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Abstract

We show that measuring any two quantum states by a random RON#&r a suitable definition of
randomness, gives probability distributions having tetaiation distance at least a universal constant
times the Frobenius distance between the two states, vgthgrobability. In fact, if the Frobenius dis-
tance between the two states is not too small and their raeksoaitoo large, even a random orthonormal
basis works as above. Since a random POVM is independenedvi states, the above result gives
us the first sufficient condition and an information-theiareblution for the following quantunstate
distinction problemgiven an a priori known ensemble of quantum states, is thairgle measurement
basis, or more generally a POVM, that gives reasonably |ttge variation distance between every
pair of states from the ensemble? Large pairwise tracerdistss a trivial necessary condition for the
existence of a single distinguishing measurement for aarehke; however, it is not sufficient, as seen
for example by the recent work of Moore, Russell and Schul[RERS05] on hidden subgroups of the
symmetric group. Our random POVM method gives us the firgirmbtion-theoretic upper bound on
the number of copies required to solve the quanstabe identification problerfor general ensembles,
i.e., given some number of independent copies of a quantara §bm an a priori known ensemble,
identify the state. Moreover, this upper bound is achieved single registerlgorithm, i. e., the algo-
rithm measures one copy of the state at a time, followed bassidal post-processing on the observed
outcomes in order to identify the state.

The standard quantum approach to solving the hidden supgymblem (HSP), which includes
Shor’s algorithms for factoring and discrete logarithrmg &pecial case of the state identification problem
where the ensemble consists of so-catledet statesf candidate hidden subgroups. Combining Fourier
sampling with our random POVM result gives us single regiatgorithms using polynomially many
copies of the coset state that identify hidden subgroupsfagwlynomially bounded rank in every
representation of the ambient group. In particular, we gehssingle register algorithms when the
hidden subgroup forms a Gel'fand pair, e.g. dihedral, affiné Heisenberg groups, with the ambient
group, i.e., the rank in every representation is either perone. These HSP algorithms complement
earlier results about the powerlessness of random Fowtepking when the ranks are exponentially
large, which happens for example in the HSP over the symengtdup. The drawback of random
Fourier sampling based algorithms is that they are not efftdbecause measuring in a random basis is
not. This leads us to the open question of efficiently impletalele pseudo-random measurement bases.

1 Introduction

The hidden subgroup problem (HSP) is a central problem intgua algorithms. Many important problems
like factoring, discrete logarithm and graph isomorphigduce to special cases of the HSP. Almost all
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exponential speedups that have been achieved in quantuputiognare obtained by solving some instances
of the HSP. The HSP is defined as follows: Given a funcifonG — S from a groupG to a setS that is
constant on left cosets of some subgrddp< G and distinct on different cosets, find a set of generators
for H. ldeally, we would like to findH in time polynomial in the input size, i.elog |G|. Almost all
efficient quantum algorithms for solving special cases efHlBP, including Shor’s algorithms for factoring
and discrete logarithni_[Sho97], use the same generic agpsmanmetimes called treandard methodThe
standard method for the HSP can be described as followsiateahe functioryf in superposition and ignore
the function value to get a state of the fosry := ‘—é' > gec lgH) (gH|, where|gH) := ﬁ > hen lgh),

i.e.,om Is a uniform mixture of uniform superpositions over left etssyH of the hidden subgroupl. A
state of the fornwy for some subgroup! < G is called acoset stateThe above procedure can be repeated
t times to get independent copies of the statg. The aim now is to identifyd from a}‘?}t.

The coset state based approach to the HSP leads us to cath@detlowing general problem called
quantum state identificationGiven a?t from an a priori known ensemblg = {01, ...,0,,} of quantum
states inC", identify 7. A related problem is the followinguantum state distinctioproblem: is there a
single measurement basis or more generally a POMMhat gives reasonably large total variation distance
between every pair of states #? The important point here is that we want a single measureén
that works well for every pair of states. A solution to thetstalentification problem trivially gives a
solution to the state distinction problem. It is not hard ¢e shat the converse is also true: a POVMI
with distinguishing powep, i.e., M solves the state distinction problem with total variatidstahce at
leastd between every pair of states frofi) gives an algorithm that identifies the given state with tamis

probability from¢ = O (126) independent copies. This algorithm is in facsingle registeralgorithm
5

in that it appliest independent copies 0¥1 to the givena?t and does a classical ‘minimum-finding style’
post-processing on the observed outcomes to guedingle register algorithms may have advantages over
multi-register algorithms in the interests of efficiencydarase of design; observe that the complexity of a
generick-register measurement increases exponentially vith

In this work, we study information-theoretic aspects of glemeral state distinction problem, and use it
as a tool for solving the corresponding state identificapimblem. We also analyse various implications of
these two problems, including consequences for the HSRx@ur objective is to find sufficient conditions
on the ensembl€ to guarantee the existence of a measurement with distimggigpowers. It is known
that two quantum states can balistinguished by a measurement if and only if they haveetdistance at
leastd. In general, this measurement depends upon the pair of statee distinguished. Thus, this result
does not give us any way to come up with a single measurermelig that works well for every pair of
states. However, it does provide a necessary conditionrdardor a POVM with distinguishing power
0 to exist, every pair of states ifi must have trace distance at leastOn a concrete note, we show that
the ensemble of coset states for subgroups of a gévumleed has minimum pairwise trace distancd .of
However, constant pairwise trace distance is not suffié@rthe existence of a polynomially distinguishing
measurement, as seen for example by the recent work of MRassell and Schulmah [MRS05] on hidden
subgroups of the symmetric group.

Random POVM and Frobenius distance: In this paper, we present for the first time a sufficient ciater
for the state distinction problem. LétA||r denote the Frobenius norm of a matd i.e., |A|r =
V2 [Ak|?. For a POVMM and quantum state in C™, let M(o) denote the probability distribution
on the outcomes aM got by measuringr according toM. Our main result can be stated informally as
follows.



Result 1 (Informal statement). Supposer, o9 are two quantum states ii”. Definef := ||o1 — o2||r. If
rank(o) + rank(oy) is not ‘too large’, then with probability at least — exp(—Q(y/n) — exp(—Q(f?n))
over the choice of a random orthonormal basisn C", ||B(o1) — B(o2)|l1 > c¢f, wherec is a universal
constant.

Using the above result, we can show that if the minimum paewtrobenius distance of an ensemble
& ={o1,...,0n} Of states iNC" is at leastf, then with probability at least— exp(—n), a random POVM
F, with an appropriate notion of randomness, gives totalatianm distance at leastf between every pair
of states of¢, wherec > 0 is a universal constant. The notion of random POVM that weisiss follows:

attach a zero ancilla i€, wherem := © "10]?22"“), and measure; ® |0)(0| according to a random
orthonormal basis it©" @ C™. In addition, as suggested by Redllt 1, if the maximum rank state in
£ is not too large, then we don't need a POVM at all, a randomomidimal basis ifC™ will work just

as well. We also construct examples of density matricesrs with ||oq — o2|tr = 2, where with very
high probability the total variation distance given by adam POVM is at most/|lo; — o2||r, unless

exponentially many ancilla qubits are used to define theaamBOVM.

