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Abstract The data migration problem is to compute an efficient plan for moving
data stored on devices in a network from one configuration to another. It is modeled
by a transfer graph, where vertices represent the storage devices, and edges repre-
sent data transfers required between pairs of devices. Each vertex has a non-negative
weight, and each edge has a processing time. A vertex completes when all the edges
incident on it complete; the constraint is that two edges incident on the same ver-
tex cannot be processed simultaneously. The objective is to minimize the sum of
weighted completion times of all vertices. Kim (J. Algorithms 55, 42–57, 2005) gave
an LP-rounding 3-approximation algorithm when edges have unit processing times.
We give a more efficient primal-dual algorithm that achieves the same approximation
guarantee. When edges have arbitrary processing times we give a primal-dual 5.83-
approximation algorithm. We also study a variant of the open shop scheduling prob-
lem. This is a special case of the data migration problem in which the transfer graph
is bipartite and the objective is to minimize the sum of completion times of edges. We
present a simple algorithm that achieves an approximation ratio of

√
2 ≈ 1.414, thus

improving the 1.796-approximation given by Gandhi et al. (ACM Trans. Algorithms
2(1), 116–129, 2006). We show that the analysis of our algorithm is almost tight.
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1 Introduction

The data migration problem arises in large storage systems, such as Storage Area
Networks [13], where a dedicated network of disks is used to store multimedia data.
As the data access pattern changes over time, the load across the disks needs to be
rebalanced so as to continue providing efficient service. This is done by computing
a new data layout and then “migrating” data to convert the initial data layout to the
target data layout. While migration is being performed, the storage system is run-
ning suboptimally, therefore it is important to compute a data migration schedule that
converts the initial layout to the target layout quickly.

This problem can be modeled as a transfer graph [15], in which the vertices repre-
sent the storage disks and an edge between two vertices u and v corresponds to a data
object that must be transferred from u to v, or vice-versa. Each edge has a processing
time that represents the transfer time of a data object between the disks corresponding
to the end points of the edge. An important constraint is that any disk can be involved
in at most one transfer at any time.

Several variations of the data migration problem have been studied. These varia-
tions arise either due to different objective functions or due to additional constraints.
One common objective function is to minimize the makespan of the migration sched-
ule, i.e., the time by which all migrations complete. Coffman et al. [4] show that
when the edges have unit processing times, the problem reduces to edge coloring of
the transfer (multi)graph of the system. The best approximation algorithm known for
minimum edge coloring [18] then yields an algorithm for data migration with unit
edge processing times, whose makespan is 1.1χ ′ + 0.8, where χ ′ is the chromatic
index of the graph. Approximation algorithms are also developed [1, 10, 13, 14] for
generalizations of the makespan minimization problem in which there are storage
constraints on disks and constraints on how the data can be transferred.

The data migration problem has also been studied with the objective of minimiz-
ing the sum of weighted completion time over all storage disks. Kim [15] proved that
the problem is NP-hard when edges have unit processing times and showed that Gra-
ham’s list scheduling algorithm [8], when guided by an optimal solution to a linear
programming relaxation, gives an approximation ratio of 3. Gandhi et al. [7] show
that Kim’s analysis is tight. Very recently, Mestre [17] improves the approximation
ratio to 1 + φ, where φ is the Golden ratio; his approach builds on the algorithm
presented in this paper. When edges have arbitrary processing times Kim [15] gave a
9-approximate solution. Gandhi et al. [7] improved the approximation factor to 5.03.
They present two algorithms each achieving an approximation ratio of 5.83 and show
that combining the two solutions yields an approximation ratio of 5.03. A problem
related to the data migration problem is open shop scheduling. In this problem, we
have a set of jobs, J , and a set of machines M1, . . . ,Mm. Each job Jj ∈ J consists
of a set of mj operations. For 1 ≤ i ≤ mj , operation oj,i has processing time pj,i

and must be processed on Mφ(j,i). Each machine can process a single operation at
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any time, and two operations that belong to the same job cannot be processed simul-
taneously. Each job Jj has a positive weight, wj and the objective is to minimize
the sum of weighted completion times of all jobs. This problem is a special case
of the data migration problem [7]. Open shop scheduling problem has been studied
in [3, 12, 20, 21].

There has also been interest in the study of data migration problem with the objec-
tive function being to minimize the average completion time over all data transfers.
This corresponds to minimizing the average edge completion time in the transfer
graph. For arbitrary edge processing times, several constant factor approximation al-
gorithms [6, 11, 15] are known with the best approximation factor being 7.682 [6].
For the case of unit processing times, Bar-Noy et al. [2] showed that the problem
is NP-hard and gave a simple 2-approximation algorithm. When restricted to bi-
partite graphs, the latter problem becomes a variant of open shop scheduling in
which the operations have unit processing times and the objective is to minimize
the sum of completion times of operations; for this problem Gandhi et al. [7] give
a 1.796-approximate solution that uses a sum coloring algorithm due to Halldórs-
son et al. [11].

