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Abstract
We show that measuring any two quantum states by a random POVM, under a suitable definition of

randomness, gives probability distributions having totalvariation distance at least a universal constant
times the Frobenius distance between the two states, with high probability. In fact, if the Frobenius dis-
tance between the two states is not too small and their ranks are not too large, even a random orthonormal
basis works as above. Since a random POVM is independent of the two states, the above result gives
us the first sufficient condition and an information-theoretic solution for the following quantumstate
distinction problem: given an a priori known ensemble of quantum states, is therea single measurement
basis, or more generally a POVM, that gives reasonably largetotal variation distance between every
pair of states from the ensemble? Large pairwise trace distance is a trivial necessary condition for the
existence of a single distinguishing measurement for an ensemble; however, it is not sufficient, as seen
for example by the recent work of Moore, Russell and Schulman[MRS05] on hidden subgroups of the
symmetric group. Our random POVM method gives us the first information-theoretic upper bound on
the number of copies required to solve the quantumstate identification problemfor general ensembles,
i. e., given some number of independent copies of a quantum state from an a priori known ensemble,
identify the state. Moreover, this upper bound is achieved by a single registeralgorithm, i. e., the algo-
rithm measures one copy of the state at a time, followed by a classical post-processing on the observed
outcomes in order to identify the state.

The standard quantum approach to solving the hidden subgroup problem (HSP), which includes
Shor’s algorithms for factoring and discrete logarithm, isa special case of the state identification problem
where the ensemble consists of so-calledcoset statesof candidate hidden subgroups. Combining Fourier
sampling with our random POVM result gives us single register algorithms using polynomially many
copies of the coset state that identify hidden subgroups having polynomially bounded rank in every
representation of the ambient group. In particular, we get such single register algorithms when the
hidden subgroup forms a Gel’fand pair, e.g. dihedral, affineand Heisenberg groups, with the ambient
group, i. e., the rank in every representation is either zeroor one. These HSP algorithms complement
earlier results about the powerlessness of random Fourier sampling when the ranks are exponentially
large, which happens for example in the HSP over the symmetric group. The drawback of random
Fourier sampling based algorithms is that they are not efficient because measuring in a random basis is
not. This leads us to the open question of efficiently implementable pseudo-random measurement bases.

1 Introduction

The hidden subgroup problem (HSP) is a central problem in quantum algorithms. Many important problems
like factoring, discrete logarithm and graph isomorphism reduce to special cases of the HSP. Almost all
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exponential speedups that have been achieved in quantum computing are obtained by solving some instances
of the HSP. The HSP is defined as follows: Given a functionf : G → S from a groupG to a setS that is
constant on left cosets of some subgroupH ≤ G and distinct on different cosets, find a set of generators
for H. Ideally, we would like to findH in time polynomial in the input size, i. e.log |G|. Almost all
efficient quantum algorithms for solving special cases of the HSP, including Shor’s algorithms for factoring
and discrete logarithm [Sho97], use the same generic approach sometimes called thestandard method. The
standard method for the HSP can be described as follows: evaluate the functionf in superposition and ignore
the function value to get a state of the formσH := 1

|G|
∑

g∈G |gH〉〈gH|, where|gH〉 := 1√
|H|
∑

h∈H |gh〉,
i .e.,σH is a uniform mixture of uniform superpositions over left cosetsgH of the hidden subgroupH. A
state of the formσH for some subgroupH ≤ G is called acoset state. The above procedure can be repeated
t times to gett independent copies of the stateσH . The aim now is to identifyH from σ⊗t

H .
The coset state based approach to the HSP leads us to considerthe following general problem called

quantum state identification. Givenσ⊗t
i from an a priori known ensembleE = {σ1, . . . , σm} of quantum

states inCn, identify i. A related problem is the followingquantum state distinctionproblem: is there a
single measurement basis or more generally a POVMM, that gives reasonably large total variation distance
between every pair of states inE? The important point here is that we want a single measurement M
that works well for every pair of states. A solution to the state identification problem trivially gives a
solution to the state distinction problem. It is not hard to see that the converse is also true: a POVMM
with distinguishing powerδ, i.ė., M solves the state distinction problem with total variation distance at
leastδ between every pair of states fromE , gives an algorithm that identifies the given state with constant

probability fromt = O
(
logm
δ2

)
independent copies. This algorithm is in fact asingle registeralgorithm

in that it appliest independent copies ofM to the givenσ⊗t
i and does a classical ‘minimum-finding style’

post-processing on the observed outcomes to guessi. Single register algorithms may have advantages over
multi-register algorithms in the interests of efficiency and ease of design; observe that the complexity of a
generick-register measurement increases exponentially withk.

In this work, we study information-theoretic aspects of thegeneral state distinction problem, and use it
as a tool for solving the corresponding state identificationproblem. We also analyse various implications of
these two problems, including consequences for the HSP. Ourmain objective is to find sufficient conditions
on the ensembleE to guarantee the existence of a measurement with distinguishing powerδ. It is known
that two quantum states can beδ-distinguished by a measurement if and only if they have trace distance at
leastδ. In general, this measurement depends upon the pair of states to be distinguished. Thus, this result
does not give us any way to come up with a single measurementM is that works well for every pair of
states. However, it does provide a necessary condition: in order for a POVM with distinguishing power
δ to exist, every pair of states inE must have trace distance at leastδ. On a concrete note, we show that
the ensemble of coset states for subgroups of a groupG indeed has minimum pairwise trace distance of1.
However, constant pairwise trace distance is not sufficientfor the existence of a polynomially distinguishing
measurement, as seen for example by the recent work of Moore,Russell and Schulman [MRS05] on hidden
subgroups of the symmetric group.

Random POVM and Frobenius distance: In this paper, we present for the first time a sufficient criterion
for the state distinction problem. Let‖A‖F denote the Frobenius norm of a matrixA, i. e., ‖A‖F :=√∑

kl |Akl|2. For a POVMM and quantum stateσ in C
n, let M(σ) denote the probability distribution

on the outcomes ofM got by measuringσ according toM. Our main result can be stated informally as
follows.
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Result 1 (Informal statement). Supposeσ1, σ2 are two quantum states inCn. Definef := ‖σ1 − σ2‖F. If
rank(σ1) + rank(σ2) is not ‘too large’, then with probability at least1− exp(−Ω(

√
n)− exp(−Ω(f2n))

over the choice of a random orthonormal basisB in C
n, ‖B(σ1)−B(σ2)‖1 > cf , wherec is a universal

constant.

Using the above result, we can show that if the minimum pairwise Frobenius distance of an ensemble
E = {σ1, . . . , σm} of states inCn is at leastf , then with probability at least1− exp(−n), a random POVM
F , with an appropriate notion of randomness, gives total variation distance at leastcf between every pair
of states ofE , wherec > 0 is a universal constant. The notion of random POVM that we useis as follows:
attach a zero ancilla inCm, wherem := Θ

(
n log2 m

f2

)
, and measureσi ⊗ |0〉〈0| according to a random

orthonormal basis inCn ⊗ C
m. In addition, as suggested by Result 1, if the maximum rank ofa state in

E is not too large, then we don’t need a POVM at all, a random orthonormal basis inCn will work just
as well. We also construct examples of density matricesσ1, σ2 with ‖σ1 − σ2‖tr = 2, where with very
high probability the total variation distance given by a random POVM is at most

√
‖σ1 − σ2‖F, unless

exponentially many ancilla qubits are used to define the random POVM.

Application to the HSP: Our random POVM method has information-theoretic implications about the
HSP in a general groupG. It is easy to see that the ensemble of coset states for subgroups ofG is simulta-
neously block diagonal in the Fourier basis forG, where a block is labelled by an irreducible representation
(irrep) ofG and a row index. This leads us to consider the so-calledrandom Fourier methodfor the HSP:
apply the quantum Fourier transform overG to the given coset state and observe the name of an irrepρ
and a row indexi, and then measure the resulting reduced state using a randomPOVM. Previously, a few
examples of HSP’s were given where random Fourier sampling required exponentially many copies of the
coset state in order to identify the hidden subgroup with constant probability [GSVV04, MRRS04]. In these
examples, the ranks of the blocks of the coset state in the Fourier basis were exponentially large. Using
the fact that‖A‖F ≥ ‖A‖tr√

rank(A)
for any matrixA, we prove a surprising positive counterpart to the above

negative results. We show that polynomially many iterations of the random Fourier method give enough
classical information to identify the hidden subgroupH if the ranks of the coset state in each block in the
Fourier basis are polynomially bounded. In fact, we define a distance metricr(H1,H2) between two sub-
groupsH1,H2 ≤ G based on the Frobenius distance between the corresponding blocks of the coset states
σH1 andσH2 in the Fourier basis ofG, and show that random Fourier sampling gives total variation distance
at leastΩ(r(H1,H2)) betweenσH1 andσH2 with exponentially high probability. If the ranks of the blocks
of σH1 , σH2 are polynomially bounded, thenr(H1,H2) is at least polynomially large. The previous work of
[RRS05] also proposed a distance functionr′(H1,H2), but it was difficult to estimater′(H1,H2) except for
very special cases. Also, the functionr′(H1,H2) is not powerful enough to even show that if the ranks of
the blocks areσH1, σH2 are at most one, polynomially many iterations of random Fourier sampling suffice
to identify the hidden subgroup with high probability. Our new result improves our understanding of the
power of single register Fourier sampling, and establishesthat the random POVM method can often be a
powerful information-theoretic tool.