Application to the HSP: Our random POVM method has information-theoretic implaat about the
HSP in a general grouf. It is easy to see that the ensemble of coset states for ayimodG is simulta-
neously block diagonal in the Fourier basis @rwhere a block is labelled by an irreducible representation
(irrep) of G and a row index. This leads us to consider the so-caiedom Fourier methodor the HSP:
apply the quantum Fourier transform ow@rto the given coset state and observe the name of an jrrep
and a row index, and then measure the resulting reduced state using a raR@dfv. Previously, a few
examples of HSP’s were given where random Fourier sampéggired exponentially many copies of the
coset state in order to identify the hidden subgroup withstamt probability [GSVV04, MRRS04]. In these
examples, the ranks of the blocks of the coset state in theidfduasis were exponentially large. Using
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the fact thatl| A||r > ek (1) for any matrix A, we prove a surprising positive counterpart to the above

negative results. We show that polynomially many iteratiof the random Fourier method give enough
classical information to identify the hidden subgratpif the ranks of the coset state in each block in the
Fourier basis are polynomially bounded. In fact, we definéstadce metrio'(H,, H2) between two sub-
groupsHy, H, < G based on the Frobenius distance between the correspondicks Iof the coset states
o, andog, in the Fourier basis afr, and show that random Fourier sampling gives total vanadistance

at least)(r(H, H2)) betweersy, ando g, with exponentially high probability. If the ranks of the bl

of oy, , o, are polynomially bounded, theriH,, H») is at least polynomially large. The previous work of
[RRS05%] also proposed a distance functioff;, Hs), but it was difficult to estimate’(H;, Hy) except for
very special cases. Also, the functiefiH;, H>) is not powerful enough to even show that if the ranks of
the blocks arery, , o, are at most one, polynomially many iterations of random eowampling suffice
to identify the hidden subgroup with high probability. Owewresult improves our understanding of the
power of single register Fourier sampling, and establithasthe random POVM method can often be a
powerful information-theoretic tool.

In particular, for the important special case when the hidsigbgroupH forms a Gel'fand pair with
the ambient grou, i. e., each block has rank either zero or ofi¢log® |G|) iterations of random strong
Fourier sampling give enough classical information to tifethe hidden subgrougf with high probability.
For many concrete examples e.g. affine group, Heisenbeupgttee number of iterations of random Fourier
sampling can be brought down @@(log |G|) by a more careful analysis. Gel'fand pairs have been studied
extensively in group theory, and a lot of recent wark [MROB]tbe hidden subgroup problem has involved



Gel'fand pairs e.g. dihedral group [EHQ00, BCD0O5b] , affinewgy [MRRS04], Heisenberg group [RRS$05,

BCDO054]. For the dihedral and affine groups, it is possiblgive explicit efficient measurement bases for
the single register Fourier sampling procedure that ifiettie hidden subgroup with high probability using

polynomially many copies. Interestingly, for the Heisergpgroup no such explicit basis for single register
Fourier sampling is known, though an explicit efficient ewgfie@d basis fotwo-registerFourier sampling

is known [BCDO5R]. The only proof that polynomially manyra&ons of single register Fourier sampling

suffice information-theoretically to identify hidden subgps in the Heisenberg group is through random
Fourier sampling, and was first observedin [RRSO05].

Since it can be shown that measuring in a Haar-random orthwidasis is hard for a quantum com-
puter, the main open question that arises from our work isthenethere are efficiently implementable
pseudo-random orthonormal bases for specific ensemblebaba good distinguishing power. For exam-
ple, such a basis for the representations of grdtips: Z,, p prime, will give us algorithms for the HSP
in those groups having an efficient quantum part followed Ippssibly super polynomial classical post-
processing. For super constantno such quantum algorithm is currently known. Current pegts of
pseudo-random orthonormal bases [EV@S,[ELL05] however, seem inadequate for our purposes.

Application to general state identification: Besides applications to the HSP, our random POVM method
also has some interesting consequences for the genermlidatification problem. For an ensemblef

states inC™ with minimum pairwise trace distanceand maximum rank of a statet = O (”%2'5‘

independent copies of a state are enough to identify the st high probability using iterations of a

random POVM. Since < n, for a general ensemble of quantum states we getD "1§§m which is the

first upper bound on the number of copies required for thergéstate identification problem to the best of

our knowledge. For pure states, we get O 10(;# which is optimal up to constant factors. This result
for pure states can be independently proved by a detaildgsamaf Gram-Schmidt orthonormalisation, but
the resulting measurement igaint measurement entangled acresegisters. In contrast, note that all the

state identification algorithms arising from our random MOKésult are single register algorithms.

Related work: The so-callecpretty good measuremeralso known as the square-root measurement, has
been proposed in the past as a measurement for the statéicdéion problem [[HW94]. Its performance
is indeed ‘pretty good’ if the ensemble of states possessee special symmetries; see elg. [EMV04]
and the references therein. The PGM approach has beenlyeapplied to a few instances of the HSP
also [BCDO5b[ BCD0O84, MR05], showing that it maximises thabability of identifying the hidden sub-
group for those instances. The PGM approach to state idetidn differs from our approach in an impor-
tant way: the PGM approach does not usually give single texgidgorithms for state identification, whereas
our approach based on state distinction does. This is bechasPGM fort copies, in general, is a joint
measurement and does not decompose as a tensor product afremants on the individual copies. In
fact, for the dihedral HSP studied in|BCD05b], an exporamtumber of iterations of the PGM for a single
copy are required in order to identify a hidden reflectionhwabnstant probability. In contrast, polynomi-
ally many iterations of ‘forgetful’ Fourier sampling on gle copies give enough classical information to
identify a hidden reflection in the dihedral group [EHOO].

Another problem similar to state distinction is as follovisr two a priori known ensembleS;, & of
guantum states, is there a two-outcome POVM that identifitsr@asonable probability to which ensemble
a given state frong; U & belongs? It turns out that the probability of error is redatie the minimum trace
distance between the convex hulls&fand&,; [GWO05,[Jai05], and ig /2 if the convex hulls intersect. In



contrast, in the state distinction problem we want to find & Fivith many outcomes that gives reasonable
total variation distance between every pair of states oétteemble. Having more than two outcomes allows
us to find a pairwise distinguishing POVM even if the ensendalenot be partitioned into two parts with
disjoint convex hulls.

