θ−2ε2T−εT

∑
a∈E⇑e

∑
Pδ : a∈P

fPδ (ξ − τ↓(Pδ, a))

ua
dξ

as in (6)= 1

εT

∫ θ

θ−2ε2T−εT

∑
a∈E⇑e

fa(ξ)

ua
dξ

≤ 1

εT

∫ θ

θ−2ε2T−εT
1 dξ = 1+ 2ε.

Dividing f̂ by (1 + 2ε) thus yields a feasible weakly inflow-preserving flow over time
in G⇑ that satisfies a fraction of 1/(1+ 2ε) of all demands at cost at most C/(1+ 2ε).
By Lemma 4, a weakly inflow-preserving flow over time satisfying all demands can be
obtained by increasing the time horizon by a factor of (1+ 2ε), yielding a time horizon
of at most (1+ 2ε) · (1+ 3ε)T ∗ ≤ (1+ 6ε)T ∗. The cost of this flow is equal to the cost
of f .

The following theorem comprises the main result of this section.

THEOREM 2. There is an FPTAS for the quickest multicommodity flow problem with
inflow-dependent transit times and bounded cost.

6. Complexity. In this section we prove the following result on the complexity of the
quickest s–t-flow problem with inflow-dependent transit times.

THEOREM 3. The quickest s–t-flow problem with inflow-dependent transit times, with
or without storage of flow at intermediate nodes, is NP-hard in the strong sense.

The proof uses a reduction from the well-known NP-complete problem 3-PARTITION,
see [9].

3-PARTITION

Given: A set of 3n items, n ∈ N, with associated sizes b1, . . . , b3n ∈ N, a bound B ∈ N,
such that each bi satisfies B/4 < bi < B/2 and such that

∑3n
i=1 bi = nB.

Question: Can {1, . . . , 3n} be partitioned into n disjoint sets I1, . . . , In such that, for
j ∈ {1, . . . , n}, ∑i∈Ij

bi = B?

Given an instance of 3-PARTITION, we construct a network with inflow-dependent
transit times as shown in Figure 3.



An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 317

s

t

v1 v3n

w1 wn

vi

wj

Fig. 3. Reduction of the problem 3-PARTITION to an s–t-flow over time problem with inflow-dependent
transit times.

Each item bi is represented by a node vi , each index set Ij is represented by a node
wj . The capacities are defined as follows:

u((s, vi )) := nbi + 1, u((vi , wj )) := bi + 1, u((wj , t)) := (n + 1)B + 3.

We define inflow-dependent transit times on (vi , wj ) as

τ(vi ,wj )(x) :=
{

0 if x ≤ bi ,

1 else.

All other arcs in the network have transit time zero. The task is to send D := 2n2 B+ 3n
units of flow from s to t .

LEMMA 6. If the underlying instance of 3-PARTITION is a “yes”-instance, then there
exists an s–t-flow over time with inflow-dependent transit times which sends 2n2 B + 3n
units of flow from s to t in time T := 2 without using storage of flow at intermediate
nodes.

PROOF. Given a partition I1, . . . , In of {1, . . . , 3n} such that, for j ∈ {1, . . . , n},∑
i∈Ij

bi = B, we define a flow over time with inflow-dependent transit times as follows.
During the time interval [0, 1) we send flow at constant rate nbi + 1 into arc (s, vi ),
for every i ∈ {1, . . . , 3n}. This flow is sent to the nodes w1, . . . , wn according to the
following rule. We set the flow rate of arc (vi , wj ) to bi+1, if i ∈ Ij , and to bi , otherwise.
During the time interval [1, 2)we send flow at constant rate nbi into arc (s, vi ), for every
i ∈ {1, . . . , 3n}, and define the flow rate into arc (vi , wj ), j = 1, . . . , n, to be bi . With
these definitions, it is easy to see that at every point in time flow is entering a node
wj , j = 1, . . . , n, at rate bounded by (n + 1)B + 3. Thus it can be sent immediately to
t using the arc (wj , t). Obviously, flow conservation holds at every point in time and no
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storage in intermediate nodes is used. Moreover, all 2n2 B + 3n units of flow arrive in t
before time 2.

It remains to show that the existence of a flow over time f with inflow-dependent
transit times of value D with time horizon at most 2 yields a feasible solution to the
underlying instance of 3-PARTITION. To do this, we need to make the following rea-
sonable assumption on f : all flow rate functions are essentially continuous, i.e., on every
arc a of the given network we require that the flow rate function fa has at most finitely
many discontinuities. In the following we call a flow over time reasonable if it satisfies
this assumption.

In f , we color every (infinitesimal) unit of flow either red or green. If it enters
the network before time 1, it is colored red, else it is colored green. We denote the
corresponding flows by f r and f g.

CLAIM 1. For every θ ∈ [0, 1), the following properties hold:∫ θ

0
f r
(s,vi )

(τ ) dτ = θ(nbi + 1) for all i ∈ {1, . . . , 3n},(7)

∫ 1+θ

1
f g
(vi ,wj )

(τ ) dτ = θbi for all i ∈ {1, . . . , 3n}, j ∈ {1, . . . , n}.(8)

PROOF. After time 1 flow can enter an arc (vi , wj ) at rate at most bi since, otherwise, it
cannot reach t before time 2. Thus, in total, at most n2 B units of green flow can be sent
to t . Then, in order to satisfy the demand 2n2 B + 3n, at least n2 B + 3n units of red flow
must leave s. Since the capacity of arc (s, vi ) is bounded by nbi + 1, for i ∈ {1, . . . 3n},
at most

∑3n
i=1(nbi + 1) = n2 B+ 3n units of red flow can be sent in total. Hence, exactly

n2 B + 3n units of red flow and exactly n2 B units of green flow must travel from s to t .
As a consequence, (7) and (8) must hold.