In particular, for the important special case when the hidden subgroupH forms a Gel’fand pair with
the ambient groupG, i. e., each block has rank either zero or one,O(log3 |G|) iterations of random strong
Fourier sampling give enough classical information to identify the hidden subgroupH with high probability.
For many concrete examples e.g. affine group, Heisenberg group, the number of iterations of random Fourier
sampling can be brought down toO(log |G|) by a more careful analysis. Gel’fand pairs have been studied
extensively in group theory, and a lot of recent work [MR05] on the hidden subgroup problem has involved
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Gel’fand pairs e.g. dihedral group [EH00, BCD05b] , affine group [MRRS04], Heisenberg group [RRS05,
BCD05a]. For the dihedral and affine groups, it is possible togive explicit efficient measurement bases for
the single register Fourier sampling procedure that identify the hidden subgroup with high probability using
polynomially many copies. Interestingly, for the Heisenberg group no such explicit basis for single register
Fourier sampling is known, though an explicit efficient entangled basis fortwo-registerFourier sampling
is known [BCD05a]. The only proof that polynomially many iterations of single register Fourier sampling
suffice information-theoretically to identify hidden subgroups in the Heisenberg group is through random
Fourier sampling, and was first observed in [RRS05].

Since it can be shown that measuring in a Haar-random orthonormal basis is hard for a quantum com-
puter, the main open question that arises from our work is whether there are efficiently implementable
pseudo-random orthonormal bases for specific ensembles that have good distinguishing power. For exam-
ple, such a basis for the representations of groupsZ

r
p ⋊ Zp, p prime, will give us algorithms for the HSP

in those groups having an efficient quantum part followed by apossibly super polynomial classical post-
processing. For super constantr, no such quantum algorithm is currently known. Current proposals of
pseudo-random orthonormal bases [EWS+03, ELL05] however, seem inadequate for our purposes.

Application to general state identification: Besides applications to the HSP, our random POVM method
also has some interesting consequences for the general state identification problem. For an ensembleE of

states inCn with minimum pairwise trace distanceδ and maximum rankr of a state,t = O
(
r log |E|

δ2

)

independent copies of a state are enough to identify the state with high probability usingt iterations of a

random POVM. Sincer ≤ n, for a general ensemble of quantum states we gett = O
(
n logm

δ2

)
which is the

first upper bound on the number of copies required for the general state identification problem to the best of

our knowledge. For pure states, we gett = O
(
logm
δ2

)
which is optimal up to constant factors. This result

for pure states can be independently proved by a detailed analysis of Gram-Schmidt orthonormalisation, but
the resulting measurement is ajoint measurement entangled acrosst registers. In contrast, note that all the
state identification algorithms arising from our random POVM result are single register algorithms.

Related work: The so-calledpretty good measurement, also known as the square-root measurement, has
been proposed in the past as a measurement for the state identification problem [HW94]. Its performance
is indeed ‘pretty good’ if the ensemble of states possesses some special symmetries; see e.g. [EMV04]
and the references therein. The PGM approach has been recently applied to a few instances of the HSP
also [BCD05b, BCD05a, MR05], showing that it maximises the probability of identifying the hidden sub-
group for those instances. The PGM approach to state identification differs from our approach in an impor-
tant way: the PGM approach does not usually give single register algorithms for state identification, whereas
our approach based on state distinction does. This is because the PGM fort copies, in general, is a joint
measurement and does not decompose as a tensor product of measurements on the individual copies. In
fact, for the dihedral HSP studied in [BCD05b], an exponential number of iterations of the PGM for a single
copy are required in order to identify a hidden reflection with constant probability. In contrast, polynomi-
ally many iterations of ‘forgetful’ Fourier sampling on single copies give enough classical information to
identify a hidden reflection in the dihedral group [EH00].

Another problem similar to state distinction is as follows:for two a priori known ensemblesE1, E2 of
quantum states, is there a two-outcome POVM that identifies with reasonable probability to which ensemble
a given state fromE1 ∪ E2 belongs? It turns out that the probability of error is related to the minimum trace
distance between the convex hulls ofE1 andE2 [GW05, Jai05], and is1/2 if the convex hulls intersect. In
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contrast, in the state distinction problem we want to find a POVM with many outcomes that gives reasonable
total variation distance between every pair of states of theensemble. Having more than two outcomes allows
us to find a pairwise distinguishing POVM even if the ensemblecannot be partitioned into two parts with
disjoint convex hulls.

Proof technique: In order to show that, under suitable conditions, a random orthonormal basisB gives
total variation distance at leastΩ(‖σ1 − σ2‖F) between two quantum statesσ1, σ2, we have to analyseB in
the eigenbasis ofσ1 − σ2. Our techniques differ from earlier work on the power of random basis for state
distinction [RRS05] in two different ways. First, the paper[RRS05] could not handle an arbitrary pair of
quantum statesσ1, σ2 because of using weaker symmetry arguments. Using better symmetry arguments and
a new probabilistic analysis of the Gram-Schmidt orthonormalisation process, we overcome this limitation
and reduce the problem to proving lower bounds on the tail of weighted sums of squares of Gaussian random
variables. For the pairs of states considered in [RRS05], one only needed to prove tail lower bounds for
an unweighted sum of squares of Gaussian, i. e., one needed toprove tail lower bounds for the chi-square
distribution. The paper [RRS05] proved such bounds using the central limit theorem from probability theory.
However, since we are now in the weighted case, the statementof the central limit theorem does not quite
suffice. The main problem is that the central limit theorem cannot guarantee that a weighted sum of squared
Gaussians exceeds its mean by a standard deviation with constant probability independent of the number of
random variables and the weights. To do this, we have to use a powerful quantitative version of the central
limit theorem known as the Berry-Esséen theorem combined with ‘weight smoothening’ arguments. This
allows us to show that the tail of a weighted sum of squared Gaussian exceeds theℓ2-norm of the weight
vector with constant probability. This is in contrast to Chernoff-like upper bounds on the tail of chi-square
distributions that are more commonly seen in the study of measure concentration for random unitaries. Since
the ℓ2-norm of the weight vector is closely related to‖σ1 − σ2‖F, we get our main result easily after this.
The Berry-Esséen theorem also indicates that a random orthonormal basis cannot achieve total variation
distance much larger than‖σ1 − σ2‖F, and in fact, we give an example of statesσ1, σ2 with trace distance
2 where a random basis cannot give total variation distance more than

√
‖σ1 − σ2‖F with high probability.

2 Preliminaries

2.1 Measure concentration inCn

In this subsection, we prove some simple results about measure concentration phenomena inCn for largen,
that will be useful in the proof of our main theorem.

By a Gaussian probability distributionG, we mean the one-dimensional real Gaussian probability distri-

bution with mean0 and variance1, i. e., forx ∈ R, the probability density ofG atx is e−x2/2√
2π

. We useΦ(·)
to denote the cumulative distribution function ofG, i .e.,Φ(x) is the probability thatG picks a real number
less than or equal tox.

The following tail bound on the sum of squares ofn independent Gaussians, also known as the chi-
square distribution withn degrees of freedom, can be proved Chernoff-style using the moment generating
function of the square of a Gaussian random variable.

Fact 1. LetG1, . . . , Gn be independent random variables where eachGi is distributed according toG. Let
Y :=

∑n
i=1G

2
i . For all ǫ ≥ 0,

Pr[Y > n(1 + ǫ)] < (exp(−ǫ/2) ·
√
1 + ǫ)n.
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The same upper bound also holds forPr[Y < n(1 + ǫ)] when−1 < ǫ < 0.

