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Abstract

Given a polyhedral terrainT with n vertices, thetwo-watchtowerproblem forT asks to find
two vertical segments, calledwatchtowers, of smallest common height, whose bottom endpoints
(bases) lie onT , and whose top endpointsguardT , in the sense that each point onT is visible
from at least one of them. There are three versions of the problem,discrete, semi-discrete, and
continuous, depending on whether two, one, or none of the two bases are restricted to be among
the vertices ofT , respectively.

In this paper we present the following results for the two-watchtower problem inR2 andR
3:

(1) We show that thediscretetwo-watchtowers problem inR2 can be solved inO(n2 log4 n)
time, significantly improving previous solutions. The algorithm works, without increasing its
asymptotic running time, for the semi-continuous version,where one of the towers is allowed to
be placed anywhere onT . (2) We show that thecontinuoustwo-watchtower problem inR2 can
be solved inO(n3α(n) log3 n) time, again significantly improving previous results. (3) Still
in R

2, we show that the continuous version of the problem of guarding a finite setP ⊂ T of
m points by two watchtowers of smallest common height can be solved inO(mn log4 n) time.
(4) We show that the discrete version of the two-watchtower problem inR

3 can be solved in
O(n11/3 polylog(n)) time; this is the first nontrivial result for this problem inR3.
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1 Introduction

A polyhedral terrain inRd is the graph of a continuous, piecewise-linear(d − 1)-variate function.
Thus, a terrain inR2 is anx-monotone polygonal chain, while a terrain inR

3 is anxy-monotone
polyhedral surface. Awatchtoweris a vertical line segment whose bottom endpoint (base) lies on
T . A point w ∈ T is seen(or guarded) by a watchtowerτ if the top endpoint ofτ seesw, that is,
the segment connecting it tow lies fully aboveT . Two watchtowers placed onT are said to guard
T if each point onT is visible from the top endpoint of at least one of the towers.

In this paper we study thetwo-watchtowerproblem for polyhedral terrains inR2 andR
3, which

is defined as follows. Given a polyhedral terrainT with n edges, find the smallest heighth > 0
for which there exist two pointsu, v ∈ T such that the watchtowers of heighth erected atu andv
guardT .

Two versions of the problem have been studied in the literature. In thediscreteversion, the
basesu andv are restricted to be among the vertices ofT (or, for that matter, could belong to any
prespecified finite point set). In thecontinuousversion,u andv can be located anywhere onT .
In this paper we study these two versions and also address a new version, calledsemi-discrete, in
which the base of one tower is restricted to be among the vertices onT while the base of the other
tower can be anywhere onT (see Figure 1). We further introduce a variant of the problem when
not all of T needs to be guarded. Instead, we specify a finite setP of m “critical” points on T ,
and the goal is to find two watchtowers of minimum common height that together guard P (i.e.,
every point ofP is visible from at least one of the towers). Again, we may consider the discrete,
semi-continuous, or the continuous versions of this problem.

(i) (ii) (iii)

Figure 1. The three versions of the problem inR
2: (i) discrete, (ii) semi-discrete, and (iii) continuous.

Of course, similar problems can be stated for any number of watchtowers, and one can also
consider variants, such as the one where the heighth of the watchtowers is specified, and one
wishes to find thesmallestnumber of watchtowers of that height that collectively guardT .

Related work. Guarding a terrain by watchtowers is a special case of the general classof visibility
problems in two and three dimensions, known asart gallery problems, which have been extensively
studied for more than two decades. These problems have numerous applications in surveillance,
navigation, computer vision, modelling and graphics, GIS, and many more. See[23] for a recent
survey of art gallery problems.
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The problem of guarding a terrain inR2 by two watchtowers has been studied in several recent
papers. Bespamyatnikhet al. [4] show that for the discrete case inR

2 deciding whether there exist
two watchtowers of given heighth that guardT can be done inO(n3) time. Using parametric search
[18], they obtain anO(n3 log2 n)-time algorithm for the optimization problem. They also present an
O(n4)-time solution that avoids parametric search. Ben-Mosheet al. [2] also address the discrete
version of the problem inR2 and give anO(n2.688 log2 n)-time algorithm, based on parametric
search and on the computation of all dominances for a set ofn points inR

n. The continuous case
for R

2 is solved in [4] by an algorithm that takesO(n4 log2 n) time, using parametric search.

Much less is known about terrain guarding inR
3. Early work on terrain guarding, due to Cole

and Sharir [10], shows that the problem of finding the minimum number of guards is NP-complete,
even if the guards are placed on the terrain (no elevation is allowed). However, the case of a single
watchtower guarding the terrain has been shown by Sharir [21] to be solvable inO(n log2 n) time.
An O(n log n)-time algorithm for this problem was later obtained by Zhu [24].

Attention has also been given to the problem of guarding a two-dimensional terrain with the
minimum number of guards placed on the terrain. If the guards are at some fixed height, the min-
imum number of guards can be found in polynomial time [19]. Recently, Ben-Moshe, Katz, and
Mitchell [3], and, independently, Clarkson and Varadarajan [8], discovered constant-factor approxi-
mation algorithms for the problem. Eidenbenz et al. [12] show that the related problem of guarding
a simple polygon with a minimum number of guards is APX-hard. So for the problem of guarding
polygons there is anε such that it is NP-hard to obtain a(1 + ε)-approximation for the minimum
number of guards.

Our results. we study the problem of guarding a terrain by two watchtowers inR
2 andR

3. For
the planar case we obtain the following results.

(i) We show that the discrete two-watchtower problem can be solved inO(n2 log4 n) time, sig-
nificantly improving the previous solutions cited earlier. The algorithm works,without af-
fecting its asymptotic running time, for the semi-continuous version as well, in which one of
the bases can be anywhere onT and the other has to be placed at a vertex ofT .

(ii) We show that the continuous two-watchtower problem can be solved inO(n3α(n) log3 n)
time, again significantly improving previous results.

(iii) We show that the continuous version of the problem of guarding a finite set P ⊂ T of m
points by two watchtowers can be solved inO(mn log4 n) time.

We also study the problem of guarding a terrain by two watchtowers inR
3, and present an

O(n11/3 polylog(n)) time algorithm for the discrete two-watchtower problem. This is the first
nontrivial algorithm for the problem: A trivial solution for the discrete problem takes aboutO(n4)
time.

All the results derived in this paper are based on the parametric-searching technique [18]. For
each result, we first design adecision procedurethat, givenT and a real valueh > 0, determines
whetherT can be guarded by two watchtowers of height at mosth. Next, we apply the parametric

2



searching technique to the decision procedure, to obtain an algorithm that finds where to place two
watchtowers of smallest possible height.

The parametric searching step involves developing a parallel algorithm forthe decision problem
and simulating it generically at the unknown value of the smallest height. While themain contri-
butions of the paper lie in developing the decision procedures, their generic implementations for
parametric searching are also nontrivial and we describe them too in detail.(We note that previous
results on the problem do not detail the parametric searching steps.)

Section 2 describes the algorithms for the discrete and semicontinuous two-watchtower prob-
lems inR

2. Section 3 describes the algorithm for the continuous two-watchtower problem in R
2.

Section 4 discusses the continuous version in which only a given set of points onT need to be
guarded. Section 5 describes the algorithm for the discrete two-watchtower problem inR

3. We
conclude the paper in Section 6 with a brief discussion and some open problems.

2 The Discrete and Semi-Continuous Problems in R
2

Let T be anx-monotone polygonal chain inR2, with n edges, and letV be the set of its vertices.
For a pointu ∈ T andh > 0, let u(h) be the point that is vertically aboveu at distanceh. We
call the vertical segmentuu(h) the watchtowerwith baseu and heighth, but we often refer to the
watchtower just by its top endpointu(h), for short.

Thediscrete two-watchtowerproblem asks for the smallest heighth > 0 such that there exist
two verticesu, v ∈ V , so that the two pointsu(h) andv(h) (the topsof the towers at heighth
erected atu andv, respectively), guardT . Thesemi-continuous two-watchtowersproblem is the
same, except that only one ofu, v is required to be a vertex ofT , and the second one can lie
anywhere onT . We present algorithms that solve these two problems in timeO(n2 log4 n). Both
algorithms employ parametric searching [18], and therefore rely on adecision procedure, to guide
the search for the optimum height.

Let T be a polygonal terrain in the plane withn edges, and leth > 0 be a fixed parameter. To
solve the decision problem we need to determine whether there exist two pointsu, v ∈ T , with both
u, v ∈ V (discrete case) or at least one ofu, v a vertex ofT (semi-continuous case), such that the
top endpointsu(h), v(h) of the watchtowers of heighth at u, v guardT . We present a procedure
that does much more than that: Given one toweru(h), it finds theshortestsecond tower that can be
placedanywhereon the terrain, so that both towers guardT . This serves as a decision procedure
for both the discrete and the semi-continuous versions of the problem. We begin by describing a
procedure that is a main step in the decision procedure. Next, we describethe decision procedure,
and then discuss how to plug the parametric searching.

2.1 Computing visibility pairs

Let P be a set of points onT , and letV be the set of vertices ofT . We want to find, for each vertex
v ∈ V , a pointp ∈ P (if one exists), that satisfies the following conditions:

(i) p lies to the left ofv;
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(ii) p seesv; and

(iii) p is the rightmost point inP that satisfies (i) and (ii). Alternatively, among the points ofP
that satisfy (i) and (ii), the segmentpv has the largest slope (it is easily verified that these
alternative formulations are equivalent).

Figure 2. Some pairs ofΠ(P, V ).

Denote byΠ(P, V ) the set of these pairs. See Figure 2. We assume that|P | = O(n), which
will be the case in our application. We solve this problem using the following divide-and-conquer
technique. Consider the setP ∪V and letℓ be the vertical line that splits it into two subsets of equal
size. LetPL, VL (resp.,PR, VR) denote the subsets ofP andV that lie to the left (resp., right) ofℓ.
We clearly have

Π(P, V ) = Π(PL, VL) ∪ Π(PR, VR) ∪ Π(PL, V ′
R),

whereV ′
R is the subset of all pointsv ∈ VR for which there is no pointp ∈ PR that forms with

v a pair inΠ(PR, VR). Let n′ denote the size ofV ′
R. We computeΠ(PL, VL) andΠ(PR, VR)

recursively, extract the subsetV ′
R, and computeΠ(PL, V ′

R) in the following direct way.