1.1 Our Contribution

First we study the data migration problem with the objective of minimizing the av-
erage completion time over all storage disks. Kim [15] gave approximation algo-
rithms for this problem: A 3-approximation when edges have unit processing times
and a 9-approximation for the general case. Kim’s algorithms round the solution pro-
duced by a linear programming relaxation for the problem. This algorithm involves
solving a linear program with an exponential number of constraints, though there
are equivalent linear programs with a polynomial number of constraints (cf. [6]).
Gandhi et al. [7] show that Kim’s algorithm can not give an approximation guarantee
better than 3. The best approximation guarantee for the general case is 5.03 [7] which
is obtained by combining solutions to two algorithms each of which yields an approx-
imation guarantee of 5.83. At a very high level all known algorithms for this problem
comprise of the following two steps: (i) label the edges, (ii) consider the edges for
scheduling in sorted order of their labels. The algorithms in [7, 15] label the edges
based on the fractional completion times in the linear programming solution. In this
work we present simple and efficient primal-dual algorithms, which constitute the
first purely combinatorial algorithms for the problem. A novel aspect of our approach
is that, unlike typical primal-dual algorithms, the primal solution is not constructed
using (relaxed) complementary slackness. Rather, in step (i), the dual update assigns
labels to the edges. These labels are used, in step (ii), to guide a scheduling proce-
dure, which is almost identical to that in [15] for unit edge processing times and that
in [7] for arbitrary edge processing times. In the analysis, the cost of the schedule
is related to the cost of the dual solution via the labels, yielding a 3-approximation
when edges have unit processing times, and a 5.83-approximation when edges have
arbitrary processing times.

The second problem we study is the data migration problem with the objective of
minimizing the sum of completion times of edges. In other words, given a graph
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Fig. 1 An instance for the data
migration problem

G = (V ,E) we want to partition the edge set E into matchings M1,M2, . . . , so
as to minimize

∑
i i|Mi |. A schedule is minimal if Mi is maximal with respect to

G \ ⋃
j<i Mj . Bar-Noy et al. [2] show that any minimal schedule is 2-approximate.

In this work, we introduce the notion of strongly minimal schedules. A schedule is
strongly minimal if for all b ≥ 1, the b-matching

⋃
j≤b Mj is maximal in G, where

b-matching is a subset of edges in G such that each vertex has at most b of its in-
cident edges in the matching. We show that any strongly minimal schedule is

√
2-

approximate, and that such schedule always exist for bipartite graphs and can be com-
puted in polynomial time. Data migration in bipartite graphs is equivalent to a variant
of open shop scheduling in which we want to minimize the sum of operation com-
pletion times. Marx [16] has shown that the problem is APX-hard. Gandhi et al. [7]
show that using the sum-coloring algorithm of Halldórsson et al. [11] one can obtain
a 1.796 approximation guarantee. Thus, we improve this ratio to

√
2 ≈ 1.414, though

our guarantee does not extend to the objective of minimizing the sum of weighted
edge completion times. We also show that the analysis is almost tight by giving an
example on which the algorithm gives a 1.375-approximate solution.

2 Data Migration Problem

We are given a graph G = (V ,E). All our graphs are multigraphs, for simplicity,
however, we drop the multi prefix when talking about graphs and sets of edges. Let
E(u) denote the set of edges incident on a vertex u. The vertices and edges in G

are jobs to be completed. Each vertex v has weight wv and each edge has processing
time pe. The completion time, Ce , of edge e is simply the time at which its processing
is completed. The completion time, Cv , of vertex v is the latest completion time of
any edge in E(v). The crucial constraint is that two edges incident on the same vertex
cannot be processed at the same time. The objective is to minimize

∑
v∈V wvCv .

To get more insight into the problem, consider the following natural and intuitive
algorithm for the case when edges have unit processing times: Process the edges in
any order scheduling them as early as possible without creating conflicts with the
edges scheduled so far. While this algorithm gives a solution that is at most twice the
cost of optimal for min

∑
e Ce [2], the following example shows that for the objective

of min
∑

v Cv it may produce a solution with cost �( 3
√

n) times the optimum.
Consider a complete graphs on q vertices. To this, attach q copies of K1,

√
q , so

that each node in Kq is the center of one of the stars, as shown in Fig. 1. The optimal
solution first schedules the stars in parallel and then the edges in Kq , with a total cost



58 Algorithmica (2009) 54: 54–71

of �(q2). On the other hand, a minimal solution may schedule the edges in Kq before
the stars, incurring an overall cost of �(q2.5). Since the graph has �(q1.5) vertices,
this shows that a minimal schedule can be a factor �( 3

√
n) away from the optimum.

2.1 A Linear Programming Relaxation

The linear programming relaxation for the data migration problem was given
by Kim [15]. Such relaxations have been proposed earlier by Wolsey [23] and
Queyranne [19] for single machine scheduling problems and by Schulz [22] and
Hall et al. [9] for parallel machines and flow shop problems. For the purpose of clar-
ity, we state only portions of the LP relaxation relevant for obtaining the primal-dual
algorithm.

