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Abstract

We analyze approximation algorithms for several variants of the traveling sales-
man problem with multiple objective functions. First, we consider the symmetric
TSP (STSP) with γ-triangle inequality. For this problem, we present a determin-
istic polynomial-time algorithm that achieves an approximation ratio of min{1 +

γ, 2γ
2

2γ2
−2γ+1

} + ε and a randomized approximation algorithm that achieves a ratio

of 2γ
3
+2γ

2

3γ2
−2γ+1

+ ε. In particular, we obtain a 2 + ε approximation for multi-criteria
metric STSP.

Then we show that multi-criteria cycle cover problems admit fully polynomial-time
randomized approximation schemes. Based on these schemes, we present randomized
approximation algorithms for STSP with γ-triangle inequality (ratio 1+γ

1+3γ−4γ2 + ε),

asymmetric TSP (ATSP) with γ-triangle inequality (ratio 1

2
+ γ

3

1−3γ2 + ε), STSP with

weights one and two (ratio 4/3) and ATSP with weights one and two (ratio 3/2).

1 Introduction

In many practical optimization problems, there is not only one single objective function
to measure the quality of a solution, but there are several such functions. Consider for
instance buying a car: We (probably) want to buy a cheap car that is fast and has a good
gas mileage. How do we decide which car is the best one for us? Of course, with respect to
any single criterion, making the decision is easy. But with multiple criteria involved, there
is no natural notion of a best choice. The aim of multi-criteria optimization (also called
multi-objective optimization or Pareto optimization) is to cope with this problem. To
transfer the concept of a best choice to multi-criteria optimization, the notion of Pareto
curves was introduced (cf. Section 1.1 and Ehrgott [12]). A Pareto curve is a set of
solutions that can be considered optimal.

However, for most optimization problems, Pareto curves cannot be computed effi-
ciently. Thus, we have to be content with approximations to them.

∗A preliminary version of this work has been presented at the 4th Workshop on Approximation and
Online Algorithms (WAOA 2006) [20].

†Supported by the Postdoc-Program of the German Academic Exchange Service (DAAD). On leave
from Saarland University. Work done in part at the Institute for Theoretical Computer Science of the
University of Lübeck supported by DFG research grant RE 672/3 and at the Department of Computer
Science at Saarland University.
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The traveling salesman problem (TSP) is one of the best-known combinatorial opti-
mization problems [16,18]. An instance of the TSP is a complete graph with edge weights,
and the aim is to find a Hamiltonian cycle (also called a tour) of minimum weight. Since
the TSP is NP-hard [14], we cannot hope to always find an optimal tour efficiently. For
practical purposes, however, it is often sufficient to obtain a tour that is close to optimal.
In such cases, we require approximation algorithms, i. e., polynomial-time algorithms that
compute such near-optimal tours.

While the approximability of several variants of the single-criterion TSP has been
studied extensively in the past decades, not much is known about the approximability
of multi-criteria TSP. The classical TSP is about a traveling salesman who has to visit
a certain number of cities and return back home in a shortest tour. “Real” saleswomen
and salesmen do not face such a simple situation. Instead, while arranging their tours,
they have to bear in mind several objectives that are to be optimized. For instance, the
distance traveled and the travel time should be minimized while the journey should be as
cheap as possible. This gives rise to multi-criteria TSP, for which we design approximation
algorithms in this paper.

1.1 Preliminaries

Graphs and Optimization Problems. Let G = (V,E) be a graph (directed or undi-
rected) with edge weights w : E → N. We define the weight of a subgraph G′ = (V ′, E′)
of G or a subset E′ of the edges of G as the sum of the weights of its edges: w(G′) =
w(E′) =

∑

e∈E′ w(e). For k ∈ N, we define [k] = {1, 2, . . . , k}.
TSP in general is the following optimization problem: Given a graph with edge weights,

find a Hamiltonian cycle, i. e., a cycle that visits every vertex of the graph exactly once, of
minimum weight. In case of undirected graphs, we speak of the symmetric TSP (STSP),
while in case of directed graphs, we refer to the problem as the asymmetric TSP (ATSP).

An instance of ∆-STSP is an undirected complete graph G = (V,E) with edge
weights w : E → N that fulfill triangle inequality, i. e., w({u, v}) ≤ w({u, x}) + w({x, v})
for all distinct vertices u, v, x ∈ V .

For γ ∈ [12 , 1], ∆(γ) -STSP is the restriction of ∆ -STSP to instances that satisfy γ-
strengthened triangle inequality, i. e., w({u, v}) ≤ γ ·(w({u, x})+w({x, v})) for all distinct
vertices u, v, x.

STSP(1, 2) is the special case of ∆ -STSP where only one and two are allowed as edge
weights, i. e., w : E → {1, 2}.

∆-ATSP, ∆(γ) -ATSP, and ATSP(1, 2) are defined like their undirected coun-
terparts ∆ -STSP, ∆(γ) -STSP, and STSP(1, 2), respectively, except that the graphs are
directed.

Note that for γ = 1, ∆(γ) -STSP and ∆(γ) -ATSP become ∆ -STSP and ∆ -ATSP,
respectively. As γ gets smaller, the edge weights become more and more structured. For
γ = 1/2, all edge weights are equal. The γ-strengthened triangle inequality can also be
considered as a data-dependent bound [7]: Given an instance of metric TSP, we compute
the minimum γ such that the instance fulfills γ-strengthened triangle inequality. If γ < 1,
then we obtain a better performance guarantee for our approximate solution than with
triangle inequality alone.

A cycle cover of a graph G = (V,E) is a subgraph (V,C) that consists solely of cycles
such that every vertex v ∈ V is part of exactly one cycle. In most cases, we refer to a
cycle cover as the set C of its edges. Hamiltonian cycles are cycle covers that consist of
only a single cycle.
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The problem of computing cycle covers of minimum weight in undirected graphs is
called SCC. The directed version of the problem is called ACC.

