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Abstract

Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-
time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing
the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree
reduction can be performed through a sequence of splittingsof vertices, resulting in anexpansionof the
original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not
performed carefully. In this context we address the following natural question: is it possible to reduce the
maximum degree to a constant without substantially increasing the treewidth?

Our work answers the above question affirmatively. We prove that any simple undirected graphG =
(V,E) admits an expansionG′ = (V ′,E′) with the maximum degree≤ 3 and treewidth(G′)≤ treewidth(G)+
1. Furthermore, such an expansion will have no more than 2|E|+ |V| vertices and 3|E| edges; it can be
computed efficiently from a tree-decomposition ofG. We also construct a family of examples for which the
increase by 1 in treewidth cannot be avoided.
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1 Introduction

Given a graphG, its treewidthw(G) is a combinatorial parameter that measures to what extent a graph
differs from a tree. It is defined in terms oftree decompositions, which are tree-like drawings ofG satisfying
certain constraints. The width of a specific tree decomposition represents the amount of clustering required
to subsume cycles so as to make the graph look like a tree, and w(G) is defined as the smallest width over
all possible tree decompositions ofG. Formal definitions are given in Section 2.

Since its introduction by several authors independently inthe 1980’s, the notion of treewidth has found
numerous applications in algorithm design. Many hard combinatorial problems, such as Independent Set,
Vertex Cover, SAT and #SAT, admit algorithms whose running time is poly(n)exp(w(G)), wheren is the
input size, andG is the underlying graph structure. Thus, when w(G) = O(logn), such algorithms run in
polynomial time. For example, given a CIRCUIT-SAT instancesizen and a width-w tree decomposition of
the circuit graphG, thebucket eliminationalgorithm [8, 6] can be used to compute the number of satisfying
assignments in timenO(1) exp(w). Computing the optimal tree decomposition is NP-hard [1]. But fortunately
the well known algorithm by Robertson and Seymour [11] computes a tree decomposition of widthO(w(G))
in time |G|O(1)exp(w(G)). Making use of this algorithm, the bucket elimination algorithm for SAT achieves
the same complexity. In practice, reasonably good tree decompositions can be found by replacing the
Robertson-Seymour algorithm with heuristics, which removes a runtime bottleneck and allows the entire
algorithm to run fast on inputs of small treewidth, e.g., in the case of probabilistic inference [8]. The recent
survey by Bodlaender [2] outlines a number of other examples.

In addition to treewidth, other graph parameters have also been heavily used in applications to estimate
and moderate complexity. A particular parameter focal to this work is the maximum degree∆(G) of a graph.
It is often desirable to reduce the maximum degree of an inputgraph through a sequence of vertex splittings
— a high-degree vertexw is replaced by an edge connecting two new verticesu andv, and each neighbor
of w is assigned to be a neighbor of eitheru or v. Thus the original graphG= (V,E) is replaced by a graph
G′ = (V ′,E′) that is called anexpansionof G. The expansion process can be iterated, after which each
vertexv∈ G is replaced by a treeTv in G′, and each original edgeuv∈ E corresponds to an edge inE′ that
connects a pair of leaves inTu andTv.

Degree reduction arises in several unrelated algorithmic contexts, motivated by conceptual simplification,
such as the reduction of SAT to 3-SAT, or application-specific concerns. For example, VLSI circuits use
gates with limited fan-in to facilitate placement and routing in dense two-dimensional silicon wafers. Large
AND, OR and XOR gates frequently occur in high-level descriptions of digital logic but are routinely broken
down into trees of gates with bounded fan-in. Fan-out optimization is performed because fan-outs with high
electrical capacitance lead to high circuit delay. They aresplit into trees using buffer (repeater) gates with
small fan-out. To this end, research from Intel [13] points out that the number of buffers in VLSI circuits is
increasing with every technology generation and may exceed50% of all gates in several years. To consider
fan-in and fan-out optimization of VLSI circuits in our graph-based framework, we represent each gate
by two vertices linked by an edge — one vertex connects all fan-ins, and the other connects all fan-outs.
Performing degree minimization thus takes care of both cases.