For a vertex v, let Cv represent the completion time of v. Let N(u) represent the
set of neighbors of vertex u and E(u) the set of edges incident on u. For any edge
e = (u, v), we use pe to denote the processing time of e. For any set F ⊆ E, let
p(F) = ∑

e∈F pe.

min
∑

v∈V

wv Cv

subject to
∑

e=(u,v)∈S(u)

peCv ≥ p(S(u))2 + p(S(u)2)

2
∀u ∈ V,S(u) ⊆ E(u), (1)

Cv ≥ p(E(v)) ∀v ∈ V. (2)

The justification for constraints (1) is as follows. By the problem definition, no two
edges incident on the same vertex can be scheduled at the same time. Consider any
ordering of the edges in S(u) ⊆ E(u). If an edge e ∈ S(u) is the j th edge to be
scheduled among the edges in S(u) then, setting Cj = Ce and pj = pe, we get

|S(u)|∑

j=1

pjCj ≥
|S(u)|∑

j=1

pj

j∑

k=1

pk =
|S(u)|∑

j=1

j∑

k=1

pjpk = p(S(u))2 + p(S(u)2)

2
.

Combining this with the fact that Cv ≥ Ce, for all v ∈ V and e ∈ E(v) gives us the
set of constraints (1).

The dual LP contains a variable yS(u) for each set S(u), corresponding to con-
straint (1), and a variable zv for each v ∈ V , corresponding to constraint (2). The dual
LP is given below.

max
∑

u∈V
S(u)⊆E(u)

p(S(u))2 + p(S(u)2)

2
yS(u) +

∑

v∈V

p(E(v))zv

subject to

zv +
∑

e=(u,v)
S(u):e∈S(u)

yS(u)pe ≤ wv ∀v ∈ V, (3)
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yS(u) ≥ 0 ∀u ∈ V,S(u) ⊆ E(u), (4)

zv ≥ 0 ∀v ∈ V. (5)

3 Algorithm

The algorithm consists of two phases—labeling and scheduling. In the labeling phase,
the vertices receive labels which are then used to label the edges. The scheduling
phase uses the edge labels to decide the order in which the edges must be considered
for processing.

3.1 Labeling Phase

The high level idea of the labeling algorithm is as follows. Initially, each vertex is
unlabeled and the dual variables are set to 0. The algorithm proceeds in iterations. In
each iteration we find a vertex x which maximizes the total processing times of edges
going from x to unlabeled neighbors of x, call this set of edges S(x). If there exists
an unlabeled node h such that p(E(h)) > p(S(x)), then assign h a label of p(S(x))

and raise zh until constraint (3) is tight, namely,

zh = wh −
∑

e=(u,h)
S(u):e∈S(u)

yS(u)pe.

Otherwise, the value of the dual variable yS(x) is increased until the dual constraint
(3) is met with equality for some unlabeled neighbor v of x. In other words, yS(x)

assumes the smallest value such that for some vertex v ∈ N(x) such that (x, v) ∈ S(x)

we have
∑

e=(u,v)
S(u):e∈S(u)

yS(u)pe = wv.

All unlabeled neighbors of x for which the above equality holds are labeled p(S(x)).
Note that the dual variables are incremented in such a way that no constraint in the
dual LP is violated.

The label of vertex u is denoted by �(u). The label �(e) of an edge e = (u, v) is
the pair (�(u), �(v)). For any two edges e = (u, v) and f = (u′, v′), �(e) ≤ �(f ) if:

(i) min{�(u), �(v)} < min{�(u′), �(v′)}, or
(ii) min{�(u), �(v)} = min{�(u′), �(v′)} and max{�(u), �(v)} ≤ max{�(u′), �(v′)}.

The pseudo-code for the labeling phase is given in Fig. 2. We now state and prove
some important properties of the labels and the dual solution generated by our algo-
rithm.

Lemma 1 Consider an edge e = (v,w). Let Fe(w) = {f ∈ E(w) |�(f ) ≤ �(e)}.
Then, p(Fe(w)) ≤ �(v).
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LABEL(G = (V ,E))

1 for each v ∈ V do
2 �(v) ← nil // v is unlabeled
3 while there exists an unlabeled vertex do
4 let x be a vertex maximizing p(S(x)),

where S(x) = {(x, v) ∈ E(x) |�(v) = nil}
5 let h be an unlabeled vertex maximizing p(E(h))

6 if p(E(h)) > p(S(x)) then
7 zh ← wh

8 �(h) ← p(S(x)) // h is now labeled
9 else

10 yS(x) ← min
{

wv∑
e=(x,v) pe

|v ∈ N(x) s.t. �(v) = nil
}

11 for each v ∈ N(x) s.t. �(v) = nil do
12 wv ← wv − yS(x)

∑
e=(x,v) pe

13 if wv = 0 then
14 �(v) ← p(S(x)) // v is now labeled
15 for each e = (u, v) ∈ E do
16 �(e) ← (�(u), �(v))

17 return �

Fig. 2 Labeling procedure

Proof Let Ne(w) = {y ∈ N(w) | (w,y) ∈ Fe(w)}. Note that e ∈ Fe(w) and for each
vertex y ∈ Ne(w) we have �(y) ≤ �(v). Consider the iteration of the algorithm in
which the first vertex in Ne(w) is labeled, and let y be that vertex. At the beginning of
this iteration the sum of the processing times of edges in E(w) whose other endpoints
are unlabeled is at least p(Fe(w)). Notice that x is chosen (line 4 in the pseudo-code
LABEL) to be the vertex with the maximum value of p(S(x)), where S(x) is set of
edges incident to x whose other endpoints are unlabeled. Therefore, it must be the
case that p(Fe(w)) ≤ p(S(x)) = �(y). �

Lemma 2 For any h ∈ V , if zh > 0 then p(E(h)) > �(h).

