Skip to main content
Log in

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider labelled r-uniform hypertrees, 2≤rn, where n is the number of vertices in the hypertree. Any two hyperedges in a hypertree share at most one vertex and each hyperedge in an r-uniform hypertree contains exactly r vertices. We show that r-uniform hypertrees can be encoded in linear time using as little as n−2 integers in the range [1,n]. The decoding algorithm also runs in linear time. For general hypertrees, we require codes of length n+p−2 where p is the number of vertices belonging to more than one hyperedge in the given hypertree. Based on our coding technique, we show that there are at most \(\frac {n^{(n-2)}-f(n,r)}{(r-1)^{(r-2)*\frac{n-1}{r-1}}}\) distinct labelled r-uniform hypertrees, where f(n,r) is a lower bound on the number of labelled trees with maximum (vertex) degree exceeding \((r-1)+\frac {n-1}{r-1}-2\) . We suggest a counting scheme for determining such a lower bound f(n,r).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berge, C.: Hypergraphs. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  2. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer, New York (2000)

    MATH  Google Scholar 

  3. Buhrman, H., van Dam, W., Hȯyer, P., Tapp, A.: Multiparty quantum communication complexity. Phys. Rev. A 60(4), 2737 (1999)

    Article  Google Scholar 

  4. Buhrman, H., Cleve, R., van Dam, W.: Quantum entanglement and communication complexity. SIAM J. Comput. 30(6), 1829–1841 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, H.-C., Wang, Y.-L.: An efficient algorithm for generating Prüfer codes from labelled trees. Theory Comput. Syst. 33, 97–105 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56(2), 1201–1204 (1997)

    Article  Google Scholar 

  7. Deo, N.: Graph Theory: With Applications to Engineering and Computer Science. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  8. Grahmam, R.L., Grotschel, M., Lovasz, L. (eds.): Handbook of Combinatorics, vol. 1. Elsevier, Amsterdam (1995)

    Google Scholar 

  9. Greenlaw, R., Halldorsson, M.M., Petreschi, R. (eds.): On Computing Prüfer Codes and Their Corresponding Trees Optimally, Proc. J. Inf. Messine Graph Algorithms (2000)

  10. Lovász, L., Pelikán, J., Vesztergombi, K.: Discrete Mathematics: Elementary and Beyond. Springer, New York (2003)

    Google Scholar 

  11. Pal, S.P., Das, S., Kumar, S.: Constant communication complexity protocols for multiparty accumulative boolean functions. eprint quant-ph/0510050 (2005)

  12. Pal, S.P., Kumar, S., Srikanth, R.: Multipartite entanglement configurations: Combinatorial offshoots into (hyper)graph theory and their ramifications. In: Goswami, D. (ed.) Quantum Computing: Back Action 2006, Kanpur, India, 6–12 March 2006. AIP Conference Proceedings, vol. 864, pp. 156–170, ISBN: 978-07354-0362-8

  13. Rényi, C., Rényi, A.: The Prüfer code for k-trees. In: Erdös, P., Rényi, A., Sós, V.T. (eds.) Combinatorial Theory and its Applications III, pp. 945–971. North-Holland, Amsterdam (1970)

    Google Scholar 

  14. Singh, S.K.: Combinatorial approaches in quantum information theory. M.Sc. Thesis, Dept. of Mathematics, IIT Kharagpur, India. eprint quant-ph/0405089 (2004)

  15. Singh, S.K., Pal, S.P., Kumar, S., Srikanth, R.: A combinatorial approach for studying local operations and classical communication transformations of multipartite states. J. Math. Phys. 46, 122105 (2005). eprint quant-ph/0406135 v3

    Article  MathSciNet  Google Scholar 

  16. Warme, D.M.: Spanning trees in hypergraphs with applications to steiner trees. Ph.D. Thesis, School of Engineering and Applied Science, University of Virginia (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saswata Shannigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shannigrahi, S., Pal, S.P. Efficient Prüfer-Like Coding and Counting Labelled Hypertrees. Algorithmica 54, 208–225 (2009). https://doi.org/10.1007/s00453-007-9137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9137-z

Keywords

Navigation