A simple procedure (thesymmetric expansion) constructs for a graphG an expansionG′ with ∆(G′)≤ 3,
but smaller∆(G′) cannot be guaranteed in general. This procedure replaces each vertexu∈V with a path
graph containing one vertexuv for each vertexv adjacent tou in G, and replaces eachuv∈ E by the edge
connectinguv to uv. However, not all expansions are equally favorable. In VLSIcircuit optimization,
the choices of tree do not affect the circuit’s functionality, but they may increase the treewidth which will
complicate placement and routing.

Treewidth also features prominently in computational logic and algorithms for constraint-satisfaction
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problems. In particular,directional resolutionintroduced by Davis and Putnam in 1960 for solving CNF-
SAT works particularly well on instances with low width [4].More general constraint satisfaction problems
with limited treewidth admit polynomial-time algorithms for finding and counting solutions [3, 5], and the
same applies to the evaluation of Bayesian networks [6]. Therefore, preserving treewidth is crucial when
transforming constraint systems, e.g., when converting SAT to 3-SAT. This particular problem is the focus
of [14], which proposes a specific transformation to generate 3-SAT instances at most seven times larger,
whose treewidth is increased by at most one.

The considerations above lead to a natural question : is it possible to reduce the maximum degree of
G through vertex splitting without substantially increasing the treewidth ofG? While treewidth cannot
decrease during expansion, a simple example in Figure 1 illustrates that treewidth may dramatically increase
after a symmetric expansion.

(d)(b)(a) (c)

Figure 1: The graph in (a) has treewidth 2, and has a ternary expansion (b) of the same treewidth. A
symmetric expansion, shown in (c), however, contains a gridminor (d). Thus (c) has treewidth at least 4
and, if scaled, can reach an arbitrary treewidth.

Let us call a graphG ternary if ∆(G) ≤ 3. Note that the maximum degree of a ternary graph cannot be
further reduced by expansion. Our main result gives an affirmative answer to the above question: we prove
that any graphG = (V,E) admits a ternary expansion with treewidth≤ w(G)+1. We give a polynomial-
time algorithm to compute such an expansion from an optimal tree decomposition ofG. In general, given a
tree decomposition of widthw, the output of the algorithm is a ternary expansion with width≤ w+1. Thus,
combined with the Robertson-Seymour algorithm, our algorithm outputs a ternary expansionG′ of G with
width O(w(G)) in time |G|O(1)exp(O(w(G))). Finally, we construct a family of graphsGn such that any
ternary expansionG′

n of Gn must have w(G′)=w(G)+1. Thus our algorithm achieves the generally possible
minimum treewidth. Its additional applications include a forthcoming work on quantum circuits where it
helps to establish an efficient classical algorithm for simulating a broad class of quantum computations [9].

The remaining part of the paper is structured as follows. We review the notions of tree decomposition
and treewidth in Section 2, then prove our main result in Section 3. Section 4 shows that our result cannot
be improved, and final remarks are given in Section 5.

2 Definitions

Let G= (V,E) be an undirected simple graph. For a vertexv∈V, we denote the set of its adjacent vertices
(neighbors) byN(v). Furtherd(v) = |N(v)|, and∆(G) = maxv∈V d(v).

Let G be a graph. Following definitions in [10], atree decompositionof G is a treeT , together with a
function that maps each tree vertexw to a subsetBw ⊆V(G) . These subsetsBw are calledbagsand can be
used as vertex labels. In addition, the following conditions must hold.
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(T1)
S

v∈V(T )Bv =V(G), i.e., each vertex must appear in some bag (and may appear in multiple bags).

(T2) ∀ {u,v} ∈ E(G), ∃w∈V(T ), {u,v} ⊆ Bw, i.e., for each edge, there must be a bag containing both of
its end vertices.

(T3) ∀ u ∈ V(G), the set of verticesw ∈ V(T ) with u ∈ Bw form a connected subtreeTu, i.e., all bags
containing a given vertex must be connected inT .

Thewidth of a tree decompositionT , denoted by w(T ), is defined by maxw∈V(T ) |Bw|−1. For graphG, its
treewidth w(G) is the minimum width of tree decompositions ofG. While NP-hard to compute in general,
w(G) is known for common classes of graphs [7] — a non-empty tree has treewidth 1, then× n grid has
treewidthn, and a parallel serial graph has treewidth≤ 2. Figure 3 shows an example of a graph of treewidth
3 and its tree decomposition of the same width.