Using Fact 1, we can prove the following lemma upper boundingthe length of the projection of a random
unit vector onto a fixed subspace.

Lemma 1. LetW be ak-dimensional subspace ofCn, wherek ≤ n/4. Letv be a random unit vector in
C
n. LetΠW denote the orthonormal projector fromCn toW . Suppose4 ≤ t ≤ n/k. Then,

Pr

[
‖ΠW (v)‖2 > t · k

n

]
≤ exp(−Ω(tk)).

Also, for any0 ≤ ǫ ≤ 1/2,

Pr

[
(1− ǫ)

k

n
≤ ‖ΠW (v)‖2 ≤ (1 + ǫ)

k

n

]
≥ 1− exp(−Ω(ǫ2k)).

Proof. We can choose a random unit vectorv ∈ C
n as follows: choose a random vectorv̂ ∈ C

n by
choosing2n independent real random variablesG1, . . . , G2n, where eachGi is distributed according toG,
and treating a complex number as a pair of real numbers. Now normalisev̂ to get a random unit vectorv;
note that‖v̂‖ = 0 with probability0. By symmetry, we can assume thatW is spanned by the firstk standard

basis vectors inCn. Thus,‖ΠW (v)‖2 =
∑2k

i=1 G
2
i∑2n

j=1 G
2
j

. Using ǫ = −1/2 in Fact 1, we get
∑2n

j=1G
2
j > n with

probability at least1 − exp(−Ω(n)) over the choice ofv. Sinceexp(−ǫ/2) ·
√
1 + ǫ ≤ exp(−ǫ/10) for

ǫ ≥ 1, usingǫ = t/4 in Fact 1 we get
∑2k

i=1G
2
i ≤ (t+4)k

2 with probability at least1 − exp(−Ω(tk)) over
the choice ofv. Thus, with probability at least1 − exp(−Ω(tk)) − exp(−Ω(n)) over the choice ofv,
‖ΠW (v)‖2 < (t+4)k

2n ≤ tk
n . This completes the proof of the first part of the lemma.

The proof of the second part of the lemma is very similar, using the inequalityexp(−ǫ/2) ·
√
1 + ǫ ≤

−ǫ2/3 for 0 ≤ ǫ ≤ 1/2.

We now prove a lemma upper bounding the perturbation inducedby the Gram-Schmidt orthonormalisa-
tion process onr random independent unit vectors inCn.

Lemma 2. Let b′1, . . . , b
′
r be a sequence of random independent unit vectors inC

n, wherer ≤ n. Let
b̃1, . . . , b̃r be the corresponding sequence of unit vectors got by Gram-Schmidt orthonormalisingb′1, . . . , b

′
r.

Fix M > 1. Then with probability at least1− r · exp(−Ω(Mr)) over the choice ofb′1, . . . , b
′
r,

‖|b′i〉〈b′i| − |b̃i〉〈b̃i|‖tr ≤ O

(√
Mr

n

)

for all 1 ≤ i ≤ r,

Proof. For 1 ≤ i ≤ r, let Πi denote the orthonormal projector fromCn to the subspace spanned by
b′1, . . . , b

′
i. For 1 ≤ i ≤ r − 1, putting t = Mr

i in the first part of Lemma 1, we see that with probability
at least1 − r exp(−Ω(Mr)) over the choice ofb′1, . . . , b

′
r, ‖Πi(b

′
i+1)‖2 ≤ O

(
Mr
n

)
. Recall that̃bi+1 :=

b′i+1−Πi(b′i+1)

‖b′i+1−Πi(b′i+1)‖
. Hence,

‖b̃i+1 − b′i+1‖2 = ‖Πi(b
′
i+1)‖2 +

(
1− ‖b′i+1 −Πi(b

′
i+1)‖

)2

= ‖Πi(b
′
i+1)‖2 +

(
1−

√
1− ‖Πi(b′i+1)‖2

)2
= 2− 2

√
1− ‖Πi(b′i+1)‖2

≤ 2− 2

√
1−O

(
Mr

n

)
≤ O

(
Mr

n

)
.
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The proposition now follows from the fact that for two unit vectors |ψ〉, |φ〉, ‖|ψ〉〈ψ| − |φ〉〈φ|‖tr ≤
2‖|ψ〉 − |φ〉‖.

We will require the following fact about the size of aδ-net inC
n. A δ-net N is a finite set of unit

vectors inCn with the property that for any unit vectorv ∈ C
n, there exists a unit vectorv′ ∈ N such that

‖v − v′‖ ≤ δ. The fact follows from the proof technique of [Mat02, Lemma 13.1.1, Chapter 13] and by
identifying C

n with R
2n. Below for 1 ≤ j ≤ n, ej denotes thejth standard unit vector inCn, viz., the

n-tuple containing a1 in thejth location and zeroes elsewhere.

Fact 2. Fix anyδ ∈ (0, 1]. Then, there is aδ-netN in C
n containing then standard unit vectorse1, . . . , en

such that|N | ≤
(
4
δ

)2n
.

Using Fact 2, we can prove the following lemma upper boundingthe spectral norm of ann × n matrix
whose entries are independent random complex numbers with independent Gaussian real and imaginary
parts.

Lemma 3. Define a randomn×n complex matrixM by independently choosing each entry to be a complex
number whose real and imaginary parts are independently chosen according to the Gaussian distribution
G. Then, with probability at least1− exp(−Ω(n log n)) over the choice ofM , ‖M‖ ≤ O(

√
n log n).

Proof. Let δ := 1/
√
n. Let N be aδ-net in C

n guaranteed by Fact 2. Fix any unit vectorv ∈ C
n.

By symmetry, the probability distribution of‖Mv‖2 is the same as that of‖Me1‖2, i. e., the probability
distribution of‖Mv‖2 is the same as that of the sum of squares of2n independent Gaussians. Lett :=
C log n, whereC is a sufficiently large constant whose value will become clear later. Sinceexp(−ǫ/2) ·√
1 + ǫ ≤ exp(−ǫ/10) for ǫ ≥ 1, usingǫ = t in Fact 1, we get that‖Mv′‖2 ≤ (t+1)n for all v′ ∈ N with

probability at least1− (4
√
n)2n · exp(−Ω(Cn log n)) ≥ 1− exp(−Ω(n log n)) over the choice ofM .

Note that for any vectorw ∈ C
n, we have

‖Mw‖2 =
n∑

i=1

∣∣∣∣∣∣

n∑

j=1

Mijwj

∣∣∣∣∣∣

2

≤
n∑

i=1




n∑

j=1

|Mij |2

 ·




n∑

j=1

|wj |2

 = ‖w‖2

n∑

j=1

n∑

j=1

|Mij |2

= ‖w‖2
n∑

j=1

‖Mej‖2 ≤ ‖w‖2n2(t+ 1).

The inequality above follows from Cauchy-Schwartz. Now fix any unit vectorv ∈ C
n. Let v′ be the closest

vector tov from N , where ties are broken arbitrarily. Thus,‖v − v′‖ ≤ δ. We have

‖Mv‖2 = 〈v|M †M |v〉 = 〈v′ + (v − v′)|M †M |v′ + (v − v′)〉
= ‖Mv′‖2 + 〈v′|M †M |v − v′〉+ 〈v − v′|M †M |v′〉+ ‖M(v − v′)‖2
≤ ‖Mv′‖2 + 2‖Mv′‖‖M(v − v′)‖+ ‖M(v − v′)‖2
≤ (t+ 1)n + 2

√
(t+ 1)n · ‖v − v′‖ · n

√
t+ 1 + ‖v − v′‖2n2(t+ 1)

≤ (t+ 1)n + 2n3/2(t+ 1)δ + δ2n2(t+ 1) ≤ O(n log n).

The first inequality above follows from Cauchy-Schwartz. The proof of the lemma is now complete.

Finally, we will require the following Berry-Esséen theorem from probability theory, which is a quanti-
tative version of the central limit theorem [Fel71, ChapterXVI, Section 5, Theorem 2].
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Fact 3 (Berry-Esśeen theorem).LetX1, . . . ,Xn be independent random variables. Defineµi := E[Xi],
σi := (E[|Xi − µi|2])1/2, ρi := (E[|Xi − µi|3])1/3. Define the quantities

σ2 :=

n∑

i=1

σ2i , ρ3 :=

n∑

i=1

ρ3i , X :=
1

σ

n∑

i=1

(Xi − µi).

Then for allx ∈ R,

|Pr[X ≤ x]− Φ(x)| ≤ 6ρ3

σ2
.