Without loss of generality, assume thatℓ is they-axis. We pass to the dual plane, using a duality
transform that maps a point(m, p) to the liney = mx + p. For eachp ∈ PL, let γp denote the dual
representation of the locus of all linesλ that pass throughp, such thatp sees the interceptλ ∩ ℓ. In
the dual plane,γp is a rightward directed ray, contained in the line dual top and emanating from the
pointwp that represents the shallowest line throughp with the above property. Note that the raysγp

are pairwise openly disjoint, because an intersection point of two such rays γp, γp′ is dual to a line
that passes throughp andp′, so that both points see the intercept. Since both points lie onT , this is
impossible (except at an endpoint of one of the rays, namely, the ray corresponding to the leftmost
point amongp, p′).

In complete analogy, for each pointq ∈ V ′
R, let δq denote the dual representation of the locus

of all linesλ that pass throughq, such thatq sees the interceptλ ∩ ℓ (hereq sees the intercept to its
left). In the dual plane,δq is a leftward directed ray, emanating from the pointzq that represents the
shallowest line throughq with the above property. Here too the raysδq are pairwise openly disjoint.
See Figure 3(i).

Let q ∈ V ′
R, and letp ∈ PL be the point that satisfies(p, q) ∈ Π(PL, V ′

R) (assuming that such
a point exists). The point dual to the line that passes throughp andq is a point that lies on both
raysγp, δq, and is therightmostpoint of intersection ofδq with some rayγp (it corresponds to the
line of largest slope in condition (iii)). LetQ denote the unbounded (and degenerate) ‘comb-like’
simple polygon, whose boundary consists of all the raysγp, and of a vertical lineℓ0 at x = +∞.
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δq

Q

δq

zq

(i) (ii)

Figure 3. (i) The raysγp and a query rayδq. (ii) The polygonQ.

(In practice, we placeℓ0 at a sufficiently largex-coordinate, and trim the raysγp at their intercepts
with ℓ0; see Figure 3(ii).) Then the pointp ∈ PL that forms withq a pair inΠ(PL, V ′

R) is simply
the output of a ray-shooting query insideQ alongδq.

We first constructQ. For this, we need to compute the (apices of the) raysγp, for p ∈ PL. Let
TL (resp.,TR) denote the region consisting of all points that lie aboveT and to the left (resp., right)
of ℓ. Let bℓ denote the intersection pointT ∩ ℓ. We construct the shortest-path map insideTL with
bℓ as a source, as in [13]. This allows us to find, in linear time, the terminal segments of all the
shortest paths frombℓ to the points ofPL. For eachp ∈ PL, the apex ofγp is then the dual of the
line containing the respective terminal segmentpa; see Figure 4. The total cost of this step is linear.

ℓ TR

TL

p

a

bℓ

Figure 4. Constructing the raysγp from the shortest-path map frombℓ.

To complete the construction ofQ, we need to sort the raysγp by their intercepts withℓ0.
However, this order is equal to the order of the slopes of these rays, which in turn is the same as the
order of the abscissas of the points ofPL, and this order can be computed prior to the beginning of
the divide-and-conquer process (the compuation of the order of abscissas overP requiresO(n log n)
time). Hence, this substep also takes linear time.

Using the algorithm of Guibaset al. [13] (see also [5]), we next preprocessQ in linear time for
ray shooting queries that take logarithmic time each. We then construct the (apices of the) raysδq,
for q ∈ V ′

R. This is done, in a symmetric manner to the construction of the raysγp, using the region
TR instead ofTL. This step also runs in linear time. We then perform ray shooting queries inQ
with the raysδq, for q ∈ V ′

R, thereby obtaining the setΠ(PL, V ′
R). Hence, the overall cost of the

‘merge’ step of the recursion isO(n log n) time, so the entire procedure takesO(n log2 n) time.
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In summary, we have an algorithm that computes the setΠ(P, V ) in O(n log2 n) time.

2.2 The decision procedure

Let H be the region of the plane that lies aboveT . In the decision procedure, we fix a vertexu of T ,
erect the first tower, of heighth, overu, and compute thevisibility polygonW (u(h)), which is the
portion ofH that is visible fromu(h). The polygonW (u(h)) can be computed in linear time [13].
Let ∂W (u(h)) denote the boundary ofW (u(h)). The portion of∂W (u(h)) that lies onT consists
of subsegments of the edges ofT , at most one subsegment for each edge, which are delimited either
by the vertices ofT , or by intercepts of visibility rays that emanate fromu(h) and pass through
some vertex ofT . In either case, at least one endpoint of each visibility segment is a vertexof T .
See Figure 5.

Let P = P (u, h) denote the set of all the endpoints of the portions of the edges ofT that are not
visible fromu(h). Clearly,u(h) and another tower topv(h′) (with a possibly different heighth′)
guardT if and only if v(h′) sees all the points ofP . This follows from the easy observation that if
a pointv(h′) aboveT sees both endpoints of a subsegment of some edge ofT then it sees the entire
subsegment.

The following lemma provides the crucial geometric property on which our algorithm relies.

Lemma 2.1. For a pointv on T and heighth′, the tower topv(h′) sees all the points ofP that lie
to the left ofv if and only ifv(h′) lies above all the linespw such that(p, w) ∈ Π(P, V ) andw lies
to the left of (or coincides with)v.

Equivalently,v(h′) sees all the points ofP that lie to the left ofv if and only if, for eachp ∈ P to
the left ofv, v(h′) lies above the steepest linepw such that(p, w) ∈ Π(P, V ) andw lies to the left
of (or coincides with)v.

u

u(h)

Figure 5. The visible portions ofT from u(h), and the setP (u, h) (highlighted alongT ).

Proof: If v(h′) sees all the points ofP that lie to the left ofv then it must lie above all the linespw
as in the first statement of the lemma, or else the corresponding pointp would not be visible from
v(h′). Conversely, suppose thatv(h′) lies above all these lines, and letp be a point inP to the left
of v. If v(h′) does not seep then the shortest path fromp to v(h′) that lies aboveT must bend at
some vertices ofT . Let w be the leftmost such vertex. If(p, w) ∈ Π(P, V ), then(p, w) satisfies
the conditions in the lemma, andv(h′) passes below the linepw, contrary to our assumption. If
(p, w) /∈ Π(P, V ) then there must exist another pointp′ ∈ P that lies betweenp andw so that
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(p′, w) ∈ Π(P, V ). The linep′w is even steeper thanpw, andv(h′) thus lies below it, again a
contradiction. The second statement of the lemma is obvious.¤

Lemma 2.1 has a symmetric version, which handles visibility from a tower topv(h′) to the
points ofP to its right. For this version we need a symmetric version ofΠ(P, V ), involving pairs
(p, v) ∈ P × V with p lying to the right ofv, which is defined and constructed in a fully symmetric
manner.

After computing the left and right visibility ofv(h′), for eachv ∈ V , we sweep the plane with
a vertical lineℓ from left to right, starting with the leftmost vertex ofT , and construct aheight
functionhL, so that, for eachq ∈ T , hL(q) is the height of the shortest tower erected overq that
sees all the points ofP to its left. Equivalently, in view of Lemma 2.1,hL(q) is the distance fromq
to theupper envelopeE of the linespw, for all the pairs(p, w) ∈ Π(P, V ) with w lying to the left
of (or coinciding with)q.

As we sweepℓ, hL(q) remains a linear function, equal to the vertical distance between an edge
of E and an edge ofT , until ℓ reaches a vertex of eitherE or T . If it reaches a vertex ofE, we pass
to another edge ofE, and the corresponding update ofhL is easy and obvious. Ifℓ reaches a vertex
v of T , in addition to the obvious local update ofhL, we need to dynamically updateE, by adding
the linepv, for the unique pair(p, v) ∈ Π(P, V ), to the set of lines that formE, or do nothing if
such a pair does not exist. This has the effect of either leavingE unchanged or, sinceE is convex,
creating two new vertices ofE and deleting the old vertices between them, and can easily be done
in overall timeO(log n). After each update is performed, we also need to find the next vertex of
E to the right of the current position ofℓ, which can be done inO(1) time per update. Hence, the
construction ofhL can be done inO(n log n) time (after the preprocessing stage of constructing
Π(P, V ), which takesO(n log2 n) time). Note that this algorithmic analysis also implies that the
combinatorial complexity (number of vertices of the graph) of the functionhL is O(n).

We then apply a symmetric process, in which we sweep the plane from right to left, starting with
the rightmost vertex ofT , and construct the symmetrically defined height functionhR. We then
construct the upper envelopeh∗ of hL andhR, in timeO(n), using a standard merging procedure.
The global minimum ofh∗ is the shortest height of a second tower, erected anywhere onT , that
sees, together withu(h), the entire terrain.

Since we need to repeat this step for each vertexu of T , the entire decision procedure runs in
O(n2 log2 n) time. In summary, we thus have:

Lemma 2.2. (a) Given a terrainT in the plane withn edges, a vertexu of T , and a heighth ≥ 0,
one can find, inO(n log2 n) time, the shortest second tower, erected anywhere onT , that sees,
together withu(h), the entire terrain.

(b) Given a terrainT in the plane withn edges, and a heighth ≥ 0, one can determine, in
O(n2 log2 n) time, whetherh is smaller than, equal to, or greater than the optimum height for
the discrete or the semi-continuous two-towers problem forT .

Remark: An obvious open problem is to improve the efficiency of the construction of the set
Π(P, V ). Can it be done inO(n log n) time? This is the bottleneck step in the decision procedure,
and the above improvement, if possible, would have reduced the total running time toO(n2 log n).
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2.3 Plugging the parametric search

In this section we show how to find the optimum height in the discrete and semi-continuous cases by
applying the parametric searching technique [18]. That is, we run a generic version of the decision
procedure, in whichh is left as an unknown parameter. Comparisons that depend onh are resolved
by finding the few critical values ofh at which the answer to the comparison may change, and by
running (a concrete version of) the decision procedure at these critical heights, thereby finding the
noncritical range that contains the optimum heighth∗ and is delimited by two consecutive critical
heights. This determines the outcome of the comparison, and at the same time narrows down the
rangeI that is known to containh∗. We proceed in this manner through the execution of the
generic decision procedure. Ifh∗ is found during one of these comparison resolutions, we stop
and report it. Otherwise, upon termination, we output the smaller endpoint ofthe final interval
I. Since the functionf(h) corresponding to the portion ofT visible from two towers of height
h is a monotonically increasing function, the overall problem can be casted asa monotonic root
finding problem, for which the parametric searching procedure is guaranteed to produce the optimal
solutionh∗.

