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Abstract Real algebraic expressions are expressions whose leaves are integers and
whose internal nodes are additions, subtractions, multiplications, divisions, k-th root
operations for integral k, and taking roots of polynomials whose coefficients are given
by the values of subexpressions. We consider the sign computation of real algebraic
expressions, a task vital for the implementation of geometric algorithms. We prove
a new separation bound for real algebraic expressions and compare it analytically
and experimentally with previous bounds. The bound is used in the sign test of the
number type leda::real.
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1 Introduction

Real algebraic expressions are expressions whose leaves are integers and whose in-
ternal nodes are additions, subtractions, multiplications, divisions, k-th root opera-
tions for integral k, and taking roots of polynomials whose coefficients are given
by the values of subexpressions; the exact definition is given below. Examples are√

17 + √
21 −

√√
17 + √

21 + 2
√

357 and 17+√
21

19 − 18+√
22

20 . We consider the sign
computation of real algebraic expressions.

Our main motivation is the implementation of geometric algorithms. The evalu-
ation of geometric predicates, such as the incircle or the side-of predicate, amounts
to the computation of the sign of an expression. Non-linear objects (circles, ellipses,
. . . ) lead to expressions involving roots and hence an efficient method for computing
signs of algebraic expressions is an essential basis for the robust implementation of
geometric algorithms dealing with non-linear objects.

The separation bound approach is the most successful approach to sign compu-
tation; it is, for example, used in the number type leda::real [1, 4, 11] and the
number type Expr of the CORE package [7]. A separation bound is a computable
function sep mapping expressions into positive real numbers such that the value ξ of
any non-zero expression E is lower bounded by sep(E), i.e.,

either ξ = 0 or |ξ | ≥ sep(E).

Separation bounds allow one to determine the sign of an expression by numerical
computation. An error bound � is initialized to some positive value less than 1, and
an approximation ξ̃ of ξ with |ξ − ξ̃ | ≤ � is computed using approximate arithmetic,
say floating point arithmetic with arbitrary-length mantissa. If |̃ξ | > �, the sign of ξ

is equal to the sign of ξ̃ . Otherwise, |̃ξ | ≤ � and hence |ξ | < 2�. If 2� ≤ sep(E),
we have ξ = 0. If 2� > sep(E), we square � and repeat. The worst case complexity
of the procedure just outlined is determined by the separation bound; log(1/sep(E))

determines the maximal precision needed for the computation of ξ̃ and we refer to
log(1/sep(E)) as the bit bound. If ξ �= 0, the actual precision required is log(1/ξ) and
hence “easy sign tests” are much faster than the worst case. This feature distinguishes
the separation bound approach to sign computation from approaches that explicitly
compute a defining polynomial.

Separation bounds have been studied extensively in computer algebra [5, 13, 14,
16, 18], as well as in computational geometry [2, 3, 9, 12, 17]. We prove a new
separation bound for the following class of real algebraic expressions. The value of
a real algebraic expression is either a real algebraic number or undefined (at the end
of Sect. 3 we show how to test whether the value of an expression is defined).

(1) Any integer v is a real algebraic expression. The integer is also the value of the
expression.

(2) If E1 and E2 are real algebraic expressions, so are E1 + E2, E1 − E2, E1 · E2,
E1/E2, and k

√
E1, where k ≥ 2 is an integer. The value of k

√
E1 is undefined if k

is even and the value of E1 is negative. The value of E1/E2 is undefined, if the
value of E2 is zero. The value of E1 + E2, E1 − E2, E1 · E2, E1/E2, or k

√
E1 is
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undefined, if the value of E1 or the value of E2 is undefined. Otherwise the value
of E1 + E2, E1 − E2, E1 · E2, and E1/E2 is the sum, the difference, the product
and the quotient of the values of E1 and E2 respectively and the value of k

√
E1 is

the k-th root of the value of E1.
(3) If Ed , Ed−1, . . . , E1, E0 are real algebraic expressions and j is a positive integer

with 0 ≤ j < d , then �(j,Ed,Ed−1, . . . ,E1,E0) is an expression. If the values
of the Ei are defined and ξi is the value of Ei , the value of the expression is the
j -th smallest real root of the polynomial ξdXd + ξd−1X

d−1 + · · · + ξ0, if the
polynomial has at least j real roots. Otherwise, the value is undefined.

Below, expression always means real algebraic expression. An expression is given as
a directed acyclic graph (dag) whose source nodes are labeled by the operands and
whose internal nodes are labeled by operators. We call an expression simple if only
items (1) and (2) are used in its definition and we call it simple and division-free if,
in addition, no division operator occurs in the expression.