Proof technigue: In order to show that, under suitable conditions, a randattmooormal basi#3 gives
total variation distance at leaQ{||o1 — o2||r) between two quantum states, o2, we have to analysB in

the eigenbasis of; — 09. Our techniques differ from earlier work on the power of ramdbasis for state
distinction [RRSO05] in two different ways. First, the pafBRS0%] could not handle an arbitrary pair of
guantum states,, oo because of using weaker symmetry arguments. Using bettensyry arguments and
a new probabilistic analysis of the Gram-Schmidt orthoradisation process, we overcome this limitation
and reduce the problem to proving lower bounds on the tailefilited sums of squares of Gaussian random
variables. For the pairs of states considered_in |[RRS05%,amnty needed to prove tail lower bounds for
an unweighted sum of squares of Gaussian, i.e., one neegedvi® tail lower bounds for the chi-square
distribution. The papel [RRSD5] proved such bounds usiegdémtral limit theorem from probability theory.
However, since we are now in the weighted case, the stateofi¢imé central limit theorem does not quite
suffice. The main problem is that the central limit theoremned guarantee that a weighted sum of squared
Gaussians exceeds its mean by a standard deviation wittaobpsobability independent of the number of
random variables and the weights. To do this, we have to usevarful quantitative version of the central
limit theorem known as the Berry-Esséen theorem combinitid ‘weight smoothening’ arguments. This
allows us to show that the tail of a weighted sum of squareds&an exceeds th&-norm of the weight
vector with constant probability. This is in contrast to @iadf-like upper bounds on the tail of chi-square
distributions that are more commonly seen in the study ofsm@aconcentration for random unitaries. Since
the ¢,-norm of the weight vector is closely related|to; — o2 ||, We get our main result easily after this.
The Berry-Esséen theorem also indicates that a randorormtal basis cannot achieve total variation
distance much larger thdlz; — o3||r, and in fact, we give an example of statgs o with trace distance

2 where a random basis cannot give total variation distanae than./||o; — o2||r With high probability.

2 Preliminaries

2.1 Measure concentration inC"

In this subsection, we prove some simple results about measuacentration phenomenalt for largen,
that will be useful in the proof of our main theorem.
By a Gaussian probability distributiai, we mean the one-dimensional real Gaussian probabilitgi-dis

bution with mear0) and variancd, i.e., forxz € R, the probability density of atx is 6722_7:2. We used(-)
to denote the cumulative distribution function@fi.e., ®(x) is the probability thati picks a real number
less than or equal to.

The following tail bound on the sum of squaresrofndependent Gaussians, also known as the chi-
square distribution witlw degrees of freedom, can be proved Chernoff-style using thrment generating

function of the square of a Gaussian random variable.

Fact 1. LetGy,...,G, be independent random variables where eéghs distributed according tg;. Let
Y =3", G2. Forall e > 0,

PrlY > n(l1+¢€)] < (exp(—¢/2) - V1 +¢€)".
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The same upper bound also holds RafY” < n(1 + ¢)] when—1 < € < 0.

Using FacklL, we can prove the following lemma upper bountliedength of the projection of a random
unit vector onto a fixed subspace.

Lemma 1. Let W be ak-dimensional subspace 6f*, wherek < n/4. Letv be a random unit vector in
C™. LetIly, denote the orthonormal projector froff* to 1. Supposé < ¢t < n/k. Then,

Pr | Iy > ¢ £ < expl-am),
Also, foranyd < e < 1/2,
k 2 k 2
Pr [(1 — E)E < My (0)]]* < (1 +€)— ] > 1—exp(—Q(e°k)).

Proof. We can choose a random unit vectore C" as follows: choose a random vectore C™ by
choosing2n independent real random variabl@s, . . . , G2, where eaclts; is distributed according tg,
and treating a complex number as a pair of real numbers. Nomaliseo to get a random unit vectar,
note that|o|| = 0 with probability 0. By symmetry we can assume thé&tis spanned by the firgtstandard

2k
basis vectors ifC". Thus,||TIyy (v)||? = %M G2 Usinge = —1/2 in Factl, we geg G? > n with

probability at leastit — exp(—£2(n)) over the ch0|ce ob. Sinceexp(—¢/2) - v/1+ ¢ < exp(—e/10) for
e > 1, usinge = ¢/4 in Factl we geb %, G2 < LUK with probability at leastt — exp(—Q(tk)) over
the choice ofv. Thus, with probability at IeasI — exp( Q(tk)) — exp(—£2(n)) over the choice ob,
Ty () ||? < (”4) < % This completes the proof of the first part of the lemma.

The proof of the second part of the lemma is very similar, gisive inequalityexp(—e/2) - v/1 4+ € <
—e2/3for0 <e<1/2. O

We now prove a lemma upper bounding the perturbation indbgetde Gram-Schmidt orthonormalisa-
tion process om random independent unit vectors@.

Lemma 2. Let?},..., b, be a sequence of random independent unit vectoS"inwherer < n. Let
b, ..., b, be the corresponding sequence of unit vectors got by Grammisit orthonormalisingy;, . . . , b...
Fix M > 1. Then with probability at least — r - exp(—Q(Mr)) over the choice o, ..., b,

wmw-mwmwgo<w%g

Proof. For1 < i < r, let IT; denote the orthonormal projector frofi* to the subspace spanned by

by,...,b. Forl < i <r—1,puttingt = % in the first part of Lemma&ll, we see that with probability

forall1 <7<,

at leastl — rexp(—Q(Mr)) over the choice ob}, ..., b, [[TL;(b,,)]* < O (X4r). Recall thath; 1 :=
blL+1 (bz+l)
oL, TN - Hence,

e = Bl = [T )+ (1= 181 = Ta(b)1)?
I+ (1T IO )17) =2 2y/1— LG, )P




The proposition now follows from the fact that for two unitcters [1), |¢), |||V) (W] — |@){(d]]le <
2[[[4) = 1)I- 0

We will require the following fact about the size ofdanet in C™*. A §-net N is a finite set of unit
vectors inC™ with the property that for any unit vectere C", there exists a unit vecter € A such that
|lv—'|| < 4. The fact follows from the proof technique ¢f [Mai02, Lemnta1l1l, Chapter 13] and by
identifying C™ with R?”. Below for1 < j < n, e; denotes thgth standard unit vector i€", viz., the
n-tuple containing d in the jth location and zeroes elsewhere.

Fact 2. Fix anyd € (0,1]. Then, there is @-net\/ in C" containing then standard unit vectorsy, ..., e,
such that V| < (4)*",

Using FacfR, we can prove the following lemma upper bounthegspectral norm of an x n matrix
whose entries are independent random complex numbers ndépéndent Gaussian real and imaginary
parts.

Lemma 3. Define a randorm. x n.complex matrix\/ by independently choosing each entry to be a complex
number whose real and imaginary parts are independenthseh@ccording to the Gaussian distribution
G. Then, with probability at least — exp(—(nlogn)) over the choice oM, | M|| < O(v/nlogn).

Proof. Let § := 1/y/n. Let N be ad-net in C" guaranteed by Fa€l 2. Fix any unit vectore C™".