A key motivation for the study of treewidth is the study of graph minors. LetG= (V,E) be a graph. The
contractionof an edgeuv∈ E is the following operation onG: removeu andv (and all incident edges), and
connect all neighbors ofu andv to a new vertexw. A graphG′ is a minor ofG if G′ can be obtained from
a sequence of edge contractions on a subgraph ofG. In this case, a tree decomposition forG also induces
a tree decomposition forG′ of equal or smaller width. Usually w(G′)< w(G), in particular, contracting all
edges ofG will reduceG to an empty graph, which has treewidth 0.

The process ofsplitting studied in our work can be viewed as inverse to contraction.

Definition 2.1. Let G= (V,E) be a graph. Thesplitting of v∈V with the supportS⊆ N(v) is the following
transformation ofG: introduce a new vertexv′, connectv′ to v, for any s∈ S, disconnect it fromv and
connect it tov′. A graphG′ is called anexpansionof G if there exists a sequence of splittings that transform
G to G′, and is said to beirreducible if no degree-2 vertex is created in the splittings. If∆(G′)≤ 3, we call
G′ a ternaryexpansion ofG.

It follows immediately from the definition of splitting a vertex v that contracting the edgevv′ results in
the original graph. Thus ifG′ is an expansion ofG, thenG is a minor ofG′, but notvice versa, in general.
It also follows from the definition thatG′ is an expansion ofG if and only if G can be obtained fromG′ by
contracting edges in a set of vertex-disjoint tree subgraphs without creating any parallel edges. Furthermore,
an expansionG′ of G is irreducible if and only if none of the vertices involved inthe contraction has degree
2. We note that the size of any irreducible expansion must be linear in the size of the original graph. Denote
by |V|0 the number of degree-0 vertices in a graphG= (V,E).

Proposition 2.2. Any irreducible expansion G′ = (V ′,E′) of G= (V,E) must have|V ′| ≤ 2|E|+ |V|0 and
|E′| ≤ 3|E|.

Proof. Let v∈V be a vertex split in creatingG′. Thend(v) ≥ 4, for otherwise a degree-2 vertex would be
created, contradicting to the assumption thatG′ is irreducible. Denote byT ′

v the tree subgraph ofG′ whose
internal vertices contract tov. Then the number of leaves ofT ′

v is preciselyd(v). SinceT ′
v does not have a

degree-2 vertex, it follows from a simple induction thatT ′
v has≤ d(v)−2 internal vertices and≤ d(v)−1

internal edges. Therefore,

|V ′| ≤ ∑
v∈V:d(v)≥4

(d(v)−2)+ ∑
v∈V:d(v)≤3

1≤ ∑
v∈V

d(v)+ |V|0 ≤ 2|E|+ |V|0,

and
|E′| ≤ |E|+ ∑

v∈V:d(v)≥4

(d(v)−1)≤ 3|E|.

⊓⊔
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In our construction of an expansion, we may introduce degree-2 vertices for the convenience of bounding
the treewidth. Such vertices can be removed easily at the endto obtain an irreducible expansion.

3 Main result and its proof

Theorem 3.1. There is a polynomial-time algorithm that, given a graph G= (V,E) and its tree decomposi-
tion of width w, computes a ternary expansion G′ = (V ′,E′) with w(G′) ≤ w+1. In particular, G admits a
ternary expansion whose treewidth is no more thanw(G)+1.

The construction ofG′ takes several stages: first we construct graphG1 with a tree decompositionT1

such that the subgraph ofG1 induced by each bag inT1 has maximum degree≤ 2. In the second stage, each
vertexv is split many times to replicate the structureTv, the tree formed by those bags containingv in T1.
Two vertex treesTu andTv for uv∈ E(G1) are then connected through a pair of vertices correspondingto the
same bag that containsu andv. In the last stage, each vertex is split many times to reduce the degree within
its vertex tree. We combined the last two stages in our following description of the construction.

Proof of Theorem 3.1.If w(G)≤ 1, thenG is a forest. Repeatedly splitting a vertex with degree≥ 4 with
2 supporting vertices will result in an expansionG′ = (V ′,E′) with ∆(G′)≤ 3, |V ′| ≤ |V|+ |E| = 2|V|−1,
and w(G′)≤ 1. Thus the Theorem holds. We now consider w(G)≥ 2.