Remark: The constant6 in the Berry-Esséen theorem can be improved; the current record is0.7915 by
Shiganov [Shi86]. However, Proposition 1 below holds as long as the constant is finite and independent of
n and the random variablesX1, . . . ,Xn.

Using Fact 3, we prove the following proposition which will play a central role in the proof of our main
theorem.

Proposition 1. LetG1, . . . , Gn be independent random variables where eachGi is distributed according to
G. Letλ1, . . . , λn ∈ (0, 1]. Define

t :=

n∑

i=1

λi, f :=

√√√√
n∑

i=1

λ2i , X :=

n∑

i=1

λiG
2
i .

Supposet ≤ 1. Then, there is a constantc independent ofn andλ1, . . . , λn such that

Pr[X > t+ f ] > c and Pr[X < t] > c.

Proof. Without loss of generality,λ1 ≥ · · · ≥ λn. LetK1 be a sufficiently large constant, whose choice
will become clear later. Supposeλ1 ≥ t

K1
. Note that t

K1
≤ f ≤ t. There is a constantc1 depending onK1

but independent ofn andλ1, . . . , λn such thatPr[G2
1 > 2K1] > c1, which implies that

Pr[X > t+ f ] > Pr[λ1G
2
1 > 2t] > Pr

[
t

K1
G2

1 > 2t

]
= Pr

[
G2

1 > 2K1

]
> c1.

Also,

t = E[X] ≥ t · Pr[t ≤ X ≤ t+ f ] + (t+ f) Pr[X > t+ f ]

= t · Pr[X ≥ t] + f · Pr[X > t+ f ]

≥ t · Pr[X ≥ t] +
t

K1
· c1

= t · (1− Pr[X < t]) +
tc1
K1

⇒ Pr[X < t] ≥ c1
K1

.

Now, supposeλ1 < t
K1

. Define independent random variablesXi := λiG
2
i . Let µi, σi, ρi be defined as in

Fact 3. Recall thatE[G2
i ] = 1, E[|G2

i − 1|2] = 2 and that the absolute third central moment ofG2
i is finite,

say equal toK2. Then,
6
∑n

i=1 ρ
3
i∑n

i=1 σ
2
i

=
6K2

∑n
i=1 λ

3
i

2
∑n

i=1 λ
2
i

<
6K2t

2K1
≤ 3K2

K1
.
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Takingx = 1√
2

in Fact 3, we get

Pr[X > t+ f ] ≥
(
1− Φ

(
1√
2

))
− 3K2

K1
.

Similarly, takingx = 0 in Fact 3 we get

Pr[X ≤ t] ≥ Φ(0)− 3K2

K1
=

1

2
− 3K2

K1
.

ChoosingK1 to be a sufficiently large constant, we see that there exists auniversal constantc2 such that

Pr[X > t + f ] > c2 andPr[X < t] = Pr[X ≤ t] > c2. Now lettingc := min
{

c1
K1
, c2

}
, we have that

Pr[X > t+ f ] > c andPr[X < t] > c always. Observe thatc is a universal constant independent ofn and
λ1, . . . , λn.

2.2 Quantum state distinction versus identification

In this subsection, we explore the connection between the problems of quantum state distinction and state
identification.

A quantum state inCn is modelled by adensity matrixσ, which is ann×nHermitian, positive semidef-
inite matrix with unit trace. Apositive operator-valued measure, or POVM for short, is the most general
measurement on quantum states. See e.g. [NC00] for a good introduction to density matrices and POVM’s.
A POVM M in C

n is a finite collection of positive operatorsEi onC
n, called elements ofM, that satisfy

the completeness condition
∑

iEi = 11n. If the state of the quantum system is given by the density matrix
σ, then the probabilitypi to observe outcome labelledi is given by the Born rulepi = Tr(σEi). We use
M(σ) to denote the probability distribution on the outcomes ofM got by measuringσ according toM.
Thetrace normof ann× n matrixA is defined as‖A‖tr := Tr

√
A†A. TheFrobenius normof A is defined

as‖A‖F :=
√
TrA†A, which is nothing but theℓ2-norm of the long vector inCn2

corresponding toA. The
following fact follows easily from the Cauchy-Schwartz inequality.

Fact 4. For any matrixA, ‖A‖F ≥ ‖A‖tr√
rank(A)

.

Suppose there is an a priori known ensembleE = {σ1, . . . , σm} of quantum states inCn. Givent copies
of a stateσi, asingle register state identificationalgorithmA for the ensembleE consists of a sequence of
POVM’s Fj , 1 ≤ j ≤ t, whereFj operates on thejth copy ofσi. There is no bound on the number
of outcomes ofFj . The choice ofFj may depend on the observed outcomes ofF1, . . . ,Fj−1. After t
observations,A does a classical post-processing and declares its guess fori. For all i, 1 ≤ i ≤ m, we want
A to guessi with probability at least3/4.

Let 0 ≤ δ ≤ 2. A POVM M for the state distinctionproblem withdistinguishing powerδ for the
ensembleE is a POVM with the property that‖M(σi)−M(σj)‖1 ≤ δ for all 1 ≤ i < j ≤ m. It is easy to
see via the triangle inequality that if there exists a singleregister state identification POVM ont copies, then
there exists a state distinction POVM with distinguishing powerΩ(1/t). The following fact is a converse to
the above observation; a proof sketch is included for completeness.

Fact 5. LetE = {σ1, . . . , σm} be an a priori known ensemble of quantum states inC
n. If there is a POVM

M for the state distinction problem with distinguishing power δ for the ensembleE , then there is a single

register state identification algorithmA for ensembleE working ont = O
(
logm
δ2

)
.
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Proof. Fix 1 ≤ i < j ≤ m. Under the promise that the unknown state is eitherσi or σj , applyingM
to each oft copies of the unknown state followed by a maximum likelihoodestimate identifies the correct
state with probability at least1 − 1

4m , as can be seen by a standard Chernoff bound. LetFij denote this
maximum likelihood routine. The identification algorithmA starts by applyingM on each oft copies
of the unknown state, which a priori can be anyσi ∈ E . After that,A doesm − 1 iterations of a classical
minimum-finding style post-processing procedure comparing two possible statesσi, σj in an iteration, using
the classical routinesFij on thet observed outcomes. Note that the samet observed outcomes are reused by
the various routinesFij ; no fresh measurements are done. The success probability ofthe minimum-finding
style post-processing, and hence algorithmA, is at least1− m−1

4m ≥ 3/4.

2.3 Hidden subgroup problem and quantum Fourier transform

In this section, we explain the importance of the quantum Fourier transform as a means of attacking the hid-
den subgroup problem. For a general introduction to representation theory of finite groups, see e.g. [Ser77].

We use the term irrep to denote an irreducible unitary representation of a finite groupG and denote bŷG
a complete set of inequivalent irreps. For any unitary representationρ of G, let ρ∗ denote the representation
obtained by entry-wise conjugating the unitary matricesρ(g), whereg ∈ G. Note that the definition ofρ∗

depends upon the choice of the basis used to concretely describe the matricesρ(g). If ρ is an irrep ofG so
is ρ∗, but in generalρ∗ may be inequivalent toρ. Let Vρ denote the vector space ofρ, definedρ := dimVρ,
and notice thatVρ = Vρ∗ . The group elements|g〉, whereg ∈ G form an orthonormal basis ofC|G|. Since∑

ρ∈Ĝ d
2
ρ = |G|, we can consider another orthonormal basis called theFourier basisof C|G| indexed by

|ρ, i, j〉, whereρ ∈ Ĝ andi, j run over the row and column indices ofρ. The quantum Fourier transform
overG, QFTG is the following linear transformation:

|g〉 7→
∑

ρ∈Ĝ

√
dρ
|G|

dρ∑

i,j=1

ρij(g)|ρ, i, j〉.

It follows from Schur’s orthogonality relations (see e.g. [Ser77, Chapter 2, Proposition 4, Corollary 3]) that
QFTG is a unitary transformation inC|G|.