To reduce the cost of the generic execution, we need to run a parallel version of it. More
precisely, the only steps in the algorithm that need be parallelized are comparisons that depend onh.
All such comparisons that arise in a single parallel step of the algorithm are resolved simultaneously,
by running a binary search on all the resulting critical heights. If the algorithm runs inTπ parallel
steps and usesp processors, then its overall cost isO(Tπ(p + D log p)), whereD = O(n2 log2 n)
is the cost of the decision procedure.

We describe two such generic parallel implementations of the decision procedure, one for
the discrete problem and one for the semi-continuous problem. Both implementations require
O(log n) parallel steps. The first algorithm requiresO(n2 log n) processors, and the second re-
quiresO(n2 log3 n) processors. Hence, both result in algorithms withO(n2 log4 n) running time.

We begin by preprocessingT as follows. For each vertexu of T , we compute the visibility map
from the vertical halfline aboveu, with an endpoint atu, using the algorithm of [13]. This takes
overall timeO(n2), since computing the visibility map from the vertical halfline aboveu takesO(n)
time. For eachu, the output contains all mutually visible pairs(v, v′) of vertices, such that some
point aboveu sees bothv andv′ along the linevv′ (note thatv andv′ are on the same side ofu). In
addition, we also have the first point along that line, as we trace it from the point aboveu towardsv
andv′, where it crossesT into the region belowT (which may happen at the farthest vertex among
v andv′ or at another further point ofT ). As shown in [13], the number of such critical events is
linear for eachu. We thus obtainO(n) critical heights overu, one for each of these visibility events
(see Figure 6). Repeating this step for each vertexu, we obtain a setH0 of a total ofO(n2) critical
heights, and a corresponding setI of intercepts along the edges ofT , where the above visibility rays
vv′ ‘enter’ the region belowT .

We run a standard binary search throughH0, using the decision procedure described above.
After O(log n) calls to that procedure, with overall costO(n2 log3 n), we obtain an initial interval
I0 that contains the optimum heighth∗. For eachu ∈ V and for eachh ∈ I0, the visibility polygon
W (u(h)) has a fixed combinatorial structure. In particular, for each visible portionof an edgee
of T , the nature of its endpoints is fixed, in the sense that each of them is either a fixed vertex of
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u

u(h)

Figure 6. The critical heights overu.

T , or the intercept alonge of a visibility ray that emanates fromu(h) and passes through a fixed
vertex ofT before hittinge. LetP (u, h) denote the set of those endpoints of the visibility segments
of W (u(h)) that are not vertices ofT , and setP (h) to be the union of these sets, over all vertices
u. Clearly,P (h) has sizeO(n2). The parameterh reminds us that these are parametric points that
depend onh.

Our next step is to locate the points ofP (h) among the points ofI. We run the following process
iteratively. At each stage we have a partitionS of the edges ofT into subsegments, each delimited
by points ofI ∪ V , an intervalIS ⊆ I0, and a corresponding partition ofP (h) into subsets, each
known to be contained in a fixed segments of S, for all h ∈ IS . Initially, S is the set of edges
of T , IS := I0, and the setsPs(h) := P (h) ∩ s, for s an edge ofT , form the desired partition of
P (h). (Recall that, forh ∈ I0, the points ofPs(h) move continuously alongs, and no point enters
or leaves this set.) Each iterative step refinesS as follows.

For each segments ∈ S, setIs := I ∩ int(s). Segmentss ∈ S with Is = ∅ are removed from
S, and we report the corresponding setsPs(h) as part of the output of this stage. For any remaining
segments, let qs denote the median point ofIs. For eachp ∈ Ps(h), let hp be the (unique) height
at whichp coincides withqs. If there is no such height, or ifhp lies outside the rangeIS , then we
know which half ofs containsp, and we ignorep in the remainder of the present step. Repeating
this over all segmentss ∈ S, we obtain a setHS of O(n2) critical heights, and we run a binary
search through them, as above, to obtain a subintervalI ′ ⊆ IS , so that for eachh ∈ I ′, s ∈ S, and
p ∈ Ps(h), we know which half ofs containsp. The next partitionS′ is then obtained by splitting
each surviving segments ∈ S at the median pointq. We setIS′ := I ′, and get the new partition of
P (h) by assigning each pointp to the new half-segment it belongs to. After at mostO(log n) steps,
all segments ofS are removed, and each pointp ∈ P (h), for anyh in the final rangeIS , is located
between two successive points ofI ∪ V , as required. The overall cost of this step isO(n2 log4 n).

Let I1 denote the final rangeIS . For eachh ∈ I1 and for eachu ∈ V , the setΠ(P (u, h), V )
is now fixed, as is easily seen. This follows from the observation that wheneverΠ(P (u, h), V )
changes, some point inP (h) must coincide with a point inI ∪ V . This allows us to run the left-to-
right sweeping procedure, for each fixedu ∈ V , without having to fix the value ofh, and obtain, for
each swept vertexv, the setLv of all theactivelinespw, for (p, w) ∈ Π(P (u, h), V ), namely, the
lines corresponding to those pairs(p, w) with w lying to the left ofv. In the discrete problem, we
need to find which of these lines attain the maximum height atv, and assert that this maximum height
is no more thanh∗; see below for more details. Handling the semi-continuous case is somewhat
more involved, and will be discussed later.

To parallelize this step, we store the vertices ofT at the leaves of a minimum-height binary tree

9



τ . Each internal nodeξ of τ represents the setV (ξ) of all vertices stored at the leaves of the subtree
τ(ξ) rooted atξ. Let L(ξ) denote the set of all the linespw, for (p, w) ∈ Π(P, V ), andw ∈ V (ξ),
and letE(ξ) denote the upper envelope of the lines inL(ξ). Note thatE(ξ) is an envelope of|L(ξ)|
lines, so its complexity isO(|L(ξ)|). We have

∑

ξ∈τ |L(ξ)| = O(n log n). Hence, the overall
complexity of all the envelopesE(ξ) is O(n log n), for a fixed first tower baseu. We construct each
of the envelopesE(ξ) as follows. We dualize the respective linespw to points in the dual plane,
and run the parallel algorithm of [1] for constructing the upper convex hull of these (parametric)
points. For a set ofm points, this algorithm usesO(m) processors and runs inO(log m) time. Each
generic comparison that the algorithm performs is either between thex-coordinates of two dual
points (that is, between the slopes of two input lines), or a left-turn test involving three dual points.
Clearly, all the envelopesE(ξ), over all the nodesξ of τ and over all the first tower basesu in V ,
can be constructed in parallel, using a total ofO(n2 log n) processors andO(log n) parallel steps.
This yields an overall parametric searching stage that runs in timeO(n2 log4 n), as follows from the
general time bound for parametric searching given above. Note that the output envelopes are still
parametric and vary withh. However, their combinatorial structure is fixed (within the restricted
subrange ofh computed so far): For each envelope we know the sequence of lines (or, rather, pairs
(p, w) defining those lines) that attain the envelope from left to right, and thus also know the nature
of each breakpoint of the envelope.

We next apply another parallel stage, in which we locate, for each envelopeE(ξ) and each of its
breakpointsq, the edge ofT that lies vertically above or belowq. We process these breakpoints in
parallel, and for each breakpointq we run a binary search with its (parametric)x-coordinate among
thex-coordinates of the vertices ofT . This stage usesO(n2 log n) processors and runs inO(log n)
parallel steps, so its overall cost is alsoO(n2 log4 n).

This initial part of the algorithm applies to both the discrete and the semi-continuous cases.

Proceeding with the discrete case is now easy: Keeping the first tower baseu fixed, we process
all the verticesv of T in parallel. For each vertexv, we obtain the set of vertices that lie to the
left of v as the (disjoint) union ofO(log n) subtrees ofτ . For each of these treesτ(ξ), we locate
v among the vertices ofE(ξ), using binary search. Since we have already located the vertices
of eachE(ξ) among the vertices ofT in their left-to-right order, these binary searches can be
performed explicitly, without having to use generic parametric searching. Hence this step can be
performed in overallO(n2 log2 n) time. We now have, for each pairu, v, a set ofO(log n) lines,
each attaining a respective subenvelopeE(ξ) atv, and we compute their maximum height atv. This
is still a parametric step, which can be easily performed in parallel, usingO(n2 log n) processors
andO(log n) parallel depth, so that its overall cost is, as above,O(n2 log4 n). To end the algorithm,
we output a pairu, v ∈ V for which the height computed atv, as described above, is no more
thanh. This step is also parametric, and can be performed within the time bound for thepreceding
step. It narrows down the range ofh to its final value, and we terminate by returning the minimum
of this interval (unless the optimum heighth∗ has already been detected in one of the comparison
resolution steps). Hence we obtain:

Theorem 2.3. The discrete two-watchtower problem for a terrain inR
2 with n edges can be solved

in O(n2 log4 n) time.

We next handle the semi-continuous case. We proceed through the preceding stages, up to the
point where all the envelopesE(ξ) have been constructed, and their vertices have been located over
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the edges ofT . We then proceed as follows. Consider a fixed first tower baseu. For each edge
e = v′v of T , take its right endpointv and obtain, as above, the set of vertices that lie to the left ofv
as the (disjoint) union ofO(log n) subtrees ofτ . We need to find the shortest vertical distance from
e to the upper envelope of theO(log n) envelopesE(ξ), over the corresponding subtreesτ(ξ). See
Figure 7.

q

e

q

e

E(ξ′)
E(ξ)

(ii)(i)

E(ξ)

(iii)

Figure 7. (i) The shortest vertical distance from an edge ofT to the corresponding upper envelope. (ii) The shortest
vertical distance frome to the envelope is attained at a vertex of a single subenvelope. (iii) The shortest distance is
attained at an intersection point between two subenvelopes.

Note that the shortest vertical distance is attained (i) either at an endpoint of e, (ii) at a vertex
q of one of the envelopesE(ξ), or (iii) at a pointq of intersection between two envelopesE(ξ),
E(ξ′). In case (ii), the edge ofE(ξ) incident toq and lying to its left (resp., right) must have slope
smaller than (resp., larger than) that ofe. In case (iii),q is incident to an edge ofE(ξ) and to an
edge ofE(ξ′), so that the slope ofe lies in between the slopes of these two edges. See Figure 7 (iii).

Consider such a shortest vertical distance of type (iii). Both subenvelopesE(ξ), E(ξ′) corre-
spond to subtreesτ(ξ), τ(ξ′) that are left children of nodes along the path inτ from the leaf storing
v to the root. Without loss of generality, suppose thatξ is deeper in the tree thanξ′. Then ifτ(ξ) is
part of the output for a vertexv of T , τ(ξ′) must also be part of that output. We will refer to this case
by saying thatξ′ is a left great uncleof ξ. In other words, we have argued that, independent ofv, a
subenvelopeE(ξ) can form intersection points of type (iii) with onlyO(log n) other subenvelopes
E(ξ′) for which ξ′ is higher inτ , and all these nodesτ ′ are left great uncles ofξ. See Figure 8.