Proof In the pseudo-code, variable zh is set in line 7. In order to reach line 7, the
condition of if statement in line 6 must be satisfied. Thus, p(E(h)) > �(h). �

Lemma 3 For any v ∈ V and S(x) such that (x, v) ∈ S(x), if yS(x) > 0, max{�(v),

p(E(v))} ≤ p(S(x)).

Proof Consider the iteration in which yS(x) was set. In the pseudo-code, variable
yS(x) is set in line 10. In order to reach line 10, it must be that in this iteration
all unlabeled vertices have degree at most p(S(x)). In particular, since v was un-
labeled at the beginning of the iteration, p(E(v)) ≤ p(S(x)). If vertex v is labeled in
this iteration then �(v) = p(S(x)). Otherwise v is labeled in a later iteration. Since
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SCHEDULE(G = (V ,E), �)

1 sort edges in lexicographic order of their labels
2 for each e = (u, v) ∈ E, processed in sorted order do
3 schedule e as early as possible

without creating conflicts with edges scheduled so far.

Fig. 3 Scheduling with unit processing times

the value of the labels assigned by the algorithm only decreases with time, we have
�(v) ≤ p(S(x)). �

3.2 Scheduling Edges with Unit Processing Times

The scheduling phase is almost the same as the list scheduling algorithm [8] used by
Kim [15]. The only difference is in the entity that is used to decide the order in which
the edges are processed. We use the edge labels generated by algorithm LABEL to
decide the ordering whereas Kim [15] uses the completion times of edges as returned
by the linear programming solution. The edges are sorted in increasing order of their
labels. The edges are then processed in this order. When processing (u, v) ∈ E, the
edge is scheduled at the earliest time such that no edge incident upon u or v is already
scheduled at that time. The pseudo-code is given in Fig. 3.

In order to gain some intuition, we trace the execution of LABEL and SCHEDULE

on the unweighted instance from Fig. 1. The transfer graph consists of q stars (K1,
√

q )
whose centers are fully connected, i.e., they induce a Kq . The procedure LABEL starts
by choosing a star center a and sets the labels of its neighbors to q + √

q − 1; then
a gets a label of

√
q + 1 and the remaining nodes get a label of

√
q . As we saw at

the beginning of Sect. 2 the optimal solution first schedules the star edges and then
schedules the Kq edges. When SCHEDULE sorts the edge set, only the star edges
incident on a may come before some of the Kq edges; thus the algorithm produces a
schedule that is close to optimal.

Let a be the first node chosen by LABEL and let A be the set of its neighbors. In
any schedule the collective finishing time of nodes in A must be at least |A|2/2 =
(q + √

q − 1)2/2. The finishing time of A in our schedule will be charged to this
quantity. To avoid overcharging, the nodes in A are labeled with |A| = q + √

q − 1.
Let b �= a be a star center and B be its

√
q star neighbors. When LABEL choses b the

set of unlabeled neighbors of b is B . Their collective finishing time in any solution
is at least |B|2/2 = q/2. Since this quantity should pay for the finishing time of B ,
these nodes are given a label of |B| = √

q . Notice that the budget to pay for A is
O(q) larger than the budget to pay for B . Hence, in our schedule we would like the
nodes in B to finish earlier than the nodes in A. Indeed, the procedure SCHEDULE is
set up so that the finishing time of a vertex is not much greater than its given label.

3.3 Analysis when Edges Have Unit Processing Times

Let C̃v be the completion time of vertex v in our algorithm. Recall that E(v) denotes
the set of edges incident on a vertex v, and N(v) the set of neighbors of v.
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Lemma 4 For each v ∈ V , C̃v ≤ �(v) + |E(v)| − 1.

Proof Let ev = (w,v) be the last edge to finish among the edges in E(v). Recall
from Lemma 1 that Fev (w) = {f ∈ E(w) |�(f ) ≤ �(ev)}. Observe that because of
the order in which the edges are scheduled, we have

C̃v ≤ |Fev (w)| + |E(v)| − 1.

From Lemma 1 we know that p(Fev (w)) = |Fev (w)| ≤ �(v). Substituting this in the
above expression completes the proof. �

Theorem 1 The data migration problem with edges having unit processing times has
a 3-approximate primal-dual algorithm.

Proof Let G = (V ,E) be an instance of the data migration problem. The cost of the
schedule found by our algorithm is given by

∑

v∈V

wvC̃v ≤
∑

v∈V

wv(�(v) + |E(v)|) [using Lemma 4]

=
∑

v∈V

wv�(v) +
∑

v∈V

wv|E(v)|.