For a subgroupH ≤ G andρ ∈ Ĝ, defineρ(H) := 1
|H|
∑

h∈H ρ(h). It follows from Schur’s lemma
(see e.g. [Ser77, Chapter 2, Proposition 4]) thatρ(H) is an orthogonal projection to the subspace ofVρ
consisting of vectors that are point-wise fixed by everyρ(h), h ∈ H. Definerρ(H) := rank(ρ(H)). No-
tice thatrρ(H) = rρ∗(H). Thestandard methodof attacking the HSP inG using coset states [GSVV04]
starts by forming the uniform superposition1√

|G|
∑

g∈G |g〉|0〉. It then queriesf to get the superposi-

tion 1√
|G|
∑

g∈G |g〉|f(g)〉. Ignoring the second register the reduced state on the first register becomes

the density matrixσH = 1
|G|
∑

g∈G |gH〉〈gH|, that is the reduced state is a uniform mixture over all
left coset states ofH in G. It can be easily seen that applyingQFTG to σH gives us the density matrix
|H|
|G|
⊕

ρ∈Ĝ
⊕dρ

i=1 |ρ, i〉〈ρ, i| ⊗ ρ∗(H), whereρ∗(H) operates on the space of column indices ofρ. Since
the statesσH are simultaneously block diagonal in the Fourier basis for any H ≤ G, the elements of any
POVMM operating on these states can without loss of generality be assumed to have the same block struc-
ture. From this it is clear that any distinguishing measurement without loss of generality first applies the
quantum Fourier transformQFTG to σH , measures the nameρ of an irrep, the indexi of a row, and then
measures the reduced state on the column space ofρ using a POVMMρ in C

dρ . This POVMMρ may
depend onρ but is independent ofi.
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The probability of observing an irrepρ in this quantum state is given byPH(ρ) =
dρ|H|rρ(H)

|G| . Con-
ditioned on observingρ we obtain a uniform distribution1/dρ on the row indices. The reduced state on
the space of column indices after having observed an irrepρ and a row indexi is then given by the state
ρ∗(H)/rρ(H), and a basic task for a hidden subgroup finding algorithm is how to extract information about
H from it. In this paper, we will investigate the case whenMρ is a random POVM, for a suitable defi-
nition of randomness, inCdρ . We shall call this procedurerandom Fourier sampling. Grigni, Schulman,
Vazirani and Vazirani [GSVV04] show that under certain conditions onG andH, random Fourier sampling
gives exponentially small information about distinguishing H from the identity subgroup. In this paper,
we prove a complementary information-theoretic result viz. under different conditions onG, (log |G|)O(1)

random strong Fourier samplings do give enough informationto reconstruct the hidden subgroupH with
high probability.

In weak Fourier sampling, we only measure the name of an irrep and ignore the reduced state on the
column space. It can be shown [HRTS03] that for normal hiddensubgroupsH, no more information about
H is contained in the reduced state. Thus, weak Fourier sampling is the optimal measurement to recover a
normal hidden subgroup from its coset state. In particular,Fourier sampling is the optimal measurement on
coset states for the abelian HSP.

Define a distance metricw(H1,H2) := ‖PH1 − PH2‖1 =
∑

ρ∈Ĝ |PH1(ρ) − PH2(ρ)| between sub-
groupsH1,H2 ≤ G. Adapting an argument in [HRTS03], it can be shown thatw(H1,H2) ≥ 1/2 if the
normal coresofH1 andH2 are different [RRS05]. Recall that the normal core of a subgroupH is the largest
normal subgroup ofG contained inH. Thus, the main challenge is to distinguish between hidden subgroups
H1,H2 from the same normal core family.

We next show that coset states corresponding to different hidden subgroups of a group have trace dis-
tance at least1.

Proposition 2. LetH1,H2 be different subgroups of a groupG. Then,‖σH1 − σH2‖tr ≥ 1.

Proof. For a subgroupH ≤ G, we letG/H denote a complete set of left coset representatives ofH in G.
Since for anyc1 ∈ G/H1,

|c1H1〉 =
√

|H1 ∩H2|
|H1|

∑

c∈G/(H1∩H2)

cH1=c1H1

|c(H1 ∩H2)〉,

we get

σH1 =
|H1|
|G|

∑

c1∈G/H1

|c1H1〉〈c1H1| =
|H1 ∩H2|

|G|
∑

c,c′∈G/(H1∩H2)

cH1=c′H1

|c(H1 ∩H2)〉〈c′(H1 ∩H2)|.

A similar fact is true forσH2 . We now define

σ̂H1 :=
|H1 ∩H2|

|G|
∑

c,c′∈G/(H1∩H2)

cH1=c′H1,c 6=c′

|c(H1 ∩H2)〉〈c′(H1 ∩H2)|.

We defineσ̂H2 similarly. Note thatσ̂H1, σ̂H2 are Hermitian and for anyc ∈ G/(H1 ∩ H2), 〈c(H1 ∩
H2)|σ̂H1 |c(H1 ∩H2)〉 = 0 and〈c(H1 ∩H2)|σ̂H1 |c(H1 ∩H2)〉 = 0.
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We now observe that for anyc, c′ ∈ G/(H1 ∩H2),

(〈c(H1 ∩H2)|σH1 |c′(H1 ∩H2)〉 6= 0) ∧ (〈c(H1 ∩H2)|σH2 |c′(H1 ∩H2)〉 6= 0) ⇐⇒ c = c′.

This is becausecH1 = c′H1 andcH2 = c′H2 implies thatc(H1 ∩ H2) = c′(H1 ∩H2), i. e. c = c′. This
implies that for anyc, c′ ∈ G/(H1 ∩H2),

(〈c(H1 ∩H2)|σ̂H1 |c′(H1 ∩H2)〉 = 0) ∨ (〈c(H1 ∩H2)|σ̂H2 |c′(H1 ∩H2)〉 = 0).

Thus,σ̂H1 σ̂H2 = σ̂H2σ̂H1 = 0. Also, it follows thatσH1 − σH2 = σ̂H1 − σ̂H2 .
Without loss of generality,H1 is not a subgroup ofH2. Now,

‖σH1 − σH2‖tr = ‖σ̂H1 − σ̂H2‖tr = Tr
√

(σ̂H1 − σ̂H2)
2

= Tr
√
σ̂2H1

+ σ̂2H2
− σ̂H1 σ̂H2 − σ̂H2σ̂H1

= Tr
√
σ̂2H1

+ σ̂2H2
≥ Tr

√
σ̂2H1

= ‖σ̂H1‖tr.

The inequality follows from the fact that̂σ2H1
, σ̂2H2

are positive semidefinite operators and the square-root
function is monotonically increasing for such operators. In order to evaluate‖σ̂H1‖tr, notice thatσ̂H1 =
|H1∩H2|

|G|
⊕

c1∈G/H1
Mc1 , where for anyc1 ∈ G/H1,

Mc1 :=
∑

c,c′∈G/(H1∩H2)

cH1=c′H1=c1H1
c 6=c′

|c(H1 ∩H2)〉〈c′(H1 ∩H2)|.

Now observe thatMc1 is of the formJ − I, whereJ , I are the |H1|
|H1∩H2| ×

|H1|
|H1∩H2| all ones and identity

matrices respectively. Hence,‖Mc1‖tr = 2
(

|H1|
|H1∩H2| − 1

)
for all c1 ∈ G/H1. Thus,

‖σ̂H1‖tr =
|H1 ∩H2|

|G| · |G|
|H1|

· 2
( |H1|
|H1 ∩H2|

− 1

)
=

2(|H1| − |H1 ∩H2|)
|H1|

≥ 1.

The inequality follows from the fact thatH1 ∩H2 is a proper subgroup ofH1, sinceH1 is not a subgroup
of H2. This completes the proof of the proposition.

3 Random measurement bases and Frobenius distance

In this section, we prove our main result showing that a random POVM, for a suitable definition of random-
ness, distinguishes between two density matrices by at least their Frobenius distance with high probability.
We first prove an important technical lemma that quickly implies our main theorem.

Lemma 4. Letσ1, σ2 be two density matrices inCn. Definef := ‖σ1 − σ2‖F. Then:

1. If rank(σ1) + rank(σ2) ≤ √
n/K, whereK is a sufficiently large universal constant, then with

probability at least1−exp(−Ω(
√
n))−

√
n

K ·exp(−Ω(f2n)) over the choice of a random orthonormal

measurement basiŝB in C
n, ‖B̂(σ1)− B̂(σ2)‖1 > Ω(f);
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2. Take a setB of n independent random vectorsB := {b1, . . . , bn} in C
n, where eachbi is got by

choosingn independent complex numbers whose real and imaginary partsare independently chosen
according to the GaussianG. Defineℓ := ‖∑n

i=1 bib
†
i‖ andν := 11Cn − 1

ℓ

∑n
i=1 bib

†
i . LetM denote

the POVM onCn consisting of the elementsbib
†
i

ℓ for 1 ≤ i ≤ n, and the elementν. Note thatM
can be implemented as an orthonormal measurement inC

n ⊗ C
2. Then with probability at least

1− exp(−Ω(n)) over the choice ofB, ‖M(σ1)−M(σ2)‖1 > Ω
(

f
logn

)
.