Multi-Criteria Optimization. A k-criteria optimization problem consists of a set I of
instances, a set sol(x) of feasible solutions for every instance x ∈ I, k objective functions
w1, . . . , wk, each mapping pairs of x ∈ I and y ∈ sol(x) to N, and k types indicating
whether wi should be minimized or maximized. We refer to Ehrgott and Gandibleux [12,
13] for surveys on multi-criteria optimization problems. Throughout this paper, we restrict
ourselves to problems where all objective functions should be minimized. Furthermore,
we assume that the number k of criteria is fixed. The running-times of our algorithms are
exponential in k. But since k is typically a small number, this does not cause any harm.

The optimization problems defined in Section 1.1 are generalized to their multi-criteria
counterparts in the obvious way: We have k objective functions w1, . . . , wk, each induced
by edge weight functions (to which we also refer as w1, . . . , wk) as described. If we have
additional restrictions on the edge weights, like the triangle inequality, every edge weight
function is assumed to fulfill them.

In general, the different objective functions are in conflict with each other, i. e., it is
impossible to minimize all of them simultaneously. Therefore, the notion of Pareto curves
has been introduced. For the following definitions, let Π be a k-criteria optimization
problem as defined above.

A set P(x) ⊆ sol(x) is called a Pareto curve of x if for all solutions z ∈ sol(x), there
exists a solution y ∈ P(x) with wi(x, y) ≤ wi(x, z) for all i ∈ [k].

A Pareto curve contains all solutions that might be considered optimal. If there are
two solutions y and z with wi(x, y) = wi(x, z) for all i ∈ [k], then it suffices to put one
of them into P(x). For completeness, let us mention that Pareto curves are not unique
in general: In our definition, it is not forbidden to include dominated solutions in P(x)
(a solution y is dominated if there exists a z with wi(x, z) ≤ wi(x, y) for all i ∈ [k] and
wi(x, z) < wi(x, y) for some i ∈ [k], i. e., z is strictly better than y).

For the majority of multi-criteria problems, computing Pareto curves is hard for two
reasons: First, many two-criteria problems allow for a reduction from the knapsack prob-
lem. Second, Pareto curves are often of exponential size. Therefore, we have to be content
with approximate Pareto curves. Let β ≥ 1, and let x ∈ I and Papx(x) ⊆ sol(x). The set
Papx(x) is called a β-approximate Pareto curve for x if, for every z ∈ sol(x), there
exists a y ∈ Papx(x) with wi(x, y) ≤ β · wi(x, z) for all i ∈ [k].

A 1-approximate Pareto curve is a Pareto curve. For completeness, let us mention that
if Π is a maximization problem (or an objective wi for some i ∈ [k] should be maximized),
then the condition is wi(x, z) ≤ β · wi(x, y).

While Pareto curves itself are often of exponential size, it is known that (1 + ε)-
approximate Pareto curves of size polynomial in the input size and 1/ε exist [23]. (The
technical restriction is that the objective functions are restricted to assume values of at
most 2p(|x|) for x ∈ I and some polynomial p.)

The above definition leads immediately to the notion of an approximation algorithm
for multi-criteria optimization problems: Let β ≥ 1. A β-approximation algorithm for
Π is an algorithm that, for every input x ∈ I, computes a β-approximate Pareto curve for
x in time polynomial in the size |x| of x.

A randomized β-approximation algorithm for Π is a polynomial-time algorithm
that, for every input x ∈ I, computes a set Papx(x) ⊆ sol(x) such that Papx(x) is a
β-approximate Pareto curve for x with a probability of at least 1/2.

By executing a randomized approximation algorithm ℓ times, we obtain a β-appro-

3



Variant Ratio Reference

∆-STSP 3/2 Christofides [10]

∆(γ) -STSP min
{ 3γ2

3γ2−2γ+1
, 2−γ
3−3γ

}
Böckenhauer et al. [8]

STSP(1, 2) 8/7 Berman, Karpinski [5]

∆ -ATSP 0.842 · log n Kaplan et al. [17]

∆(γ) -ATSP min
{ 1+γ
2−γ−γ3 ,

γ
1−γ

}
Bläser et al. [7]; Chandran and Ram [9]

ATSP(1, 2) 5/4 Bläser [6]

Table 1: Approximability of single-criterion TSP.

ximate Pareto curve with a probability of at least 1 − 2−ℓ, i. e., the failure probability
tends exponentially to zero: We take the union of all sets of solutions computed in the ℓ
iterations and throw away all solutions that are dominated by solutions in the union.

Given the notion of (randomized) approximation algorithms, we can define approxi-
mation schemes. A fully polynomial-time approximation scheme (FPTAS) for Π
is an algorithm that, on input x ∈ I and ε > 0, computes a (1 + ε)-approximate Pareto
curve in time polynomial in the size of x and 1/ε.

A fully polynomial-time randomized approximation scheme (FPRAS) for Π
is a randomized approximation algorithm that, on input x ∈ I and ε > 0, computes a
(1 + ε)-approximate Pareto curve in time polynomial in the size of x and 1/ε.

Finally, we define the notion of a randomized exact algorithm: A randomized exact
algorithm for Π is an algorithm that, on input x, computes a Pareto curve of x in time
polynomial in the size of x with a probability of at least 1/2.

An optimization problem Π is said to be polynomially bounded if there exists a poly-
nomial p such that the following holds for every objective function wi of Π: For every
instance x and every feasible solution y for x, wi(x, y) ≤ p(|x|) for all i ∈ [k]. Analogously
to the fact that a polynomially bounded single-criterion problem that admits an FPTAS
can be solved exactly in polynomial time (cf. Ausiello et al. [3, Theorem 3.15]), random-
ized exact algorithms exist for polynomially bounded multi-criteria optimization problems
that admit an FPRAS.

1.2 Previous Results

The approximability of single-criterion TSP has been studied intensively in the past. Ta-
ble 1 shows the currently best approximation ratios of the variants for which the multi-
criteria counterparts are considered in this paper.

While single-criterion optimization problems and their approximation properties have
been the subject of a considerable amount of research (cf. Ausiello et al. [3] for a survey),
not much is known about the approximability of multi-criteria optimization problems.