Clearly
∑

v∈V wv|E(v)| ≤ OPT(G). Thus, if we can show that
∑

v∈V wv�(v) ≤
2OPT(G) we are done. To that end, we relate

∑
v∈V wv�(v) to the cost of the dual

feasible solution obtained by the algorithm, which we denote by DFS(G).

∑

v∈V

wv �(v) =
∑

v∈V

(

zv +
∑

e=(u,v)
S(u):e∈S(u)

yS(u)

)

�(v) [every vertex is tight]

=
∑

v∈V

zv �(v) +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) �(v)

≤
∑

v∈V

zv |E(v)| +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) �(v) [using Lemma 2]

≤
∑

v∈V

zv |E(v)| +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) |S(u)| [using Lemma 3]

=
∑

v∈V

zv |E(v)| +
∑

u∈V
S(u)⊆E(u)

∑

e∈S(u)

yS(u) |S(u)|

=
∑

v∈V

zv |E(v)| +
∑

u∈V
S(u)⊆E(u)

yS(u) |S(u)|2

≤ 2 DFS(G).



Algorithmica (2009) 54: 54–71 63

Since DFS(G) is a lower bound on OPT(G), it follows that
∑

v∈V wv�(v) ≤
2OPT(G). �

3.4 Scheduling Edges with Arbitrary Processing Times

The scheduling phase is essentially the same as in [7]. The only difference is in the
order in which the edges are scheduled—we decide the order using the labels on the
edges, whereas in [7], the ordering is based on the completion times of the edges in
the optimal linear programming solution. For completeness, we restate the scheduling
algorithm here as described in [7]. In the scheduling phase, each edge e = (u, v) waits
for We time units before it can be scheduled, where

We = β max{p(Fe(u)),p(Fe(v))}.
In the above expression, Fe(u) = {f ∈ E(u) |�(f ) ≤ �(e)} and Fe(v) = {f ∈
E(v) |�(f ) ≤ �(e)}. When processing (u, v) ∈ E, the edge is scheduled at the ear-
liest time such that no edge incident upon u or v is already scheduled at that time.
When e is being processed, we say that e is active. Once it becomes active, it re-
mains active for pe time steps, after which it is finished. A not-yet-active edge can
be waiting only if none of its neighboring edges are active; otherwise, it is said to be
delayed. Thus, at any time, an edge is in one of four modes: delayed, waiting, active,
or finished. When adding new active edges, among those that have done their waiting
duty, the algorithm uses the labels on edges as priorities. The precise rules are given
in the pseudo-code below. Let wait(e, t) denote the number of time steps that e has
waited until the end of time step t . Let Active(t) be the set of active edges during time
step t . Let C̃e (C̃u) be the completion time of edge e (vertex u) in our algorithm.

The pseudo code for the algorithm, as it appears in Fig. 4, would run in pseudo-
polynomial time; however, it is easy to implement the algorithm in strongly polyno-
mial time, by increasing t in each iteration by the smallest remaining processing time
of an active edge.

3.5 Analysis when Edges Have Arbitrary Processing Times

Consider a vertex x and an edge e = (x, y). Let Be(x) = {f ∈ E(x) |�(f ) >

�(e), C̃f < C̃e}, i.e., edges in E(x) that have a greater label than that of e, but finish
before e in our algorithm. Recall that Fe(x) = {f ∈ E(x) |�(f ) ≤ �(e)}. Note that
e ∈ Fe(x). Let Fe(x) = Fe(x) \ {e}.

We analyze the completion time of an arbitrary but fixed vertex v ∈ V . With-
out loss of generality, let ev = (v,w) be the edge that finishes last among the edges
in E(v). We analyze our algorithm for the case where all edges in Fev (v) ∪ Fev (w)

finish before ev in our algorithm. If this is not true then our results can only improve.
Let C̃v be the completion time of vertex v in our algorithm.

Lemma 5 For each v ∈ V , C̃v ≤ β max{p(Fev (v)), �(v)}+p(E(v))+p(Fev (w))+
p(Bev (w)).

Proof Observe that when ev is in delayed mode it must be that some edge in Fev (v)∪
Bev (v) ∪ Fev (w) ∪ Bev (w) must be active. Hence, we have
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SCHEDULE(G = (V ,E), �,W)

1 sort edges (u, v) ∈ E in lexicographic order of their labels.
2 t ← 0
3 Finished ← Active(t) ← ∅
4 for each e ∈ E do
5 wait(e, t) ← 0
6 while (Finished �= E) do
7 t ← t + 1
8 Active(t) ← {e | e ∈ Active(t − 1) and e �∈ Active(t − pe)}
9 for each edge e ∈ Active(t − 1) \ Active(t) do
10 C̃e ← t − 1
11 Finished ← Finished ∪ {e} // e is finished
12 for each edge e = (u, v) ∈ E \ (Active(t) ∪ Finished)