Proof. We start by proving the first part of the lemma. Definet := ‖σ1 − σ2‖tr. We haverank(σ1 − σ2) ≤√
n/K, whereK is a sufficiently large universal constant whose value will become clear later. Let̂B :=

{|b̂1〉, . . . , |b̂n〉} be a random orthonormal basis ofC
n. Let B̂(σ1), B̂(σ2) denote the probability distributions

on [n] got by measuringσ1, σ2 respectively according tôB. Letλ1, . . . , λk denote the positive eigenvalues,
and−µk+1, . . . ,−µk+l the negative eigenvalues ofσ1 − σ2. Note thatk + l = rank(σ1 − σ2) ≤

√
n/K.

We assume that we work in the eigenbasis ofσ1 − σ2. Hence, we can write

σ1 − σ2 =

k∑

i=1

λi|i〉〈i| −
k+l∑

j=k+1

µj|j〉〈j|,
k∑

i=1

λi =

k+l∑

j=k+1

µj =
t

2
,

k∑

i=1

λ2i +

k+l∑

j=k+1

µ2j = f2.

Without loss of generality,
∑k

i=1 λ
2
i ≥ ∑k+l

j=k+1 µ
2
j ⇒ ∑k

i=1 λ
2
i ≥ f2/2. Also, by the Cauchy-Schwartz

inequalityt ≤ f
√
k + l. Then,

‖B̂(σ1)− B̂(σ2)‖1 =
n∑

t=1

∣∣∣〈b̂t|σ1|b̂t〉 − 〈b̂t|σ2|b̂t〉
∣∣∣ =

n∑

t=1

∣∣∣〈b̂t|σ1 − σ2|b̂t〉
∣∣∣

=

n∑

t=1

∣∣∣∣∣∣

k∑

i=1

λi

∣∣∣〈b̂t|i〉
∣∣∣
2
−

k+l∑

j=k+1

µj

∣∣∣〈b̂t|j〉
∣∣∣
2

∣∣∣∣∣∣
.

Define the randomn × n unitary matrixB̂ to be the matrix whose row vectors are〈b̂1|, . . . , 〈b̂n|. Then,

‖B̂(σ1)− B̂(σ2)‖1 =
∑n

t=1

∣∣∣
∑k

i=1 λi|B̂ti|2 −
∑k+l

j=k+1 µj |B̂tj |2
∣∣∣ . Instead of generating the random unitary

matrix B̂ row-wise, we can generate it column-wise. The advantage nowis that we only have to randomly
generate the firstk+ l orthonormal columns; the rest of the columns can be assumed to be zero without loss
of generality. That is, we generate ann× (k + l) matrix B̃ whose columns are random orthonormal vectors
|b̃1〉, . . . , |b̃k+l〉 in C

n. To generate the matrix̃B, we generate ann× (k + l) matrixB′ whose columns are
random independent unit vectors|b′1〉, . . . , |b′k+l〉 in C

n, and apply Gram-Schmidt orthonormalisation to get

|b̃1〉, . . . , |b̃k+l〉. ChoosingM = n
K2(k+l)2

in Lemma 2, we get‖|b̃t〉〈b̃t| − |b′t〉〈b′t|‖tr < O
(

1
K
√
k+l

)
for all

1 ≤ t ≤ k+ l with probability at least1− (k+ l) exp
(
−Ω

(
n

K2(k+l)

))
≥ 1− exp(−Ω(

√
n/K)) over the

choice ofB′. Let B̃(σ1)− B̃(σ2) andB′(σ1)− B′(σ2) denote the functions on[n] defined by

(B̃(σ1)− B̃(σ2))(t) :=
∑k

i=1 λi|〈b̃i|t〉|2 −
∑k+l

j=k+1 µj|〈b̃j |t〉|2 =
∑k

i=1 λi|B̃ti|2 −
∑k+l

j=k+1 µj|B̃tj |2,

(B′(σ1)− B′(σ2))(t) :=
∑k

i=1 λi|〈b′i|t〉|2 −
∑k+l

j=k+1 µj |〈b′j |t〉|2 =
∑k

i=1 λi|B′
ti|2 −

∑k+l
j=k+1 µj |B′

tj |2

respectively, where1 ≤ t ≤ n. We now have

‖B̂(σ1)− B̂(σ2)‖1 = ‖B̃(σ1)− B̃(σ2)‖1 =
n∑

t=1

∣∣∣∣∣∣

k∑

i=1

λi|〈b̃i|t〉|2 −
k+l∑

j=k+1

µj|〈b̃j |t〉|2
∣∣∣∣∣∣
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≥
n∑

t=1

∣∣∣∣∣∣

k∑

i=1

λi|〈b′i|t〉|2 −
k+l∑

j=k+1

µj|〈b′j |t〉|2
∣∣∣∣∣∣
−

n∑

t=1

∣∣∣∣∣

k∑

i=1

λi

(
|〈b′i|t〉|2 − |〈b̃i|t〉|2

)∣∣∣∣∣−

n∑

t=1

∣∣∣∣∣∣

k+l∑

j=k+1

µj

(
|〈b′j |t〉|2 − |〈b̃j |t〉|2

)
∣∣∣∣∣∣

≥ ‖B′(σ1)− B′(σ2)‖1 −
k∑

i=1

λi

n∑

t=1

∣∣∣|〈b′i|t〉|2 − |〈b̃i|t〉|2
∣∣∣−

k+l∑

j=k+1

µj

n∑

t=1

∣∣∣|〈b′j |t〉|2 − |〈b̃j |t〉|2
∣∣∣

≥ ‖B′(σ1)− B′(σ2)‖1 −
k∑

i=1

λi‖|b′i〉〈b′i| − |b̃i〉〈b̃i|‖tr −
k+l∑

j=k+1

µj‖|b′j〉〈b′j | − |b̃j〉〈b̃j |‖tr

≥ ‖B′(σ1)− B′(σ2)‖1 −O

(
1

K
√
k + l

)
·

k∑

i=1

λi −O

(
1

K
√
k + l

)
·

k+l∑

j=k+1

µj

= ‖B′(σ1)− B′(σ2)‖1 − t ·O
(

1

K
√
k + l

)
≥ ‖B′(σ1)−B′(σ2)‖1 −O

(
f

K

)

with probability at least1 − exp
(
−Ω

(√
n

K

))
over the choice ofB′. The third inequality follows from the

fact that the trace distance between two quantum states is anupper bound on the total variation distance
between the probability distributions got by performing a measurement on the two states.

We generateB′ by first generating ann × (k + l) matrix B whose entries are independent complex-
valued random variables whose real and imaginary parts are each independently distributed according to the
GaussianG, and then normalising each column ofB in order to getB′. Let b1, . . . , bk+l denote the columns
of B. Sinceexp(−ǫ/2) ·

√
1 + ǫ ≤ −ǫ2/3 for 0 ≤ ǫ ≤ 1/2, usingǫ = f/10 in Fact 1 we see that with

probability at least1 − (k + l) exp(−Ω(f2n)) over the choice ofB, ‖bi‖2 ≤ 2n
(
1 + f

10

)
for 1 ≤ i ≤ k

and‖bj‖2 ≥ 2n
(
1− f

10

)
for k + 1 ≤ j ≤ k + l. Consider any fixedt, 1 ≤ t ≤ n. By Proposition 1, with

probability at leastc2 over the choice ofB,

k∑

i=1

λi|Bti|2 > 2
k∑

i=1

λi +

√√√√2
k∑

i=1

λ2i ≥ t+ f and
k+l∑

j=k+1

µj|Bti|2 < 2
k+l∑

j=k+1

µj = t.

Call the above eventEt. If Et occurs we have
∣∣∣∣∣∣

k∑

i=1

λi|B′
ti|2 −

k+l∑

j=k+1

µj|B′
tj |2
∣∣∣∣∣∣
>

t+ f

2n(1 + f
10 )

− t

2n(1− f
10 )

= − tf

10n(1− f2

100 )
+

f

2n(1 + f
10 )

>
f

2n

(
1

1 +
√
2

10

− 2

5

)
>

f

6n
.

Since the eventsEt for different t are independent, using a standard Chernoff bound, with probability
at least1 − exp(−Ω(n)) over the choice ofB, at leastc

2n
2 different t will satisfy the above inequality.