ξ1

ξ2

ξ3

v v′

τ

Figure 8. The treeτ . If a subtreeτ(ξ1) is part of the output for a vertexv, all subtrees that are left children of nodes on
the path fromξ1 to the root are also part of that output.

We therefore proceed as follows. We only fix the first tower baseu, and obtain the corresponding
setP = P (u, h) and treeτ . We fix a pair(ξ, ξ′) of nodes ofτ such thatξ′ is a left great uncle of
ξ. We construct an implicit representation of the upper envelope ofE(ξ) ∪ E(ξ′), by merging the
vertices and edges ofE(ξ) into E(ξ′), as follows. For each vertexq of E(ξ), locate it among the
vertices ofE(ξ′), with respect to thex-coordinate, using binary search (which is parametric). Next,
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for each edgee of E(ξ), find its intersections, if any, withE(ξ′); sinceE(ξ′) is a convex polygonal
chain,e can meet it in at most two points, and they can be found using (parametric) binary search.
We assign a processor to each vertex and edge ofE(ξ) for each such pair(ξ, ξ′). Since the overall
size of all the envelopesE(ξ) is O(n log n), and each has onlyO(log n) left great uncles, we need
a total ofO(n log2 n) processors, andO(log n) parallel steps. We run this procedure for all first
tower basesu in parallel, and thus useO(n2 log2 n) processors andO(log n) parallel steps, so the
overall cost of this parametric searching step is, as above,O(n2 log4 n).

We next construct the setB of all breakpoints of the individual envelopesE(ξ), of the break-
points of envelopes of pairs of envelopesE(ξ), E(ξ′), and of the vertices ofT , over all the first
tower basesu. The preceding analysis implies that the size ofB is O(n2 log2 n). Using the same
parametric binary search as in a previous stage, we locate the new breakpoints (of envelopes of pairs
of envelopes) among the vertices ofT . This step too takesO(n2 log4 n) time.

For each fixed first tower baseu, we next process each edgee of T . We query inT with the right
vertexv of e and obtain the setL(v) of linespw, as defined above, as the union ofO(log n) disjoint
subtrees ofτ . Let B(v) denote the subset ofB consisting of the two endpoints ofe, and of all the
breakpoints of subenvelopes and of pairs of subenvelopes that correspond to the aboveO(log n)
subtrees, with the additional requirement that they lie above or belowe. Except for vertices ofT ,
the setsB(v) are pairwise disjoint, and their overall size is at most twice the size ofB. All the sets
B(v), over all tower basesu, can be retrieved inO(|B|) = O(n2 log2 n) time (note that this step is
no longer parametric).

With u andv fixed, we now assign a processor to each pair of a pointq ∈ B(v) and a suben-
velopeE(ξ′′) in the output ofv. The overall number of processors isO(n2 log3 n). The processor
assigned toq andE(ξ′′) has to determine whetherq lies belowE(ξ′′), which it can do using (para-
metric) binary search over the vertices ofE(ξ′′). Hence, withO(n2 log3 n) processors andO(log n)
parallel depth, we can collect all pointsq ∈ B that are not hidden from above by another subenve-
lope. It is easily verified that, for each fixedu andv, among the points that pass these tests, exactly
one pointq has the property that the slope ofe lies between the slopes of the two envelope edges in-
cident toq. This surviving point yields the desired shortest vertical distance frome to the envelope.
We find this point by testing the slope condition at each of the surviving points.

To end the algorithm, we need to test (parametrically) that among the survivingpoints there
exists one for which the corresponding vertical distance is no more thanh. This step narrows down
the range ofh to its final value, and we terminate by returning the minimum of this interval.

The overall running time of this algorithm isO(n2 log4 n), which leads to the following result.

Theorem 2.4. The semi-continuous two-towers problem, for a terrain inR
2 with n edges, can be

solved inO(n2 log4 n) time.

3 The Continuous Two-Tower Problem

In this section we consider the continuous version of the problem, where thetwo towers can be
erected anywhere on the terrain. We first describe the decision procedure, in which we are given
heighth, and wish to determine whether there exist two towers of heighth that together see the

12



entire terrain. We give the full algorithm, including the parametric searching part, in Section 3.2.

P ′

e1(h)

f

e1

Figure 9. Creating a simple polygonP ′ from T ande1(h).

3.1 The decision procedure

Let e1, e2 be two fixed distinct edges ofT , and consider the subproblem of determining whether
there exist pointsp ∈ e1, q ∈ e2 such that the two tower topsp(h), q(h) see together the entireT .
We parametrize the locations ofp andq by their respectivex-coordinatess andt.

Let e1(h) denote the segment obtained by translatinge1 upwards by distanceh. Compute the
visibility structureof T from e1(h). To do this efficiently, sincee1(h) is not an edge ofT , we
form from e1(h) andT a simple polygonP ′ in two steps. We first trim the halfplane aboveT to
a bounded region, using two vertical segments and one horizontal segment, placed sufficiently far.
Next we ‘hook’ e1(h) to the ceiling of the new region by a vertical segmentf that connects an
endpoint ofe1(h) to the ceiling. This yields the desired simple polygonP ′, in whichf ande1(h)
are regarded as double edges. See Figure 9.

Applying the algorithm of [6] (see also [13]) toP ′, we obtain, inO(n log n) time, the visibility
structure ofP ′ from e1(h), as explained below. This is not quite what we want, though, becausef
may block some visibility rays that emanate frome1(h) and otherwise reachT . We can overcome
this problem by creating a second simple polygonP ′′, by hooking the other endpoint ofe1(h) to
the ceiling, and by computing the visibility structure frome1(h) in P ′′. Merging the two resulting
visibility structures, we obtain the visibility ofT from e1(h). More specifically, this involves a
partition ofe1(h) intoO(n) intervals, delimited by points that see two vertices ofT along a common
ray. We extend each such ray to the point where it first crossesT and enters the region below it. The
sequence of all these crossing points that lie on a specific edgeg of T is denoted byΣ(e1, g). If the
line containinge1 intersectsT on g, we add this intersection point toΣ(e1, g). (This adds at most
two points to the union ofΣ(e1, g) over allg ∈ T .)

As the pointp moves alonge1 from left to right, the corresponding tower top traces the segment
e1(h). For each values of thex-coordinate ofp, denote the pointp asp(s), and the corresponding
tower top asp(s, h). Let g be another edge ofT . The pointp(s, h) sees a portion ofg which, if not
empty, is delimited by the endpoint ofg farthest frome1, and by a pointz(s) = zg(s) that moves
continuously withp. As long asp(s, h) does not cross a critical point of the visibility structure,
z(s) is either the endpoint ofg nearest toe1, or is the intercept of a visibility ray that emanates
from p(s, h) and passes through a fixed vertexv of T . Whenp(s, h) crosses a critical point, and
zg(s) crosses the matching point inΣ(e1, g), the ‘pivot’ vertexv may change, but the motion of
z(s) remains continuous.

The motion ofzg(s) is alsomonotone. The direction of motion ofz(s) depends on whetherg
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lies to the left or to the right ofe1, and on whether the pivot vertex through which the segments
p(s, h)zg(s) pass lies above or below the line containinge1(h). It is easily seen that when the pivot
vertex changes, the new vertex continues to lie on the same side of the line through e1(h), and thus
the motion ofzg(s) continues in the same direction. See Figure 10 for some examples.

e1(h)
p(s, h)p(s, h)

(i)

zg(s)

(ii)

g

e1(h)

e1

p(s)
zg(s)

g
p(s)

e1

Figure 10. As p(s, h) tracese1(h) from left to right, the corresponding pointzg(s) moves to the right in (a), and to the
left in (b).

Abusing the notation slightly, let us denote byzg(s) the x-coordinate of this point. Then the
collection of functionszg(s), over all edgesg of T , is a collection of continuous piecewise linear
rational functions ofs.

To see this, refer to Figure 11. Leta and b be two points one1(h), and letc andd be the
endpoints of the two corresponding visibility subintervals ong, where the visibility segmentsac
and bd pivot about the same vertexo of T . Regardingo as the origin, we can writec = −ξa,
d = −ηb, for positive scalarsξ, η. Take a pointp = p(s, h) on e1(h), and letz = zg(s) be
the corresponding endpoint of the subinterval ofg visible fromp. Write p = λa + (1 − λ)b, for
λ ∈ (0, 1), andz = µc + (1 − µ)d, for µ ∈ (0, 1). Sincep, o, andz are collinear, the vectors
λa + (1 − λ)b andµc + (1 − µ)d = −µξa − (1 − µ)ηb are parallel and, sincea andb are linearly
independent, we must have

µξ

λ
=

(1 − µ)η

1 − λ
,

or
µξ(1 − λ) = (1 − µ)ηλ,

or

µ =
ηλ

ξ(1 − λ) + ηλ
.

Sinceλ is a linear function ofs andµ is a linear function ofz, it follows thatzg(s) is indeed a linear
rational function ofs, for the subinterval[a, b] of e1(h).

The overall number of linear rational portions of these functions, over all edgesg, is O(n).
Indeed, such a portion ends either at an endpoint ofe1(h), or at a critical visibility point one1(h)
that sees two vertices ofT along a common ray, and the number of such points one1(h) is only
O(n).

We apply an analogous construction to the edgee2, denote the point that moves alonge2 by
q = q(t), the corresponding tower top byq(t, h), and the collection of functions that trace the (x-
coordinates of the) endpoints of the visibility subsegments of edgesg of T , as seen fromq(t, h),
by {wg(t)}. Let C denote the rectanglee∗1 × e∗2 in the st-plane, wheree∗1, e

∗
2 denote respectively

thex-projections ofe1, e2. PartitionC, only for the purpose of analysis, intoO(n2) subrectangles,
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by the vertical and horizontal lines corresponding to thex-coordinates of the critical points of the
visibility structures one1(h) ande2(h), respectively.