Papadimitriou and Yannakakis [23], by applying results of Barahona and Pulley-
blank [4], Mulmuley et al. [21], and themselves [22], showed that there exist FPTASs for
multi-criteria minimum-weight spanning trees and the multi-criteria shortest path prob-
lem and an FPRAS (more precisely, a fully polynomial RNC scheme) for the multi-criteria
minimum weight matching problem. The results were established by showing that a multi-
criteria problem admits an FPTAS if the exact version of the single-criterion problem can
be solved in pseudo-polynomial time. Let Π be a single-criterion optimization problem
with instance set I and objective function w. The exact version of Π is the following
decision problem: Given an instance x ∈ I and a number W ∈ N, does there exist a
solution y ∈ sol(x) with w(x, y) = W ?
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The exact versions of many single-criterion optimization problems are NP-complete
since knapsack can be reduced to them easily. But this does not rule out the possibility
of pseudo-polynomial-time algorithms for them.

Multi-criteria TSP has been investigated by Ehrgott [11] and Angel et al. [1, 2].
Ehrgott [11] considered a generalization of Christofides’ algorithm for ∆ -STSP. Instead
of considering Pareto curves, he measured the quality of a solution y for an instance x
as a norm of the vector (w1(x, y), . . . , wk(x, y)). Thus, he encoded the different objective
functions into a single one, which reduces the problem to a single-criterion problem. The
approximation ratio achieved is between 3/2 and 2, depending on the norm used to com-
bine the different criteria. However, by encoding all objective functions into a single one,
we lose the special properties of multi-criteria optimization problems.

Angel et al. [1] considered two-criteria STSP(1, 2). They presented a 3/2-approxi-
mation algorithm for this problem by using a local search heuristic. Finally, Angel et al. [2]
generalized these results to k-criteria STSP(1, 2) by presenting a 2 − 2

k+1 -approximation
for k ≥ 3. Although for every fixed k, the approximation ratio is below 2, it converges to
2 as k increases. Thus, the ratio tends to the trivial ratio of 2, which can be achieved by
selecting any Hamiltonian cycle. These two are the only papers about the approximability
of Pareto curves of multi-criteria TSP we are aware of.

1.3 Our Results

All our results hold for an arbitrary but fixed number of objective functions.
We present a deterministic polynomial-time algorithm that computes (2 + ε)-approxi-

mate Pareto curves for ∆ -STSP (Section 2.1). This is the first efficient algorithm for
computing approximate Pareto curves for this problem. In fact, we show the following
more general result: If the edge weights satisfy γ-strengthened triangle inequality for

γ ∈ [12 , 1], then the algorithm computes a (min{1 + γ, 2γ2

2γ2−2γ+1
}+ ε)-approximate Pareto

curve for arbitrarily small ε > 0 in polynomial time.
We generalize Christofides’ algorithm [10] (cf. Vazirani [26, Sect. 3.2]) to obtain a

randomized approximation algorithm for multi-criteria ∆(γ) -STSP (Section 2.2). For

γ ∈ [12 , 1], our algorithm achieves an approximation performance of 2γ3+2γ2

3γ2−2γ+1
+ ε. For

γ = 1, this yields a ratio of 2 + ε.
We consider cycle covers in Section 3. Cycle covers play an important role in the

design of approximation algorithms for the TSP. We prove that there exists an FPRAS
for computing approximate Pareto curves of multi-criteria cycle covers. Subsequently, we
extend this result and show that the multi-criteria variant of the problem of finding graph
factors of minimum weight admits an FPRAS, too.

Finally, we analyze a randomized cycle-cover-based algorithm for multi-criteria TSP
(Section 4): We start by computing an approximate Pareto curve of cycle covers. Then,
for every cycle cover in the set computed, we remove one edge of every cycle and join
the paths thus obtained to a Hamiltonian cycle. We analyze the approximation ratio of
this algorithm for ∆(γ) -STSP (Section 4.2, approximation ratio 1+γ

1+3γ−4γ2 + ε for γ < 1),

∆(γ) -ATSP (Section 4.3, ratio 1
2 +

γ3

1−3γ2 + ε for γ < 1/
√
3), STSP(1, 2), and ATSP(1, 2)

(Section 4.4, ratios 4/3 and 3/2, respectively).
As far as we know, our algorithms are the first approximation algorithms for Pareto

curves for ∆ -STSP, ∆(γ) -STSP, ∆(γ) -ATSP, and ATSP(1, 2). Furthermore, we achieve
a better approximation ratio for STSP(1, 2) than the approximation algorithms by Angel
et al. [1, 2] for all k.
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Algorithm 1 The tree doubling algorithm for multi-criteria ∆ -STSP.

Input: undirected complete graph G = (V,E); k edge weight functions wi : E → N

(i ∈ [k]); ε > 0
Output: an approximate Pareto curve Papx

TSP to the multi-criteria STSP
1: compute a (1+ ε

2 )-approximate Pareto curve Papx
MST for MST on G using the algorithm

by Papadimitriou and Yannakakis [23]
2: for all trees T ∈ Papx

MST do
3: duplicate all edges in T to obtain an Eulerian graph T̃
4: obtain a Hamiltonian cycle S from T̃ by taking shortcuts
5: put S into Papx

TSP

6: end for

2 Metric TSP

In this section, we present two algorithms for ∆ -STSP and ∆(γ) -STSP. Another ap-
proximation algorithm that can be used for approximating ∆(γ) -STSP, which is based on
computing cycle covers, will be presented in Section 4.

The analyses of the algorithms in this section exploit the following result due to
Böckenhauer et al. [8].

Lemma 2.1 (Böckenhauer et al. [8]). Let G = (V,E) be an undirected complete graph with
an edge weight function w satisfying γ-strengthened triangle inequality for some γ ∈ [12 , 1).

Let wmax = maxe∈E(w(e)) and wmin = mine∈E(w(e)) be the weights of a heaviest and

lightest edge, respectively. Then wmax

wmin
≤ 2γ2

1−γ
.

Let e and e′ be two edges with a common endpoint. Then w(e)
w(e′) ≤

γ
1−γ

.