This means that with probability at least1 − exp(−Ω(n)) − (k + l) exp(−Ω(f2n)) over the choice ofB,

‖B′(σ1)−B′(σ2)‖1 ≥ fc2

12 . Thus, with probability at least1 − exp(−Ω(n)) − (k + l) exp(−Ω(f2n)) −

14



exp
(
−Ω

(√
n

K

))
≥ 1− exp

(
−Ω

(√
n

K

))
−

√
n

K · exp(−Ω(f2n)) over the choice of a random orthonormal

basisB̂ of Cn, ‖B̂(σ1)− B̂(σ2)‖1 > fc2

12 −O(f/K). Sincec is a universal constant, we can choosingK to
be a sufficiently large universal constant thus proving the first part of the lemma.

We now proceed to the proof of the second part of the lemma. Letλ1, . . . , λk be the positive eigenvalues
and−µk+1, . . . ,−µn the non-positive eigenvalues ofσ1 − σ2. By symmetry, we can assume that we are
working in the eigenbasis ofσ1 − σ2, i. e., the eigenbasis ofσ1 − σ2 is the computational basis. Define the
n × n matrix B to be the matrix whose column vectors areb1, . . . , bn. Supposev is a unit vector inCm.
Then,

〈v|
m∑

i=1

bib
†
i |v〉 =

n∑

i=1

|v†bi|2 = ‖v†B‖2 = ‖B†v‖2.

Hence we have

ℓ = ‖
n∑

i=1

bib
†
i‖ = max

v
〈v|

m∑

i=1

bib
†
i |v〉 = ‖B†‖2 = ‖B‖2,

where the maximum is taken over all unit vectorsv ∈ C
n. The second equality follows because

∑n
i=1 bib

†
i

is a positive matrix. By Lemma 3,ℓ = ‖B‖2 ≤ O(n log n) with probability at least1 − exp(−Ω(n log n))
over the choice ofB.

Now,

‖M(σ1)−M(σ2)‖1 =
1

ℓ

n∑

t=1

∣∣∣b†tσ1bt − b†tσ2bt
∣∣∣+ |Tr(σ1ν)− Tr(σ2ν)|

≥ 1

ℓ

n∑

t=1

∣∣∣b†tσ1bt − b†tσ2bt
∣∣∣ = 1

ℓ

n∑

t=1

∣∣∣∣∣∣

k∑

i=1

λi|b†t |i〉|2 −
n∑

j=k+1

µj |b†t |j〉|2
∣∣∣∣∣∣

≥ Ω

(
1

n log n

)
·

n∑

t=1

∣∣∣∣∣∣

k∑

i=1

λi|Bit|2 −
n∑

j=k+1

µj|Bjt|2
∣∣∣∣∣∣
.

By Proposition 1 and a standard Chernoff bound, we see that with probability at least1− exp(−Ω(n)) over
the choice ofB, for at leastc

2n
2 different t,

∣∣∣∣∣∣

k∑

i=1

λi|Bit|2 −
n∑

j=k+1

µj |Bjt|2
∣∣∣∣∣∣
> 2

k∑

i=1

λi +

√√√√2
k∑

i=1

λ2i − 2
n∑

j=k+1

µj ≥ t+ f − t = f.

Thus, with probability at least1 − exp(−Ω(n)) − exp(−Ω(n log n)) ≥ 1 − exp(−Ω(n)) over the choice
of B,

‖M(σ1)−M(σ2)‖1 > Ω

(
1

n log n

)
· c

2f

n
= Ω

(
f

log n

)
,

sincec is a universal constant. Since the POVMM can be refined to a POVM with2n rank one elements,
M can be implemented as an orthonormal measurement inC

n⊗C
2. This completes the proof of the second

part of the lemma.

We are now finally in a position to prove the main theorem of thepaper.
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Theorem 1. Letσ1, σ2 be two density matrices inCn. Definef := ‖σ1 − σ2‖F. Then:

1. LetK > 1 be a sufficiently large quantity. Consider an ancilla spaceC
m initialised to zero, where

m ≥ 4nK2

f2 . Let B̂ be a random orthonormal measurement basis inC
n ⊗ C

m. Let M denote the
POVM onCn got by attaching ancilla|0〉 to a state inCn and applying the orthonormal mea-
surementB̂ in C

n ⊗ C
m. Then with probability at least1 − exp(−Ω(Kn)) over the choice of̂B,

‖M(σ1)−M(σ2)‖1 > Ω(f);

2. LetK ≥ 1 and definem := Kn. Take a setB ofm independent random vectorsB := {b1, . . . , bm}
in C

n ⊗ C
K , where eachbi is got by choosingm independent complex numbers whose real and

imaginary parts are independently chosen according to the GaussianG. Defineℓ := ‖∑m
i=1 bib

†
i‖

and ν := 11Cn⊗CK − 1
ℓ

∑m
i=1 bib

†
i . Let M denote the POVM onCn got by tensoring a zero ancilla

overCK to states inCn and then performing the POVMM in C
n ⊗ C

K consisting of the elements
bib

†
i

ℓ for 1 ≤ i ≤ m, and the elementν. Note thatM can be implemented as an orthonormal
measurement inCn ⊗ C

2K . Then with probability at least1 − exp(−Ω(m)) over the choice ofB,

‖M(σ1)−M(σ2)‖1 > Ω
(

f
logm

)
.

Proof. In order to prove the first part of the theorem, letK be at least as large as the universal constant
in the first part of Lemma 4. Thus, we start out with two densitymatricesσ̄1 := σ1 ⊗ |0〉〈0|, σ̄2 :=
σ2 ⊗ |0〉〈0| in C

n ⊗C
m. Trivially, rank(σ̄1) + rank(σ̄2) = rank(σ1) + rank(σ2) ≤ 2n ≤ √

nm/K. Also,
‖σ̄1 − σ̄2‖F = ‖σ1 − σ2‖F. By the first part of Lemma 4, with probability at least1− exp(−Ω(

√
nm))−√

nm
K · exp(−Ω(nmf2)) ≥ 1 − exp(−Ω(Kn)) over the choice of a random orthonormal basisB̂ of Cn ⊗

C
m, ‖M(σ1)−M(σ2)‖1 = ‖B̂(σ̄1)− B̂(σ̄2)‖1 > Ω(f). This completes the proof of the first part of the

theorem.
A very similar strategy allows us to prove the second part of the theorem using the second part of

Lemma 4.

Remark: The point to note in the second part of the theorem is that the construction of the random POVM
M does not require a priori knowledge of‖σ1 − σ2‖F. This will be useful in the application to the HSP, in
the proof of Theorem 2

Finally, we present an example of a pair of density matricesσ1, σ2 where with high probability a random
POVM cannot achieve a total variation distance much larger than

√
‖σ1 − σ2‖F, unless the dimension

of the ancilla used by the POVM is exponentially larger thanrank(σ1) + rank(σ2). This is essentially
because a sum of independent random variables cannot deviate from its mean by much more than its standard
deviation.

Proposition 3. Letσ1, σ2 be completely mixed states supported on two orthogonalr-dimensional subspaces
of Cn. Note that‖σ1 − σ2‖F =

√
2/r and‖σ1 − σ2‖tr = 2. LetB be a random orthonormal basis inCn.

Then, with probability at least1− n exp(−√
r) over the choice of̂B, ‖B(σ1)− B(σ2)‖1 ≤ O(r−1/4).

Proof. LetB = {|b1〉, . . . , |bn〉}. LetW1,W2 denote the supports ofσ1, σ2 respectively. Then,σi = 1
rΠWi .

Since each|bt〉 is a random unit vector inCn, puttingǫ = Cr−1/4, C a universal constant whose value will
become clear later, in the second part of Lemma 1, we get1−ǫ

n ≤ 〈bt|σi|bt〉 ≤ 1+ǫ
n for i = 1, 2 and all

1 ≤ t ≤ n, with probability at least1− n exp(−√
r) over the choice ofB. Thus,

‖B(σ1)− B(σ2)‖1 =

n∑

t=1

|〈bt|σ1|bt〉 − 〈bt|σ2|bt〉| ≤
n∑

t=1

2ǫ

n
≤ 2ǫ.
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This completes the proof of the proposition.

Now, if we think of Cn asC2r ⊗ C
m, wherem := n

2r , we see that a random POVM inC2r cannot
distinguish betweenσ1, σ2 by much more than

√
‖σ1 − σ2‖F, unlessn is exponentially large compared to

rank(σ1) + rank(σ2).