By symmetry, the probability distribution dfA/v||? is the same as that ¢\ e, ||?, i. €., the probability

distribution of | Mv||? is the same as that of the sum of squaregrofndependent Gaussians. Liet=

C'logn, whereC' is a sufficiently large constant whose value will becomercleger. Sinceexp(—e¢/2) -

VT + € < exp(—¢/10) for e > 1, usinge = t in Factd, we get thatM'||? < (¢ + 1)n for all v’ € A with

probability at least — (4,/n)?" - exp(—Q(Cnlogn)) > 1 — exp(—Q(nlogn)) over the choice of\/.
Note that for any vectow € C", we have

2 _ n n ) ‘2 n n P ' n . _ ) n o n P
IMw]? =1 Myw;| <> D 1Myl > Jw] lwl>> ) 1M
Jj=1

i=1 |j=1 i=1 \ j=1 j=1j=1

n
= > [Me;|* < llwlPn?(¢ +1).
j=1

The inequality above follows from Cauchy-Schwartz. Now fiy ainit vectorv € C". Letv’ be the closest
vector tov from N, where ties are broken arbitrarily. Thulg, — ¢'|| < . We have

| Mul|]? = (w|MTMv) = W' + (v —0")|MTM|v' 4 (v — "))

| MV )|? + W' |MTM|v — ') + (v — o' |MTM ') + || M (v — )|
M2 + 2[ Mo ||| M (v — o) || + || M (v =) ||?
(t+Dn+2/E+ Dn-|lv—2| - nvi+ 1+ v—2]*n2t+1)
(t +1)n + 2032t +1)8 + 6?n2(t + 1) < O(nlogn).

ININ TN

The first inequality above follows from Cauchy-Schwartzenoof of the lemma is now complete. O

Finally, we will require the following Berry-Esséen thean from probability theory, which is a quanti-
tative version of the central limit theorein_[Eel71, Chap{®fi, Section 5, Theorem 2].
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Fact 3 (Berry-Essen theorem).Let X1, ..., X,, be independent random variables. Defipe.= E[X|],
o; = (B[| X — wsl?DY?, pi := (E[|X; — ps?])'/3. Define the quantities

n n
o’ ::ZU?, p® ::ZP?’ X = %Z(Xi—,u,-).
i=1 i=1

Then for allz € R,
|Pr[X <z] — ®(z)| < —-.

Remark: The constant in the Berry-Esséen theorem can be improved; the curreotddas0.7915 by
Shiganov[[Shi86]. However, Propositibh 1 below holds aglaa the constant is finite and independent of
n and the random variables, ..., X,,.

Using FacEB, we prove the following proposition which wilap a central role in the proof of our main
theorem.

Proposition 1. LetGy, . .., G, be independent random variables where e&glis distributed according to
G. LetAy,..., \, € (0,1]. Define

t:= zn:/\i, f= Zn:/\?, X = Zn:)\iG?.
=1 i=1 i=1

Suppose < 1. Then, there is a constantindependent ofi and A4, ..., A, such that

PriX >t+ f]>¢c and Pr[X <t]>c

Proof. Without loss of generalityph; > --- > \,. Let K; be a sufficiently large constant, whose choice
will become clear later. Suppose > KLI Note thatKL1 < f < t. There is a constanf depending ork
but independent af and\y, ..., \, such thatr[G? > 2K] > ¢, which implies that

t
Pr[X >t + f] > Pr[\G3 > 2t] > Pr [EG% > 24 =Pr [G}] > 2K1] > c1.

Also,

t=EX]|>t-Prt <X <t+ fl+ (t+ f)Pr[X >t + f]
= t-PrX>t]+ f-Pr[X >t+ f]

t
> t-PrlX >t —_—
> r| _]+K1 c1
tCl

Zf'(l—PI‘[)(<t])"|-f1

1
= Pr[X <t]> ok
Now, suppose\; < K% Define independent random variabl&s := \;G?. Let u;, 0;, p; be defined as in
Fact3. Recall thaE[G?] = 1, E[|G? — 1|%] = 2 and that the absolute third central momentgfis finite,
say equal td<,. Then,
630, pd 6Ky N _ 6Kat _ 3K,
Shyor o 23 a2 2K ~ K

i=1"%
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Takingz = Lz in Fact3, we get

f
1 3Ks

Similarly, takingz = 0 in Fact3 we get

3K, 1 3K
Pr[XSt]E(I)(O)—?fzi—?f.

ChoosingK; to be a sufficiently large constant, we see that there existsv@rsal constant, such that
PrX > t+ f] > co andPr[X < t] = Pr[X < t] > co. Now lettingc := min{f(—ll,cz}, we have that

Pr[X > t+ f] > candPr[X < t] > c always. Observe thatis a universal constant independent.cdind
A, A O

2.2 Quantum state distinction versus identification

In this subsection, we explore the connection between thielgms of quantum state distinction and state
identification.

A quantum state if©" is modelled by alensity matrixr, which is ann x n Hermitian, positive semidef-
inite matrix with unit trace. Apositive operator-valued measuymr POVM for short, is the most general
measurement on quantum states. Seele.d. INCO00] for a gaodution to density matrices and POVM's.
A POVM M in C™ is a finite collection of positive operatofs; on C”, called elements oM, that satisfy
the completeness condition, £; = 1,. If the state of the quantum system is given by the densityimat
o, then the probability; to observe outcome labelleds given by the Born rule; = Tr(cE;). We use
M(o) to denote the probability distribution on the outcomes\dfgot by measuring according toM.
Thetrace normof ann x n matrix A is defined ag Al|;, := Trv At A. TheFrobenius nornof A is defined
as||A|lr := VTrAt A, which is nothing but thé;-norm of the long vector iC"” corresponding tol. The
following fact follows easily from the Cauchy-Schwartz inglity.

[ Aller

\/rank(A) "

Suppose there is an a priori known ensentble {04, ..., 0,,} of quantum states i6". Givent copies
of a stater;, asingle register state identificatioalgorithm A for the ensembl€ consists of a sequence of
POVM's F;, 1 < j < t, where F; operates on thgth copy ofs;. There is no bound on the number
of outcomes ofF;. The choice ofF; may depend on the observed outcomesrof. .., F;_;. Aftert
observationsA does a classical post-processing and declares its guesdHarall, 1 < i < m, we want
A to guess with probability at leas8/4.

Let0 < 6 < 2. APOVM M for the state distinctionproblem withdistinguishing powep for the
ensemblef is a POVM with the property thdtM (o;) — M(o;)|1 < dforalll1 <i < j < m. Itis easyto
see via the triangle inequality that if there exists a simgtgster state identification POVM arcopies, then
there exists a state distinction POVM with distinguishiragver2(1/t). The following fact is a converse to
the above observation; a proof sketch is included for cotapésss.