Furthermore, we observe the following: Omitting two edges by taking a shortcut re-
duces the weight by at least 2 · (1 − γ) · wmin: The reason is that the two edges (u, v)
and (v, x) are replaced by (u, x) and w(u, x) ≤ γ · (w(u, v) +w(v, x)). Thus, the weight is
reduced by at least w(u, v)+w(v, x)−w(u, x) ≥ (1−γ)·(w(u, v)+w(v, x)) ≥ 2·(1−γ)·wmin.

2.1 The Generalized Tree Doubling Algorithm

Consider the following approximation algorithm for single-criterion ∆ -STSP, which was
first analyzed by Rosenkrantz et al. [24] (cf. Vazirani [26, Sect. 3.2]): First, we compute a
minimum spanning tree. Then we duplicate each edge. The result is an Eulerian graph.
We obtain a Hamiltonian cycle from this graph by walking along an Eulerian cycle. If we
come back to a vertex that we have already visited, we omit it and take a short-cut to the
next vertex in the Eulerian cycle. In this way, we obtain an approximation ratio of 2 for
single-criterion ∆ -STSP. Algorithm 1 is an adaptation of this algorithm to multi-criteria
STSP. In the following, we estimate the approximation performance of this algorithm.

Theorem 2.2. For all γ ∈ [12 , 1], Algorithm 1 computes a (min{1 + γ, 2γ2

2γ2−2γ+1
} + ε)-

approximate Pareto curve for multi-criteria ∆(γ) -STSP in time polynomial in the input
size and 1/ε.

Proof. We present two analyses showing approximation ratios of 1+γ+ε and 2γ2

2γ2−2γ+1
+ε,

respectively. The first analysis holds for γ ∈ [12 , 1] while the second one only holds for

γ ∈ [12 , 1). However, 1 + γ = 2γ2

2γ2−2γ+1
for γ = 1.
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The key observation of the first analysis is the following: Let T ∈ Papx
MST, and let e be

any edge in T . Then e appears twice in T̃ , but e cannot appear twice in S since S is a
Hamiltonian cycle. (We assume that G contains at least three vertices.) Thus, at least
one copy of e is omitted. This is the moment at which the strengthened triangle inequality
comes into play. Let e1, e2, . . . , eℓ with ej = {vj−1, vj} be a path along the Eulerian cycle
in T̃ such that this path is replaced by the edge {v0, vℓ} by taking a shortcut. Then we
have

wi({v0, vℓ}) ≤ γ ·
(
wi(e1) +wi(e2) + . . . + wi(eℓ)

)

by iteratively applying γ-strengthened triangle inequality. (We exploit the fact that γc ≤ γ
for all c ≥ 1.) Overall, every edge that we omit contributes at most a fraction of γ of its
weight. Since we omit at least one copy of every edge e, the two copies of e contribute at
most (1 + γ) · wi(e) to S. Thus,

wi(S) ≤ (1 + γ) · wi(T )

for all i ∈ [k].
To estimate the overall approximation performance, let S′ be an arbitrary Hamiltonian

cycle. By omitting one edge, we obtain a tree T ′. Since Papx
MST is a (1 + ε/2)-approximate

Pareto curve for multi-criteria minimum-weight spanning trees on G, there exists a tree
T ∈ Papx

MST with

wi(T ) ≤
(
1 +

ε

2

)
· wi(T

′) ≤
(
1 +

ε

2

)
· wi(S

′)

for all i ∈ [k]. Let S be the Hamiltonian cycle obtained from T , then

wi(S) ≤ (1 + γ) · wi(T ) ≤ (1 + γ + ε) · wi(S
′)

for all i ∈ [k].
For the second analysis, let again S′ be an arbitrary Hamiltonian cycle. This analysis

only holds for γ < 1 since wmax/wmin can be unbounded for γ = 1. All arguments
hold simultaneously for all criteria i ∈ [k]. Without loss of generality, we assume that
mine∈E wi(e) = 1 for all i ∈ [k], i. e., wmin = 1. By removing one edge of S′, we obtain
a tree with a weight of at most wi(S

′) − wmin = wi(S
′) − 1. Thus, there exists a tree

T ∈ Papx
MST from which we obtain a Eulerian graph T̃ with

wi(T̃ ) ≤ 2 ·
(
1 +

ε

2

)
· (wi(S

′)− 1) = (2 + ε) · (wi(S
′)− 1).

Let n = |V | be the number of vertices of the whole graph. Then T̃ contains 2n− 2 edges.
Thus, in order to obtain a Hamiltonian cycle, we have to remove n − 2 edges by taking
shortcuts. Every shortcut decreases the weight by at least 2 · (1− γ). Hence,

wi(S) ≤ wi(T̃ )− (n− 2) · 2 · (1− γ)

≤ (2 + ε) · wi(S
′)− (2 + ε)− (n− 2) · 2 · (1− γ)

≤ (2 + ε) · wi(S
′)− 2n · (1− γ)− (4γ − 2)

≤ (2 + ε) · wi(S
′)− 2n · (1− γ)

since 2γ ≥ 1. We have wi(S
′) = 2nγ2

(1−γ)·α for some appropriately chosen α ≥ 1, which
implies

wi(S)

wi(S′)
≤ 2 + ε− 2n · (1− γ)2 · α

2γ2n
= 2 + ε− (1− γ)2 · α

γ2
.
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Algorithm 2 A generalization of Christofides’ algorithm for multi-criteria ∆ -STSP.

