arXiv:0707.3622v1 [cs.DM] 24 Jul 2007

Constant-degree graph expansions that preserve treewidth

Igor Markov and Yaoyun Shi

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, M1 48109-2121, USA
E-mail: {imarkov,shiyy} @eecs.umich.edu

Abstract

Many hard algorithmic problems dealing with graphs, ciguiormulas and constraints admit polynomial-
time upper bounds if the underlying graph has small tredwifihe same problems often encourage reducing
the maximal degree of vertices to simplify theoretical angats or address practical concerns. Such degree
reduction can be performed through a sequence of splitbhgertices, resulting in aexpansionof the
original graph. We observe that the treewidth of a graph magease dramatically if the splittings are not
performed carefully. In this context we address the follmyvhatural question: is it possible to reduce the
maximum degree to a constant without substantially inéngeatbe treewidth?

Our work answers the above question affirmatively. We prinat &iny simple undirected gragh=
(V,E) admits an expansio®’ = (V',E’) with the maximum degre€ 3 and treewidttiG’) < treewidthG) +
1. Furthermore, such an expansion will have no more th&n-2|V| vertices and [E| edges; it can be
computed efficiently from a tree-decompositionGfWe also construct a family of examples for which the
increase by 1 in treewidth cannot be avoided.

Keywords: Treewidth, graph expansion, constant degree, ternaphgedgorithms

http://arxiv.org/abs/0707.3622v1

1 Introduction

Given a graphG, its treewidthw(G) is a combinatorial parameter that measures to what exteraphg
differs from a tree. It is defined in terms wée decompositionsvhich are tree-like drawings @ satisfying
certain constraints. The width of a specific tree decomjposiepresents the amount of clustering required
to subsume cycles so as to make the graph look like a tree, éBglisdefined as the smallest width over
all possible tree decompositions @f Formal definitions are given in Sectibh 2.

Since its introduction by several authors independentith&1980’s, the notion of treewidth has found
numerous applications in algorithm design. Many hard comoirial problems, such as Independent Set,
Vertex Cover, SAT and #SAT, admit algorithms whose runningetis poly(n) exp(w(G)), wheren is the
input size, ands is the underlying graph structure. Thus, whef@y¥= O(logn), such algorithms run in
polynomial time. For example, given a CIRCUIT-SAT instarstzen and a widthw tree decomposition of
the circuit graphG, thebucket eliminatioralgorithm [8]6] can be used to compute the number of satigfyi
assignments in time°® exp(w). Computing the optimal tree decomposition is NP-hard [1]t Brtunately
the well known algorithm by Robertson and Seymaour [11] cotepa tree decomposition of widB(w(G))
in time |G|°Y exp(w(G)). Making use of this algorithm, the bucket elimination aitfun for SAT achieves
the same complexity. In practice, reasonably good treerdpositions can be found by replacing the
Robertson-Seymour algorithm with heuristics, which reewa runtime bottleneck and allows the entire
algorithm to run fast on inputs of small treewidth, e.g.,hie tase of probabilistic inferendg [8]. The recent
survey by Bodlaender [2] outlines a number of other examples

In addition to treewidth, other graph parameters have adsm lineavily used in applications to estimate
and moderate complexity. A particular parameter focal iwlork is the maximum degre® G) of a graph.

It is often desirable to reduce the maximum degree of an igmagh through a sequence of vertex splittings
— a high-degree vertew is replaced by an edge connecting two new verticesdv, and each neighbor

of w is assigned to be a neighbor of eitheor v. Thus the original grapt = (V,E) is replaced by a graph

G = (V/,E’) that is called arexpansionof G. The expansion process can be iterated, after which each
vertexv € G is replaced by a tre®, in G/, and each original edgev € E corresponds to an edge ki that
connects a pair of leaves Ty andT,,.

