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Abstract We design compact and responsive kinetic data structures for detecting
collisions between n convex fat objects in 3-dimensional space that can have arbitrary
sizes. Our main results are:

(i) If the objects are 3-dimensional balls that roll on a plane, then we can detect
collisions with a KDS of size O(n logn) that can handle events in O(log2 n)

time. This structure processes O(n2) events in the worst case, assuming that the
objects follow constant-degree algebraic trajectories.

(ii) If the objects are convex fat 3-dimensional objects of constant complexity that are
free-flying in R

3, then we can detect collisions with a KDS of O(n log6 n) size
that can handle events in O(log7 n) time. This structure processes O(n2) events
in the worst case, assuming that the objects follow constant-degree algebraic
trajectories. If the objects have similar sizes then the size of the KDS becomes
O(n) and events can be handled in O(logn) time.
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1 Introduction

Collision detection is a basic computational problem arising in all areas of computer
science involving objects in motion—motion planning, animated figure articulation,
computer-simulated environments, or virtual prototyping, to name a few. Very often
the problem of detecting collisions is broken down into two phases: a broad phase
and a narrow phase. The broad phase determines pairs of objects that might possibly
collide, frequently using (hierarchies of) bounding volumes to speed up the process.
The narrow phase then uses specialized techniques to test each candidate pair, often
by tracking closest features of the objects in question, a process that can be sped up
significantly by exploiting spatial and temporal coherence. See [21] for a detailed
overview of algorithms for such collision and proximity queries.

Algorithms that deal with objects in motion traditionally discretize the time axis
and compute or update their structures based on the position of the objects at every
time step. But since collisions tend to occur rather irregularly it is nearly impossible to
choose the perfect time-step: too large an interval between sampled times will result
in missed collisions, too small an interval will result in unnecessary computations
(and still there is no guarantee that no collisions are missed). Event-driven methods,
on the other hand, compute the event times of significant changes to a system of
moving objects, store those in a priority queue sorted by time, and advance the system
to the event at the front of the queue. The kinetic-data-structure framework initially
introduced by Basch et al. [4] presents a systematic way to design and analyze event-
driven data structures for moving objects.

A kinetic data structure (KDS) is designed to maintain or monitor a discrete at-
tribute of a set of moving objects, where each object has a known motion trajectory
or flight plan. A KDS contains a set of certificates that constitutes a proof of the prop-
erty of interest. These certificates are inserted in a priority queue (event queue) based
on their time of expiration. The KDS then performs an event-driven simulation of the
motion of the objects, updating the structure whenever a certificate fails. A KDS for
collision detection finds a set of geometric tests (elementary certificates) that together
provide a proof that the input objects are disjoint—see the surveys by Guibas [13, 14]
for more details.

Kinetic data structures and their accompanying maintenance algorithms can be
evaluated and compared with respect to four desired characteristics. A good KDS is
compact if it uses little space in addition to the input, responsive if the data structure
invariants can be restored quickly after the failure of a certificate, local if each object
involves a small number of certificates, and efficient if the worst-case number of
events handled by the data structure (for a given class of motions) is not much larger
than the worst-case number of combinatorial changes in the maintained attribute (for
that class of motions).

Kinetic Data Structures for Collision Detection One of the first papers on kinetic
collision detection was published by Basch et al. [5], who designed a KDS for colli-
sion detection between two simple polygons in the plane. Their work was extended
to an arbitrary number of polygons by Agarwal et al. [1]. Kirkpatrick et al. [20] and
Kirkpatrick and Speckmann [19] also described KDS’s for kinetic collision detection
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between multiple polygons in the plane. These solutions all maintain a decomposition
of the free space between the polygons into “easy” pieces (usually pseudo-triangles).
Unfortunately it seems quite hard to define a suitable decomposition of the free space
for objects in 3D, let alone maintain it while the objects move—the main problem
being, that all standard decomposition schemes in 3D can have quadratic complex-
ity. Hence, even though collision detection is the obvious application for kinetic data
structures, there has hardly been any work on kinetic collision detection in 3D.

There are only a few papers that deal directly with (specialized versions of) kinetic
3D collision detection. Guibas et al. [15], extending work by Erickson et al. [12] in
the plane, show how to certify the separation of two convex polyhedra moving rigidly
in 3D using certain outer hierarchies. Basch et al. [3] describe a structure for colli-
sion detection among multiple convex fat objects that have almost the same size.
The structure of Basch et al. uses O(n log2 n) storage and processes O(n2) events
and events can be processed in O(log3 n) time. Coming and Staadt [11] kinetize the
sweep-and-prune approach to find candidate pairs of objects that might collide. Their
method has a quadratic worst-case bound and they give only experimental evidence
for its performance. If all objects are spheres of similar sizes Kim et al. [17] present
an event-driven approach that subdivides space into cells and processes events when-
ever a sphere enters or leaves a cell. This approach was later extended [18] to ac-
commodate spheres with unknown trajectories but still similar sizes. There is only
experimental evidence for the performance of this method. Finally, Guibas et al. [15]
use the power diagram of a set of arbitrary balls in 3D to kinetically maintain the
closest pair among them. The worst-case complexity of this structure is quadratic
and it might undergo more than cubically many changes.

