Skip to main content
Log in

Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

An instance of the k -Steiner forest problem consists of an undirected graph G=(V,E), the edges of which are associated with non-negative costs, and a collection \(\mathcal{D}=\{(s_{1},t_{1}),\ldots,(s_{d},t_{d})\}\) of distinct pairs of vertices, interchangeably referred to as demands. We say that a forest ℱ⊆G connects a demand (s i ,t i ) when it contains an s i -t i path. Given a profit k i for each demand (s i ,t i ) and a requirement parameter k, the goal is to find a minimum cost forest that connects a subset of demands whose combined profit is at least k. This problem has recently been studied by Hajiaghayi and Jain (SODA ’06), whose main contribution in this context was to relate the inapproximability of k-Steiner forest to that of the dense k -subgraph problem. However, Hajiaghayi and Jain did not provide any algorithmic result for the respective settings, and posed this objective as an important direction for future research.

In this paper, we present the first non-trivial approximation algorithm for the k-Steiner forest problem, which is based on a novel extension of the Lagrangian relaxation technique. Specifically, our algorithm constructs a feasible forest whose cost is within a factor of \(O(\min \{n^{2/3},\sqrt{d}\}\cdot \log d)\) of optimal, where n is the number of vertices in the input graph and d is the number of demands. We believe that the approach illustrated in the current writing is of independent interest, and may be applicable in other settings as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, A., Klein, P.N., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440–456 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach to online network optimization problems. ACM Transact. Algorithms 2(4), 640–660 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arora, S., Karakostas, G.: A 2+ε approximation algorithm for the k-MST problem. Math. Program. 107(3), 491–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 553–562 (2005)

  8. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner problem. Theor. Comput. Sci. 324(2–3), 313–324 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Berman, P., Coulston, C.: On-line algorithms for Steiner tree problems (extended abstract). In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 344–353 (1997)

  14. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

    Article  MathSciNet  Google Scholar 

  15. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. J. Comput. Syst. Sci. 58(1), 101–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 378–388 (1999)

  17. Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chawla, S., Gupta, A., Räcke, H.: Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 102–111 (2005)

  19. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undirected graphs and the directed Steiner network problem. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 532–541 (2008)

  20. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangian relaxation. Math. Program. 100(2), 411–421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Engelberg, R., Könemann, J., Leonardi, S., Naor, J.: Cut problems in graphs with a budget constraint. J. Discrete Algorithms 5(2), 262–279 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost sharing schemes for multi-commodity rent-or-buy and stochastic Steiner tree. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 663–670 (2006)

  25. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res. Lett. 25(4), 169–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  28. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 302–309 (1996)

  29. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)

  30. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete algorithm, pp. 621–630 (2006)

  32. Gupta, A., Pál, M.: Stochastic Steiner trees without a root. In: Proceedings on the 32nd International Colloquium on Automata, Languages and Programming, pp. 1051–1063 (2005)

  33. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science, pp. 606–615 (2003)

  34. Gupta, A., Hajiaghayi, M., Nagarajan, V., Ravi, R.: Dial a ride from k-forest. In: Proceedings of the 15th Annual European Symposium on Algorithms, pp. 241–252 (2007)

  35. Hajiaghayi, M., Jain, K.: The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 631–640 (2006)

  36. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite programming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kearns, M.J.: The Computational Complexity of Machine Learning. MIT Press, Cambridge (1990). The approximation guarantee of the partial cover algorithm we refer to is stated in Theorem 5.15

    Google Scholar 

  40. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. In: Proceedings of the 14th Annual European Symposium on Algorithms, pp. 468–479 (2006)

  41. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 692–701 (1993)

  42. Levin, A., Segev, D.: Partial multicuts in trees. Theor. Comput. Sci. 369(1–3), 384–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Nagarajan, V.: Personal communication, January 2008

  46. Naor, J., Shachnai, H., Tamir, T.: Real-time scheduling with a budget. Algorithmica 47(3), 343–364 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rajagopalan, S., Vazirani, V.V.: Logarithmic approximation of minimum weight k-trees. Unpublished manuscript (1995)

  49. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (extended abstract). In: Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, pp. 66–75 (1996)

  50. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning trees—short or small. SIAM J. Discrete Math. 9(2), 178–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Segev.

Additional information

An extended abstract of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms, 2006.

This work is part of D. Segev’s Ph.D. thesis prepared at Tel-Aviv University under the supervision of Prof. Refael Hassin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segev, D., Segev, G. Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing. Algorithmica 56, 529–549 (2010). https://doi.org/10.1007/s00453-008-9189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9189-8

Keywords

Navigation