=⇒

v

u

u

v
′

v

u

v

Figure 2: Inside a bag, vertexv of degree 3 is split with the support of a neighboru in the same bag. A new
neighboring bag is created, containingv, u, and the new vertexv′ from the splitting.

Stage 1: Reducing the maximum degree inside a bag.We sequentially scan the bags ofT and apply
the following operations. If a bagB contains a vertexv with d(v) ≥ 3, let u∈ B be a neighbor ofv, split v
with the support{u}. Denote the new vertex byv′. (This is equivalent to placingv′ at the edgeuv.) Create
a new bagB′ containing{u,v,v′} and attach it toB. This process extends theu-subtree and thev-subtree of
T by a leaf bagB′, and adds a trivialv′-subtree (B′), thus results in a tree decomposition. Since the new bag
has 3 vertices, and w(T )≥ 2, the width of the new tree decomposition remains the same. Figure 2 illustrates
the process of adding one bag.

Denote byG1 = (V1,E1) the resulting graph, and byT1 = (V1,E1) the resulting tree decomposition. Let
k≤ |E| be the number of splittings. We have

(3.a) The maximum degree of an induced subgraph ofG1 by vertices in a bag ofT1 is at most 2.

(3.b) w(T1) = w(T ).

Stage 2: Completing the construction.We now construct a graphG′ = (V ′,E′) from G1 and later show
that it is an expansion ofG1, thus an expansion ofG. Fix a total ordering� onV1. DefineV ′ ⊆V1×V1×V1

as follows
V ′ = {(v,B,B′) : (v∈ B∩B′)∧ (B= B′∨BB′ ∈ E1)}.

For eachv∈V1, let Tv be thev-subtree ofT1. There are three types of edges inG′.
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Figure 3: A graph and a tree decomposition that satisfies the condition in Stage 2 (of having≤ 2 induced
degree within each bag).

(3.i) Let B0 be a bag,v ∈ B0, andB1 ≺ B2 ≺ ·· · ≺ Bt are the neighbors ofB0 in Tv. An ordering edge
connects a vertex(v,B0,Bi) with (v,B0,Bi+1), 0≤ i ≤ t −1.

(3.ii) An intra-tree edgeconnects(v,B,B′) with (v,B′,B), whereB 6= B′, andBB′ ∈ E(Tv). In this case,
v∈ B∩B′.

(3.iii) An inter-tree edgeconnects(v,B,B) with (u,B,B), for u 6= v, uv⊆ E1. In this case,u,v∈ B.

The edge setE′ consists of all possible ordering and intra-tree edges, butonly one inter-tree edge for one
edge ofE1. Figures 3 and 5 illustrate the operations in Stage 2.

Stages 1 and Stage 2 take polynomial time. Using the following claims, we verify thatG′ satisfies the
properties in the Theorem. ⊓⊔

Claim 3.2. The graphG′ is an expansion ofG.

Proof. Contracting all ordering edges associated with an occurrence of v in a bagB0 combines all(v,B0)
into a single vertex associated with this occurrence. All those vertices are connected through intra-tree
edges, and this graph is preciselyTv. SinceTv andTu are connected through one inter-tree edge if and only
if uv∈ E, contracting the intra-tree edges (after contracting the ordering edges) givesG. Since no parallel
edges were created in the whole process,G′ must be an expansion ofG. ⊓⊔

Claim 3.3. The graphG′ satisfies∆(G′)≤ 3.

Proof. A vertex(u,B,B) is incident to at most one ordering edge, no intra-tree edge,and at most two inter-
tree edges. By Property (3.a), its degree≤ 3. A vertex(u,B,B′) with B 6= B′ is incident to at most two
ordering edges, at most one intra-tree edge (connecting(u,B′,B)), and no inter-tree edge. Therefore its
degree≤ 3, and∆(G′)≤ 3. ⊓⊔

Claim 3.4. The graphG′ satisfies w(G′)≤ w+1.

Proof. Our construction of a tree decompositionT ′ for G′ uses the following procedure. Suppose at some
stage we have constructed two bags represented as ordered sets A = {v1,v2, · · · ,vt}, B = {v′1,v

′
2, · · · ,v

′
t}.