Results The main goal of our paper is to develop KDS’s for 3D collision detection
that have a near-linear number of certificates for multiple convex fat objects of vary-
ing sizes. As discussed above, none of the existing solutions achieves all these goals
simultaneously. Our KDS’s can be viewed as structures that perform the broad phase
of the global collision-detection approach sketched above; one still has to detect col-
lisions between the candidate pairs of objects produced by the KDS. Assuming the
objects have constant complexity, this can trivially be done in constant time per pair;
how to do this for complex objects is beyond the scope of this paper. Thus the chal-
lenge is to get a near-linear number of certificates, so that the number of candidate
pairs is reduced from quadratic to near-linear.

We start in Sect. 2 with the special case of n balls of arbitrary sizes rolling on
a plane. Here we present an elegant and simple KDS that uses O(n logn) storage
and processes O(n2) events in the worst case if the objects follow constant-degree
algebraic1 trajectories. Processing an event takes O(log2 n) time.

1In fact, the bound on the number of events holds in a more general setting: we maintain lists of certain
x- and y-coordinates—for instance the coordinates of the tangency points of the disks with the plane on
which they roll—whose values change according to the motions of the objects. The number of events
is bounded by the number of changes (swaps) in these sorted lists. The O(n2) bound thus holds if we
assume that any pair of coordinates swaps O(1) times (which is for example the case if the motions are
constant-degree algebraic). A similar remark holds for the other KDS’s that we develop.
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In Sect. 3 we turn our attention to free-flying convex fat objects. Note that we do
not assume the objects to be polyhedral. We first study fat objects that have similar
sizes. We give an almost trivial KDS that has O(n) size and processes O(n2) events;
handling an event takes O(logn) time. This improves both the storage and the event-
handling time of the KDS of Basch et al. [3] by several logarithmic factors. Next we
consider the much more difficult general case, where the fat objects can have vastly
different sizes. Here we present a KDS that uses O(n log6 n) storage and processes
O(n2) events; handling an event takes O(log7 n) time. This is the first collision-
detection KDS for multiple objects in 3D that has a near-linear number of certificates
and does not require the objects to have similar sizes. Even though our KDS for this
case uses O(n log6 n) storage, it maintains only a linear number of candidate pairs of
objects to test for collisions; the additional storage is used in various supporting data
structures. Our structure is based on the following idea: we put a number of points—
we call them guards—around each object in such a way that if two objects collide,
one must contain a guard from the other. Because the objects are fat, we can show
that a constant number of guards per object suffices. The idea of reducing problems
on fat objects to problems on suitably chosen points has been used before—see e.g.
[6, 10]. In our context, however, it is far from straightforward to apply since detecting
collisions between objects and guards is nearly as difficult as detecting collisions be-
tween the objects themselves. Nevertheless, using several additional ideas, we show
how to make this approach work.

2 Balls Rolling on a Plane

Assume that we are given a set B of n 3-dimensional balls which are rolling on a
2-dimensional plane T , that is, the balls in B move continuously while remaining
tangent to T —see Fig. 1. In this section we describe a responsive and compact KDS
that detects collisions between the balls in B.

The basic idea behind our KDS is to construct a collision tree recursively as
follows:

• If |B| = 1, then there are obviously no collisions and the collision tree is just a
single leaf.

• If |B| > 1, then we partition B into two subsets, BS and BL. The subset BS contains
the �n/2� smallest balls and the subset BL contains the �n/2� largest balls from B,
where ties are broken arbitrarily. The collision tree now consists of a root node
that has an associated structure to detect collisions between any ball from BS and
any ball from BL, and two subtrees that are collision trees for the sets BS and BL,
respectively.

To detect all collisions between the balls in B it suffices to detect collisions between
the two subsets maintained at every node of the collision tree. Let BS and BL denote
the two subsets maintained at a particular node. The remainder of this section fo-
cusses on detecting collisions between the balls in BS and those in BL. In particular,
we describe a KDS of size O(|BS |+ |BL|) that can handle events in O(logn) time—
see Lemma 5. The structure processes O((|BS | + |BL|)2) events in the worst case,



Algorithmica (2009) 53: 457–473 461

Fig. 1 Balls rolling on a
plane—balls in BS are light
gray, balls in BL are dark gray

Fig. 2 The radius rmin of the
smallest ball in BL defines the
threshold disks

assuming that the balls follow constant-degree algebraic trajectories. Since the same
event can occur simultaneously at O(logn) nodes of the collision tree, we obtain the
following theorem:

Theorem 1 For any set B of n 3-dimensional balls that roll on a plane, there is a
KDS for collision detection that uses O(n logn) space and processes O(n2) events in
the worst case, assuming that the balls follow constant-degree algebraic trajectories.
Each event can be handled in O(log2 n) time.