The starting point for the present work is the bound given by Burnikel et al. [2] for
simple expressions. We refer to this bound as the BFMS bound in the sequel.

Lemma 1 [2] Let E be an expression with integral operands and operations
+,−, ·, /, k

√ for integral k ≥ 2. Let ξ be the value of E, let the weight D(E) of
E be the product of the indices (the index of a k

√ operation is k) of the radical op-
erations in E, and let u(E) and l(E) be defined inductively on the structure of E by
the rules shown in the table below:

u(E) l(E)

Integer N |N | 1
E1 ± E2 u(E1) · l(E2) + l(E1) · u(E2) l(E1) · l(E2)

E1 · E2 u(E1) · u(E2) l(E1) · l(E2)

E1/E2 u(E1) · l(E2) l(E1) · u(E2)
k
√

E1
k
√

u(E1) k
√

l(E1)

Then ξ = 0 or
(
l(E)u(E)D(E)2−1)−1 ≤ |ξ | ≤ u(E)l(E)D(E)2−1.

If E is division-free, l(E) = 1, and the above bound holds with D(E)2 replaced
by D(E).

Observe the difference between the division-free case and the general case. For
simple division-free expressions, the BFMS-bound is the best bound known. Expres-
sions with divisions arise naturally in geometric applications. Inputs to expressions
are frequently fractions and, e.g., normalizing a line equation amounts to a division.
For expressions with divisions, the BFMS-bound is much weaker than for expressions
without divisions. We give an example. Consider the expression

210 8
√

28 − (28 − 1) − 26

1
.

Here u(E) ≈ 210, l(E) = 1 and D(E) = 8. So the BFMS bound is 2−10·63 = 2−630,
since E is not division-free and hence the dependence (of the logarithm of the bound)
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on D is quadratic. Without the final redundant division, the expression is division-free
and the bound becomes 2−10 ·7 = 2−70. Our new bound handles divisions much better
and also applies to a wider class of expressions than the BFMS bound.

This paper is structured as follows. In Sect. 2, we review the proof of the BFMS
bound and motivate our new way of dealing with divisions. In Sect. 3, we prove our
main theorem, a separation bound for expressions defined by (1), (2), and (3). In
Sects. 4 and 5 we compare our bound analytically and experimentally to previous
bounds.

2 A Review of the BFMS Bound

An algebraic integer is the root of a polynomial with integer coefficients and leading
coefficient one. The following three Lemmas were already used in [2, 9].

Lemma 2 Let α be an algebraic integer and let deg(α) be the algebraic degree of α.
If U is an upper bound on the absolute value of all conjugates of α, then

|α| ≥ U1−deg(α).

Proof The proof is simple. Let d be the degree of α and let α1 = α, α2, . . . , αd be the
conjugates of α. The product of the conjugates is equal to the constant coefficient of
the defining polynomial and hence in Z. Thus |α| · Ud−1 ≥ 1. �

Lemma 3 ([6, 10] or [2, Theorem 4]) Let α and β be algebraic integers. Then α ±β ,
αβ and k

√
α are algebraic integers.

We also need to cover item (3) in the definition of algebraic expressions.

Lemma 4 Let � be the root of a monic polynomial

P(X) = Xn + αn−1X
n−1 + αn−2X

n−2 + · · · + α0

of degree n where the coefficients αn−1, αn−2, . . . , α0 are algebraic integers. Then �

is an algebraic integer.

Proof This fact is well known, a proof can, for example, be found in [15, Theo-
rem 2.4]. We include a proof for completeness. The proof uses an argument similar

to the proof of Lemma 3. Let α
(ij )

j , 1 ≤ ij ≤ deg(αj ), be the conjugates of αj for
0 ≤ j ≤ n − 1 and let α̂j be the vector formed by the conjugates of αj . Consider the
polynomial

Q(X) =
∏

i0

∏

i1

· · ·
∏

in−1

(
Xn + α

(in−1)

n−1 Xn−1 + α
(in−2)

n−2 Xn−2 + · · · + α
(i0)
0

)
.

� is a root of Q(X) and Q(X) is symmetric in the α
(ij )

j for all j . The theorem on
elementary symmetric function implies that Q(X) is a polynomial in X and the el-
ementary symmetric functions σ1(̂αj ), . . . , σdeg(αj )(̂αj ). The elementary symmetric



18 Algorithmica (2009) 55: 14–28

function σl (̂αj ) is the coefficient of Xdeg(αj )−l in the minimal polynomial of αj and
hence in Z (since αj is an algebraic integer). Thus Q(X) is a monic polynomial in
Z[X] and � is an algebraic integer. �

Lemma 5 [2, Lemma 6] Let α and β be algebraic integers and let Uα and Uβ be
upper bounds on the absolute size of the conjugates of α and β , respectively. Then
Uα + Uβ is an upper bound on the absolute size of the conjugates of α ± β , UαUβ is
an upper bound on the absolute size of the conjugates of αβ , and k

√
Uα is an upper

bound on the absolute size of the conjugates of k
√

α.