Degree reduction arises in several unrelated algorithoritexts, motivated by conceptual simplification,
such as the reduction of SAT to 3-SAT, or application-speabncerns. For example, VLSI circuits use
gates with limited fan-in to facilitate placement and ragtin dense two-dimensional silicon wafers. Large
AND, OR and XOR gates frequently occur in high-level dedaips of digital logic but are routinely broken
down into trees of gates with bounded fan-in. Fan-out optition is performed because fan-outs with high
electrical capacitance lead to high circuit delay. Theysmié into trees using buffer (repeater) gates with
small fan-out. To this end, research from Intell[13] points that the number of buffers in VLSI circuits is
increasing with every technology generation and may ex&6étl of all gates in several years. To consider
fan-in and fan-out optimization of VLSI circuits in our gtapased framework, we represent each gate
by two vertices linked by an edge — one vertex connects alirfanand the other connects all fan-outs.
Performing degree minimization thus takes care of bothsase

A simple procedure (theymmetric expansigrtonstructs for a grap® an expansios’ with A(G') < 3,
but smallerA(G’) cannot be guaranteed in general. This procedure replachesvegexu € V with a path
graph containing one vertax, for each vertex adjacent tau in G, and replaces eaalv € E by the edge
connectingu, to u,. However, not all expansions are equally favorable. In VEBtuit optimization,
the choices of tree do not affect the circuit’'s functionalliut they may increase the treewidth which will
complicate placement and routing.

Treewidth also features prominently in computational dognd algorithms for constraint-satisfaction

problems. In particularlirectional resolutionintroduced by Davis and Putnam in 1960 for solving CNF-
SAT works particularly well on instances with low wid{h [4Ylore general constraint satisfaction problems
with limited treewidth admit polynomial-time algorithmerffinding and counting solutions][3| 5], and the
same applies to the evaluation of Bayesian netwadrks [6].réfbee, preserving treewidth is crucial when
transforming constraint systems, e.g., when converting 8/3-SAT. This particular problem is the focus
of [14], which proposes a specific transformation to geeBaSAT instances at most seven times larger,
whose treewidth is increased by at most one.

The considerations above lead to a natural question : iss$iple to reduce the maximum degree of
G through vertex splitting without substantially increagithe treewidth ofG? While treewidth cannot
decrease during expansion, a simple example in Figurestriites that treewidth may dramatically increase
after a symmetric expansion.

6 . « e .
e o0 60 060

) © (d)

Figure 1. The graph in (a) has treewidth 2, and has a terngrgreston (b) of the same treewidth. A
symmetric expansion, shown in (c), however, contains amiibr (d). Thus (c) has treewidth at least 4
and, if scaled, can reach an arbitrary treewidth.

Let us call a grapl6 ternaryif A(G) < 3. Note that the maximum degree of a ternary graph cannot be
further reduced by expansion. Our main result gives an atikm answer to the above question: we prove
that any graptG = (V,E) admits a ternary expansion with treewidthw(G) + 1. We give a polynomial-
time algorithm to compute such an expansion from an optireal dlecomposition db. In general, given a
tree decomposition of widtv, the output of the algorithm is a ternary expansion with widtw+ 1. Thus,
combined with the Robertson-Seymour algorithm, our athorioutputs a ternary expansi@i of G with
width O(w(G)) in time |G| exp(O(w(G))). Finally, we construct a family of grapt@, such that any
ternary expansiofs;, of G, must have WG') = w(G) + 1. Thus our algorithm achieves the generally possible
minimum treewidth. Its additional applications includeaatificoming work on quantum circuits where it
helps to establish an efficient classical algorithm for $ating a broad class of quantum computatians [9].

The remaining part of the paper is structured as follows. &véew the notions of tree decomposition
and treewidth in Sectidd 2, then prove our main result inie@. Sectio ¥4 shows that our result cannot
be improved, and final remarks are given in Sedtion 5.

2 Definitions

Let G = (V,E) be an undirected simple graph. For a venexV, we denote the set of its adjacent vertices
(neighbors) byN(v). Furtherd(v) = [N(v)|, andA(G) = max.ecy d(Vv).

Let G be a graph. Following definitions in [10],teee decompositionf G is a treeT, together with a
function that maps each tree vert@xo a subseB,, C V(G) . These subseB,, are calledbagsand can be
used as vertex labels. In addition, the following condgiomust hold.

3

(T1) Uvev(r)Bv= V(G), i.e., each vertex must appear in some bag (and may appeaitiplsmbags).

(T2) V{u,v} €e E(G), Iwe V(T), {u,v} C By, i.e., for each edge, there must be a bag containing both of
its end vertices.