2.1 Detecting Collisions between Small and Large Balls

As mentioned above, we can restrict ourselves to detecting collisions between balls
from two disjoint sets BS and BL where the balls in BL are at least as large as the balls
in BS . Recall that all balls are rolling on a plane T . Our basic strategy is the following:
we associate a region Di on T with each Bi ∈ BL such that if the point of tangency
of a ball Bj ∈ BS and T is not contained in Di , then Bj cannot collide with Bi . The
regions associated with the balls in BL need to have two important properties: (i) each
point in T is contained in a constant number of regions and (ii) we can efficiently
detect whenever a region starts or stops to contain a tangency point when the balls in
BL and BS move. We first deal with the first requirement, that is, we consider BL to
be static. For a ball Bi let ri denote its radius and let ti be the point of tangency of Bi

and T .

The Threshold Disk We define the distance of a point q in the plane T to a ball Bi

as follows. Imagine that we place a ball B(q) of initial radius 0 at point q . We then
inflate B(q) while keeping it tangent to T at q , until it collides with Bi . We define
the distance of q and Bi , which we denote by dist(q,Bi), to be the radius of B(q).
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Fig. 3 Detecting collisions with
the threshold disks

Fig. 4 Replacing threshold
disks with threshold boxes

More precisely, dist(q,Bi) is the radius of the unique ball that is tangent to T at q

and tangent to Bi . It is easy to show that dist(q,Bi) = d(q, ti)
2/4ri where d(q, ti)

denotes the Euclidean distance between q and ti .
Since we have to detect collisions only with balls from BS and the balls in BL are

at least as large as those in BS , we can stop inflating when B(q) is as large as the
smallest ball in BL. Based on this, we define the threshold disk Di of a ball Bi ∈ BL

as follows: a point q ∈ T belongs to Di if and only if dist(q,Bi) ≤ rmin where rmin is
the radius of the smallest ball in BL—see Fig. 2. Because dist(q,Bi) = d(q, ti)

2/4ri ,
Di is a disk whose radius is 2

√
ri · rmin and whose center is ti .

Clearly a ball Bj ∈ BS cannot collide with a ball Bi ∈ BL as long as tj is outside
Di—see Fig. 3. In the following, we prove that a point q ∈ T can be contained in at
most a constant number of threshold disks. We start by proving a more general result,
which we will need later when we replace the threshold disks by threshold boxes.
For a given constant c ≥ 0, let c · Di denote the disk with radius c · radius(Di) and
center ti .

Lemma 2 The number of threshold disks Dj that are at least as large as a given
threshold disk Di and for which c · Di ∩ c · Dj �= ∅, is at most (8c2 + 2c + 1)2 + 1.

Proof Let D(i) be the set of all threshold disks Dj that are at least as large as Di and
for which c · Di ∩ c · Dj �= ∅. First we prove that there are no two balls Bj and Bk

such that rk ≥ rj > 16c2ri and Dj,Dk ∈ D(i). Assume, for contradiction, that there
are two balls Bj and Bk with this property. Since Bj and Bk are disjoint, we have
d(tj , tk) ≥ ((ri + rj )

2 − (ri − rj )
2)1/2 = 2

√
rj · rk > 8c

√
rk · ri . We also know that

d(tj , tk) ≤ d(tj , ti) + d(ti , tk) ≤ 8c
√

rk · ri which is a contradiction. Hence, there is
at most one ball Bj such that rj > 16c2ri and Dj ∈ D(i).

It remains to show that the number of balls Bj whose radii are not greater than
16c2ri and for which Dj ∈ D(i) is at most (8c2 + 2c + 1)2. Let Bj be one of these
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balls and let x be a point in c · Dj ∩ c · Di . Since

d(ti , tj ) ≤ d(ti , x) + d(tj , x) ≤ 2c
√

ri · rmin + 2c
√

rj · rmin ≤ (2c + 8c2)ri ,

tj must lie in a disk whose center is ti and whose radius is (2c+8c2)ri . We also know
that d(tj , tk) ≥ 2

√
rj · rk ≥ 2ri for any two such balls Bj and Bk . Thus the set D′(i)

of disks centered at tj with radius ri for all Dj ∈ D(i) are disjoint. Note that any
disk in D′(i) lies inside the disk centered at ti with radius ((2c + 8c2) + 1)ri . Thus
|D′(i)| ≤ (π(2c + 8c2 + 1)2r2

i )/(πr2
i ) = (2c + 8c2 + 1)2 which implies |D(i)| ≤

(2c + 8c2 + 1)2 + 1. �

Lemma 3 Each point q ∈ T is contained in at most a constant number of threshold
disks.