We also need bounds for the absolute size of roots of monic polynomials. Let
P(X) = Xn+an−1X

n−1 +an−2X
n−2 +· · ·+a0 be a monic polynomial with arbitrary

real coefficients, not necessarily integral, and let α be a root of P(X). A root bound
� is any function of the coefficients of P that bounds the absolute value of α, i.e.,

|α| ≤ �(an−1, an−2, . . . , a0).

We require that � is monotone, i.e., if |ai | ≤ bi for 0 ≤ i ≤ n − 1, then

�(an−1, an−2, . . . , a0) ≤ �(bn−1, bn−2, . . . , b0).

Examples of root bounds are:

|α| ≤ 2 max
(
|an−1|,

√|an−2|, 3
√|an−3|, . . . , n

√|a0|
)

,

|α| ≤ 1 + max (|an−1|, |an−2|, . . . , |a0|) ,

|α| ≤ max
(
n|an−1|,

√
n|an−2|, 3

√
n|an−3|, . . . , n

√
n|a0|

)
,

|α| ≤
(

n
√

2 − 1
)−1

max

(
|an−1|(

n
1

) ,

√
|an−2|(

n
2

) , 3

√
|an−3|(

n
3

) , . . . , n

√
|a0|(

n
n

)

)

.

A proof of all bounds can be found in [18]. The first bound is called the Lagrange–
Zassenhaus bound and the middle two bounds are called the Cauchy bounds.

We next briefly review the proof of the BFMS bound. For a division-free simple
expression E one observes that the value ξ of E is an algebraic integer (by Lemma 3)
and that u(E) is an upper bound on ξ and all its conjugates (by Lemma 5). Further-
more D(E) is an upper bound for the algebraic degree of E. Thus |ξ | ≤ u(E) and
|ξ | ≥ 1/(u(E)D(E)−1) by Lemma 2.

Expressions with divisions are handled by reduction to the division-free case. Let
E be a simple expression and let ξ be its value. We construct a new expression dag,
also with value ξ = val(E), containing only a single division. Moreover, the division
is the final operation in the dag and hence val(E) = val(E1)/val(E2), where E1 and
E2 are the inputs to the division. The bounds for the division free case apply to E1
and E2 and D(E1) and D(E2) are at most D(E)2. The construction of the new dag
is straightforward. For every node A in the original dag there are two nodes A1 and
A2 in the new dag such that val(A) = val(A1)/val(A2). For the leaves (which stand
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for integers) the replacement is trivial (we take A1 = A and A2 = 1) and for interior
nodes we use the rules:

A1

A2
± B1

B2
=⇒ A1B2 ± A2B1

A2B2
,

A1

A2
· B1

B2
=⇒ A1A2

B1B2
,

A1

A2

/B1

B2
=⇒ A1B2

A2B1
,

k

√
A1

A2
=⇒

k
√

A1
k
√

A2
.

In this way, each root operation in the original dag gives rise to two root operations
in the new dag. This may square the D-value of the expression.

The starting point for the present paper was a simple but powerful observation.
Although the transformation rules above are natural, they are not the only way of ob-
taining division free expressions E1 and E2 with val(E) = val(E1)/val(E2). Instead
of the last rule we may also use

k

√
A1

A2
=⇒

k

√
A1A

k−1
2

A2
or

A1

k

√
Ak−1

1 A2

.

The new rule does not increase the D-value of the expression and hence D(E1) and
D(E2) are at most D(E). In an earlier version of the paper, we only used the first al-
ternative of the new rule. Chee Yap (personal communication, January 2001) pointed
out to us that it is advantageous to have both rules (see the proof of Lemma 6).

3 The New Bound

We derive a separation bound for the expressions defined by items (1) to (3). For items
(1) and (2), we use the BFMS rules with the modification proposed in the previous
paragraph. The diamond operation allows one to take the root of a polynomial

P(X) = αdXd + αd−1X
d−1 + · · · + α1X + α0

where the αi are arbitrary real algebraic numbers. Every real algebraic number can
be written as the quotient of two algebraic integers; this is well known, but will be
reproved below as part of the proof of our main theorem. Let αi = νi/δi where νi and
δi are algebraic integers. Then

P(X) = νd

δd

Xd + νd−1

δd−1
Xd−1 + · · · + ν1

δ1
X + ν0

δ0
.