Fix an edgeg of T , different frome1, e2. Let βg denote the curvezg(s) = wg(t), drawn inC.
Within each subrectangle ofC thatβg crosses, it is a hyperbolic arc. Indeed, by what we have just
argued, the equation ofβg is of the form

α1s + β1

γ1s + δ1
=

α2t + β2

γ2t + δ2
,

for appropriate coefficientsαi, βi, γi, δi, i = 1, 2. This equation can be rewritten asAst + Bs +
Ct + D = 0, and this defines a hyperbola in thest-plane.

a
b

o

p

c

d

g
z

e1(h)

Figure 11. The relation between the pointp(s, h) one1(h) andzg(s) ong. Hereo is the pivot vertex ofT .

Moreover,βg is a connected curve which is boths- andt-monotone, and its endpoints lie on
∂C. Indeed, for each fixeds, there is at most one pointt for which wg(t) = zg(s), because the
monotonously moving pointwg(t) can sweep at most once through the stationary pointzg(s). A
symmetric argument applies to any fixedt. It is also easily seen thatβg cannot have an endpoint in
the interior ofC and that it remains connected when crossing from one subrectangle ofC to another
subrectangle.

The preceding argument implies that the number of hyperbolic arcs that constitute the curves
βg, over all edgesg of T , is onlyO(n). Indeed, an endpoint of such an arc that lies in the interior
of the corresponding rectangleC is such that either itss-coordinate or itst-coordinate represents a
critical visibility event on eithere1(h) or one2(h), and the overall number of such events isO(n).
Moreover, only one curveβg can have such a transition point at the sames or t-coordinate, namely,
the curveβg whose edgeg is hit by the critical visibility ray corresponding to the critical event. This
implies the asserted linear bound on the number of pieces.

Each curveβg thus partitionsC into two portions, one of which, denotedMVg, consists of
all points (s, t) that represent placements of two towers one1 ande2 that guardg, whereas the
complement ofMVg consists of points representing placements of towers where not all ofg is
visible. Figure 12 exhibits four types of such portions ofC. The classification depends (i) on the
left-to-right order of the edgese1, e2, g, (ii) on whether the pivot vertex through which the segments
p(s, h)zg(s) pass lies above or below the line containinge1(h), and (iii) on whether the pivot vertex
through which the segmentsq(t, h)wg(t) pass lies above or below the line containinge2(h). As
already remarked, when either of these pivot vertices changes, the new vertex continues to lie on
the same side of the line throughe1(h) or e2(h).
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Figure 12. The four types of mutual visibility of an edgeg from a pair of moving towers, and the correspondingst-regions
where the entireg is guarded.

The decision procedure then continues as follows. Keeping the pair of edgese1, e2 fixed, we
first construct, in linear time, the regionsMVg, or rather the curvesβg, over all the edgesg of T .
This is done by merging the sequencesΣ(e1, g) andΣ(e2, g) into a common sequenceΣ(e1, e2, g).
We then process the subintervals ofg delimited by the points ofΣ(e1, e2, g). Each such interval
I defines a piece ofβg, in which the common visible pointzg(s) = wg(t) moves inI. Clearly,
only intervalsI that lie in the range of both functions contribute nonempty portions toβg. The
computation of all the regionsMVg takesO(n log n) time for fixede1 ande2.

Next, we compute the intersection
⋂

g MVg of these regions. If this intersection is nonempty,
any point(s, t) in it represents a placement of two towers one1 ande2 that guardT . Conversely, if
the intersection is empty, no such placement exists. Since each region is bounded by a curve that is
s-monotone,

⋂

g MVg is asandwich regionbetween the upper envelope of the curvesβg, for which
MVg lies aboveβg (in thet-direction), as depicted in Figure 12(b,c), and the lower envelope of the
curvesβg, for whichMVg lies belowβg, as depicted in Figure 12(a,d). Since any pair of hyperbolic
arcs, with equations of the formAst + Bs + Ct + D = 0, intesect at most twice, it follows that
the complexity of either envelope, and thus also of the sandwich region, isO(λ4(n)), and that it
can be computed in timeO(λ3(n) log n), using the algorithm of Hershberger [15, 22]. We repeat
this procedure for every paire1, e2 of edges ofT . We stop as soon as we find a pair for which the
intersection

⋂

g MVg is nonempty, and then report a corresponding placement of the two towers. If
all these intersections are found to be empty, we report that no pair of towers of heighth can see the
entireT . Hence, the overall cost of the decision procedure isO(n3α(n) log n).

3.2 Plugging the parametric search

As in the preceding discrete and semi-continuous problems, we solve the optimization problem by
applying the parametric searching paradigm to the decision procedure justdescribed. That is, we
run it generically at the unknown optimal heighth∗, parallelizing as much as possible comparisons
that depend onh, and resolving them by binary search over the corresponding list of critical values
of h at which some comparison outcome changes. While running the generic simulation, we pro-
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gressively narrow down the range that contains the optimumh∗, andh∗ is output either during one
of the comparison resolution stages, or as the minimum of the final range.

For each vertexv of T , we compute the visibility structure from the vertical rayρv emanating
upwards fromv. This takes a total ofO(n2) time [13]. For each edgee = uv of T , let τe denote
the semi-unbounded trapezoid bounded bye, ρu andρv. There are onlyO(n) critical visibility
rays, namely rays that pass through two vertices ofT , which cross eitherρu or ρv, and thusτe.
We construct the arrangement of these rays, and clip it to withinτe. With each vertexq of the
arrangement we associate a critical heighth, equal to the vertical distance ofq from e. Repeating
this procedure to each edgee, we obtain a collection ofO(n3) critical heights. We add to these
heightsO(n2) additional critical heights, at which a shifted edgee(h) becomes collinear with a
vertex ofT . We run a standard binary search, guided by the decision procedure,through these
critical heights, to locate an initial intervalI0 between two successive critical heights that contains
the optimum heighth∗. This step takes a total ofO(n3α(n) log2 n) time. The visibility structure of
e(h), for any edgee, is now combinatorially determined, for anyh ∈ I0. That is, the nature of each
critical event alonge(h∗), and their left-to-right order, are now determined and are the same for all
h ∈ I0.

In addition, for any pair of edgese, g, the critical visibility rays that emanate from points on
e(h), pass through a pivot vertex ofT , and then hitg, are all determined combinatorially, and the
order of their intercepts withg is fixed, for anyh ∈ I0. As above, we denote the sequence of
these intercepts byΣ(e, g). In the next step, we take each edgeg, and collect the intercepts alongg
with the critical rays from all shifted edgese(h). For each paire1, e2 of edges, we merge the two
sequencesΣ(e1, g), Σ(e2, g) into a common sequenceΣ(e1, e2, g). We implement this step by a
sorting network of depthO(log n). The total number of processors that are needed is

∑

e1,e2,g

(

|Σ(e1, g)| + |Σ(e2, g)|

)

≤ 2n ·
∑

e1,g

|Σ(e1, g)| = O(n3).

Hence, using Cole’s improvement of the parametric searching method [9], this step takes a total of
O(n3α(n) log2 n) time.

In the next step, we process in parallel all pairs of edges ofT , and construct, for each such pair
e1, e2, the curvesβg, for all other edgesg of T . Givene1, e2, andg, we process the subintervals of
g delimited by the points ofΣ(e1, e2, g). Each such intervalI defines a piece ofβg, in which the
common visible pointzg(s) = wg(t) moves inI. We construct in parallel all these pieces, each with
its explicit linear rational equation. Since

∑

e1,e2,g |Σ(e1, e2, g)| = O(n3), this step takesO(n3)
time, and is in fact non-parametric.

In the next step, we process in parallel all pairs of edges ofT , and construct, for each such
pair(e1, e2), the sandwich region between the upper envelope of an appropriate subcollection of the
curvesβg and the lower envelope of the complementary subcollection.

We compute the lower envelope ofm hyperbolic arcs by running in parallel the standard divide-
and-conquer algorithm for constructing envelopes (see [22]). The divide-and-conquer process has
O(log n) parallel depth, and each stage of it requires merging two sequences of envelope break-
points into a common sequence, which can be done inO(log n) parallel steps. Overall, the parallel
depth isO(log2 n), so this simulation, enhanced with Cole’s technique [9], entails an overall cost
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of O(n3α(n) log3 n). This also subsumes the cost of the subsequent stage that ‘merges’ the upper
and the lower envelopes to produce the sandwich region between them.

This completes the description of the generic parallel simulation of the decision procedure, and
thus yields the following result:

Theorem 3.1. The continuous two-tower problem, for a planar terrain withn edges, can be solved
in O(n3α(n) log3 n) time.

4 Guarding a Fixed Set of Points

Let T be a terrain withn vertices, and letP = {p1, . . . , pm} be a set ofm points, all lying on
T , and sorted in this left-to-right order alongT . We assume thatm is polynomial inn, so that
log m = O(log n). The goal is to place two towersu(h), v(h) of the smallest possible height
anywhereonT , so that they guard the entire setP . We show that this problem can be solved in time
close toO(mn).

We first develop a decision procedure that for a fixedh finds placements for two towers of height
h over a terrain that together cover the entire setP , or determines that no such pair of towers exists,
and then apply the paramatric search technique.

We denote byTh the terrainT shifted up by distanceh in they-direction, such that each point
(x, y) onT maps to the point(x, y + h) onTh.

4.1 The decision procedure

For each pointu ∈ T , let r(u) (resp.,t(u)) denote the leftmost (resp., rightmost) pointp ∈ P that
lies to the right ofu and is not visible fromu(h), or +∞ (resp.,−∞) if there is no such point. For
each pointu ∈ T , let Pu ⊂ P be the set of points thatu(h) does not see.

Lemma 4.1. Letu, v ∈ T with u to the left ofv. Thenu(h) andv(h) guard the setP+ ⊆ P of all
points ofP to the right ofv if and only ifr(v) > t(u).

r(v)

seen byu(h)
seen byv(h)

t(u)
r(v)

t(u)

u

v

u(h)

v(h)

(i) (ii)

Figure 13. (i) Proof of the “if” part. (ii) The caser(v) < t(u).

Proof: The ‘if’ part is trivial; see Figure 13 (i). Suppose then thatr(v) is not to the right of
t(u). The caser(v) = t(u) is also trivial: neitheru(h) nor v(h) sees this common point inP .
Assume then thatr(v) < t(u). If u(h) does not seer(v) or if v(h) does not seet(u) then we
are done: one ofr(v), t(u) is not guarded. Hence we may assume thatu(h) seesr(v) andv(h)
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seest(u); see Figure 13 (ii). Sincev(h) andr(v) are not mutually visible, it easily follows that
v(h)t(u) lies counterclockwise tov(h)r(v), andr(v)u(h) lies clockwise tor(v)v(h). Hence the
segmentsu(h)r(v) andv(h)t(u) must intersect, from which it easily follows thatu(h) seest(u), a
contradiction that completes the proof.¤

For each pointpi ∈ P , let Wi = ∂W (pi) denote the boundary of the visibility polygon of
pi with respect to the terrainT . As discussed above,Wi is a sequence of connected portions of
T , interleaved with segmentsqr, whereq is a vertex ofT , r ∈ T , and the ray emanating frompi

towardsq sees bothq andr and crossesT at r. See Figure 14.

pi

c

pj

Figure 14. Two pointspi, pj and their visibility polygonsWi andWj . Only the right portions of these polygons are
drawn. The portionsW i, W j of the boundaries of these polygons that lie strictly aboveT are drawn as dashed-dotted
and solid, respectively.