Proof Let Di be the smallest threshold disk containing q . Lemma 2 with c = 1 im-
plies that the number of disks not smaller than Di and intersecting Di is constant.
Hence the number of threshold disks containing q is constant. �

The Threshold Box The threshold disks have the important property that each point
in T is contained in a constant number of disks. But unfortunately, as the balls in BL

and BS move, it is difficult to detect efficiently whenever a tangency point enters or
leaves a threshold disk. Hence we replace each threshold disk by its axis-aligned
bounding box—see Fig. 4. The bounding box of a threshold disk Di associated
with a Bi ∈ BL is called a threshold box and is denoted by TB(Bi). The follow-
ing lemma states that the threshold boxes retain the crucial property of the threshold
disks, namely, that each point q ∈ T is contained in at most a constant number of
threshold boxes. It follows fairly easily from Lemma 2.

Lemma 4 Each point q ∈ T is contained in at most a constant number of threshold
boxes.

Proof Instead of considering the threshold boxes directly, we consider the disks de-
fined by the circumcircles D(TB(Bj )) of each threshold box TB(Bj ) with Bj ∈ BL.
We have radius(D(TB(Bj ))) = √

2 · radius(Dj ) for all Bj ∈ BL. Let TB(Bi) be the
smallest box containing q . Lemma 2 with c = √

2 implies that the number of circum-
circle disks that are at least as large as D(TB(Bi)) and that intersect D(TB(Bi)) is
constant. Hence the number of threshold boxes that are not smaller than TB(Bi) and
intersect TB(Bi) is constant, and so is the number of threshold boxes containing q . �

Kinetic Maintenance Recall that to detect collisions between BS and BL, for each
ball Bj ∈ BS we determine which threshold boxes of balls in BL contain the tangency
point tj . Note that according to Lemma 4, tj is contained in a constant number of
threshold boxes. For each Bj ∈ BS we maintain the set of threshold boxes that contain
tj and certificates that guarantee disjointness of Bj and the balls from BL whose
threshold boxes contain tj .
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To maintain our structure we only need to detect when a tangency point tj en-
ters or leaves a threshold box. To do so, we maintain two sorted lists: one storing
the x-coordinates of the tangency points of BS and the minimum and maximum
x-coordinates of the threshold boxes associated with the balls in BL, the other stor-
ing the y-coordinates of the tangency points of BS and the minimum and maximum
y-coordinates of the threshold boxes. If the objects follow constant-degree algebraic
trajectories, the number of events processed by our structure—that is, the number of
swaps in these sorted lists—is quadratic in the size of BS and BL. Moreover, each
such event can be processed in O(logn) time: O(1) time to swap the points, and
O(logn) time to update the event queue.

Lemma 5 Let BS and BL be two disjoint sets of balls that roll on a plane where
the balls in BL are at least as large as the balls in BS . There is a KDS for collision
detection between the balls of BS and those of BL that uses O(|BS |+|BL|) space, and
that processes O((|BS | + |BL|)2) events if the balls follow constant-degree algebraic
trajectories. Each event can be handled in O(logn) time.

Remark Recall that we have a collision-detection KDS as in Lemma 5 for every node
of a collision tree, as described at the beginning of this section. Each such collision-
detection KDS generates events, but we do not maintain these events in separate event
queues. Instead we maintain a global event queue and we insert the failure time of
each certificate into the global event queue. It is easy to see that at any time there are
O(n logn) certificates in the global event queue. Hence, the asymptotic complexity of
inserting (deleting) certificates into (from) the global event queue remains O(logn).

Remark In the above KDS, we maintain two sorted lists for every node of the colli-
sion tree. Thus an event may happen in O(logn) nodes on a path from the root to a
leaf simultaneously. This forces the KDS to insert (delete) O(logn) certificates into
(from) the event queue which takes O(log2 n) time. Another possibility is to maintain
two global sorted lists based on x- and y-coordinates, instead of having two sorted
lists for each node. This way an event can create or delete a constant number of cer-
tificates, which implies the response time is O(logn). Since every ball is associated
with O(logn) threshold boxes, the size of the global sorted list is O(n logn), which
means the number of events is O(n2 log2 n). Hence, the decrease in response time
comes at the cost of an increase in the number of events to be processed.

3 Free-Flying Fat Objects in 3-Space

We now turn our attention to collision detection for a set K of n free-flying objects in
3-space. We will show how to obtain a compact and responsive KDS when K consists
of convex, constant-complexity fat objects. Note that we do not require the objects to
be polyhedral.