Thenbridging the two bags involves the following steps:
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(Step 1) Create bagsB1, B2, · · · , Bt , where∀i,1≤ i ≤ t,

Bi = {v1,v2, · · · ,vi−1,vi ,v
′
i ,v

′
i+1, · · · ,v

′
t}.

(Step 2) ConnectA to B1, Bi to Bi+1, 1≤ i ≤ t −1, andBt to B.

We refer to the constructed path graph as thebridgebridgingA andB, and eachBi as a vertex in the bridge.
Note that for eachi, 1≤ i ≤ t, |Bi| ≤ t + 1, andvi or v′i appear together inBi. When we apply bridging,
vertices in the two bags will be ordered so that the pairvi andv′i take values(v,B1,B2) and(v,B′

1,B
′
2) in V ′

for some common underlyingv∈V1.
We now describe the construction ofT ′.

(Step 1) For each bagB0 ∈ V1, adjacent to bagsB1 ≺B2 ≺ ·· · ≺ Bt in T1, create bags(B0,Bi), ∀i, 0≤ i ≤ t.
For eachv∈ B0, let Bi1 ≺ Bi1 ≺ ·· · ≺ Biℓ be the neighbors ofB0 in Tv. Place(v,B0,B0) in (B0,B0)
(thus an inter-tree edge connecting(v,B0,B0) and(u,B0,B0) is contained in the bag(B0,B0)). For
all j, 1 ≤ j ≤ ℓ, place(v,B0,Bi j ) in (B0,Bi), ∀i, i j−1 < i ≤ i j , with i0 = 0. In particular, any
(v,B,B′) ∈V ′ is contained in(B,B′).

(Step 2) Bridge(B0,Bi) with (B0,Bi+1), 0≤ i ≤ t − 1. Thus the ordering edge connecting(v,B0,Bi) and
(v,B0,Bi+1) is contained in some vertex of this bridge.

(Step 3) IfBB′ ∈ E1, bridge(B,B′) and(B′,B). Thus an intra-tree edge connecting(v,B,B′) and(v,B′,B) is
contained in a vertex of this bridge.

Figure 6 shows part of the tree decompositions before the bridging operations for the ternary expansion
in Figure 5.

We have shown above that each edge is contained in some bag. Thus we need only to show that bags
containing a vertex must form a subtree. By construction, any vertex (v,B,B) is contained in a single
bag (B,B), which forms a tree. Let(v,B0,B) ∈ V ′ and B0 6= B. Suppose the neighbors ofB0 in T1 are
B1 ≺ B2 ≺ ·· · ≺ Bt , and those containingv areBi1 ≺ Bi2 ≺ ·· · ≺ Biℓ . Also, B= Bi j , for some j, 1≤ j ≤ ℓ,
and let j0 = i j−1+1 (with i0 = 0). Then(v,B0,B) is placed in(B0,B j0), (B0,B j0+1), · · · , (B0,Bi j ), as well
as all the vertices bridging them together. In addition,(v,B0,B) also appears in a connected subgraph of
the bridge bridging(B0,B) and(B,B0). Thus the bags containing(v,B0,B) form a path. This completes the
proof thatT ′ is a tree decomposition forG′.

Recall that(B,B) andB are of the same size, while fori 6= 0 |(B0,Bi)| ≤ |B|. Furthermore, the size of a
vertex in a bridge is at most 1+ the size of the end bag. Therefore, we conclude that w(T ′)≤ w(T1)+1=
w(T )+1= w+1. ⊓⊔

4 The treewidth bound in Theorem 3.1 is sharp

We now demonstrate a family of graphs of growing treewidth, for which any ternary expansion increases
treewidth by one.

Let Kn be the complete graph withn vertices (n-clique), andKn,n be the complete bipartite graph whose
two sets of vertices are denoted by{vi : i ∈ Zn} and{v′i : i ∈ Zn}. The graphK̄n,n is obtained fromKn,n by
deleting the edgesviv′i , i ∈ Zn. Recall that for a graph with 2n vertices, aperfect matchingis a subgraph
consisting ofn vertex-disjoint edges. We call two edgese1,e2 ∈ E engagedif there is an edgeuv∈ E such
thate1 ande2 are incident tou andv, respectively.
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Definition 4.1. Let G = (V,E) be a graph with|V| even. A perfect matchingM of G is called abramble
matchingif any two edges inM are engaged inG.