Consider a node vi , i ∈ {1, . . . , 3n}. If flow is entering an arc (vi , wj ), j ∈ {1, . . . , n},
at rate at most bi , this flow arrives in wj instantaneously. Otherwise, this flow needs one
unit of time to reachwj and is therefore delayed. We now investigate how much red flow
is delayed for each node vi .

CLAIM 2. For all i ∈ {1, . . . , 3n}, the following properties hold:

(1) At least bi + 1 units of red flow passing through vi are delayed.
(2) If exactly bi + 1 units of red flow passing through vi are delayed, then at almost

every8 point θ ∈ [0, 1),

f r
(vi ,wj )

(θ) ∈ {bi , bi + 1} for all j ∈ {1, . . . , n}.

PROOF. Fix i ∈ {1, . . . , 3n}. At most nbi units of red flow can be sent out of vi

instantaneously during [0, 1) by setting the flow rate of every arc (vi , wj ), j = 1, . . . , n,

8 The subset of [0, 1) where the property fails has Lebesgue-measure zero.
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to the threshold value bi during time interval [0, 1). By (7), at least one additional unit
of red “excess” flow has to be sent out of vi by exceeding this threshold value on some
of the arcs (vi , wj ), j = 1, . . . , n. For every arc (vi , wj ), j = 1, . . . , n, let

δj (θ) :=
{

f r
(vi ,wj )

(θ)− bi if f r
(vi ,wj )

(θ) > bi ,

0 otherwise

denote the excess rate of arc (vi , wj ), then
∑n

j=1

∫ 1
0 δj (θ) dθ ≥ 1 must hold. Since

0 ≤ δj (θ) ≤ 1 at every point in time θ ∈ [0, 1),

bi + δj (θ) ≥ (bi + 1)δj (θ).(9)

Whenever the excess rate δj (θ) is strictly greater than zero, not only the excess flow
is delayed, but all flow entering the arc (vi , wj ) at time θ . We conclude that the total
amount of delayed flow can be lower-bounded as follows:

n∑
j=1

∫
θ :δj (θ)>0

(bi + δj (θ)) dθ
(9)≥ (bi + 1)

n∑
j=1

∫ 1

0
δj (θ) dθ ≥ bi + 1.(10)

This proves the first statement of the claim.
To prove the second statement, assume that exactly bi+1 units of red flow are delayed.

In a first step we prove that at almost every point θ ∈ [0, 1), the excess rate δj (θ) is
either 0 or 1. By contradiction, assume that there exists j ∈ {1, . . . , n} for which the
property fails; let � := {θ ∈ [0, 1): 0 < δj (θ) < 1}. For all θ ∈ �, the inequality
in (9) is strict. Since f(vi ,wj ) has only a finite number of discontinuities, so does δj .
Hence � contains a small interval where δj is continuous and so the first inequality in
(10) must be strict, too. Thus, more than bi + 1 units of flow are delayed leading to a
contradiction. We conclude that at almost every point in time, for all j ∈ {1, . . . , n},
either f r

(vi ,wj )
(θ) ≤ bi (if δj (θ) = 0) or f r

(vi ,wj )
(θ) = bi + 1 (if δj (θ) = 1). Next assume

that there exists j ∈ {1, . . . , n} for which there is a set with Lebesgue-measure greater
than zero where f r

(vi ,wj )
is strictly less than bi . Then the excess flow

∑n
j=1

∫ 1
0 δj (θ) dθ

has to be strictly greater than 1, implying that the second inequality in (10) is strict.
Again, more than bi +1 units of flow are delayed leading to a contradiction. This proves
the second statement.

CLAIM 3. For all i ∈ {1, . . . , 3n}, exactly bi + 1 units of red flow passing through vi

are delayed. Moreover, all arcs (wj , t), j = 1, . . . , n, are completely filled with green
flow and delayed red flow during [1, 2).

PROOF. It follows from (8) that nB units of green flow must travel via the arcs (wj , t),
j ∈ {1, . . . , n}. Thus, due to capacity constraints, during the interval [1, 2) at most
another nB + 3n units of delayed red flow can pass through all of the arcs (wj , t),
j = 1, . . . , n. It then follows from the first statement in Claim 2 that, for all i ∈
{1, . . . , 3n}, exactly bi + 1 units of red flow passing through vi are delayed and all
arcs (wj , t), j = 1, . . . , n, are completely filled with green flow and delayed red flow
[1, 2).
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LEMMA 7. If a reasonable s–t-flow over time f with inflow-dependent transit times
exists which sends D = 2n2 B + 3n units of flow from s to t in time T := 2, then the
underlying instance of 3-PARTITION is a “yes”-instance.

PROOF. Pick a non-empty interval (0, µ) during which all flow rate functions f(vi ,wj )

are continuous. By Claim 3 and the second part of Claim 2, each of these flow rates must
be constant, either bi or bi + 1. Claim (7) together with flow conservation implies that,
for each i ∈ {1, . . . , 3n}, at most one arc leaving vi has a flow rate of bi + 1 during
(0, µ). We define partition sets as follows: for all j ∈ {1, . . . , n} let Ij be the set of items
bi for which f(vi ,wj )(θ) = bi + 1 during (0, µ). Notice that no item is contained in more
than one partition set. We claim that each partition set Ij satisfies

∑
i∈Ij

bi = B. If not,
there exists j ∈ {1, . . . , n} such that

∑
i∈Ij

bi < B. Then less than µ(B + 3) units of
delayed red flow arrive inwj during (1, 1+µ). Again, by (8), at most anotherµnB units
of green flow arrive in wj during (1, 1+ µ), contradicting Claim 3. This concludes the
proof of Lemma 7 and Theorem 3.
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