Fact 4. For any matrixA4, ||Aljr >

Fact5. Let€ = {o01,...,0,,} be an a priori known ensemble of quantum state€’in If there is a POVM
M for the state distinction problem with distinguishing powedor the ensembl€, then there is a single

register state identification algorithmd for ensemble working ont = O (1"3#)



Proof. Fix 1 < ¢ < j < m. Under the promise that the unknown state is eitheor o;, applying M

to each oft copies of the unknown state followed by a maximum likelih@stimate identifies the correct
state with probability at least — ﬁ as can be seen by a standard Chernoff bound.FLetlenote this
maximum likelihood routine. The identification algorithi starts by applyingM on each oft copies

of the unknown state, which a priori can be anye £. After that,.A doesm — 1 iterations of a classical
minimum-finding style post-processing procedure comgo possible states;, o; in an iteration, using
the classical routines;; on thet observed outcomes. Note that the sarobserved outcomes are reused by
the various routineg;;; no fresh measurements are done. The success probabilftg afinimum-finding
style post-processing, and hence algoritdiis at leastl — “— 1 > 3/4. O

2.3 Hidden subgroup problem and quantum Fourier transform

In this section, we explain the importance of the quantunrieotransform as a means of attacking the hid-
den subgroup problem. For a general introduction to reptaten theory of finite groups, see elg. [Sér77].
We use the term irrep to denote an irreducible unitary remtasion of a finite groug and denote bﬁ
a complete set of inequivalent irreps. For any unitary regméatiornp of G, let p* denote the representation
obtained by entry-wise conjugating the unitary matripég), whereg € GG. Note that the definition of*
depends upon the choice of the basis used to concretelyilaesice matriceg(g). If p is an irrep ofG so
is p*, but in generap® may be inequivalent tp. Let V, denote the vector space pfdefined, := dim V,,
and notice tha¥/, = V,-. The group elementg), whereg € G form an orthonormal basis @/!. Since
ZpeG = = |G|, we can consider another orthonormal basis called=theier basisof ClGl indexed by

lp,i,7), wherep € G ands, j run over the row and column indices pf The quantum Fourier transform
overG, QF T is the following linear transformation:

'_> Z Z Pw |p>la]

peG 3,j=1

It follows from Schur’s orthogonality relations (see el@el77, Chapter 2, Proposition 4, Corollary 3]) that
QFT, is a unitary transformation ig/“!.

For a subgroupd < G andp € G, definep(H) := |—11ﬂ > nhem (). It follows from Schur's lemma
(see e.g.[ISerT7, Chapter 2, Proposition 4]) @) is an orthogonal projection to the subspace/pf
consisting of vectors that are point-wise fixed by evef§), h € H. Definer,(H) := rank(p(H)). No-
tice thatr,(H) = r,«(H). Thestandard methoaf attacking the HSP i+ using coset state5 [GSVV04]
starts by forming the uniform SUpGI‘pOSItI% >_gec 19)[0). 1t then queriesf to get the superposi-

tion \/—%| >_gec 19)1f(g)). Ignoring the second register the reduced state on the éigister becomes

the density matrixoy = ‘—é' >_gec |9H)(gH|, that is the reduced state is a uniform mixture over all
left coset states off in G. It can be easily seen that applyitgF'T to ox gives us the density matrix
|IIG{\‘ @pec @f 11p, 1) (p,i| @ p*(H), wherep*(H) operates on the space of column indicegofSince
the stategr; are simultaneously block diagonal in the Fourier basis fiyr H < G, the elements of any
POVM M operating on these states can without loss of generalitgfuaed to have the same block struc-
ture. From this it is clear that any distinguishing measuweinwithout loss of generality first applies the
quantum Fourier transfor@F T to oy, measures the nameof an irrep, the index of a row, and then
measures the reduced state on the column spapeusing a POVMM,, in C%. This POVM M, may

depend orp but is independent of

10



The probability of observing an irrepin this quantum state is given 9y (p) = %. Con-
ditioned on observing we obtain a uniform distributiori /d, on the row indices. The reduced state on
the space of column indices after having observed an prapd a row index is then given by the state
p*(H)/r,(H), and a basic task for a hidden subgroup finding algorithms tecextract information about
H from it. In this paper, we will investigate the case whéf, is a random POVM, for a suitable defi-
nition of randomness, iC%. We shall call this procedureindom Fourier sampling Grigni, Schulman,
Vazirani and VaziranilGSVV(04] show that under certain dtinds onG and H, random Fourier sampling
gives exponentially small information about distingurghi/ from the identity subgroup. In this paper,
we prove a complementary information-theoretic result viader different conditions o, (log |G|)°™)
random strong Fourier samplings do give enough informatiioreconstruct the hidden subgroup with
high probability.

In weak Fourier samplingwe only measure the name of an irrep and ignore the reduaésl @t the
column space. It can be shown [HRT$03] that for normal hidsidsgroups, no more information about
H is contained in the reduced state. Thus, weak Fourier sagdithe optimal measurement to recover a
normal hidden subgroup from its coset state. In particiHaurier sampling is the optimal measurement on
coset states for the abelian HSP.

Define a distance metriw(Hy, Hy) := |Pu, — Pmulli = >, [Pri(p) — Pra(p)| between sub-
groupsHy, H, < G. Adapting an argument in [HRTS03], it can be shown thét,, Hy) > 1/2 if the
normal coreof H; andH, are different[RRS05]. Recall that the normal core of a sabg# is the largest
normal subgroup off contained inH. Thus, the main challenge is to distinguish between hiddeg®ups
H,, H, from the same normal core family.

We next show that coset states corresponding to differeiateim subgroups of a group have trace dis-
tance at least.

Proposition 2. Let H, H, be different subgroups of a groWg. Then,||oy, — om, |t > 1.

Proof. For a subgroug? < G, we letG/H denote a complete set of left coset representativds of G.
Since for any; € G/Hy,

HiNH
lerHy) = ‘LLTQI E lc(H1 N Hy)),
1 c€G/(H NHy)
cHi=c1Hq

Hi NH
OH, = al Z lc1 Hy)(er Hy| = ’1|7G|2‘ Z lc(H1 N Hy)){(d (Hy N Hy)|.
c1€G/Hy c,c’GI{G/(Hllr}HQ)

cHi=c' H;

A similar fact is true foro,. We now define

. H NnH

OH, = % Z lc(Hy N He)){'(Hy N Hy)|.
c,c/GG/(HlﬁHQ)

cHi=c'Hy,c#c

We definegy, similarly. Note thator,, 6, are Hermitian and for any € G/(H; N Ha), (c(Hi N
H2)|5'H1|C(H1 N H2)> =0 and(c(H1 N H2)|5'H1 |C(H1 N H2)> = 0.

11



We now observe that for any ¢ € G/(Hy N Ha),
(<C(H1 N H2)|O‘H1|C/(H1 N H2)> 75 0) A ((C(H1 N H2)|O'H2|C/(H1 N H2)> # 0) — c=/.

This is becauseH; = ¢ H; andcHy = ¢ Hy implies thatc(H; N Hy) = ¢(H; N Hy), i.e.c = ¢. This
implies that for any, ¢ € G/(H, N Ha),

((C(Hl N HQ)‘@'Hl‘CI(Hl N H2)> = 0) V ((C(Hl N HQ)’&HQ‘C/(H:[ N H2)> = 0)

Thus,6m, 61, = 6,0, = 0. Also, it follows thatoy, — op, = 61, — 6H,.
Without loss of generalityH is not a subgroup off>. Now,

low, = ol = 168, — Omolle = Try/ (61, — 61,)?

