Skip to main content
Log in

Minimum Weakly Fundamental Cycle Bases Are Hard To Find

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the last years, new variants of the minimum cycle basis (MCB) problem and new classes of cycle bases have been introduced, as motivated by several applications from disparate areas of scientific and technological inquiry. At present, the complexity status of the MCB problem is settled only for undirected, directed, and strictly fundamental cycle bases (SFCB’s). Weakly fundamental cycle bases (WFCB’s) form a natural superclass of SFCB’s. A cycle basis \(\mathcal{C}=\{C_{1},C_{2},\ldots,C_{\nu}\}\) of a graph G is a WFCB iff ν=0 or there exists an edge e of G and a circuit C i in \(\mathcal{C}\) such that \(\mathcal{C}\setminus C_{i}\) is a WFCB of Ge. WFCB’s still possess several of the nice properties offered by SFCB’s. At the same time, several classes of graphs enjoying WFCB’s of cost asymptotically inferior to the cost of the cheapest SFCB’s have been found and exhibited in the literature. Considered also the computational difficulty of finding cheap SFCB’s, these works advocated an in-depth study of WFCB’s. In this paper, we settle the complexity status of the MCB problem for WFCB’s (the MWFCB problem). The problem turns out to be \({\mathcal{APX}}\) -hard. However, in this paper, we also offer a simple and practical 2⌈log 2 n⌉-approximation algorithm for the MWFCB problem. In O(n ν) time, this algorithm actually returns a WFCB whose cost is at most 2⌈log 2 n⌉∑ eE(G) w e , thus allowing a fast 2⌈log 2 n⌉-approximation also for the MCB problem. With this algorithm, we provide tight bounds on the cost of any MCB and MWFCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1–2), 123–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.B.: A graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amaldi, E., Liberti, L., Maculan, N., Maffioli, F.: Efficient edge-swapping heuristics for finding minimum fundamental cycle bases. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA. Lecture Notes in Computer Science, vol. 3059, pp. 14–29. Springer, Berlin (2004)

    Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Combinatorial Optimization Problems and their Approximability Properties. Springer, Berlin (1999)

    MATH  Google Scholar 

  5. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, STOCS, pp. 161–168 (1998)

  6. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle bases for network graphs. Algorithmica 40(1), 51–62 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  8. Bollobás, B.: Modern Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 184. Springer, Berlin (2002)

    Google Scholar 

  9. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algorithms 48(1), 239–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Pina, J.C.: Applications of shortest path methods. PhD thesis University of Amsterdam (1995)

  11. Deo, M.P.N., Prabhu, G.M., Krishnomoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Softw. 8(1), 26–42 (1982)

    Article  MATH  Google Scholar 

  12. Elkin, M., Liebchen, C., Rizzi, R.: New length bounds for cycle bases. Inf. Process. Lett. (2007, to appear)

  13. Erdös, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publ. Math. Debr. 9, 3–12 (1962)

    MATH  Google Scholar 

  14. Galbiati, G., Amaldi, E.: On the approximability of the minimum fundamental cycle basis problem. In: Jansen, K., Solis-Oba, R. (eds.) WAOA. Lecture Notes in Computer Science, vol. 2909, pp. 151–164. Springer, Berlin (2003)

    Google Scholar 

  15. Gleiss, P.M.: Short cycles. PhD thesis, Universität Wien (2001). http://www.tbi.univie.ac.at/papers/Abstracts/pmg_diss.pdf

  16. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT. Lecture Notes in Computer Science, vol. 2368, pp. 200–209. Springer, Berlin (2002)

    Google Scholar 

  17. Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for minimum cycle bases in directed graphs. Kurt Mehlhorn’s List of Publications 191, Max-Planck-Institute Saarbrücken (2005). http://www.mpi-sb.mpg.de/~mehlhorn/ftp/ImprovedDirCycleBasis.ps

  18. Holyer, I.: The \({\mathcal{NP}}\) -completeness of some edge-partition problems. SIAM J. Comput. 10, 713–717 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: A faster algorithm for minimum cycle basis of graphs. In: Diaz, J., Karhumäki, J., Lepistö, A., Sanella, D. (eds.) ICALP. Lecture Notes in Computer Science, vol. 3142, pp. 846–857. Springer, Berlin (2004)

    Google Scholar 

  21. Kavitha, T., Mehlhorn, K.: A polynomial time algorithm for minimum cycle basis in directed graphs. In: Diekert, V., Durand, B. (eds.) STACS. Lecture Notes in Computer Science, vol. 3404, pp. 654–665. Springer, Berlin (2005)

    Google Scholar 

  22. Kirchhoff, G.R.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  23. Kochol, M.: Hypothetical complexity of the nowhere-zero 5-flow problem. J. Graph Theory 28, 1–11 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liebchen, C.: Finding short integral cycle bases for cyclic timetabling. In: Battista, G.D., Zwick, U. (eds.) ESA. Lecture Notes in Computer Science, vol. 2832, pp. 715–726. Springer, Berlin (2003)

    Google Scholar 

  25. Liebchen, C., Peeters, L.W.: On cyclic timetabling and cycles in graphs. Technical Report 761-2002, TU Berlin, Mathematical Institute (2002). ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-761-2002.pdf

  26. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed graph. Inf. Process. Lett. 94(3), 107–112 (2005)

    Article  MathSciNet  Google Scholar 

  27. Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Math. 155(3), 337–355 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Papadimitriou, C.H.: Computational Complexity. EATCS Monographs on Theoretical Computer Science. Addison-Wesley, Reading (1994)

    Google Scholar 

  29. Poincaré, H.: Second complément à l’analysis situs. Proc. Lond. Math. Soc. 32, 277–308 (1900)

    Article  Google Scholar 

  30. Trevisan, L.: Inapproximability of combinatorial optimization problems. In: ECCC, p. 065 (2004)

  31. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math. 72, 355–360 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Veblen, O.: Analysis situs. Amer. Math. Soc. Colloq. Lect. 1916, New York (1922)

  33. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeo Rizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzi, R. Minimum Weakly Fundamental Cycle Bases Are Hard To Find. Algorithmica 53, 402–424 (2009). https://doi.org/10.1007/s00453-007-9112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9112-8

Keywords

Navigation