4 Random measurement bases and the HSP

In this section, we study the implications of Theorem 1 for the hidden subgroup problem.
Theorem 1 is in most cases not immediately useful in obtaining single register algorithms for the HSP.

This is because for two candidate hidden subgroupsH1, H2, ‖σH1 − σH2‖F ≤ ‖σH1‖F + ‖σH2‖F =√
|H1|
|G| +

√
|H2|
|G| . Thus, even though‖σH1 − σH2‖tr ≥ 1 by Proposition 2,‖σH1 − σH2‖F can be exponen-

tially small if |H1|, |H2| are exponentially small compared to|G|. In most examples of interest this is indeed
the case. Fortunately, we can make good use of the fact that the coset states for different subgroups ofG
are simultaneously block diagonal in the Fourier basis ofG. Hence, we investigate the power of random
Fourier sampling in distinguishing between coset states. The advantage of this is that after doing the quan-
tum Fourier transform and measuring an irrep name and a row index, we may be left with a reduced state
on the space of column indices with polynomially bounded rank. If this happens, the average Frobenius
distance between the blocks ofσH1 andσH2 will be polynomially large even though‖σH1 − σH2‖F may be
exponentially small. In fact, for several cases of the HSP studied in the literature, the rank of the reduced
state is in fact either0 or 1 i. e., the hidden subgroup forms a Gel’fand pair with the ambient group.

To make the above reasoning precise, we define a new distance metric between two coset statesσH1,
σH2 . Below, we use the notation of Section 2.3.

Definition 1 (r(H1,H2)). LetG be a group andH1,H2 ≤ G. Define

r(H1,H2) := w(H1,H2) +
1

|G| log |G| ·
∑

ρ∈Ĝ

dρ ‖|H1|ρ(H1)− |H2|ρ(H2)‖F

The importance ofr(H1,H2) follows from the following theorem.

Theorem 2. LetG be a group andH1,H2 ≤ G. LetM denote the POVM corresponding to the following
random Fourier sampling procedure: applyQFTG to the given coset state, measure the name of an irrep
ρ ∈ Ĝ and a row indexi, and then apply a random POVMMρ on the resulting reduced state on the space of

column indices, whereMρ is defined as in the second part of Theorem 1 withKρ :=
⌈
C log2 |G|

dρ

⌉
, whereC

is a sufficiently large universal constant. Then with probability at least1− exp(− log2 |G|) over the choice
ofM, ‖M(σH1)−M(σH2)‖1 ≥ Ω(r(H1,H2)).

Proof. Let σ1, σ2 be two quantum states andp1, p2 ≥ 0. Supposep1 ≥ p2. Then,

‖p1σ1 − p2σ2‖F ≤ ‖p1(σ1 − σ2)‖F + ‖(p1 − p2)σ2‖F ≤ p1‖σ1 − σ2‖F + |p1 − p2|.

Now,

‖p1M(σ1)− p2M(σ2)‖1 = ‖p1(M(σ1)−M(σ2)) + (p1 − p2)M(σ2)‖1 ≥
p1
2
‖M(σ1)−M(σ2)‖1.
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The inequality above follows by considering those outcomesof M that have at least as much proba-
bility for σ1 as forσ2, and the fact that(p1 − p2)M(σ2) is a vector with non-negative entries. Also,
‖p1M(σ1)− p2M(σ2)‖1 ≥ |p1 − p2|. Now suppose‖M(σ1)−M(σ2)‖1 ≥ ‖σ1−σ2‖F

L , whereL ≥ 1.
Then,

‖p1M(σ1)− p2M(σ2)‖1 ≥
|p1 − p2|

2
+
p1
4
‖M(σ1)−M(σ2)‖1

≥ |p1 − p2|
4L

+
p1
4L

‖σ1 − σ2‖F ≥ ‖p1σ1 − p2σ2‖F
4L

.

Now suppose we applyQFTG and measure an irrep nameρ and a row indexi. We apply the above
reasoning to the random POVMMρ with L = log |G|. Using the second part of Theorem 1, we get that
with probability at least1 − exp(− log2 |G|) over the choice ofMρ, ‖Mρ(ρ(H1))−Mρ(ρ(H2))‖1 ≥
Ω
(
‖|H1|ρ(H1)−|H2|ρ(H2)‖F

log |G|

)
. Hence for the random Fourier sampling POVMM, with probability at least

1− exp(− log2 |G|) over the choice ofM,

‖M(σH1)−M(σH2)‖1 ≥ Ω


 1

|G| log |G| ·
∑

ρ∈Ĝ

dρ ‖|H1|ρ(H1)− |H2|ρ(H2)‖F


 .

The theorem now follows because random Fourier sampling always does at least as well as weak Fourier
sampling.

The following corollary is now easy to prove.

Corollary 1. LetG be a group. Suppose for every irrepρ ∈ Ĝ and subgroupH ≤ G, rank(ρ(H)) ≤
(log |G|)O(1). Then the random Fourier method of Theorem 2 gives rise to a single register algorithm
identifying with probability at least3/4 the hidden subgroupH from (log |G|)O(1) copies ofσH .

Proof. Consider two distinct subgroupsH1,H2 ≤ G. Since coset states are block diagonal in the Fourier
basis ofG, using Theorem 2, Proposition 2 and Fact 4 we get

1 ≤ ‖σH1 − σH2‖tr =
∑

ρ∈Ĝ

dρ
|G|‖|H1|ρ(H1)− |H2|ρ(H2)‖tr

≤
∑

ρ∈Ĝ

dρ
|G| ‖|H1|ρ(H1)− |H2|ρ(H2)‖F · (rank(ρ(H1)) + rank(ρ(H2)))

≤ (log |G|)O(1) ·


∑

ρ∈Ĝ

dρ
|G| ‖|H1|ρ(H1)− |H2|ρ(H2)‖F




≤ (log |G|)O(1) · r(H1,H2).

Let M denote the random Fourier sampling POVM of Theorem 2. Then with probability at least1 −
exp(− log2 |G|) over the choice ofM, ‖M(σH1)−M(σH2)‖1 ≥ Ω(r(H1,H2)) ≥ (log |G|)−O(1). Since
a groupG can have at most2log

2 |G| subgroups, by the union bound on probabilities, with probability at least
1− exp(−Ω(log2 |G|)) over the choice ofM, ‖M(σH1)−M(σH2)‖1 ≥ (log |G|)−O(1) for all subgroups
H1,H2 ≤ G. The corollary now follows from Fact 5.
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Finally, we remark that in many important examples of the HSPwhere most of the probability lies on
high dimensional irreps and the blocks corresponding to these irreps have low rank, one can save a factor of
log |G| in the denominator of the definition ofr(H1,H2) and prove Theorem 2 with this improved definition
of r(H1,H2). This improvement follows by using the first part of Lemma 4 instead of the second part of
Theorem 1 in the proof of Theorem 2. Such a saving can be done, for example, for suitable subgroups of
the affine group, Heisenberg group and groupsZ

r
p ⋊ Zp, p prime,r ≥ 2.

5 The general state identification problem

In this section, we study the implications of Theorem 1 to thestate identification problem for a general
ensemble of quantum states. To the best of our knowledge, this problem does not seem to have been studied
before. The following theorem withr = n gives an upper bound on the number of copies required to identify
a given state information-theoretically with high probability for any ensemble.

Theorem 3. Let E = {σ1, . . . , σk} be an a priori known ensemble of quantum states inC
n. Suppose the

minimum trace distance between a pair of states fromE is at leastt. Let r denote the maximum rank of a
state inE . Then, there is a POVMM in C

n such thatM⊗ℓ acting onσ⊗ℓ
i gives enough classical information

to identifyi with probability at least3/4, whereℓ = O
(
r log k
t2

)
.

Proof. Definef := t√
r
. Let M be the random POVM guaranteed by the second part of Theorem 1 with

m := 16nK2 log2 m
f2 . Fix any pair of statesσi, σj, i 6= j from E . Then with probability at least1 −

exp(−Ω(8n logm)) ≥ 1− 1
m2 over the choice ofM,

‖M(σi)−M(σj)‖1 > Ω(‖σi − σj‖F) ≥ Ω

(
‖σi − σj‖tr√
rank(σi − σj)

)
≥ Ω

(
t√
r

)
.

By the union bound on probabilities, there is a POVMM on C
n such that the above inequality holds for

every pair of states fromE . By Fact 5, applyingM⊗ℓ onσ⊗l
i , whereℓ = O

(
r log k
t2

)
gives enough classical

information to identifyi with probability at least3/4.
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