= Tv\[6%, + 6%, — o, — G0,

= Try/6%, +6%, > Try/6% = 6m ||

A

The inequality follows from the fact that? .+ 017, are positive semidefinite operators and the square-root

function is monotonically increasing for such operatons.otder to evaluatdsy, ||, notice thatsy, =

IHl‘gfbl ®C1EG/H1 MCl’ where for anyer € G/Hl’

M, = > le(Hyn Hy)){(d (Hy N Hy)|.

c,c/€G/(H{NHy)
clec/leclHl

c#Ec!

|Hy |Hy
|H1ﬂH2| |H10H2|

matrices respectively. Hencel,., ||i, = 2 (% - 1) forall ¢y € G/H;. Thus,

Now observe thafl/., is of the form.J — I, whereJ, I are the X all ones and identity

> 1.
| H | -

6l = LD 1G] -2< — —1>:2(VH1\—\H1HH2\)
W= e im P\ )

The inequality follows from the fact thdil; N H, is a proper subgroup df;, since H; is not a subgroup
of H,. This completes the proof of the proposition. O

3 Random measurement bases and Frobenius distance

In this section, we prove our main result showing that a ram&®VM, for a suitable definition of random-
ness, distinguishes between two density matrices by attlesis Frobenius distance with high probability.
We first prove an important technical lemma that quickly ieplour main theorem.

Lemma 4. Leto, o, be two density matrices i@”. Definef := ||o; — o3|r. Then:

1. If rank(oy) 4 rank(o2) < /n/K, whereK is a sufficiently large universal constant, then with
probability at leastl —exp(—(y/n))— % -exp(—Q(f?n)) over the choice of a random orthonormal
measurement bas8in C*, || B(c1) — B(os)||1 > Q(f);

12



2. Take a seB3 of n independent random vectof$ := {b1,...,b,} in C", where each; is got by
choosingn independent complex numbers whose real and imaginary pegtsxdependently chosen
according to the Gaussia@. Define/ := ||Y""_ b;b!|| andv := Lcn — 2 S b;b!. Let M denote

f
the POVM onC™ consisting of the elemenfqu’—i for 1 < ¢ < n, and the element. Note thatM
can be implemented as an orthonormal measuremefi”i® C2. Then with probability at least

1 — exp(—Q(n)) (01) = M(o2)[lL > © (logn)-

Proof. We start by proving the first part of the lemma. Define- ||o; — 02|, We haverank(oy — o) <
vn/K, whereK is a sufficiently large universal constant whose value weit@me clear later. Lef :=

{|b1), ..., |bn)} be arandom orthonormal basis®t. LetB(a1), B(c2) denote the probability distributions
on [n] got by measuring, o, respectively according t8. Let \, ..., \; denote the positive eigenvalues,
and—pgy1, - - -, — ke the negative eigenvalues of — 0. Note thatk + [ = rank(op — 03) < /n/K.
We assume that we work in the eigenbasigpf- o5. Hence, we can write
k k+l k k+l ¢ k k+1
or—oa =Y Nl = Y Gl Do A= H= 5 SN+ D =
i=1 j=k+1 i=1 j=k+1 i=1 j=k+1

Without loss of generalityy~" | A2 > S 42 = 3™ | A2 > f2/2. Also, by the Cauchy-Schwartz
inequalityt < f+/k +[. Then,

1B(o1) = Bo2)l = Z\ (Blo ) — (loalbe)| = Z( bulrs — )|

n k k-H . 9
Sl @la] — 3w |bda] |-
t=1|i=1 j=k+1
Define the random x n unitary matrix3 to be the matrix whose row vectors afg|, . . . , (b,|. Then,

1B(c1) — B(o)|l1 = oy ‘ZZ 1A |By|? — ZJ —k+1 Mj]Bth‘ . Instead of generating the random unitary

matrix B row-wise, we can generate it column-wise. The advantageisdat we only have to randomly
generate the firgt 4 [ orthonormal columns; the rest of the columns can be assuoraelzero without loss
of generality. That is, we generate arx (k + 1) matrix B whose columns are random orthonormal vectors
b1), ..., |bxr) in C". To generate the matri&, we generate an x (k + [) matrix B’ whose columns are
random independent unit vectdt§), . . ., |b,;) in C", and apply Gram-Schmidt orthonormalisation to get

B1). - [bg1). ChOOSINGM = eziftersz in Lemmal2, we gek[by) (bi| — [b}) (5 < O <w—> for all
1 < t < k -+ [ with probability at least — (k + ) exp (—Q (m)) > 1— exp(—Q(vn/K)) over the
choice ofB'. Let B(cy) — B(o2) andB'(01) — B'(c2) denote the functions om] defined by

(B(o) = B(o2))(t) = iy Xl (Bil ) — S50, (B 10012 = o0y XalBuil® — X254 41 m51Bysl,

(B'(01) = B'(02))(t) 1= S0y Ml G102 = S5y sl G516)17 = D2y NlByl® = 32525 1By 1
respectively, wheré < ¢ < n. We now have

k+1
1B(01) — B(o2) |1 = |B(01) — B(oz) |1 = Z ZA (Bl = > wslbs10)
t=1 |i=1 j=k+1
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n k k41 n k
> S ISMBBE - D wl@inP Sox (1102 = 1BinR) | -

t=1 |i=1 j=k+1 t=1 |i=1

n k41 ~

> i (1E0F — 16101

t=1 |j=k+1

> |B/(on) - @mQ)ZMm ﬂWW—ZwZW%—MW
j=k+1 t=1
L k+l1 L
> 1B - Bloall — S M0~ BBl — S )]~ i Bl
i=1 j=k+1
1 k 1 k+1

> |B/(o1) — B _o(____>. M—O(————>' -
- H (Ul) (02)“1 K\/k—H ; K\/k—H j:%;-lluj

= 1B - Bl ~1:0 (= ) = 8o - Boa)lh - 0 £

with probability at least — exp <—Q (Q)) over the choice of’. The third inequality follows from the

fact that the trace distance between two quantum states up@er bound on the total variation distance
between the probability distributions got by performing easurement on the two states.

We generatd3’ by first generating am x (k + [) matrix B whose entries are independent complex-
valued random variables whose real and imaginary partsaateirdependently distributed according to the
Gaussiarg, and then normalising each column®fn order to get3’. Letby, ..., by,; denote the columns
of B. Sinceexp(—¢/2) - V1+e < —€2/3for0 < e < 1/2, usinge = /10 in Factll we see that with

probability at leastt — (k + 1) exp(—£(f?n)) over the choice o8, ||b;]|?> < 2n (1 - %) forl1 <i<k

and||b;]|2 > 2n (1 — —) fork+ 1 < j < k + [. Consider any fixed, 1 < ¢t < n. By PropositiorIL, with
probability at least? over the choice of,

k k k k+1 k+1
STNBulP>2 > N+ [2) A2zt f and Y wlBulf<2 Y =t
=1 =1 =1

Call the above everit;. If E; occurs we have

k k+l1
t+f t tf f
AR 2 AR (2 o —
2 AIBAF = D pulBy| m(l+L) 2m(1—L)  10n(1— L) " 2n(1 + )
=1 j=k+1 10 10 100 10

f ( 1 2>> f

Since the event#; for different ¢ are independent, using a standard Chernoff bound, withajitity
at leastl — exp(—€2(n)) over the choice of3, at Ieast‘%" different ¢ will satisfy the above inequality.
This means that with probability at least- exp(—Q(n)) — (k + 1) exp(—£(f?n)) over the choice o8B,

|B'(o1) — B'(02)]|1 > fc . Thus, with probability at least — exp(—(n)) — (k + 1) exp(=Q(f?n)) —
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exp (—Q (%)) >1—exp (—Q (%)) — % -exp(—$(f?n)) over the choice of a random orthonormal

basisB of C", || B(cy) — B(o)||1 > fl—c; — O(f/K). Sincec is a universal constant, we can choosiigo
be a sufficiently large universal constant thus proving tst fiart of the lemma.