Lemma 4.2. Let s be a segment that lies fully aboveT . Thens intersectsWi at most once to the
left ofpi and at most once to its right.

Proof: Suppose without loss of generality thats lies fully to the left ofpi, and letq be a point in
s∩Wi. Then any point ons that lies above the linepiq must be visible frompi, as is easily checked.
This implies that assertion of the lemma.¤

Let Ei be the set of points whereTh intersectsWi. By Lemma 4.2, each edge ofTh intersects
Wi at most once, with the possible exception of the edge that lies directly abovepi, which may
intersectWi twice. It thus follows that|Ei| ≤ n + 1. Let E =

⋃m
i=1 Ei. Let u andv be two

consecutive points ofE alongTh. Clearly, from any pointz onTh that lies betweenu andv, we see
the same subset ofP . Therefore if there are two tower-tops onTh that guardP , then there are two
points inE that do the same. Our algorithm will therefore determine whether there exist two points
u, v ∈ E that guardP .

The algorithm first computesWi, for i = 1, . . . , m using the algorithm of [13]. This takes a
total of O(mn) time. Then we compute the setsEi, for 1 ≤ i ≤ m, by traversing in parallelWi

andTh from left to right, locating intersections between edges ofTh andWi whosex-projections
overlap. Since bothTh andWi are connectedx-monotone polygonal chains withO(n) edges each,
this step takesO(n) time for eachWi, for a total ofO(mn) time. We organizeE in a list sorted by
x-coordinate, represented as a balanced search treeE∗.

We next compute the pointersr(u) andt(u) for everyu ∈ E by traversing the points inE from
left to right alongTh, while maintaining the subsetPu ⊆ P of points that are not visible from the
current pointu. We start out from−∞, with P−∞ = ∅. When we advance from a pointu ∈ E
to the next pointv on Th, we add and/or delete a point to/fromPu to obtainPv as follows. Letpj

be the point such thatu is an intersection ofWj with Th, and letpk be the point such thatv is an
intersection ofWk with Th. If to the right ofu we cannot seepj , then we addpj to Pu. Similarly if
to the right ofv we seepk then we deletepk from Pu. Note that ifj = k and betweenu andv we
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cannot seepj thenPv = Pu and we do not have to delete and addpj . After these updates we have
the setPv, and we setr(v) (resp.,t(v)) to be the leftmost (resp., rightmost) point inPv which is to
the right ofv, or to+∞ (resp.,−∞) if Pv is empty. We perform this computation inO(mn log n)
time, by maintainingPu in a search tree, sorted by increasingx-coordinate.

Let W r
i (resp.,W ℓ

i ) be the portion ofWi that lies to the right (resp., left) ofpi. It is easily
checked thatW r

i has the followingorder property: Let a, b ∈ W r
i , with a lying to the left ofb.

Then the slope ofpia is smaller than or equal to the slope ofpib. (A symmetric property holds for
W ℓ

i , but we shall not use it.)

The core of our algorithm is based on the following lemma and its corollary.

Lemma 4.3. Let i < j, and letu be the leftmost intersection point ofW r
i andW r

j . Then to the left
of u, W r

j lies belowW r
i , and to the right ofu, W r

j lies above or overlaps withW r
i .

Proof: Both segmentspiu andpju are contained in the region of the plane bounded from below by
T . We refer to this region as the closed halfplane lying aboveT . This implies thatpj lies belowpiu,
unlesspj = u. In the former case,pj is invisible frompi and thus lies belowW r

i . The continuity of
W r

i andW r
j implies that the entire portion ofW r

j betweenpj andu lies strictly belowW r
i .

It therefore remains to consider the portion ofW r
j to the right ofu, and to show that this portion

lies above, or partially overlaps with,W r
i . In other words, we need to show that every pointz ∈ W r

j

to the right ofu is visible frompi. To see this we note that, by the order property ofW r
j , pjz must

lie counterclockwise topju, which is easily seen to imply that the segmentspiu andpjz intersect at
some pointq; see Figure 15. But then the polygonal chainpiqz lies aboveT , and thuspiz also lies
aboveT , implying thatz is visible frompi, as claimed. This shows that, to the right ofu, W r

i lies
below, or partially overlaps with,W r

j .

The case whenpj = u follows immediately from above.¤

pj

pi

z

q

u

Figure 15. Pointsz ∈ W r
j to the right ofu are visible frompi.

As a consequence of Lemma 4.3, we obtain:

Corollary 4.4. Let pi1 , . . . , pik be a subset of the points ofP , ordered from left to right. Then the
upper envelope ofW r

i1
, . . . , W r

ik
is a concatenation of connected portions ofW r

i1
, . . . , W r

ik
, such

that, for eachi = 1, . . . , k − 1, the portion ofW r
ij

precedes the portion ofW r
ij+1

. Some of the
portions may be empty.

Proof: We use the convention that when a pointz belongs to several of the chainsW r
i1

, . . . , W r
ik

,
we regard it as belonging to the chain with the largest indexij . The assertion is now immediate
from Lemma 4.3.¤
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For each pointu ∈ E, recall thatPu ⊂ P is the set of points thatu does not see. As in the
computation ofr(u) andt(u), our algorithm traverses the points ofE from left to right alongTh,
while maintaining the setsPu incrementally. For each pointu that we traverse, we decide whether
there is another pointv ∈ E to the rightof u, such that all points inPu are visible fromv. To that
end we also maintain the upper envelopeE(u) of {W r

i | pi ∈ Pu}. By definition, any point ofE
on or aboveE(u) sees all the points ofPu to its left. Let v ∈ E be the point on or aboveE(u) that
lies to the right ofu and has maximumr(v). By Lemma 4.1, ifr(v) > t(u), thenu andv cover the
entire setP , and otherwise there is no point inE that can sees the entirePu.

We maintainPu as a binary search treeT. A leaf in T corresponds toW r
i , for somepi ∈ Pu.

Each internal nodex of T represents the upper envelopeEx of the chainsW r
i , for all pointspi in

its subtree. It follows that ifr is the root ofT thenEr = E(u). For x ∈ T, the envelopeEx is
represented as a search treeTx. Each nodeα ∈ Tx represents an edgeeα of Ex. Tx is organized
such that if we traverse it in symmetric order we obtain the edges on the envelope from left to right.
We associate with each nodeα ∈ Tx another search treeTx,α, that represents the points ofE that
lie on or above the corresponding edge, ordered from left to right.

The representation ofTx,α is as follows. Recall that the points ofE are stored in a static search
tree, sorted from left to right alongTh. Th intersectseα at points that belong toE. These points
delimit contiguous subsequences ofE, which alternate between lying aboveeα and lying below it.
We collect the subsequences that lie aboveeα, and represent each of them by a leaf ofTx,α, where
these leaves are sorted from left to right inTx,α. Each such leaf simply stores pointers to the two
nodes of theE-tree that delimit the corresponding subsequence. In addition, each leafof Tx,α stores
the maximum valuer(v) of the pointsv in the subsequence ofE that it represents, and the pointv
where this maximum is attained. Each internal nodeξ ∈ Tx,α stores the maximum valuer(v) of the
pointsv ∈ E which are aboveeα in all the subsequences represented by the leaves of the subtree
rooted atξ, as well as the pointv where this maximum is attained.

We propagate points with maximumr(v) value further up inTx as well. Each nodeα ∈ Tx has,
in the root ofTx,α, the maximum valuer(v) of the pointsv ∈ E aboveeα. We also store in each
nodeα ∈ Tx the maximumr(v) value of a pointv ∈ E which is above any of the edges ofEx that
reside in the subtree rooted byα.

To support updates, at each node of the tree representing all points inE, sorted alongTh, we
also store the maximumr(v) value of a pointv in its subtree, together with the pointv where this
maximum is attained.

As we move from a pointu ∈ E to the next pointv ∈ E to the right alongTh, we updateT
so that it storesE(v) — the upper envelope of the functionsW r

i , for pi ∈ Pv, in the manner just
described. Letpj be the point such thatu is an intersection ofWj with Th, and letpk be the point
such thatv is an intersection ofWk with Th. If to the right ofu we cannot seepj , then we have to
addW r

j to the treeT. Similarly if to the right ofv we seepk then we deleteW r
k from T. Note that

if j = k and betweenu andv we cannot seepj then we can just leaveT unchanged sincePv = Pu.

ConsiderT when we are at a pointu as we move alongTh. The rootr of T stores inTr the
upper envelopeE(u) of W r

i for all pointpi ∈ Pu. Let v be the point ofE that (i) lies to the right of
u, (ii) lies above all chainsW r

i , for pi ∈ Pu (which is equivalent tov seeing all the points ofPu to
its left), and (iii) has the maximum valuer(v) among all such points. Thenv can be retrieved from
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Tr as follows.

Search inTr with the x-coordinate ofu. The nodeα where this search path ends stores the
edgeeα of E(u) that lies vertically above or belowu. We examine each of the subtrees ofTr that
hang to the right of the search path toα, and extract from each of them the pointv with maximum
r(v) among all the points ofE that are stored in that subtree. Letv1 be the point that attains the
maximumr-value among all these points. Finally, we go to the tertiary treeTx,α, and find there the
leaf ξ that stores the subsequenceEξ of E(u) that lies aboveeα and containsu, if u does indeed lie
aboveeα, or else the subsequenceEξ of E(u) that lies aboveeα immediately to the right ofu. In
either case, we examine each of the subtrees ofTx,α that hang to the right of the search path, extract
from each of them the pointv with maximumr(v) among all the points ofE that are stored in that
subtree, and letv2 denote the point with largestr-value among these points. If the subsequenceEξ

lies aboveeα immediately to the right ofu we extract the pointv3 ∈ Eξ with maximumr-value. If
the subsequenceEξ lies aboveeα and containsu we search in theE-tree for the pointv3 of Eξ that
lies to the right ofu and has maximumr-value. We now return the pointv amongv1, v2, v3 that
attains the maximumr-value.