Let D = ∏
δi . By multiplication with D we obtain

D · P(X) = (νdD/δd)Xd + (νd−1D/δd−1)X
d−1 + · · · + (ν1D/δ1)X + (ν0D/δ0),

a polynomial whose coefficients are algebraic integers. We next derive a monic poly-
nomial. To get rid of the leading coefficient (νdD/δd), we multiply by (νdD/δd)d−1
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and substitute X/(νdD/δd) for X. We obtain

D · (νdD/δd)d−1 · P
(

X

νdD/δd

)

= Q(X) = Xd + (νd−1D/δd−1)X
d−1 + · · ·

+ (νdD/δd)d−2 (ν1D/δ1)X + (νdD/δd)d−1 (ν0D/δ0)

which is monic and has algebraic integer coefficients. The root bounds of Sect. 2
provide us with an upper bound on the size of the roots of Q(X): the size of any root
of Q(X) is bounded by

u = �((νd−1D/δd−1), . . . , (νdD/δd)d−2 (ν1D/δ1), (νdD/δd)d−1 (ν0D/δ0)).

Since the roots of P are simply the roots of Q divided by νdD/δd , this suggests to
extend the definitions of u and l as follows: For an expression E denoting a root of a
polynomial of degree d with coefficients given by Ed,Ed−1,Ed−2, . . . ,E0 we define

u(E) = �

(
. . . ,

(
u(Ed)

∏

k �=d

l(Ek)

)d−i−1

u(Ei)
∏

k �=i

l(Ek), . . .

)
and

l(E) = u(Ed)
∏

k �=d

l(Ek).

We still need to define the weight D(E) of an expression. We do so in the obvious
way. The weight D(E) of an expression dag E is the product of the weights of the
nodes and leaves of the dag. Leaves and +, −, · and /-operations have weight 1,
a k

√ -node has weight k, and a �(j,Ed, . . .)-operation has weight d .
We can now state our main theorem.

Theorem 1 Let E be an expression with integer operands and operations +,−, ·, /,
k
√ for integral k and �(j, . . .) operations. Let ξ be the value of E. Let u(E) and l(E)

be defined inductively on the structure of E according to the following rules:

u(E) l(E)

Integer N |N | 1
E1 ± E2 u(E1) · l(E2) + l(E1) · u(E2) l(E1) · l(E2)

E1 · E2 u(E1) · u(E2) l(E1) · l(E2)

E1/E2 u(E1) · l(E2) l(E1) · u(E2)
k
√

E1 and u(E1) ≥ l(E1)
k
√

u(E1)l(E1)k−1 l(E1)
k
√

E1 and u(E1) < l(E1) u(E1)
k
√

(u(E1)k−1l(E1)

�(j,Ed , . . . ,E0) �(. . . , (l(E)d−i−1u(Ei)
∏

k �=i l(Ek)), . . .) u(Ed)
∏

k �=d l(Ek)

Let D(E) be the weight of E. Then either ξ = 0 or

(
l(E)u(E)D(E)−1)−1 ≤ |ξ | ≤ u(E)l(E)D(E)−1.
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Proof We show that the rules for u and l keep the invariant that there are algebraic
integers β and γ such that ξ = β/γ and u(E) is an upper bound on the absolute
size of the conjugates of β and l(E) is an upper bound on the absolute size of the
conjugates of γ .

We prove this by induction on the structure of E. The base case is trivial. If E is
an integer N , we take β = N and α = 1; β is the root of the polynomial X − N and
α is a root of X − 1.

Now let E = E1 ± E2. By induction hypothesis we have ξj = βj/γj for j = 1,2.
We set β = β1γ2 ±β2γ1 and γ = γ1γ2. Since algebraic integers are closed under addi-
tions, subtractions and multiplications, β and γ are algebraic integers. By Lemma 5,
u(E) = u(E1) · l(E2) + l(E1) · u(E2) is an upper bound on the absolute size of the
conjugates of β . Similarly, l(E) is an upper bound on the absolute size of the conju-
gates of γ .

If E = E1 · E2, we set β = β1β2 and γ = γ1γ2. The claim follows analogously to
the previous case by Lemma 5.

If E = E1/E2, we set β = β1γ2 and γ = β2γ2. Again, the claim follows using
Lemma 5.