We will use the following definition of fatness [16]. An object K is called ρ-fat, for
some ρ ≥ 1, if there are two concentric balls B−(K) and B+(K) such that B−(K) ⊂
K ⊂ B+(K) and

radius(B+(K))/ radius(B−(K)) ≤ ρ.
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Since we are dealing with convex objects, this definition is equivalent up to constant
factors to other definitions of fatness that have been used [9]. We call radius(B−(K))

and radius(B+(K)) the inner radius and outer radius of K , respectively, and we call
the common center of B−(K) and B+(K) the center of K . We say that an object K

is larger than another object K ′ if the inner radius of K is larger than the inner radius
of K ′.

Unfortunately the approach of the previous section does not work for free-flying
objects, not even if we are dealing with balls. The problem is that the radius of the
threshold ball of a ball Bi will now be ri + rmin instead of 2

√
ri · rmin and this invali-

dates the proof of Lemma 2 for c > 1 and thus invalidates Lemma 4.

3.1 Similarly Sized Objects

We first consider the case where the objects have similar sizes. More precisely, let σ

be the scale factor of the scene, that is, the ratio between the sizes of the largest and
the smallest inner ball:

σ = maxK∈K radius(B−(K))

minK∈K radius(B−(K))
.

It follows from the results of Zhou and Suri [23] that the number of pairs of intersect-
ing bounding boxes of the objects in K is at most O(ρ

√
ρ3σ 3n) = O(ρ2σ

√
ρσn).

(A similar but slightly weaker result also follows directly from results in Van der
Stappen’s thesis [22].) Hence, if σ is a constant, we can simply maintain the set of
pairs of intersecting bounding boxes, and for each such pair add a certificate to test
for disjointness of the corresponding objects.

To maintain the pairs of intersecting bounding boxes, we maintain three sorted
lists: one on the minimum and maximum x-coordinates of the boxes, one on the
minimum and maximum y-coordinates of the boxes, and one on the minimum and
maximum z-coordinates of the boxes. Whenever there is a swap in one of these lists,
two boxes may intersect or become apart. If two boxes intersect, we add a certificate
for the corresponding objects. If they become apart, we remove the corresponding
certificate. This leads to the following theorem.

Theorem 6 For any set K of n convex, constant-complexity ρ-fat objects with scale
factor σ , there is a KDS for collision detection that uses O(ρ2σ

√
ρσn) storage and

processes O(n2) events in the worst case, assuming that the objects follow constant-
degree algebraic trajectories. Each event can be handled in O(logn) time.

3.2 Arbitrarily Sized Objects

When the sizes of the objects vary greatly, then there can be a quadratic number of in-
tersecting bounding boxes even when the objects are fat. Hence, a more sophisticated
approach is needed. Our global strategy for this case is as follows. We place a num-
ber of so-called guarding points—or guards, for short—around each object K ∈ K.
The guards for K are defined in a local reference frame for K , so they follow the
motion of K . More precisely, they follow the motion of a fixed reference point of K .
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Fig. 5 Illustrations for the proof of Lemma 7

We choose the guards in such a way that when two objects collide, the larger object
must contain at least one guard from the smaller object. This reduces the collision-
detection problem to maintaining for each guard which object contains it. The next
lemma states that we can always find a small guarding set because the objects are fat.

Lemma 7 For any ρ-fat object K , there is a set G(K) of O(ρ6) guarding points such
that any ρ-fat object K ′ that collides with K and is at least as large as K contains a
point from G(K).

Proof Let r := radius(B−(K)). Let C be the cube whose center coincides with the
center of K , and whose side length is 2(ρ +1)r . Draw a regular grid in C whose cells
have side length 2r/(

√
3(ρ +1))—see Fig. 5(i) for a (2-dimensional) illustration. The

grid points together form the set G(K). Clearly |G(K)| = O(ρ6). It remains to argue
that G(K) is a guarding set.

Let K ′ be an object colliding with K and at least as large as K , and let p be a point
where K and K ′ touch. Because K ′ is at least as large as K , the ball B−(K ′) ⊂ K ′
has radius r ′ at least r . Consider the line � through p and center(B−(K ′)). Let d be
the distance between p and center(B−(K ′)), and let q be the point in between p and
center(B−(K ′)) at distance r/(ρ+1)

r ′ · d from p. Finally, let B(q) be the ball centered
at q and with radius r/(ρ + 1)—see Fig. 5(ii). Observe that B(q) can be obtained by
scaling B−(K ′) with respect to p by a factor of r/(ρ+1)

r ′ . Since K ′ is convex, p ∈ K ′,
and B−(K ′) ⊂ K ′, this implies B(q) ⊂ K ′. We claim that B(q) ⊂ C. Since B(q) has
radius r/(ρ + 1), this means it must contain at least one point of G(K), which will
prove the lemma.