13 processed in non-decreasing order of their labels do
14 if (Active(t) ∩ (E(u) ∪ E(v)) = ∅) and (wait(e, t − 1) = We) then
15 Active(t) ← Active(t) ∪ {e} // e is active
16 for each edge e = (u, v) ∈ E \ (Active(t) ∪ Finished) do
17 if (Active(t) ∩ (E(u) ∪ E(v)) = ∅) then
18 wait(e, t) ← wait(e, t − 1) + 1 // e is waiting
19 else wait(e, t) ← wait(e, t − 1) // e is delayed
20 return C̃

Fig. 4 Scheduling with arbitrary processing times

C̃v = C̃ev

≤ Wev + p(Fev (v)) + p(Bev (v)) + p(Fev (w)) + p(Bev (w))

= β max{p(Fev (v)),p(Fev (w))} + p(E(v)) + p(Fev (w)) + p(Bev (w))

≤ β max{p(Fev (v)), �(v)} + p(E(v)) + p(Fev (w)) + p(Bev (w)).

The last expression follows using Lemma 1. �

Lemma 6 For any vertex v ∈ V , p(Fev (w))+p(Bev (w)) ≤ max{p(Fev (v)), �(v)}+
1
β
p(E(v)).

Proof Let f = (w, z) ∈ Bev (w) be an edge with the largest label. When edge f is
waiting, it must be that ev is waiting or some edge in E(v) is being processed. Thus
we have

β
(
p(Fev (w)) + p(Bev (w))

) ≤ Wf

≤ Wev + p(E(v))

= β max{p(Fev (v)),p(Fev (w))} + p(E(v))

≤ β max{p(Fev (v)), �(v))} + p(E(v)).

The last inequality follows from Lemma 1. �
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Lemma 7 For any vertex v ∈ V , C̃v ≤ (1+β)max{p(E(v)), �(v)}+(1+ 1
β
)p(E(v)).

Proof The claim follows from Lemmas 5 and 6, and the fact that p(Fev (v)) ≤
p(E(v)). �

Theorem 2 The data migration problem with edges having arbitrary processing
times has a 5.83-approximate primal-dual algorithm.

Proof Let G = (V ,E) be an instance of the data migration problem. The cost of the
schedule found by our algorithm is given by

∑

v∈V

wvC̃v ≤
∑

v∈V

wv

(

(1 + β)max{p(E(v)), �(v)} +
(

1 + 1

β

)

p(E(v))

)

[using Lemma 7]

= (1 + β)
∑

v∈V

wv max{p(E(v)), �(v)} +
(

1 + 1

β

) ∑

v∈V

wvp(E(v)).

Clearly,
∑

v∈V wvp(E(v)) ≤ OPT(G). Now, suppose
∑

v∈V

wv max{p(E(v)), �(v)} ≤ 2OPT(G). (6)

It follows that
∑

v∈V

wvC̃v ≤
(

3 + 2β + 1

β

)

OPT(G).

The right hand side in the above expression is minimized for β = 1√
2

, which gives a

ratio of 3 + 2
√

2 ≈ 5.83. It all boils down to showing (6). This is done by relating the
left hand side of (6) to the cost of the dual feasible solution obtained by the algorithm,
which we denote by DFS(G).
∑

v∈V

wv max{p(E(v)), �(v)}

=
∑

v∈V

(

zv +
∑

e=(u,v)
S(u):e∈S(u)

yS(u)pe

)

max{p(E(v)), �(v)} [all v ∈ V are tight]

≤
∑

v∈V

zvp(E(v)) +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u)pe max{p(E(v)), �(v)} [using Lemma 2]

≤
∑

v∈V

zvp(E(v)) +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u)pep(S(u)) [using Lemma 3]

=
∑

v∈V

zvp(E(v)) +
∑

u∈V
S(u)⊆E(u)

∑

e∈S(u)

yS(u)pep(S(u))
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=
∑

v∈V

zvp(E(v)) +
∑

u∈V
S(u)⊆E(u)

yS(u)p(S(u))2

≤ 2DFS(G).

Since DFS(G) is a lower bound on OPT(G), it follows that
∑

v∈V wv ×
max{p(E(v)), �(v)} ≤ 2OPT(G). �

4 Minimizing Sum of Edge Completion Times

The problem of scheduling the edges (with unit processing times) of a graph to min-
imize the sum of their completion times can be cast as an edge coloring problem:
Given G = (V ,E) we want to partition the edge set E into matchings M1, . . . ,Mk

as to minimize
∑

i i|Mi |. Indeed, this problem is also known as minimum sum edge
coloring.

Bar-Noy et al. [2] show that any minimal schedule is 2-approximate. In a minimal
schedule every matching Mi is maximal with respect to G \ ⋃

j<i Mj . The main
result of this section is to identify a stronger minimality requirement that results in a
better approximation guarantee.

Definition 1 A schedule M1, . . . ,Mk of G is said to be strongly minimal if, for all
1 ≤ b ≤ k, the b-matching

⋃
i≤b Mi is maximal with respect to G.

Theorem 3 Any strongly minimal schedule is
√

2-approximate.

Proof The high level idea of the proof is to assign every edge to at least one of its
endpoints. Each vertex is responsible for paying for the cost of the edges assigned to
it. In order to pay for this cost each vertex charges a lower bound on the completion
time of the edges assigned to it.