Since contracting edges in a bramble matching ofG= (V,E) producesK|V|/2, we immediately obtain

Proposition 4.2. If G = (V,E) admits a bramble matching then w(G)≥ |V|/2−1.

Proposition 4.3. For n≥ 3, w(K̄n,n) = n−1.

Proof. If n ≥ 3, i − 1 6= i + 1, for anyi ∈ Zn. Thus the edgesv′i−1vi andv′ivi+1 are connected by the edge
v′i−1vi+1. Therefore, the edges{viv′i+1 : i ∈ Zn} form a bramble matching. By Proposition 4.2, w(K̄n,n) ≥
n− 1. On the other hand, the following is a tree decomposition ofK̄n,n with width n− 1: a center bag
containing{vi : i ∈ Zn}, andn bagsBk, k∈ Zn, connected to it, whereBk includes{vi : i 6= k}∪{v′k}. Thus
w(K̄n,n) = n−1. ⊓⊔

Proposition 4.4. Let n≥ 19, and Gn be a ternary expansion of̄Kn,n. Thenw(Gn)≥ n.

Proof. For a vertexv∈V(K̄n,n), denote its expansion inGn by Tv (which is a tree). Contract all vertices in
Tvi andTv′i

for i 6= 0. According to the Tree-partitioning Lemma 5.1 in AppendixB, there must exist an edge
uv in Tv0 such that the number of leaves closer tou (than tov) is between(n−1)/3 and 2(n−1)/3. Contract
all edges other thanuw. Similarly, in Tv′0

, contract all edges except an edgeu′w′ having the same property
asuw. Denote the resulting graphG= (V,E). Then each of{u,w,u′,w′} is connected to≥ (n−1)/3 ≥ 6
neighbors from the rest ofV. Without loss of generality, assume that the following are edges ofG:

{uv′1,wv′2,uv′3,wv′4,u
′v5,w

′v6,u
′v7,w

′v8}.

u w v1 v2 v3 v4 v5 v6 v7 v8 v9 vn−1

v
′

9v
′

8v
′

7v
′

6v
′

5v
′

4v
′

3v
′

2v
′

1w
′

u
′

v
′

n−1

Figure 4: The solid lines form the bramble matchingM, defined in Equation 1.

We construct a brambling matchingM of n+1 edges as shown in Figure 4:M = M1∪M′
1∪M2, where

M1 = {uv′1,wv′2,u
′v5,w

′v6},

M′
1 = {v1v′3,v2v′4,v3v′7,v4v′8,v

′
5v7,v

′
6v8}, and,

M2 = {viv
′
i+1 : 9≤ i ≤ n−2}∪{v′9vn−1}. (1)

By direct inspection,M is a bramble matching. Therefore, w(K̄n,n)≥ n, by Proposition 4.2. ⊓⊔

5 Discussion

The main result of this paper is good news for many application domains and generally means that sparsi-
fication of instances does not adversely affect their intrinsic complexity, if performed carefully. Theorem
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3.1 shows that such an expansion does not need to increase thetreewidth by more than 1. For example,
extending CNF-SAT with equality clauses (which is trivially supported by most SAT solvers today), one can
reduce CNF-SAT to 3,3-SAT, where each clause has up to three literals and every variable participates in
at most clauses. Such a reduction could simplify the design and implementation of high-performance SAT
solvers, which have become a popular topic in the last 10 years, thanks to important applications in AI, VLSI
CAD, logistics, etc. In this special case, our graph-theoretical result is consistent with domain-specific work
in [14], which reduces SAT to 3-SAT in a different way, but mayalso increase treewidth by at most one.
Another application would be to optimize VLSI circuits for better layout by breaking down large AND, OR,
XOR gates into trees of smaller gates and applying fan-out optimization using buffer insertion (as outlined
in the Introduction).

The step-by-step description of our algorithm in the proof of Theorem 3.1 may seem daunting, but the
main insight behind this algorithm is rather simple — to expand a given vertex, one must replicate the tree
structure of a good tree decomposition around this vertex. We hope that the idea to reuse the local structure
of tree decompositions will find other uses as well. Perhaps,the most surprising part of our work is the
detailed analysis of how treewidth can change during the proposed construction — it can grow only by 1,
regardless of the parameters of the input graph, and sometimes cannot be preserved by any expansion.