We now proceed to the proof of the second part of the lemmadLet . , A\, be the positive eigenvalues
and — .1, ..., — 4y the non-positive eigenvalues af — o,. By symmetry, we can assume that we are
working in the eigenbasis af; — 09, i. €., the eigenbasis of, — o4 is the computational basis. Define the
n X n matrix B to be the matrix whose column vectors ase. .. ,b,. Suppose is a unit vector inC™.
Then,

(v] Y bibfv) = D [oltil” = [T B> = [|BTo].
i=1 i=1

Hence we have . .
=Y bib ]l = max(v] Y bibl|o) = [|IBT* = 18],
i=1 =1

where the maximum is taken over all unit vectors C". The second equality follows becausé" ; binT
is a positive matrix. By Lemmid 3,= ||B||?> < O(nlogn) with probability at least — exp(—Q(nlogn))
over the choice oB.

Now,

1 n
M) = Mozl = 5 3 (bialbt - bjazbt‘ + [ Tr(o1v) — Tr(oov)]
t=1

n n k n
> 73 [bloabe— oot = 5 D7 (S MBS wslblli P
t=1

t=1 |i=1 J=k+1

n

n k
Q<nlign> DD NlBul? = D wlBl.

t=1 |i=1 j=k—+1

By Propositior]l and a standard Chernoff bound, we see thiatprobability at least — exp(—2(n)) over
the choice of3, for at IeastCQT" differentt,

k n k k n
Z&’BitP— Z 1151B;i|? >2Z)‘i+ 22)\?—2 Z pj>t+f—t=f
=1 =1 J =1

j=k+1 j=k+1

Thus, with probability at least — exp(—(n)) — exp(—(nlogn)) > 1 — exp(—(n)) over the choice

of B,
M) = Mol > 0 (i) - L =0 (L),

nlogn n logn

sincec is a universal constant. Since the POVM can be refined to a POVM withr, rank one elements,
M can be implemented as an orthonormal measuremétit inC2. This completes the proof of the second
part of the lemma. O

We are now finally in a position to prove the main theorem offthper.
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Theorem 1. Letoy, o, be two density matrices ™. Definef := |01 — o2||r. Then:

1. LetK > 1 be a sufficiently large quantity. Consider an ancilla sp&t® initialised to zero, where
m > 4’}{52. Let B be a random orthonormal measurement basi€ih® C™. Let M denote the
POVM onC" got by attaching ancillg0) to a state inC™ and applying the orthonormal mea-
surement in C" @ C™. Then with probability at least — exp(—Q(Kn)) over the choice of3,

[M(a1) — M(a2)ll1 > Q(f);

2. LetK > 1 and definen := Kn. Take a sef3 of m independent random vectoBs:= {b,...,b,}
in C" ® CK, where eachb; is got by choosingn independent complex numbers whose real and
imaginary parts are independently chosen according to taessiang. Define? := |7, bib;'H
andv := Lengex — 5 9oy binT. Let M denote the POVM of€™ got by tensoring a zero ancilla
over CX to states inC™ and then performing the POV in C* @ CX consisting of the elements

af

% for 1 < ¢ < m, and the element. Note thatM can be implemented as an orthonormal
measurement if©” @ C2X. Then with probability at least — exp(—Q(m)) over the choice of3,
[M(o1) = M(@2)lls > @ (555) -

logm

Proof. In order to prove the first part of the theorem, I€tbe at least as large as the universal constant
in the first part of Lemm&l4. Thus, we start out with two densitgtricess; := o1 ® [0)(0|, o2 =
o9 ®10)(0] in C™ ® C™. Trivially, rank(d;) + rank(d2) = rank(c1) 4 rank(og2) < 2n < y/nm/K. Also,
|lo1 — a2|lp = ||lo1 — o2||r. By the first part of LemmBl4, with probability at ledst- exp(—Q(y/nm)) —
@ - exp(—Q(nmf?)) > 1 — exp(—Q(Kn)) over the choice of a random orthonormal baSisf C* ©
C™, [|[M(a1) = M(02)|h = ||IB(61) — B(32)|l1 > Q(f). This completes the proof of the first part of the
theorem.

A very similar strategy allows us to prove the second parthef theorem using the second part of
LemméeZ. O

Remark: The point to note in the second part of the theorem is thatdhstouction of the random POVM
M does not require a priori knowledge [0f; — o2 ||r. This will be useful in the application to the HSP, in
the proof of Theorerfll2

Finally, we present an example of a pair of density matriges -, where with high probability a random
POVM cannot achieve a total variation distance much largant/|jo1 — o2||r, unless the dimension
of the ancilla used by the POVM is exponentially larger thrank(o;) + rank(o2). This is essentially
because a sum of independent random variables cannotal&raiat its mean by much more than its standard
deviation.

Proposition 3. Letoq, o9 be completely mixed states supported on two orthogoutiinensional subspaces
of C". Note that||o, — o2|lr = \/2/r and||o1 — o2/t = 2. LetB be a random orthonormal basis @".
Then, with probability at least — n exp(—+/r) over the choice 0B, ||B(c1) — B(oa)|ly < O(r—1/4).

Proof. LetB = {|b1),..., |b,)}. LetW7, W5 denote the supports ef;, o, respectively. Theng; = %HWZ..
Since eachb;) is a random unit vector i€”, puttinge = Cr—1/4, C a universal constant whose value will
become clear later, in the second part of Leniha 1, welget< (b|o;|b,) < Lt for i = 1,2 and all

1 <t < n, with probability at least — n exp(—+/r) over the choice o88. Thus,

n

1B(o1) = Bloz)llr = Y [(belot[be) — (beloa|br)| < Z% < 2e.
t=1

t=1
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This completes the proof of the proposition. O

Now, if we think of C* asC?" ® C™, wherem := 2%, we see that a random POVM i*" cannot
distinguish between, oo by much more thar/||o; — o2||r, unlessn is exponentially large compared to
rank(o) + rank(og).

4 Random measurement bases and the HSP

In this section, we study the implications of Theofl@m 1 fer hidden subgroup problem.
Theorentll is in most cases not immediately useful in obtgisingle register algorithms for the HSP.