Let (u, v) ∈ Mi , we say endpoint u is full if u is matched in all Mj , j < i. We
consider the endpoints of edges in M1 to be full. Notice that every edge (u, v) ∈ Mi

must have at least one full endpoint, otherwise
⋃

j<i Mj + (u, v) would be a valid
(i − 1)-matching, which contradicts the fact that the schedule is strongly minimal. If
both endpoints of (u, v) are full then the edge is half-assigned to u and v. Otherwise
the edge is fully-assigned to the one full endpoint.

Every vertex u is responsible for the cost of edges assigned to it. If an edge is half-
assigned to u, then u pays for half of its completion time; if the edge is fully-assigned
then u pays in full. Let s1 and s2 be the number of half-assigned and fully-assigned
edges to u respectively. Notice that all edges assigned to u must belong to Mj for
some j ≤ s1 + s2. Think of u as paying 1

2 of the completion time of all edges assigned
to it, plus an additional 1

2 for the fully-assigned edges, which in the worst case will
be scheduled the latest,

u must pay ≤ 1

2

s1+s2∑

i=1

i + 1

2

s1+s2∑

i=s1+1

i.
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Vertex u will pay this amount by charging the completion time (in the optimal
solution) of the edges assigned to it. Fully-assigned edges are charged a soon-to-
be-determined ρ factor, and half-assigned edges are charged ρ

2 . This constitutes u’s
budget. How fast can the optimal solution possibly schedule these edges?

u’s budget ≥ ρ

2

s1+s2∑

i=1

i + ρ

2

s2∑

i=1

i.

Notice that every edge is charged at most to an extent of ρ: fully-assigned
edges are charged ρ once, from a single endpoint, and half-assigned edges are
charged ρ

2 twice, once from each endpoint. Thus, strongly minimal schedules are ρ-
approximate. The discrepancy between the upper and lower bound on the completion
times of edges assigned to u is due to fully-assigned edges which are scheduled the
latest in the upper bound, and the earliest in the lower bound. We need to determine
the smallest ρ such that u’s budget is enough to cover u’s payment, namely

(s1 + s2)(s1 + s2 + 1)

4
+ (2s1 + s2 + 1)s2

4
≤ ρ

(s1 + s2)(s1 + s2 + 1)

4
+ ρ

s2(s2 + 1)

4
.

Or equivalently,

(s1 + s2)
2 + (2s1 + s2)s2 ≤ ρ(s1 + s2)

2 + ρs2
2 + (ρ − 1)(s1 + 2s2).

Let α = s2
s1+s2

. Since ρ > 1, the above follows, provided

1 + 2α − α2

1 + α2
≤ ρ.

The left hand side is maximized for α = √
2 − 1, which yields

√
2 ≤ ρ. �

While strongly minimal schedules are not guaranteed to exist for general graphs,
we now show that in bipartite graphs they always exist and can be computed in poly-
nomial time. The bipartite is an interesting and nontrivial case: It is a variant of the
open shop scheduling problem in which we want to minimize the sum of completion
time of operations [7]. The problem is APX-hard [16] and the best known approxi-
mation guarantee for it is 1.796 [7].

Theorem 4 The procedure FIND STRONGLY MINIMAL is a
√

2-approximation for
minimizing the sum of completion times of open shop with unit processing times
scheduling.

Proof In each iteration, the procedure FIND STRONGLY MINIMAL computes a match-
ing incident to the maximum degree vertices of G and removes the matching from
G. This continues until all edges have been removed. The matchings found are then
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FIND STRONGLY MINIMAL(G)

1 for i ← 
 down to 1 do
2 Mi ← a matching incident to all vertices of G with degree i

3 G ← G \ Mi

4 return M1,M2, . . . ,M


Fig. 5 Computing a strongly minimal schedule

scheduled in reverse order. Because the degree of G decreases by one with each it-
eration, the algorithm finishes after 
 iterations, here 
 is the degree of the original
graph.

Let us argue that the schedule found is strongly minimal. Let e ∈ Mi and b < i, we
want to show that e cannot be added to

⋃
j≤b Mj without violating the b-matching

property. Let G′ be the remaining graph when Mi was computed. One of the endpoint
of e must have degree i in G′, let u be that endpoint. After removing Mi the degree of
u becomes i − 1, and thus u must be matched in Mi−1. In general u will be matched
in all Mj<i . Therefore, the degree of u in

⋃
j≤b Mj is b, which in turn means the

b-matching is maximal with respect to e.
In bipartite graphs a matching incident to all the maximum degree vertices always

exists and can be computed in polynomial time (cf. [5]). Together with Theorem 3,
this finishes the proof. �

4.1 An Almost Tight Example

While at first sight the analysis of the approximation factor of strongly minimal
schedules may seem too pessimistic, it turns out it is almost tight. Consider the fol-
lowing bipartite graph with vertices u1, . . . , un on one side and vertices v1, . . . , vn on
the other side of the bipartition. There is an edge (ui, vj ) ∈ E if and only if i ≤ j .