An interesting direction to extend our main result is to avoid the reliance of our algorithm on a tree
decomposition. Perhaps, such an algorithm might also help in constructing a tree decomposition or deter-
mining the treewidth. It is also an interesting graph-theoretical problem to characterize the class of graphs
that admit ternary expansions of the same treewidth. Not containing the graphs in our example as a minor
appears to us a likely characterization.
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Appendix A: Tree-partitioning Lemma

Lemma 5.1. Consider a tree T with k≥ 3 leaves in which no vertex has degree greater than three. While
every tree-edge separates the tree into two connected components, for at least one edge each component
contains between k/3 and2k/3−1 leaves, inclusively.

Proof. We regardT as a tree rooted at a non-leaf vertexr. Note that each vertex, exceptr, has no more than
two children. For a vertexv of T, define the size ofv, s(v), to be the number of leaves of the subtree rooted
atv. Let v be the child ofr with the largest size among its siblings. Thens(v)≥ k/3. If s(v)< 2k/3, thenrv
satisfies the requirement. Otherwise, traverse down the tree following the edge that connects the child with
the larger size. Supposeuv is the edge so thatv is the first vertex encountered having< 2k/3 size. Since
s(u) ≥ 2k/3, ands(v) ≥ s(u)/2≥ k/3, uv satisfies the requirement. ⊓⊔

Appendix B: Figures

(A, 3, 0)

(A, 5, 5) (A, 6, 5)
(A, 6, 6)

(A, 1, 1)
(A, 1, 0)

(G, 1, 1)

(H2, 2, 2)
(K2, 3, 3)

(K3, 3, 3)

(E ′, 6, 6)

(E, 6, 6)
(E, 6, 5)(E, 5, 5)

(C, 5, 5)

(C, 0, 0)

(D, 4, 0)

(A, 0, 2)

(A, 0, 1)

(A, 0, 3)

(A, 3, 3)

(A, 5, 6)(A, 5, 0)

(K1, 3, 3)

(F, 4, 4)

(B, 0, 0)

(B, 0, 4)

(C, 0, 5)

(C, 5, 0)

(D, 4, 4)(A, 0, 0)

(A, 2, 0)(A, 2, 2)

(H3, 2, 2)

(H1, 2, 2)

(A, 0, 5) (B, 4, 0) (B, 4, 4)

(D, 0, 4)

(E, 5, 6)

(D, 0, 0)

Figure 5: The ternary expansion of the graph in Figure 3 afterthe steps in Stage 2. The straight solid lines
areorderingedges, the dashed lines areintra-treeedges, and the curves areinter-treeedges. The expansions
of vertexA, B, C, andD are drawn in separate positions at the upper part, and all theothers are at the lower
part.
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(A, 0, 0) (D, 0, 4)

(B, 0, 4)

(A, 0, 5)

(C, 0, 5)
(A, 0, 5)

(A, 0, 2)

(C, 5, 5)

(A, 5, 6)

(E, 5, 5)

(E, 5, 6)

(0, 0) (0, 4)

(5, 0)

(5, 5)

(B, 0, 0)
(C, 0, 0)

(D, 0, 0)

(A, 5, 5)

(C, 0, 5)
(0, 1)

(0, 2)

(C, 0, 5)

(A, 0, 1)

(B, 0, 4)

(C, 0, 5)
(D, 0, 4)

(B, 0, 4)
(C, 0, 5)

(D, 0, 4)
(D, 0, 4)

(A, 0, 3)

(B, 0, 4)

(0, 3)

(E, 5, 6)

(A, 5, 0)

(C, 5, 0)

(5, 6)

(0, 5)

Figure 6: Part of the final tree decomposition correspondingto the original Bags 0 and 5beforethe bridging
operations, which will create a sequence of new bag between bags separated by dash bars in the Figure. The
shaded vertices are the re-occurrences of a non-shaded (either black or white) vertices. The edges between
non-shaded vertices will be contained in some are containedin some bag. The bridging operations will
increase the treewidth by 1.
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