By what has been argued above, we test whetherr(v) > t(u). If so,u andv cover the entire set
P , and we stop and report them. Otherwise there is no point inE that, together withu, coversP ,
and then we move to the next point ofE.

We now describe how to updateT. That is, we describe how to add a chainW r
j to the set of

chains that determine the upper envelope ofT, or how to delete a chain from that set. To add a chain
W r

j , we insert a new leaf intoT using a standard INSERT operation for binary search trees. This
insertion requires to update the envelopes of the nodes on the path inT from the root to the new
leaf. We proceed to describe how to update these envelopes during an insertion. Deletion of a chain
W r

j from T is carried out analogously.

Let x be the left child andy be the right child of a nodez in T. To obtainEz from Ex andEy, we
first locate the leftmost intersection pointb of Ex andEy. Then we splitEx at b into two connected
piecesEℓ

x andEr
x, containing the portions ofEx that lie to the left and to the right ofb, respectively.

Similarly, we splitEy at b into its left portionEℓ
y and its right portionEr

y. By Corollary 4.4,Ez is
the concatenation ofEℓ

x andEr
y.

We find the leftmost intersectionb of the two envelopesEx andEy as follows. We first find the
edgee of Ex that containsb. We start with the edgee′ at the root ofTx, the tree that represents
Ex, and check whether its endpoints are above or belowEy. Each of these checks can be done in
logarithmic time. If both endpoints ofe′ are aboveEy, we continue the search in the right child of
e′. If both endpoints ofe′ are belowEy we continue with the left child ofe′. If the left endpoint
of e′ is aboveEy and the right endpoint ofe′ is belowEy thene = e′ and we stop the search.
By Corollary 4.4, the symmetric positions of the endpoints ofe′ with respect toEy are impossible.
Handling cases where one or both endpoints ofe′ lie on Ey is done similarly, by regarding those
endpoints as lying belowEy. We locate the edgef ∈ Ey such thatb ∈ f analogously. After having
founde andf , b is easily computed in constant time.

Next we describe how to splitEx andEy atb. We implement each of these splits using a standard
SPLIT operation on search trees. We also split atb the secondary treesTx,αe , Ty,αf

associated with
the edgese andf , respectively, that contain the points ofE on or above these edges. The left part
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of the treeTx,αe is associated with the portion ofe on Eℓ
x, and the right portion of the treeTy,αf

is
associated with the portion off onEr

y.

When we split a tertiary treeTx,αe at b andb falls within the range of a leafξ of Tx,αe , we have
to split ξ into two leavesξ1 andξ2. Let the leafξ represent the sequence of points ofE aboveTh

from e1 to e2. The leafξ1 represents the subsequence ofE from e1 to the point ofE just before
b. The leafξ2 represents the subsequence ofE from the point right afterb to e2. The leafξ1 is the
rightmost in the left tree produced by the split ofTx,αe , and the leafξ2 is the leftmost in the right
tree produced by the split ofTx,αe . We find the maximumr(v) value to store inξ1 by taking the
maximum among ther(v) values of the subtrees which are to the left of the search path tob and
to right of the search path toe1 in the tree containing all the points inE. Similarly, we find the
maximumr(v) value to store atξ2.

Finally we concatenateEℓ
x and Er

y to obtainEz, using a standard CONCATENATE operation
on binary search trees. It is straightforward to maintain the maxima of ther-values while doing
rotations in binary search trees. Since split and concatenate of binary search trees change the tree
only via rotations, it is easy to maintain these maxima of ther-values during split and concatenate.

It is easy to see that each update (insertion or deletion of a chainW r
j ) to T takesO(log3 n) time:

(i) the search path inT visitsO(log n) nodes, (ii) for each such node the corresponding paths inTx

andTy haveO(log n) nodes, and (iii) at each node inTx (or Ty) we needO(log n) time to perform
the required computation (see above). Thus, the entire algorithm runs inO(mn log3 n) time. That
is, we have shown:

Theorem 4.5. Let T be a terrain withn edges in the plane,P a set ofm points lying onT ,
andh > 0 a parameter. We can determine, inO(mn log3 n) time, whether there exist two points
u, v ∈ T such that each point ofP is visible from eitheru(h) or v(h).

4.2 Plugging the parametric search

Next we apply parametric searching to the decision procedure just described, to obtain an algorithm
that finds the smallest heighth∗ of two towers that cover the entire setP . As usual, this is done
by running a parallel generic simulation of the decision procedure at the unknown optimal height
h∗, resolving comparisons that depend onh∗ by finding their criticalh-values and running a binary
search through them, thereby progressively shrinking the range whereh∗ has to lie.

Fortunately, most of the steps in the decision procedure areindependentof the value ofh.
Specifically, afterE has been computed and sorted alongTh, all subsequent steps are independent
of h, since they mostly maintain structures that depend on the visibility polygonsW (pi), which do
not depend onh. Hence, after the generic simulation reaches the stage whereE has been computed
and sorted, we can stop, take the smallesth in the current range, which we know to be equal toh∗,
call the decision procedure with this specifich∗, and output the two resulting towers.

Since the visibility polygonsWi do not depend onh, we start the algorithm by computing them
explicitly, in a total ofO(mn) time. We then process all theWi’s in parallel. For eachWi, we
merge the sequence of its vertices, sorted in left-to-right order, with the similarly sorted sequence
of the vertices ofTh. Note that thex-coordinates of the vertices ofTh coincide with those of the
vertices ofT , and thus are independent ofh, so all the merges can be done explicitly.
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Consider a fixedWi, and letI be an interval between two consecutive vertices in the merged
sequence.I is contained in thex-projection of a single edgeg of Wi and of a single edgee of Th.
There are two critical valuesh−

i < h+
i , so thate andg intersect whenh−

i ≤ h ≤ h+
i , and they

are disjoint whenh lies outside that range. By binary search over all these critical values (using, as
usual, the decision procedure to guide the search), we identify all the pointsof E, each represented
as the intersection point of a specific edge ofTh with a specific edge of someWi. The total cost of
this step isO(mn log4 n).

Next, we need to sort the points ofE from left to right. For this we use anO(log n)-depth sorting
network withO(mn) processors, and apply the speed-up technique of Cole [9], to accomplish this
step also inO(mn log4 n) time. As argued above, we can terminate the parametric search after this
stage, and complete the algorithm with a call to the decision procedure with the concrete value ofh
equal to the minimum of the feasibleh-range.

In summary, we thus have:

Theorem 4.6. Given a terrainT with n edges in the plane, and a setP ⊂ T of m points, we can
find, in O(mn log4 n) time, two towers of smallest height that can be placed anywhere onT and
together cover the entire setP .

5 The Discrete Two-Tower Problem in 3-Space

Let T be a polyhedral terrain inR3 with n edges, and leth > 0 be a real parameter. Without loss
of generality we can assume that each facet ofT is a triangle. We wish to determine whether there
exist two verticesu, v of T , so that the watchtowersu(h), v(h) of heighth erected atu, v guard the
entire terrain, as defined in the introduction. We call any such pair(u, v) a guarding pairof T . Let
V denote the set of vertices ofT . For eachv ∈ V and a facetf of T , let Hv(f) denote the portion
of f that is invisible fromv(h); we call it theinvisibility regionof v in f . The regionsHv(f) can
be constructed as follows.

v

h

v(h)

e

Wv,e

W−

v,e

Figure 16. The truncated wedgeWv,e and the prismW−
v,e.

For each vertexv ∈ V and for each edgee of T not adjacent tov, let Wv,e denote the truncated
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planar wedge that is the union of all rays emanating fromv(h) and passing throughe, minus the
triangle spanned byv(h) ande. Let πv,e denote the plane containingWv,e, and letW−

v,e denote the
unbounded prismatic region consisting of all points that lie vertically belowWv,e. The prismW−

v,e is
bounded byWv,e, and by three vertical walls (semi-unbounded vertical strips) bounded from above
by the three edges ofWv,e. Informally, W−

v,e is the portion ofR3 that is invisible fromv(h) if T
degenerates to the single vertical wall bounded from above bye (see Figure 16).

For each vertexv ∈ V , let Wv denote the set of all wedgesWv,e, for edgese of T that are
not adjacent tov. Let Πv andW−

v denote the set of all corresponding planesπv,e and prismsW−
v,e,

respectively. PutW :=
⋃

v∈V Wv, Π :=
⋃

v∈V Πv, andW− :=
⋃

v∈V W−
v .

For each facetf of T and each vertexv ∈ V not adjacent tof , we can constructHv(f) by
intersecting each prismW−

v,e ∈ W−
v with f , and by taking the union of all the resulting regions.

The complementf \ Hv(f) is thevisibility regionof v (in f ). The set of visibility regions, over all
facetsf of T , is the so-calledvisibility mapfrom v(h); its complexity isΘ(n2) in the worst-case,
and it can be computed inO(n2) time [22].

It is easy to establish the following properties ofHv(f). The intersection ofHv(f) with any
vertical halfplane bounded by the vertical lineλv throughv, is a (possibly empty) line segment
contained inf , and having one endpoint (the one nearer tov) on∂f . As the halfplane rotates about
λv, the other endpoint of the invisibility segment traces a polygonal pathγv(f) ⊂ f , which is
monotone with respect to the horizontal polar orientationθ of the halfplane aboutλv. The edges of
Hv(f) that lie in int(f) are portions of intersections of wedgesWv,e with f . Moreover,γv(f) can
be interpreted as the upper envelope of these intersection edges, in an appropriate polar coordinate
system within the plane containingf . Hence, the combinatorial complexity ofHv(f) is O(nα(n))
[22]. The overall complexity of all these regions, for a fixed vertexv, isO(n2), as each of its vertices
corresponds to a vertex of the visibility map ofT from v(h); as noted above, all the invisibility
regionsHv(f), over all facetsf of T , can be computed inO(n2) time.

By definition ofHv(f), two verticesu, v of T form a guarding pair ofT if and only if Hu(f)∩
Hv(f) = ∅ for every facetf of T , or equivalently,Hv(f) is fully visible from u(h) for everyf .
Moreover, as is easily checked,Hv(f) is entirely visible fromu(h) if and only if u(h) sees every
point on its boundary∂Hv(f).

̺(u, s)
u(h)

u

s

T

Figure 17. The segment̺(u, s).

For a pairu, s ∈ V , if s is visible fromu(h), let ̺(u, s) be the segment whose endpoints ares

and the first intersection point withT of the ray froms in direction
−−−→
u(h)s, as illustrated in Figure 17.