It is not difficult to show that the optimal schedule uses matchings

Mk = {(ui, vi+k−1) | i ≤ n − k + 1}
and has cost

∑n
i=1 i (n − i + 1) = 1

6n3 + 3n2 + 2n.
Now suppose we run FIND STRONGLY MINIMAL. Initially the maximum degree

vertices are u1 and vn, and the algorithm finds the matching Mn consisting of (u1, v n
2
)

and (u n
2 +1, vn). After removing Mn the maximum degree vertices are u1, u2, vn−1,

and vn. In general the algorithm may find, for n
2 < k ≤ n,

Mk = {(ui, vi+k− n
2 −1) | i ≤ n − k + 1} ∪ {(uj−k+ n

2 +1, vj ) | j ≥ k}.
After these matchings are removed from the graph we are left with a complete bipar-
tite graph on u1, . . . , u n

2
and vn

2 +1, . . . , vn, thus |Mk| = n
2 for all 1 ≤ k ≤ n

2 . There-

fore, the cost of this strongly minimal schedule is 11
48n3 + 5

8n2 + 1
3n.

The ratio of the cost of the optimal and strongly minimal solutions approaches
1.375 as n → ∞. Compare this to the approximation guarantee of

√
2 ≈ 1.414 ob-

tained in Theorem 3.
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4.2 LP Formulation Gap

Let us now study the inherent limitations of the lower bounding technique used to
prove Theorem 3. The lower bound used there can be generalized as follows: For
any subset of edges S(u) incident on a vertex u, we know that any feasible sched-
ule must spend at least |S(u)|(|S(u)|+1)

2 time on these edges. We can charge the cost
incurred by this set of edges, a factor yS(u) ≥ 0. If for every edge e the total charge
(
∑

S(u) : e∈S(u) yS(u)) on e is at most 1, then
∑

S(u)
|S(u)|(|S(u)|+1)

2 yS(u) offers a lower
bound on the cost an optimal schedule. The best such lower bound corresponds to the
optimal solution of the following dual linear program.

max
∑

u∈V
S(u)⊆E(U)

|S(u)|(|S(u)| + 1)

2
yS(u)

subject to
∑

S(u):e∈S(u)

yS(u) ≤ 1 ∀e ∈ E,

yS(u) ≥ 0 ∀u ∈ V,S(u) ⊆ E(u).

(7)

In hindsight, the proof of Theorem 3 can be viewed as a case of dual-fitting in
which constraint (7) is violated a

√
2 factor. To determine how good a lower bound

the dual offers, we derive the primal LP and study its LP formulation gap, that is,
the ratio of the cost of the best optimal schedule to the cost of the best fractional
schedule. (Here we do not talk about integrality gap because the LP formulations are
not exact even if integrality is inforced.)

Theorem 5 The LP formulation gap of the LP below is at least 4
3 in general graphs

and at least 10
9 in bipartite graphs.

min
∑

e∈E

Ce

subject to
∑

e∈S(u)

Ce ≥ |S(u)|(|S(u)| + 1)

2
∀u ∈ V,S(u) ⊆ E(u),

Ce ≥ 0 ∀e ∈ E.

(8)

Proof For general graphs, consider a triangle. The optimal solution schedules one
edge at the time, and incurs a cost of 6. The LP can schedule all edges at Ce = 1.5,
with a cost of 4.5. Thus, the LP formulation gap for this graph is 4

3 .
For the bipartite case (our example is in fact a tree) consider a spider with three

legs of length two. The graph is shown in Fig. 6 along with the edge completion
times of an optimal schedule (in black and to the left) and of the optimal LP solution
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Fig. 6 LP formulation gap
examples for general and
bipartite instances for
min

∑
e Ce . Integral finishing

times appear in black; fractional
finishing times appear in gray

(in gray and to the right). Optimum schedules three edges in M1, two in M2 and
one in M3, with a total cost of 10. On the other hand, the LP solution manages to
schedule all edges in two rounds, with a total cost of 9. Thus the LP formulation gap
for bipartite graphs is at least 10

9 . �

4.3 Limitations of Strongly Minimal Schedules

We conclude this section with a note on the limitations of strongly minimal schedules.
One common generalization of our scheduling problem is to minimize the weighted
sum of completion times. In this setting the proof of Theorem 3 does not go through
as we make crucial use of the fact that the edges have uniform weight.

It would be natural to hope that the following slight modification of FIND

STRONGLY MINIMAL would produce good schedules: Instead of finding any match-
ing incident to the maximum degree vertices, find one with minimum weight. Un-
fortunately, the following bipartite example shows that strongly minimal schedules
are just not suited for the weighted case. Take a path of length four and replace each
edge with a copy of Kt,t . The edges in the first and the last Kt,t have weight 1, and
the ones in the middle have weight 0. The optimal solution schedules the first and
the last Kt,t in the first t rounds and the remaining edges are scheduled in the next
2t rounds, with a total cost of t2(t + 1). On the other hand, any strongly minimal
solution can schedule at most t edges with weight 1 per round, thus incurring a total
cost of t2(2t + 1). The ratio of the cost of the two solutions approaches 2 as t → ∞.

Acknowledgements We thank Yoo-Ah Kim for useful discussions.
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