Input: undirected complete graph G = (V,E); k edge weight functions wi : E → N

(i ∈ [k]); ε > 0
Output: an approximate Pareto curve Papx

TSP to the multi-criteria STSP (with a proba-
bility of at least 1/2)

1: compute a (1+ ε
2 )-approximate Pareto curve Papx

MST for MST on G using the algorithm
by Papadimitriou and Yannakakis [23]

2: let p be the number of trees in Papx
MST

3: for all trees T ∈ Papx
MST do

4: let Vodd ⊆ V be the set of vertices of odd degree in T
5: compute Papx

Match(T ) such that Papx
Match(T ) is a

(
1+ ε

2

)
-approximate Pareto curve for

the minimum-weight matching problem on the complete graph induced by Vodd

with a probability of at least 1− 1
2p using the algorithm by Papadimitriou and

Yannakakis [23]
6: for all matchings M ∈ Papx

Match(T ) do
7: let S be a Hamiltonian cycle obtained from T ∪M by taking shortcuts
8: put S into Papx

TSP

9: end for
10: end for

Since wi(S) ≤ n 2γ2

1−γ
, we also have wi(S)

wi(S′) ≤ α. Thus, the approximation ratio achieved is

max
α≥1

(

min

(

α, 2 + ε− (1− γ)2 · α
γ2

))

≤ max
α≥1

(

min

(

α, 2− (1− γ)2 · α
γ2

))

+ ε

=
2γ2

2γ2 − 2γ + 1
+ ε,

which completes the proof of the theorem.

For small values of γ, the bound of 2γ2

2γ2−2γ+1
+ ε is the stronger one, while 1 + γ + ε

yields a better bound in case of γ > 1/
√
2.

Corollary 2.3. Algorithm 1 computes (2+ε)-approximate Pareto curves for multi-criteria
∆-STSP in time polynomial in the input size and 1/ε.

2.2 A Generalization of Christofides’ Algorithm

In this section, we generalize Christofides’ algorithm to multi-criteria ∆ -STSP, which is
the best approximation algorithm for single-criterion ∆ -STSP known so far. This al-
gorithm computes approximate Pareto curves of matchings. In case of single-criterion
∆ -STSP, we can always find a matching with a weight of at most half of the weight of
the optimal Hamiltonian cycle. This is in contrast to multi-criteria ∆ -STSP, where the
weights of the matchings can be arbitrarily close to the weight of the optimal Hamiltonian
cycle. The reason is that we cannot choose the lighter of two different matchings since
multiple objective functions are involved; the term ”‘lighter”’ is not well defined. There-
fore, we only get an approximation ratio of roughly two in this case. But for ∆(γ) -STSP,
we can show a better upper bound.

8



Theorem 2.4. For γ ∈ [12 , 1], Algorithm 2 is a randomized
( 2γ3+2γ2

3γ2−2γ+1
+ ε

)
-approximation

algorithm for multi-criteria ∆(γ) -STSP. Its running time is polynomial in the input size
and 1/ε.

Proof. The proof consists of two parts. First, we estimate the approximation performance,
given that all Pareto curves computed are (1+ε/2)-approximate Pareto curves. Second, we
estimate the success probability, i. e., the probability that such a Pareto curve is computed.

We assume that all Pareto curves that have to be computed during the execution of
the algorithm were computed successfully, i. e., with an appropriate approximation ratio.
Let S′ be an arbitrary Hamiltonian cycle of G. Without loss of generality, we assume
again that wmin = 1. All the arguments in the following hold for all i.

There exists a tree T ∈ Papx
MST with

wi(T ) ≤
(
1 +

ε

2

)
· (wi(S

′)− 1).

Let Vodd be the set of vertices of odd degree in T , and let nodd be its cardinality. Note that
nodd is even, thus perfect matchings exist on the complete graph induced by Vodd. Let
n = |V | be the number of vertices of the whole graph. Let Sodd be the Hamiltonian cycle
obtained from S′ by taking shortcuts. We get two matchings M1 and M2 on Vodd from
Sodd by putting the edges of Sodd alternately into M1 and M2. By γ-triangle inequality,
we have

wi(M1) + wi(M2) = wi(Sodd) ≤ wi(S
′)− (n− nodd) · 2 · (1− γ)

since every shortcut reduces the weight by at least (1− γ) · 2wmin. Now, wi(M1) · 1−γ
γ

≤
wi(M2) according to Lemma 2.1. (Note that we do not make any assumptions whether
M1 or M2 is the lighter matching.) There exists a matching M ∈ Papx

Match(T ) with

wi(M) ≤
(
1 +

ε

2

)
· wi(M1).

Hence,

wi(M)

γ
= wi(M) ·

(
1 +

1− γ

γ

)
≤

(
1 +

ε

2

)
·
(
wi(M1) + wi(M2)

)

≤
(
1 +

ε

2

)
·
(
wi(S

′)− 2 · (n− nodd) · (1− γ)
)
.

Let D be Eulerian graph obtained by taking the union of the tree T and the matching M .
By the arguments above, we can bound its weight as follows:

wi(D) = wi(T ) + wi(M)

≤
(
1 +

ε

2

)
·
(
wi(S

′)− 1 + γ ·
(
wi(S

′)− 2 · (n− nodd) · (1− γ)
))

=
(
1 +

ε

2

)
·
(
(1 + γ) · wi(S

′)−
(
1 + 2γ · (n− nodd) · (1− γ)

))
.

The Eulerian graph D consists of n − 1 + nodd/2 edges, the tour S constructed from D
consists only of n edges. Thus, nodd/2−1 edges are removed and, by γ-triangle inequality,
we have

wi(S) ≤ wi(D)− 2 · (nodd/2− 1) · (1− γ) = wi(D)− (1− γ) · (nodd − 2).
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By combining these inequalities, we obtain

wi(S) ≤
(
1 +

ε

2

)
·
(
(1 + γ) · wi(S

′)

−
(
1 + 2γ · (n− nodd) · (1− γ) + (1− γ) · (nodd − 2)

))

=
(
1 +

ε

2

)
·
(
(1 + γ) · wi(S

′)

−
(
1− 2 + 2γ
︸ ︷︷ ︸

≥0

+(1− γ)·
(
2γ
︸︷︷︸

≥1

·(n − nodd) + nodd

)))

≤
(
1 +

ε

2

)
·
(
(1 + γ) · wi(S

′)− n · (1− γ)
)
.