If s is not visible fromu(h), ̺(u, s) is not defined.

Lemma 5.1. Let u, v ∈ V , and letf be a facet ofT . ∂Hv(f) is entirely visible fromu(h) if and
only if the following two conditions hold:
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(V1)u(h) sees every vertex ofHv(f).

(V2) There does not exist a vertexs ∈ V such that the segment̺(u, s) passes vertically above an
edge ofHv(f).

u

u(h) pu,e′

g

g

epu,e

σu,e

(i) (ii)

W−
u,e

Ψ
g ∩ W−

u,e

Figure 18. (i) Intersection ofg and a prismW−
u,e. (ii) The vertical stripΨ and its intersection with the wedgesWu,e.

Proof. Indeed, ifu(h) sees the entire boundary∂Hv(f) then (V1) and (V2) hold. Conversely,
suppose for the sake of contradiction that (V1) and (V2) hold but an edgeg of Hv(f) is not fully
visible fromu(h). LetΨ be the vertical strip containingg and bounded by the vertical lines passing
through its endpoints. Sinceg is not fully visible fromu(h) it must intersect some prismW−

u,e.
Moreover, the endpoints ofg do not lie insideW−

u,e because (V1) holds, thereforeg intersects the
vertical or top boundaries ofW−

u,e; see Figure 18 (i). Letpu,e be the point ofWu,e ∩Ψ of the largest
vertical distance fromg; pu,e lies on the ray emanating from an endpointσu,e of e in direction
−−−−−→
u(h)σu,e. Among the prismsW−

u,e intersectingg let W−
u,e′ be the one so that the (vertical) distance

of pu,e′ from g is the largest; see Figure 18 (ii). Since no segments ofWu,e ∩Ψ lies abovepu,e′ , and

thuspu,e′ does not lie in any prismW−
u,e, the ray

−−−−−−→
u(h)σu,e′ intersects the terrain after the pointpu,e′ .

Hence, the segment̺(u, σu,e′) passes vertically aboveg, thereby violating (V2).

Conditions (V1) and (V2) are equivalent to the following respective conditions.

(V1’) There does not exist a wedgeWu,e, for an edgee of T not adjacent tou, such thatW−
u,e

contains a vertex ofHv(f).

(V2’) There does not exist a vertexs ∈ V such that thexy-projections of the segment̺(u, s) and
of some edge ofHv(f) intersect.

The equivalence of (V2) and (V2’) follows from the fact that the segments ̺(u, s) lie aboveT ,
whereas all the edges ofHv(f) lie onT . Recall that conditions (V1’) and (V2’) are formulated for
a fixed tripleu, v, f of two vertices and a facet ofT . The algorithm has to determine whether there
exists a pairu, v for which (V1’) and (V2’) hold for every facetf of T .

The algorithm proceeds in two stages. The first (resp., second) stage reports the setN1 (resp.,
N2) of all pairs(u, v) ∈ V × V for which condition (V1’) (resp., (V2’)) is violated for some facet
f . Any pair of vertices(u, v) 6∈ N1 ∪ N2 is a guarding pair ofT , and thus constitutes a solution to
the decision procedure. If all pairs of vertices are disqualified, the decision procedure has a negative
answer.
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Computing N1. We wish to report all pairs(u, v) ∈ V × V for which there exist an edgee ∈ T
and a facetf ∈ T such thatW−

u,e contains a vertex ofHv(f). A vertexχ ∈ Hv(f) lies in W−
u,e if

and only if (i) thexy-projectionχ∗ of χ lies inside thexy-projectionW ∗
u,e of Wu,e, and (ii)χ lies

below the planeπu,e containingWu,e.

We fix a vertexv ∈ T and report all pairs(u, v) ∈ N1 in two stages. LetΞ be the set of vertices
in Hv(f), and letW be the set of all wedgesWu,e, as defined in the beginning of the section. The
first stage reports all pairs inΞ×W that satisfy (i). The second stage reports a pair(u, v) ∈ V × V
if there is a pair(χ, Wu,e) reported in the first stage for whichχ lies belowπu,e.

In more detail, letΞ∗ = {χ∗ | χ ∈ Ξ}, and letW∗ = {W ∗ | W ∈ W}. We have
|Ξ∗|, |W∗| = O(n2). EachW ∗ is an unbounded triangle in thexy-plane. Using a triangle range-
searching data structure [17], we report, inO(n8/3 polylog(n)) time, all pairs(χ, W ) ∈ Ξ × W

such thatχ∗ ∈ W ∗, as the disjoint union of complete bipartite graphs. That is, we report a family
F = {(Ξ1, W1), . . . , (Ξr, Wr)} where (i)Ξi ⊆ Ξ andWi ⊆ W, (ii) for any (χ, W ) ∈ Ξi × Wi,
χ∗ ∈ W ∗, and for every pair(χ, W ) ∈ Ξ × W such thatχ∗ ∈ W ∗, there is an indexi with χ ∈ Ξi

andW ∈ Wi. Moreover,
∑

i(|Ξi| + |Wi|) = O(n8/3 polylog(n)).

Fix a complete subgraph(Ξi, Wi) ∈ F. We preprocessΞi, in O(|Ξi| log |Ξi|) time, into a data
structure so that a halfspace-emptiness query (i.e., determine whether a query halfspace contains
any point ofΞi) can be answered inO(log |Ξi|) time. This can be accomplished by constructing
the Dobkin-Kirkaptrick hierarchy [11] on the convex hull ofΞi. For eachWu,e ∈ Wi, we query the
data structure with the halfspaceπ−

u,e lying belowπu,e. If π−
u,e ∩ Ξi 6= ∅, we add the pair(u, v) to

N1. The total time spent over all complete bipartite graphs ofF is O(n8/3 polylog(n)). Repeating
this procedure for all verticesv ∈ T , we construct the setN1 in O(n11/3 polylog(n)).

Computing N2. Let R be the set of segments̺(u, s) over all pairsu, s ∈ V wheres is visible
from u(h). We computeR as follows. We fix a vertexu ∈ V and preprocessT in O(n log n) time
into a data structure, so that the first intersection point ofT with a ray emanating fromu(h) can be
computed inO(log n) time [22]. For each vertexs ∈ V \ {u}, we determine the first pointξ hit
by the rayu(h)s. If ξ lies betweens andu(h) on the ray,̺ (u, s) is not defined; otherwise we set
̺(u, s) = sξ. We repeat this procedure for all verticesu ∈ T . The total time spent in this step is
O(n2 log n).

Fix a vertexv ∈ V . We compute inO(n2) time the visibility map ofT from v(h) and thus
the setE of edges of all the regionsHv(f); |E| = O(n2). For a geometric objectγ in R

3, let γ∗

denote, as above, itsxy-projection. SetR∗ = {̺∗ | ̺ ∈ R} andE∗ = {γ∗ | γ ∈ E}. Each ofR∗

andE∗ is a set ofO(n2) segments inR2. Using the algorithm described in [17], we compute, in
O(n8/3 polylog(n)) time, the set of all intersecting pairs(̺∗, e∗) ∈ R∗ × E∗ as the disjoint union
of complete bipartite graphs, so that the overall size of their vertex sets isO(n8/3 log n).

For each complete bipartite subgraphR∗
i × E∗

i ⊆ R∗ × E∗ in the output, we output all pairs
(u, v), such thatR∗

i contains (the projection of) a segment̺(u, s), for somes ∈ V . The total cost
of this step isO(n8/3 polylog(n)), and we repeat it for eachv ∈ V , to obtain an output collection
N2 of all pairs(u, v) ∈ V × V , with the property that the projection of some segment of the form
̺(u, s) intersects the projection of an edge of someHv(f). In view of the preceding discussion, no
pair (u, v) in N2 is a guarding pair ofT . The total cost of this step isO(n11/3 polylog(n)).
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Putting everything together, we can find inO(n11/3 polylog(n)) time whetherT can be guarded
by two watchtowers of height at mosth placed at two vertices ofT .

The parametric search. To obtain the full algorithm, we apply parametric searching to the deci-
sion procedure just described. We briefly sketch the generic parallel implementation of this proce-
dure. We first construct the invisibility regionsHv(f). Each such region is computed as the upper
envelope ofO(n) segments, which is easy to do in polylogarithmic parallel time (see the parametric
searching steps for the 2-dimensional problems). Next we compute the segmentsρ(u, s). This can
be done for each pairu, s in parallel, by considering a vertical planar cross-section ofT throughu
ands (again, see the corresponding routines in the 2-dimensional problems). Both of these steps
can be implemented in near-cubic time, and are thus far from being bottleneck steps.

Next, we simulate the construction of the setsN1 andN2. Each of these constructions uses a
collection of two-level range searching structures, each of which can be constructed in polylogarith-
mic parallel depth; we omit details of these standard constructions, which aremostly routine. We
can thus conclude the following.

Theorem 5.2. For a polyhedral terrain inR3 withn edges, the discrete version of the two-watchtower
problem can be solved inO(n11/3 polylog(n)) time.

6 Conclusion

In this paper we have presented efficient algorithms for many variants of the two-watchtower prob-
lem. There are of course many additional variants and extensions that could be studied, such as
guarding a terrain with three or more guards, guarding with various visibility constraints or costs,
maximizing the portion of the terrain that can be guarded by two (or any other number of) guards
of a fixed height, guarding more general 3-dimensional polyhedral scenes, and so on.

The immediate open problems are to improve the running time of the algorithms. In particular,
(i) Can the 2-dimensional continuous version of the problem be solved in sub-cubic time? (ii) Can
the 3-dimensional problem be solved by a faster algorithm? say, by a near-cubic algorithm?

The bottleneck in improving the algorithm for the 3-dimensional problem seems tobe in the
analysis of visibility along edges of the terrain: We haveO(n) edges, and each of them hasO(n)
collections of invisibility intervals, where each collection is induced by some vertex of the terrain,
and consists ofO(n) intervals. If we could find, in near-quadratic time, the set of all pairs of vertices
that have a common point of invisibility along a fixed edge of the terrain, then wecould have solved
the whole problem in near-cubic time.

This 1-dimensional subproblem seems to be very basic, and is a special case ofgeneralized (or
colored) intersection searching, as studied by Gupta et al. and others (see the survey [14]). Recent
progress on this problem has been made by Kaplan et al. [16], but it does not lead to an improved
solution in our special setting. (It yields an algorithm with running timeO∗(n(5+ω)/2) ≈ O(n3.688),
whereω < 2.376 is the exponent for matrix multiplication, which is just slightly worse than our
solution.)
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