If E = k
√

E1 and u(E1) ≥ l(E1), we set β = k

√
β1γ

k−1
1 and γ = γ1. Since algebraic

integers are closed under k
√ -operations, β is an algebraic integer. By Lemma 5, u(E)

is an upper bound on the absolute size of the conjugates of β . There is nothing to show
for γ = γ1.

If E = k
√

E1 and u(E1) < l(E1), we set β = β1 and γ = k

√
βk−1

1 γ1. Since algebraic
integers are closed under k

√ -operations, γ is an algebraic integer. By Lemma 5, l(E)

is an upper bound on the absolute size of the conjugates of γ . There is nothing to
show for β = β1.

Finally, let E be defined by a �(j,Ed, . . . ,E0)-operation. We set

γ = βdγd−1γd−2 · · ·γ0 and

β = �(j,1, βd−1γdγd−2 · · ·γ0, γβd−2γdγd−1γd−3 · · ·γ0, . . . ,

γ d−1γdγd−1γd−2 · · ·γ1β0).

By the discussion preceding the statement of our main theorem, ξ = β/γ , β and γ

are algebraic integers, l(E) is an upper bound on the absolute size of the conjugates
of γ , and u(E) is an upper bound on the absolute value of the conjugates of β . This
completes the induction step.

Rewriting ξ as β/γ corresponds to a restructuring of the expression dag defining E

into an expression dag E′ with a single division-operation. We have D(E′) = D(E).
We still need to argue that D(E) is an upper bound on the algebraic degree of

β . This follows from the fact that every operation leads to a field extensions whose
degree is bounded by the weight of the operation.

We now have collected all ingredients to bound the absolute value of ξ from below.
If ξ �= 0, we have β �= 0. The absolute value of β and all its conjugates is bounded by
u(E). Thus |β| ≥ (u(E)deg(β)−1)−1 by Lemma 2. Also |γ | ≤ l(E). Thus

|ξ | = β

γ
≥ 1

u(E)deg(β)−1
· 1

l(E)
≥ 1

u(E)D(E)−1 · l(E)
. �



22 Algorithmica (2009) 55: 14–28

The value of an algebraic expression may be undefined. Divisions by zero and
taking a root of even degree of a negative number are easily caught by the sign test.
We next argue that the sign test also allows us to test whether the diamond-operation
is well defined. For this matter, we need to determine the number of zeros of a poly-
nomial. Sturm sequences, see [14, Chap. 5] or [18, Chap. 7] are the appropriate tool.
The computation of Sturm sequences amounts to a gcd computation between a poly-
nomial and its derivative. Our sign test is sufficient to implement a gcd computation.

4 Comparison to Other Constructive Root Bounds

We compare our new bound to previous root bounds provided by Mignotte [14],
Canny [5], Yap and Dubé [19], Burnikel et al. [1], Mehlhorn and Schirra [12], Schein-
erman [16], Li and Yap [9]. We refer to the bound presented in this paper as BFMSS.
Root bounds can be compared along two axes: according to the class of expressions
to which they apply and according to their value.

The bound by Scheinerman applies to division-free simple expressions, the bounds
by Mignotte, Yap and Dubé and the BFMS bound apply to simple expressions. The
bounds in [9] and [12] apply to expressions defined by items (1) to (3) with the re-
striction that the Ed to E0 in (3) must be integers. Canny’s bound is most general. It
applies to algebraic numbers defined by systems of multi-variate polynomial equa-
tions with integer coefficients.

We next discuss the quality of the bounds. In [2, 9] it was already shown that the
BFMS-bound is never worse than the bounds by Mignotte, Canny, Yap and Dubé, and
Scheinermann for division-free expressions. In [9] it was also shown that the BFMS
bound and the Li–Yap bound are incomparable.

Lemma 6 (C. Yap, personal communication) Let E be an arbitrary simple expres-
sion, let u and l be defined as in the original BFMS-bound, let u′ and l′ be defined as
in Theorem 1, and let D = D(E) be the degree bound of E. Then

l(E)u(E)D
2−1 ≥ l′(E)u′(E)D−1,

i.e., the improved bound is always at least as strong as the original BFMS-bound.

Proof We show

u(E)

l(E)
= u′(E)

l′(E)
and u′(E) ≤ u(E)D(E) and l′(E) ≤ l(E)D(E)

by induction on the structure of E. Assume that these relations hold. Then

l(E)u(E)D
2−1 = l(E)

u(E)

(
u(E)D

)D ≥ l′(E)

u′(E)
u′(E)D = l′(E)u′(E)D−1

and we are done.
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The proof of the equality is a simple induction on the structure of E. The base
case is clear. In the inductive step we write u1 instead of u(E1) and similarly for E2,
l, u′ and l′. If E = E1 + E2, we have

u(E)

l(E)
= u1l2 + u2l1

l1l2
= u1

l1
+ u2

l2
= u′

1

l′1
+ u′

2

l′2
= u′(E)

l′(E)
.