This is because for two candidate hidden subgrotips Hs, ||om, — om,llr < llom e + llomllr =
% + % Thus, even thoughoy, — o, ||t > 1 by PropositioR|lox, — o, ||r can be exponen-
tially small if | H, |, |H2| are exponentially small compared|t|. In most examples of interest this is indeed

the case. Fortunately, we can make good use of the fact thaiobet states for different subgroupscéof
are simultaneously block diagonal in the Fourier basis;ofHence, we investigate the power of random
Fourier sampling in distinguishing between coset statég ddvantage of this is that after doing the quan-
tum Fourier transform and measuring an irrep name and a rdexjrwe may be left with a reduced state
on the space of column indices with polynomially boundedkralfi this happens, the average Frobenius
distance between the blocks®f;, ando 7, will be polynomially large even thoughv i, — o, ||r may be
exponentially small. In fact, for several cases of the H&idistl in the literature, the rank of the reduced
state is in fact eithed or 1 i. e., the hidden subgroup forms a Gel'fand pair with the ambgroup.

To make the above reasoning precise, we define a new distagirie fretween two coset stategy,,

om,. Below, we use the notation of Sectionl2.3.

Definition 1 (r(H;, H2)). LetG be a group and{y, H, < G. Define

1

H{,Hy) :=w(H, H _ . d, || Hy|p(Hy) — |Ho|p(H
T( 1 2) UJ( 1 2)+\G\log\G\ % P||| 1|p( 1) | 2|p( Q)HF
pe

The importance of (H;, H2) follows from the following theorem.

Theorem 2. LetG be a group andH,, H, < G. Let M denote the POVM corresponding to the following
random Fourier sampling procedure: appFT; to the given coset state, measure the name of an irrep
p € G and arow index, and then apply a random POV, on the resulting reduced state on the space of

column indices, wherd1,, is defined as in the second part of Theof@m 1 idth: = {Cl%j\le , WhereC'

is a sufficiently large universal constant. Then with prabgbat least1 — exp(— log? |G|) over the choice
of M, [M(on,) — M(om,)|1 = Qr(Hi, Hs)).

Proof. Let o, o5 be two quantum states apg, po > 0. Suppose; > p,. Then,

lp1o1 — paoe|lr < |lp1(o1 — o2)|lr + [[(p1 — p2)o2|lr < pillor — o2llF + |p1 — P2l

Now,

[p1M(01) — paM(0o2)[l1 = [[p1(M(o1) — M(02)) + (p1 — p2)M(02)|l1 > %HM(O’l) — M(o2)|1-
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The inequality above follows by considering those outcormmes\ that have at least as much proba-
bility for o4 as foro,, and the fact thatp; — p2) M (o2) is a vector with non-negative entries. Also,
IprM(01) — peM (o)1 > |p1 — pa|- Now suppose|M(ay) — M(az)|l; > 1z=22le "wherer > 1.
Then,

IM(o1) — peM(oo)lls = PL22L P o) - Mol
2 4

[p1 — P2 [p1o1 — p2o2|lF
> == >
= i 4L”‘Il ool = AL
Now suppose we applQFT, and measure an irrep nampeand a row index. We apply the above
reasoning to the random POV, with L = log |G|. Using the second part of Theoréih 1, we get that

with probability at leastl — exp(—log? |G|) over the choice of\l,, | M, (p(Hi)) — M,(p(H2))||1 >

0 ("'Hl"’(Hllz);"gf"’(HQ)|‘F) . Hence for the random Fourier sampling POVM, with probability at least

1 — exp(—log? |G|) over the choice of\,

1
M(om,) — M(om,)lli > Q2 (GlogG > d,||[|Hylp(Hy) — HzP(H2)F) :
peq

The theorem now follows because random Fourier samplingyalwloes at least as well as weak Fourier
sampling. O

The following corollary is now easy to prove.

Corollary 1. Let G be a group. Suppose for every irrgpe G and subgroupH < G, rank(p(H)) <
(log |G|)®™M. Then the random Fourier method of TheorEim 2 gives rise tmglesiregister algorithm
identifying with probability at leass/4 the hidden subgrougl from (log |G|)°") copies ofr ;.

Proof. Consider two distinct subgroupd,, H, < G. Since coset states are block diagonal in the Fourier
basis ofG, using Theoreril2, Propositiéh 2 and Hdct 4 we get

d
L< o, = omlle =) ﬁHIHllp(Hl) — [Ha|p(H2)l[ex

pe@
< Z| [[H1|p(H1) — [Ha|p(H2)l - (rank(p(H1)) + rank(p(Hz)))
peG
< (log|G)7M - (Z Gl Hle(H) - H2p<H2>F)
peCG
< (log|G)°W . r(Hy, Hy).

Let M denote the random Fourier sampling POVM of Theofédm 2. Theh wiobability at leasti —
exp(—log?|G|) over the choice oM, | M(om,) — M(om,)|1 > Qr(Hy, Ha)) > (log|G|)~°M. Since
a groupG can have at mogtos’ G subgroups, by the union bound on probabllltles Wlth prdtiplat least
1 — exp(—Q(log? |G|)) over the choice oM, | M (o) — M(om,)|l1 > (log|G|)~CW) for all subgroups
Hy, H, < G. The corollary now follows from Fa€l 5. O
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Finally, we remark that in many important examples of the H8®re most of the probability lies on
high dimensional irreps and the blocks corresponding teelieps have low rank, one can save a factor of
log |G| in the denominator of the definition of H;, Hy) and prove Theorefd 2 with this improved definition
of r(Hy, Hs). This improvement follows by using the first part of Lemibia dt@ad of the second part of
Theorentll in the proof of Theoreloh 2. Such a saving can be donexample, for suitable subgroups of
the affine group, Heisenberg group and groéps« Z,, p prime,r > 2.

5 The general state identification problem

In this section, we study the implications of TheorEln 1 to stee identification problem for a general
ensemble of quantum states. To the best of our knowledgepitbblem does not seem to have been studied
before. The following theorem with= n gives an upper bound on the number of copies required taifgent
a given state information-theoretically with high prod#ypifor any ensemble.

Theorem 3. Let€ = {o1,...,0%} be an a priori known ensemble of quantum state€'in Suppose the
minimum trace distance between a pair of states fébia at leastt. Letr denote the maximum rank of a
state in€. Then, there is a POVM in C” such thatM ®* acting ono®* gives enough classical information

to identifyi with probability at leasB,/4, wherel = O (%)

Proof. Define f := % Let M be the random POVM guaranteed by the second part of Thedreithl w

m = %@ Fix any pair of states;, o;, i # j from £. Then with probability at least —

exp(—Q(8nlogm)) > 1 — - over the choice of\1,

rank(o; — o VT

By the union bound on probabilities, there is a POV on C™ such that the above inequality holds for
every pair of states frorfi. By Facl®, applying\1®¢ on a?l, wherel = O (”fggk) gives enough classical
information to identify; with probability at leas8/4.

[M(a3) — Moyl > Qlloi — ole) > © ( loi — 9l j)> >0 (i) |
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