It remains to prove the claim that B(q) ⊂ C. To this end note that d is at most
ρ · r ′, because K ′ is ρ-fat. This implies that the distance of p to any point in B(q) is
at most

r/(ρ + 1)

r ′ · d + r

ρ + 1
≤ r.

On the other hand, the distance of p to the boundary of C is at least r . Hence,
B(q) ⊂ C, as claimed. �
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Fig. 6 A guard can be
contained in many bounding
boxes

Our KDS for collision detection thus works as follows. For each object K ∈ K
we compute a set G(K) of guards according to Lemma 7. Our goal is now to main-
tain for each g ∈ G(K) the object K(g) containing g (if such an object exists). Let
Cand(K) := {K(g) : g ∈ G(K)}; the set Cand(K) contains the candidates with which
we check for collisions. More precisely, for each object K(g) ∈ Cand(K), our KDS
has a certificate testing for the disjointness of K and K(g).

Unfortunately, it seems difficult to maintain the set Cand(K) directly. This would
require us to detect when an object K ′ starts to contain a guard g, which is difficult
to do efficiently. Hence, we replace the objects by their bounding boxes. Because the
bounding boxes are axis-aligned, it will be easier to check whether any of them starts
(or stops) to contain a guard of some other object. This introduces a new problem,
however; a guard can be contained in many bounding boxes—see Fig. 6. Clearly, we
cannot afford to maintain for each guard g all the bounding boxes that contain it.
Next we describe how to deal with this problem.

Consider a guard g. As noted earlier, there can be many disjoint objects whose
bounding boxes contain g. When this happens, however, the objects must become
larger and larger, as shown in Fig. 6, with the larger objects being “behind” the
smaller ones. Thus the objects that are closest to g in a some direction are the can-
didates for containing g. Hence, the idea is to maintain for g not all objects whose
bounding boxes contain g, but only the closest objects around g.

To make this idea work, we first partition the space around g into cones, as follows.
Let U be the unit cube, centered at the origin. Draw a grid on each face of U , such that
the grid cells have edge length 1/(2

√
6ρ). Triangulate each grid cell. We have now

partitioned the surface of U into O(ρ2) triangles. Each triangle defines, together with
the origin, an (infinite) cone γ by taking the union of all rays emanating from the ori-
gin and passing through the triangle. Since the grid cells have edge length 1/(2

√
6ρ)

their diagonals have length 1/(4
√

3ρ), which implies the following.

Lemma 8 Let �1 and �2 be two rays originating from the apex of a cone γ and being
inside the cone. Then the angle between �1 and �2 is at most arctan(1/(2

√
3ρ)).

The set of cones for a guard g is obtained by translating these cones such that their
apices—the origin in the construction—coincide with g. We denote this set by �(g).

Note that the motion of each cone is purely translational: even when an object K

rotates, its guards just follow the path of the reference point of K and so the cones for
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that guard only translate. This means that any cone will always be a translated copy
of one of the “standard” cones defined for U . From now on, whenever we speak of a
cone we refer to a cone constructed for a guard, as described above.

Since it seems to be difficult to efficiently maintain the closest object to g, the
apex of a cone γ , we maintain the object whose center’s orthogonal projection onto
a specific side of γ is the closest one to g. More precisely, for each cone we defined
for U we choose one of its edges as its representative edge. This also gives us a repre-
sentative edge for each cone constructed for any guard g. From now on, whenever we
are discussing a cone γ with apex g and we are talking about the object closest to g,
we refer to the object whose center’s orthogonal projection onto γ ’s representative
edge is closest to g.

The next lemma implies that we can indeed restrict our attention to the closest
object to g among those objects whose bounding boxes contain g. For an object K ,
let bb(K) denote its (axis-aligned) bounding box.

Lemma 9 Let K(γ ) be the set of all objects K whose center lies in a cone γ and such
that bb(K) contains the apex g of the cone. Suppose that one of these objects, K(g),
contains g. Then K(g) must be the closest object to g in K(γ ). Moreover, suppose
the objects in K(γ ) move in such a way that their centers remain inside γ . Then the
order of the orthogonal projections of their centers onto the representative edge of γ

remains unchanged.

Proof Let r and c be the inner radius and the center of an object K ∈ K(γ ), respec-
tively. Consider a plane passing through c and being orthogonal to the representative
edge of γ . The intersection of γ and this plane is a triangle xyz—see Fig. 7. We
claim (and will prove later) that d(c, x), d(c, y), d(c, z) ≤ r . Because K is convex,
this implies that the triangle xyz is inside the object K . Hence, the objects whose
centers are inside the cone cannot exchange order during the motion as long as their
centers remain inside the cone.

Now let K = K(g). Then the tetrahedron gxyz is inside K(g) which means the
centers of the other objects must lie outside gxyz. This implies K(g) is the closest
object to g.