Multiplication and division are handled similarly. If E = k
√

E1, we have (assuming
u′

1 ≥ l′1, the case u′
1 < l′1 is handled similarly)

u(E)

l(E)
=

k
√

u1
k
√

l1
= k

√
u1

l1
= k

√
u′

1

l′1
=

k

√
u′

1(l
′
1)

k−1

l′1
= u′(E)

l′(E)
.

For the inequalities we have to work slightly harder. The base case is again clear;
observe that D = 1 in the base case. It is also clear that u(E) ≥ 1 (or u(E) = 0) and
l(E) ≥ 1 for all E. If E = E1 ± E2, we have (using D ≥ D1 and D ≥ D2)

u(E)D = (u1l2 + u2l1)
D ≥ (u1l2)

D + (u2l1)
D ≥ u

D1
1 l

D2
2 + u

D2
2 l

D1
1

≥ u′
1l

′
2 + u′

2l
′
1 = u′(E)

and

l(E)D = (l1l2)
D ≥ l

D1
1 l

D2
2 ≥ l′1l′2 = l′(E).

Multiplication and division are handled similarly. If E = k
√

E1, we have D(E1) =
D(E)/k and hence (assuming u′

1 ≥ l′1, the case u′
1 < l′1 is handled similarly)

u(E)D = u
D/k

1 = u
D1
1 ≥ u′

1 ≥ k

√
u′

1(l
′
1)

k−1 = u′(E) and

l(E)D = l
D/k

1 = l
D1
1 ≥ l′1 = l′(E). �

We next show that the new bound can be significantly better than the old bound.
Consider the expression F = k

√
x/a and E = F − F where x is a ck-bit integer for

some constant c and a is a d-bit integer for some constant d . Then D(E) = k. We
evaluate both bounds as functions of k.

For the BFMS-bound we have logu(F ) = (1/k)ck = c, log l(F ) = d/k,
logu(E) = 1+c+d/k, log l(E) = 2d/k and hence the BFMS bit bound is (k2 −1)×
logu(E) + log l(E) = �(k2).

For the BFMSS-bound we have logu(F ) = (1/k)(ck + d(k − 1)) = c + d − d/k,
log l(F ) = d , logu(E) = 1 + c + 2d − d/k, log l(E) = 2d and hence the BFMSS bit
bound is (k − 1) logu(E) + log l(E) = �(k).

It remains to compare the BFMSS and the Li–Yap bound. For division-free simple
expressions, the bounds are identical. For expressions with divisions, the bounds are
incomparable.



24 Algorithmica (2009) 55: 14–28

We start with an example, where the BFMSS-bound is significantly better. Let1

E0 = 17/3, let Fi = √
Ei−1 and Ei = Fi + Fi for 1 ≤ i ≤ k, and let E = Ek − Ek .

Then deg(Ei) = deg(Fi) = 2i . We evaluate both bounds as functions of k.
For the BFMSS bound, we have

logu(E0) = log 17,

log l(E0) = log 3,

log l(Fi) = log l(Ei−1),

logu(Fi) = 1

2
(logu(Ei−1) + log l(Ei−1)),

log l(Ei) = 2 log l(Fi) = 2 log l(Ei−1) = 2i log 3,

logu(Ei) = 1 + logu(Fi) + log l(Fi)

= 1 + 1

2
logu(Ei−1) + 3

2
log l(Ei−1)

= 1 + 1

2
logu(Ei−1) + 3

2
2i−1 log 3

=
∑

0≤j<i

2−j + 2−i log 17 + 2i−1 3

2
log 3

∑

0≤j<i

4−j

≤ 2 + 2−i log 17 + 2i log 3

and hence logu(E) = 1 + logu(Ek) + log l(Ek) ≤ 3 + 4 · 2k and log l(E) =
2 log l(Ek) ≤ 4 · 2k . We conclude that the BFMSS bit bound is equal to (2k − 1)(3 +
4 · 2k) + 4 · 2k = �(4k). Increasing k by one, quadruples the numbers of bits.