Now we have wmax ≤ 2γ2

1−γ
since wmin = 1. Thus, wi(S

′) ≤ 2γ2

1−γ
· n. We choose α ≥ 1 such

that wi(S
′) = 2nγ2

(1−γ)·α , which implies

wi(S)

wi(S′)
≤

(
1 +

ε

2

)
·
(
(1 + γ)− n · (1− γ)

wi(S′)

)
≤

(
1 +

ε

2

)
·
(
(1 + γ)− αn · (1− γ)

2γ2

1−γ
· n

)

=
(
1 +

ε

2

)
·
(
(1 + γ)− α(1− γ)2

2γ2
)

≤ (1 + γ)− α(1 − γ)2

2γ2
+ ε.

The last inequality holds since (1 + γ)− α(1−γ)2

2γ2 ≤ 1 + γ ≤ 2.

Since wi(S) ≤ n 2γ2

1−γ
, we also have wi(S)

wi(S′) ≤ α. Thus, the approximation ratio achieved
is

max
α≥1

(

min

(

α, (1 + γ)− α(1− γ)2

2γ2
+ ε

))

≤ 2γ3 + 2γ2

3γ2 − 2γ + 1
+ ε · 2γ2

3γ2 − 2γ + 1
≤ 2γ3 + 2γ2

3γ2 − 2γ + 1
+ ε.

We obtain the first inequality by observing that (1 + γ) − α(1−γ)2

2γ2 + ε is monotonically

decreasing in α: The maximum of the minimum is therefore assumed for α = (1 + γ) −
α(1−γ)2

2γ2 + ε. The second inequality follows from the fact that 2γ2

3γ2−2γ+1
≤ 1 for γ ∈ [12 , 1].

The analysis so far holds only for γ < 1 since for γ = 1, division by zero occurs at

some points in the analysis. For γ = 1, we obtain a ratio of 2+ ε = 2γ3+2γ2

3γ2−2γ+1
+ ε: We have

w(M) ≤
(
1 + ε

2

)
· w(S′) and w(T ) ≤

(
1 + ε

2

)
· w(S′), which implies the bound.

What remains to be proved is that the algorithm succeeds with a probability of at least
1/2. First, we observe that if we iterate the randomized computation of an approximate
Pareto curve, then we do not have to decide which set is indeed such an approximate
Pareto curve. Instead, we can take the union of all solutions computed and remove all
dominated solutions of the set thus obtained. The only randomization in Algorithm 2 is
in the computation of the approximate Pareto curves for the matching problems. The
number of curves to be computed is p, which is bounded by a polynomial of the input
size and 1/ε. We can achieve a failure probability of at most 1

2p by performing log(2p)
iterations of the FPRAS for the matching problem. The probability that one of the Pareto
curve computations fails is thus at most p · 1

2p = 1/2, which completes the proof of the
theorem.

We compare the ratios obtained by the two algorithms of this sections and the cycle
cover algorithm of Section 4 in Section 5.1.
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3 Matchings and Cycle Covers

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such that
every vertex is part of exactly one cycle. Many approximation algorithms for the single-
criterion TSP are based on cycle covers. These approximation algorithms usually start by
computing an initial cycle cover and then join the cycles to obtain a Hamiltonian cycle.
This technique is called subtour patching [15]. We show that there exist FPRASs for
multi-criteria cycle cover problems.

ACC, the cycle cover problem in directed graphs, is equivalent to finding matchings
of minimum weight in bipartite graphs (assignment problem). An FPRAS for the multi-
criteria matching problem is also an FPRAS for the multi-criteria matching problem in
bipartite graphs. Hence, multi-criteria ACC also admits an FPRAS.

Theorem 3.1. There exists an FPRAS for multi-criteria ACC.

To show that multi-criteria SCC admits an FPRAS, we show that arbitrary graph
factor problems admit FPRASs. Let G = (V,E) be a graph and f : V → N be function.
A subset F ⊆ E is called an f-factor of G if all vertices v ∈ V have a degree of exactly
f(v) in the graph (V, F ).

Cycle covers of undirected graphs are also known as two-factors since every vertex is
incident to exactly two edges. Thus, they are a special case of graph factors.

The graph factor problem GFP is the following minimization problem: An instance is
an undirected graph G = (V,E) with a function f : V → N and an edge weight function
w : E → N. The aim is to find an f -factor of minimum weight.

To show that multi-criteria GFP, and thus multi-criteria SCC as well, admits an
FPRAS, we exploit Tutte’s reduction [25], which reduces arbitrary graph factor problems
to matchings (matchings are also known as one-factors since every vertex is incident to
exactly one edge of the matching). We omit a description of the reduction, but refer to
Lovász and Plummer [19] or Tutte [25] for the details. Overall, we obtain the following
result.

Theorem 3.2. Multi-criteria GFP and multi-criteria SCC admit an FPRAS.

4 Approximations Based on Cycle Covers

4.1 The Algorithm

The generic outline of a cycle-cover-based algorithm is the following: Start by computing
a cycle cover. Then remove one edge of every cycle. Finally, join the paths thus obtained
to form a Hamiltonian cycle.

Algorithm 3 is our generalization of this algorithm to multi-criteria TSP. It achieves
a constant approximation ratio if the quotient of the weight of the heaviest edge and the
weight of the lightest edge is bounded.

In this section, we present a general analysis of the approximation ratio of this algo-
rithm. We will refine the analysis for multi-criteria ∆(γ) -STSP (Section 4.2) to get an
improved approximation ratio. Furthermore, we apply the analysis to get approximation
results for multi-criteria ∆(γ) -ATSP (Section 4.3) and STSP(1, 2) and ATSP(1, 2) (Sec-
tion 4.4). We analyze Algorithm 3 in terms of the number αn of edges that have to be
removed and the quotient β = wmax/wmin.

Lemma 4.1. Assume that at most αn edges have to be removed from each cycle cover
and that maxe∈E wi(e)

mine∈E wi(e)
≤ β for all i ∈ [k].

11



Algorithm 3 An approximation algorithm for multi-criteria TSP based on cycle covers.