It remains to prove the claim that d(c, x), d(c, y), d(c, z) ≤ r . Assume (the exten-
sion of) gy is the representative edge of γ . Since bb(K) contains g and ∠gyc is a

Fig. 7 The intersection of cone
γ and the plane orthogonal to
the representative edge of γ
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right angle, we have

d(g, y) ≤ d(g, c) ≤ √
3ρr.

Moreover, we have

d(c, y) = d(g, y) · tan(∠cgy) ≤ d(g, y) · tan(arctan(1/(2
√

3ρ)))

≤ (
√

3ρr) · (1/(2
√

3ρ) ≤ r/2.

Similarly, d(z, y) ≤ r/2 and d(x, y) ≤ r/2. It follows that

d(c, z) ≤ d(c, y) + d(y, z) ≤ r

and

d(c, x) ≤ d(c, y) + d(y, x) ≤ r. �

To summarize, our KDS works as follows. For each object K ∈ K we compute a
set G(K) of guards according to Lemma 7. For each guard g we construct a collection
�(g) of infinite cones with apex g. For each cone γ ∈ �(g) we maintain the closest
object whose center is inside γ and whose bounding box contains g, and we have
a certificate testing for disjointness for this object with the object for which g is a
guard. Next we describe a KDS that maintains all this information efficiently.

3.2.1 Details of the KDS

Let G(K) := {G(K) : K ∈ K} denote the set of all guards over all objects, let �(K) :=
{�(g) : g ∈ G(K)} denote the collection of all cones, and let bb(K) denote the set of
bounding boxes of the objects in K.

Detecting Events We wish to maintain for each γ ∈ �(g) the closest object K∗(γ )

to g whose center is inside γ and whose bounding box contains g. By Lemma 9 this
object can change only when one of the following two events happens:

Box event: a bounding box starts or stops to contain a guard.
Center event: a center moves into or out of a cone.

To detect box events, we maintain three sorted lists. The first list is sorted on
x-coordinate and contains the guards in G(K) as well as the bounding boxes,
where each bounding box occurs twice (according to its maximum and minimum
x-coordinates). We have similar lists sorted on y- and z-coordinates.

To detect center events, we observe that each cone is a translate of one of the
O(ρ2) cones defined for the unit cube. The cones are generated by six triangulated
grids, one on each facet of the unit cube, so the facets of the cones have only O(ρ)

distinct orientations. Hence, we can detect center events using O(ρ) sorted lists. Each
sorted list corresponds to a possible orientation of a cone facet, and stores the object
centers and the cones that have a facet in the given orientation. More precisely, instead
of storing the cones themselves, we store the planes containing the facets of the cones.
Notice that a plane bounds up to O(ρ) cones—see Fig. 8.
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Fig. 8 The cones
corresponding to the shaded
triangles all share a common
plane defining one of their facets

Lemma 10 The box and center events can be detected with a KDS that uses O(ρ7n)

storage and that processes O(ρ13n2) events in total, assuming the objects follow
constant-degree algebraic trajectories. At each event processed by this KDS, we
spend O(logρ) time to test whether the event corresponds to an actual box or center
event.

Proof Recall that we have O(ρ6) guards per object, and O(ρ2) cones per guard.
For the box events we have three sorted lists, each storing O(n) boxes and O(ρ6n)

guards. Hence, their total size is O(ρ6n) and the total number of events is O(ρ12n2).
Whenever we have a swap in one of these lists, we just check in O(1) time whether
it corresponds to a guard entering or leaving a box.

For the center events we have O(ρ) sorted lists. For each guard, the cones are
defined by triangulated grids on the facets of a unit cube centered at the guard. This
grid is induced by O(ρ) lines on the facets. Hence, as remarked earlier, the O(ρ2)

cones are generated by O(ρ) planes—one plane for each grid line and one for each
diagonal line inducing the triangulation. Since we have O(ρ6) guards per object, we
have in total O(ρ7) planes per object. Each guard contributes one plane to each list.
Hence, we have O(ρ) lists, each containing O(ρ6n) planes. This means these lists
together use O(ρ7n) storage and have O(ρ13n2) events. Whenever we have an event
in one of these lists we check whether it corresponds to a center crossing a plane. If so,
we must find out which of the O(ρ) cones bounded by that plane, if any, are involved.
Note that there can be two: the center could enter one cone and leave another cone.
Finding out the cones involved can easily be done in O(logρ) time. �

Handling Events When we have detected a center event, we may have to update
the object K∗(γ ) of at most two cones. Next we describe how to handle the event
involving an object K and some cone γ defined for a guard g.