The Li–Yap bound involves the lead coefficient of the minimal polynomial and
is at least the logarithm of the lead coefficient. Li and Yap compute the follow-
ing estimates lc for the lead coefficients. Let di = D(Ei) = D(Fi) = 2i . Then
log lc(E0) = log 3 ≥ 1, log lc(Fi) = log lc(Ei−1), log lc(Ei) = 2 · di · log lc(Fi) =
2 · 2i log lc(Ei−1) = 2i

∏
1≤j≤i 2j · log 3 ≥ 2i(i+3)/2, log lc(E) = 2 · 2k log lc(Ek) and

hence the Li–Yap bit bound is 
(2k2/2). Increasing k by one multiplies the required
number of bits by more than 2k .

We next give an example where the Li–Yap bound is better. We start with the frac-
tion 17/3, square k times and then take roots k times. The weight of the expression is
2k and logu(E) ≥ 2k . The BFMSS bit bound is therefore 
(4k). On the other hand,
the Li–Yap bound is O(2k).

An implementation should compute the Li–Yap and BFMSS bounds and use the
better of the bounds.

1Any other fraction will also work as the initial value.
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5 Experimental Evaluation

The separation bound approach to sign determination of algebraic numbers is used in
the number types real of LEDA [8] and Expr of CORE [7]. We report about the
improvements in running time due to the new separation bounds and due to a recent
reimplementation of leda::real. We also compare CORE and leda::real.

All tests are based on LEDA 4.4 with the most recent arithmetic module incor-
porated. For the tests with the CORE library we used CORE v1.5 available from
[9]; it uses the Li–Yap-bound. All benchmarks are performed on a Sun Ultra 5 with
a 400 MHz UltraSPARC-IIi processor, 128 MB RAM, running SunOS 5.9. We used
g++ 3.2.1 as a compiler unless stated otherwise, times are always measured in sec-
onds.

We briefly review the implementation of leda::real, a detailed description
of an older implementation is available in [4]. The number type supports the sign
determination of simple algebraic expressions. Expressions are represented by their
expression dag G(E). The input values of E are contained in the leaves of the dag,
every inner node corresponds to an arithmetical operation, and the root corresponds
to E.

When the sign of an algebraic number E needs to be determined, the datatype first
computes a separation bound qE . Using leda::bigfloat arithmetic (= floating-
point numbers with exponent and mantissa of arbitrary length), the datatype computes
successively intervals of decreasing length that include E, until the interval does not
contain zero or the length of the interval is less than qE .

Several shortcuts are used to speed up the computation of the sign. First, a double
approximation Ẽ and an error bound err such that |E − Ẽ| ≤ err is stored with every
node of the expression dag. As long as the double approximation Ẽ is known to be
exact, i.e. err = 0, no expression graph is constructed and Ẽ represents E.

Secondly, if the double approximation Ẽ suffices to determine the sign of E, i.e.
0 /∈ [Ẽ − err, Ẽ + err], no leda::bigfloat computation is triggered. This tech-
nique is called a floating-point filter.

In a reimplementation, we made the following improvements:

(1) The separation bound is the better of the Li–Yap and our improved bound.
(2) The implementation of the underlying leda::bigfloat arithmetic has been

improved; at the beginning it was based on number type leda::integer for
integer numbers of arbitrary size, now it directly operates on vectors of long
integers.

(3) Memory management within the leda::real datatype has been improved; in
particular, space for the leda::bigfloat approximations is now only allo-
cated if leda::bigfloat computation is necessary for a sign determination.

(4) The built-in floating-point filters have been improved, both with respect to run-
ning time as well as precision.

Improvements (2) to (4) have already been incorporated into public releases of
LEDA starting with release 4.3. Overall, the efficiency has improved for ‘easy in-
stances’ (i.e. instances that do not need the leda::bigfloat computation) due to
improved floating-point filter techniques as well as for ‘difficult instances’ due to the
improved separation bounds and leda::bigfloat implementation.
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We turn to our experiments. The source code of all experiments is available at
http://www.mpi-inf.mpg.de/~funke/Papers/ESA01/SepBound/SepBoundESA01.html.
Many of the experiments make use of L-bit random integers. We generated them out-
side the leda::real number type and used them as inputs for our expressions.

(1) The first test is a simple check of a binomial expression. Let x = a
b
, y = c

d

where a, b, c, and d are L-bit integers and let E = (
√

x + √
y) − √

x + y + 2
√

xy.
For the old BFMS-bound we get a sepBFMS = 160L + 381, for our improved bound
sepimprov = 96L + 60, whereas the Li–Yap bound gives sepLiYap = 28L + 60. This is
of course reflected in the running times.