Input: complete graph G = (V,E); k edge weight functions wi (i ∈ [k]); ε′ > 0
Output: an approximate Pareto curve Papx

TSP to multi-criteria TSP (with a probability of
at least 1/2)

1: compute a (1 + ε′)-approximate Pareto curve PCC to the multi-criteria cycle cover
problem on G using the algorithm by Papadimitriou and Yannakakis [23]

2: for all cycle covers C ∈ PCC do
3: for all cycles c of C do
4: remove one edge of c
5: end for
6: join the paths to form a Hamiltonian cycle S
7: add S to Papx

TSP

8: end for

Then Algorithm 3 is a randomized
(
1+α(β−1)+ε

)
approximation algorithm for every

ε > 0. Its running-time is polynomial in the input size and 1/ε.

Proof. Without loss of generality, let mine∈E wi(e) = 1 for all i ∈ [k]. We run the algorithm
with some ε′ that depends on α, β, and ε and that we will specify later on. Let S′ be
an arbitrary Hamiltonian cycle. Then there exists a cycle cover C in PCC with w(C) ≤
(1 + ε′) · w(S′). We obtain a Hamiltonian cycle S from C such that

wi(S) ≤ wi(C) + αn(β − 1)

for all i ∈ [k]. The reason for this is that every edge removed has a weight of at least 1
and every edge added has a weight of at most β. Now we have for all i ∈ [k]

wi(S)

wi(S′)
≤ (1 + ε′) · wi(S)

wi(C)
≤ (1 + ε′) · wi(C) + αn(β − 1)

wi(C)

≤ (1 + ε′) · n+ αn(β − 1)

n
= (1 + ε′) · (1 + α(β − 1))

≤ 1 + α(β − 1) + ε

for ε′ ≤ ε
1+α(β−1) , which proves the lemma.

4.2 Refined Analysis for ∆(γ) -STSP

From the general analysis (Lemma 4.1), we obtain an approximation ratio of 2
3 + 2

3 ·
γ2

1−γ
+ ε for ∆(γ) -STSP. In this section, we present a refined analysis that yields a better

approximation ratio.
Consider any cycle c of a cycle cover of PCC. Then there will be an edge eR of c

that will be removed and an edge eA adjacent to eR that will be added during the joining
process. Finally, there exists an edge eK of c that is adjacent to both eR and eA (Figure 1
shows an example). Note that while eR is uniquely determined, once the edges have been
removed and the new edges have been added, the edge eA is not since there are two edges
that connect c to other cycles of the cycle cover. However, once we have fixed eA for one
cycle c, the corresponding eK is uniquely determined, and the e′A and e′K of all other cycles
c′ are also determined.

By Lemma 2.1, we have wi(eR) ≥ 1−γ
γ

·wi(eA) and wi(eK) ≥ 1−γ
γ

·wi(eA). All arguments
in the following hold for all weight functions simultaneously. Thus, we restrict ourselves
to considering one fixed weight function wi for some i ∈ [k] to simplify the arguments.
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eK

eR

e′A

e′R

e′K

eA c′c

(a) Cycle cover, before the patching.

eK

eR

e′A

e′R

e′K

eA c′c

(b) Hamiltonian cycle, after the patching.

Figure 1: Two cycles c and c′ before and after joining the cycles to a Hamiltonian cycle.
The edges eR, eK , and eA belong to c while e′R, e

′
K , and e′A belong to c′.

Let wR be the total weight of edges removed, wA be the total weight of edges added,
and wK be the total weight of edges of C and S that are adjacent to edges added. Then
we have w(C) = w + wK + wR for some suitably chosen w ≥ 0, which is the total weight
of all edges not taken into account so far. Thus,

wi(S)

wi(C)
=

w + wK + wA

w + wK + wR
= 1 +

wA − wR

w + wK + wR
= R.

Since R is monotonically decreasing with respect to wR, we obtain

R ≤ 1 +
wA − 1−γ

γ
· wA

w + wK + 1−γ
γ

· wA

= R′.

Exploiting further that R′ is monotonically decreasing in wK , we get

R′ ≤ 1 +
wA − 1−γ

γ
· wA

w + 1−γ
γ

· 2wA

= 1 +
wA(2γ − 1)

γw + (1− γ)2wA
= R′′.

The inequalities wA ≤ 2γ2n
3(1−γ) and w ≥ n/3 hold since every cycle has a length of at least

three. We exploit the fact that R′′ is monotonically increasing with respect to wA and
monotonically decreasing with respect to w:

R′′ ≤ 1 +

2γ2n
3(1−γ) · (2γ − 1)

γn
3 + (1− γ) · 2 · 2γ2n

3(1−γ)

= 1 +

2γ2

1−γ
· (2γ − 1)

γ + 4γ2
=

1 + γ

1 + 3γ − 4γ2
.

We run the algorithm with some ε′ > 0 that depends on γ. We will specify ε′ in a
moment. Let S′ be an arbitrary Hamiltonian cycle and C ∈ PCC be a cycle cover with
wi(C) ≤ (1 + ε′) · w(S′) for all i ∈ [k]. Let S be the Hamiltonian cycle obtained from C.
Then

wi(S) ≤
(
1 + ε′) · 1 + γ

1 + 3γ − 4γ2
· wi(S

′).

For a given ε > 0, we choose ε′ such that ε′ · 1+γ
1+3γ−4γ2 ≤ ε. The set Papx

TSP is a
( 1+γ
1+3γ−4γ2 +ε

)
-

approximate Pareto curve with a probability of at least 1/2, which implies the following
theorem.

Theorem 4.2. For γ ∈ [12 , 1), Algorithm 3 is a randomized
( 1+γ
1+3γ−4γ2 +ε

)
-approximation

algorithm for all ε > 0. Its running-time is polynomial in the input size and 1/ε.

In Section 5.1, we compare the approximation ratios of the cycle cover algorithm for
∆(γ) -STSP to the tree doubling and Christofides’ algorithm.
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Figure 2: The approximation ratio of Algorithm 3 achieved for ∆(γ) -ATSP subject to γ
compared to the trivial approximation ratio of wmax/wmin.