When bb(K) starts to contain g, or when the center of K moves into γ , things are
easy: If K∗(γ ) does not yet exist, K becomes the closest object to g and so we set
K∗(γ ) := K ; otherwise, we check whether K is closer to g than the current K∗(γ )

and, if so, we set K∗(γ ) := K .
Handling the case where bb(K) stops to contain g, or when the center of K moves

out of γ , is more difficult. For this we need a supporting data structure that can answer
the following query:
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Given a cone γ with apex g, report the closest object to g whose center is in γ

and whose bounding box contains g.

Recall that the set of cones can be partitioned into O(ρ2) subsets, where the cones
in each subset are translates of some “standard” cone. We construct a data structure
for each subset separately. Because the facets of the cones in a subset have only three
distinct orientations, we can find all centers inside a query cone in with a three-level
range tree. Finding the bounding boxes containing the apex of the query cone can be
done with a three-level segment tree, and filtering out the closest object requires a
sorted list on the orthogonal projections of the object centers onto the representative
edge of the cone. Hence, our total data structure will be have seven levels. Answering
a query can be done in O(log6 n) time—the query time is not O(log7 n) because in
the last level we only need to report the closest object—and the amount of storage is
O(n log6 n). To kinetize the structure, we use the kinetic variants of range trees [3]
and segment trees [8] and sorted lists (which are trivial to maintain). The number of
events processed to maintain our seven-level structure is O(n2) and each event can
be handled in O(log7 n) time.

Lemma 11 When a center or box event occurs, we can update the closest object
K∗(γ ) in O(log6 n) time, using a supporting KDS that uses O(ρ2n log6 n) stor-
age. The supporting KDS processes O(ρ2n2) events in the worst case, assuming
the objects follow constant-degree algebraic trajectories, and the response time is
O(log7 n).

This leads to our main result.

Theorem 12 For any set K of n convex, constant-complexity ρ-fat objects, there is a
KDS for collision detection that uses O(ρ2n log6 n+ρ7n) storage and that processes
O(ρ13n2) events in the worst case, assuming the objects follow constant-degree al-
gebraic trajectories. Each event can be handled in O(logρ + log7 n) time.

Our KDS is compact and responsive, but unfortunately it is not local: a large object
K with many small objects around can be involved in many certificates, because it
may contain guards for each of the small objects. However, we can show that the
locality of our KDS depends on the ratio of the size of the biggest object and the
smallest object in K.

Theorem 13 Each object in the KDS of Theorem 12 is involved in O(ρ8 + ρ3σ 3)

certificates, where σ is the ratio of the largest inner radius to the smallest inner
radius of the objects in K.

Proof Consider an object K . There are two kinds of certificates in which K is in-
volved:

Order certificates: these certificates arise from the sorted lists which we maintain.
Collision certificates: these certificates certify disjointness for all candidate pairs that

include K .
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Since the number of sorted lists in the KDS is O(ρ) and there are O(ρ6) guards
for each object, the number of order certificates involving K is O(ρ7). It remains to
count the number of collision certificates. The number of such certificates involving
K and a larger object K ′ is O(ρ8), because the guarding set of K has O(ρ6) size
and for each guarding point we maintain O(ρ2) objects—one per cone defined for
the guard. Now we have to count the number of objects K ′ smaller than K such that
bb(K) contains at least one guard of K ′. Since the volume of K is less than O(ρ3σ 3)

times the volume of K ′, a simple packing argument shows that the number of such
objects K ′ is O(ρ3σ 3)—note that if bb(K) contain more than one guarding point
of K ′, we just maintain one collision certificate between K and K ′. Therefore, the
total number of certificates involving K is O(ρ8 + ρ3σ 3). �

4 Conclusion

We presented the first KDS’s for collision detection between multiple convex fat 3D
objects that use a near-linear number of certificates and do not require the objects to
have similar sizes. We believe that this is an important step forward in the theoretical
investigation of KDS’s for 3D collision detection. Our KDS for balls rolling on a
plane is simple, and may perform well in practice. Our general KDS for free-flying
objects of varying sizes, however, is complicated and the dependency on the fatness
parameter ρ is large. Thus our result should be seen as a proof that good bounds
are possible in theory—whether a simple and practical solution exists that achieves
similar worst-case bounds is still open.

As remarked above, our structures are not local: a single object can be involved in
a linear number of certificates. Unfortunately, this seems very hard (if not impossi-
ble) to avoid if there is a single large object that is closely surrounded by many tiny
objects. Thus we do not expect to see a local KDS that can deal with arbitrarily sized
objects. (We have shown though that a local KDS is possible for convex fat objects
when their sizes are similar.)

Finally, a challenging open problem is to obtain results on non-convex and/or non-
fat objects.

Acknowledgements The last author would like to thank David Kirkpatrick for valuable discussions
on the presented subject. We also thank an anonymous referee for a suggestion that simplified the KDS
described in Sect. 3.
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