L 25 50 100 200 400 800 1600

BFMS 0.04 0.07 0.19 0.51 1.46 4.25 13.11
Improv 0.01 0.04 0.08 0.19 0.53 1.51 4.60
LiYaP 0.00 0.01 0.02 0.04 0.09 0.22 0.62

(2) Let x and y be L-bit integers, C = (
√

x − √
y)/(x − y) and E = C − C. For

both our old and improved bound we get sepBFMS = sepImprov = 6L + 64, whereas
the Li–Yap bound gives sepLiYap = 65L + 91. Again this shows in the running times.

L 500 1000 2000 4000 8000 16000

BFMS 0.02 0.04 0.11 0.25 0.70 2.03
Improv 0.02 0.04 0.10 0.25 0.70 2.06
LiYaP 0.48 1.39 4.07 12.09 36.15 112.91

We now turn to examples for which we have already proved differing asymptotic
behaviour of the bounds in Sect. 4.

(3) First consider F = k
√

x/y and E = F − F where x is a 100k-bit integer and
y a 32-bit integer. The BFMS bound is �(k2), whereas the new bound is �(k). The
Li–Yap bound is also �(k) and even better than our new bound.

k 2 4 8 16 32 64

BFMS time 0.01 0.02 0.19 1.92 20.26 70.57
BFMS bound 391 1683 6751 26781 106396 421787

Improv. time 0.01 0.01 0.01 0.05 0.11 0.32
Improv. bound 214 538 1198 2524 5179 10459

LiYap time 0.01 0.01 0.01 0.03 0.04 0.12
LiYap bound 150 346 750 1564 3195 6427

(4) For E0 = 17/3,Fi = √
Ei−1,Ei = Fi + Fi,E = Ek − Ek , the BFMS and the

BFMSS bound for E is �(4k) (but with different constant factors), whereas the Li–
Yap bound is 
(2k2

).

k 2 3 4 5 6

BFMS time 0.01 0.01 0.06 1.25 12.55
BFMS bound 237 1213 5885 27645 126973

Improv. time 0.01 0.01 0.01 0.07 0.50
Improv. bound 76 284 1084 4220 16636

LiYap time 0.01 0.02 2.65 2354 (too long)
LiYap bound 140 2076 65596 4194428 536871164
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In the following test we compare different implementations: real(1) (as of
LEDA 4.2) denotes our old implementation2 and real(2) the new implementa-
tion.

(5) As in our first example we take x = a
b
, y = c

d
, where a, b, c, d are L-bit inte-

gers, and E = (
√

x + √
y) − √

x + y + 2
√

xy. As we can see, the improved imple-
mentation of the leda::real datatype already leads to a speedup of a factor of 4,
even when using the same separation bound. The new separation bounds give another
considerable speedup.

L 25 50 100 200 400 800 1600 3200

real(1) sepBFMS 0.08 0.22 0.71 1.86 5.97 16.86 47.2 154.8
real(2) sepBFMS 0.03 0.08 0.17 0.49 1.49 4.25 12.9 39.33
real(2) sepimprov 0.02 0.03 0.08 0.18 0.55 1.56 4.56 13.39
real(2) sepLiYap 0.01 0.01 0.02 0.04 0.08 0.22 0.59 1.70
CORE/Expr sepLiYap 0.04 0.10 0.10 0.11 0.82 0.84 12.21 12.34

(6) The final comparison concerns easy sign tests. The following expression arises

during Fortune’s sweep-line algorithm for Voronoi diagrams: E = a+√
b

c
− a′+√

b′
c′

where a, a′, b, b′, c, and c′ are random 3L-, 6L-, and 2L-bit integers. The root bounds
do not play a role here, only the efficiency of the implementation, in particular the
floating-point filters comes into play.

L 50 100 200

double 0.01 0.01 0.01
real(2) 0.13 0.14 13
CORE/Expr 1.06 1.06 5354

Clearly, pure double arithmetic is the fastest, creating the expression dag does
not come without cost. The huge increase in running time for L = 200 can be ex-
plained by the fact that in this case, the numbers get too large to be representable by a
double (remember that we create integers of length 6L). Therefore the floating-point
filters will always fail and leda::bigfloat arithmetic has to be used.

6 Conclusions

We presented a new separation bound for algebraic expressions. The bound applies to
a wide class of expressions and is easily computable. For many expressions it gives
much better bounds than previous bounds resulting in significant gains in running
time. We see two main challenges: (1) For algebraic numbers defined by systems
of polynomials, Canny’s bound is the best bound known. Provide a better bound.
(2) Our bound as well as the Li–Yap bound is very easy to compute. In the context of
expensive sign computations it is worthwhile to investigate more expensive methods
for computing separation bounds.

2Unfortunately for this old version we only have timings available for compilations with g++ 2.95.4.
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