4.3 The Cycle Cover Algorithm for ∆(γ) -ATSP

For multi-criteria ∆(γ) -ATSP, our algorithm yields a constant factor approximation if

γ < 1√
3
since wmax/wmin is bounded from above by 2γ3

1−3γ2 for such γ. For larger values of

γ, this ratio can be unbounded.

Lemma 4.3 (Chandran and Ram [9]). Let γ ∈ [1/2, 1). Let G = (V,E) be a directed com-
plete graph, and let w : E → N be an edge weight function satisfying γ-triangle inequality.
Let wmin = mine∈E w(e) and wmax = maxe∈E w(e).

If γ < 1/
√
3, then wmax

wmin
≤ 2γ3

1−3γ2 . If γ ≥ 1/
√
3, then wmax

wmin
can be unbounded.

By combining Lemma 4.1 and Lemma 4.3, we obtain the following result.

Theorem 4.4. For γ < 1/
√
3, Algorithm 3 is a randomized

(
1
2+

γ3

1−3γ2 +ε
)
-approximation

algorithm for ∆(γ) -ATSP. Its running-time is polynomial in the input size and 1/ε.

Figure 2 shows the approximation ratio achieved for multi-criteria ∆(γ) -ATSP subject
to γ and compared to the trivial ratio of wmax/wmax.

We leave as an open problem to generalize the analysis to larger values of γ. However,
it seems to be hard to find a constant factor approximation for γ = 1, i. e., for multi-
criteria ∆ -ATSP, since this would immediately yield a constant factor approximation for
single-criterion ∆ -ATSP.

4.4 TSP with Weights One and Two

Now we analyze the cycle cover algorithm for multi-criteria TSP with weights one and two.
For both STSP(1, 2) and ATSP(1, 2), we have β = 2, i. e., wmax/wmin = 2. Furthermore,
for STSP(1, 2), we have α ≤ 1/3, while we only have α ≤ 1/2 in case of ATSP(1, 2). The
approximation ratio follows by exploiting Lemma 4.1.

Note that the edge weights and thus the objective functions are polynomially bounded
for STSP(1, 2) and ATSP(1, 2). Thus, we can compute a Pareto curve of cycle covers
instead of only a (1 + ε)-approximate Pareto curve. This implies that we do not have an
additional ε in the approximation ratios in the following theorems.

Theorem 4.5. Algorithm 3 is a randomized 4/3-approximation algorithm for multi-crite-
ria STSP(1, 2). Its running-time is polynomial.
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Figure 3: Approximation ratios subject to γ achieved by the tree doubling algorithm
(Algorithm 1), Christofides’ algorithm (Algorithm 2), and the cycle cover algorithm (Al-
gorithm 3, Section 4), for which both the ratio obtained from the general analysis (Sec-
tion 4.1) and from the refined analysis (Section 4.2) are shown.

Theorem 4.6. Algorithm 3 is a randomized 3/2-approximation algorithm for multi-crite-
ria ATSP(1, 2). Its running-time is polynomial.

5 Concluding Remarks

5.1 Comparing the Approximation Ratios

Let us compare the approximation ratios for ∆(γ) -STSP achieved by the tree doubling
algorithm (Algorithm 1), Christofides’ algorithm (Algorithm 2), and the cycle cover algo-
rithm (Algorithm 3).

Figure 3 shows the approximation ratios achieved by these algorithms subject to γ.
Figure 4 shows the approximation ratios achieved deterministically (by the tree doubling
algorithm) and randomized (by a combination of Christofides’ and the cycle cover algo-
rithm). The ratios are compared to the trivial ratio of wmax/wmin and to the currently
best known approximation ratio for single-criterion ∆(γ) -STSP. Note that in particular
for small values of γ, our algorithms for multi-criteria ∆(γ) -STSP come close to achieving
the ratio of the best algorithms for single-criterion ∆(γ) -STSP.

5.2 Open Problems

Our approximation algorithm for multi-criteria ∆(γ) -ATSP works only for γ < 1/
√
3.

Thus, we are interested in finding constant factor approximation algorithms also for γ ≥
1/
√
3, which exist for all γ < 1 for single-criterion ∆(γ) -ATSP [7,9]
The cycle-cover-based algorithm for Max-TSP, where Hamiltonian cycles of maximum

weight are sought, does not seem to perform well for multi-criteria Max-TSP. The reason
for this is that the approximation algorithms for Max-TSP that base on cycle covers usually
contain a statement like “remove the lightest edge of every cycle”. While this works for
single-criterion TSP, the term “lightest edge” is not well-defined for multi-criteria traveling
salesman problems. We are particularly curious about the approximability of multi-criteria
Max-TSP.
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Figure 4: Approximation ratios subject to γ. The deterministic ratio is achieved by the
tree doubling algorithm. Combining Christofides’ and the cycle cover algorithm yields the
randomized ratio. For comparison, the current ratio for single-criterion ∆(γ) -STSP and
the trivial ratio wmax/wmin are also shown.
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Walter Unger. Approximation algorithms for the TSP with sharpened triangle in-
equality. Information Processing Letters, 75(3):133–138, 2000.

[9] L. Sunil Chandran and L. Shankar Ram. On the relationship between ATSP and the
cycle cover problem. Theoretical Computer Science, 370(1-3):218–228, 2007.

[10] Nicos Christofides. Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1976.

[11] Matthias Ehrgott. Approximation algorithms for combinatorial multicriteria opti-
mization problems. International Transactions in Operational Research, 7(1):5–31,
2000.

[12] Matthias Ehrgott. Multicriteria Optimization. Springer, 2005.

[13] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of
multiobjective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[15] Paul C. Gilmore, Eugene L. Lawler, and David B. Shmoys. Well-solved special cases.
In Lawler et al. [18], pages 87–143.

[16] Gregory Gutin and Abraham P. Punnen, editors. The Traveling Salesman Problem
and its Variations. Kluwer Academic Publishers, 2002.

[17] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim I. Sviridenko. Approxi-
mation algorithms for asymmetric TSP by decomposing directed regular multigraphs.
Journal of the ACM, 52(4):602–626, 2005.

[18] Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinnooy Kan, and David B.
Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, 1985.
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