(T3) YV ueV(G), the set of verticesv € V(7) with u € B,, form a connected subtrek, i.e., all bags
containing a given vertex must be connected’in

Thewidthof a tree decompositioff, denoted by W7'), is defined by max.y (7 [Bw| — 1. For graplg, its
treewidth wW(G) is the minimum width of tree decompositions ®f While NP-hard to compute in general,
w(G) is known for common classes of graphs [7] — a non-empty treetfe@width 1, then x n grid has
treewidthn, and a parallel serial graph has treewidt®. Figurd 3 shows an example of a graph of treewidth
3 and its tree decomposition of the same width.

A key motivation for the study of treewidth is the study of ginaminors. LeiG = (V,E) be a graph. The
contractionof an edgauv € E is the following operation ofs: removeu andv (and all incident edges), and
connect all neighbors af andv to a new vertexv. A graphG' is a minor ofG if G’ can be obtained from
a sequence of edge contractions on a subgrah éh this case, a tree decomposition féralso induces
a tree decomposition fd®’ of equal or smaller width. Usually (') < w(G), in particular, contracting all
edges ofG will reduceG to an empty graph, which has treewidth 0.

The process aéplitting studied in our work can be viewed as inverse to contraction.

Definition 2.1. Let G = (V,E) be a graph. Theplitting of v € V with the supporSC N(v) is the following
transformation ofG: introduce a new vertex, connectv to v, for anys € S, disconnect it fromv and
connect it tov. A graphG' is called arexpansiorof G if there exists a sequence of splittings that transform
Gto G/, and is said to bareducibleif no degree-2 vertex is created in the splittingsA(f3') < 3, we calll

G’ aternaryexpansion ofs.

It follows immediately from the definition of splitting a wex v that contracting the edge/ results in
the original graph. Thus i’ is an expansion o, thenG is a minor ofG/, but notvice versain general.
It also follows from the definition tha®’ is an expansion of if and only if G can be obtained fror®’ by
contracting edges in a set of vertex-disjoint tree subggaythout creating any parallel edges. Furthermore,
an expansioi®’ of G is irreducible if and only if none of the vertices involvedtire contraction has degree
2. We note that the size of any irreducible expansion mushieai in the size of the original graph. Denote
by |V|o the number of degree-0 vertices in a gr&pk- (V,E).

Proposition 2.2. Any irreducible expansion 'G= (V/,E’) of G= (V,E) must havgV’| < 2|E|+ |V|o and
[E'] < 3[E].

Proof. Letv € V be a vertex split in creatinG’. Thend(v) > 4, for otherwise a degree-2 vertex would be
created, contradicting to the assumption Bats irreducible. Denote by, the tree subgraph @' whose
internal vertices contract t@a Then the number of leaves @f is preciselyd(v). SinceT, does not have a
degree-2 vertex, it follows from a simple induction tigthas< d(v) — 2 internal vertices anet d(v) — 1
internal edges. Therefore,

Vi S @v-2+ F 1< 3 dW)+ Vo< 2El+ Vo
veV:d(v)>4 veV:d(v)<3 ve
and
ET<[E[+ Y (d(v)-1)<3E|
veV:d(v)>4

In our construction of an expansion, we may introduce degreertices for the convenience of bounding
the treewidth. Such vertices can be removed easily at théoeiotain an irreducible expansion.

3 Main result and its proof

Theorem 3.1. There is a polynomial-time algorithm that, given a graph=GV, E) and its tree decomposi-
tion of width w, computes a ternary expansioh=6(V’, E’) with w(G') < w+ 1. In particular, G admits a
ternary expansion whose treewidth is no more thd®) + 1.

The construction of5’ takes several stages: first we construct gr&phwith a tree decomposition;
such that the subgraph & induced by each bag iy has maximum degre€ 2. In the second stage, each
vertexv is split many times to replicate the structulig the tree formed by those bags containinig 7.
Two vertex treed, andT, for uv e E(G;) are then connected through a pair of vertices corresporiditite
same bag that containsandv. In the last stage, each vertex is split many times to redueeé¢gree within
its vertex tree. We combined the last two stages in our fotigudescription of the construction.

Proof of Theoremh 311.If w(G) < 1, thenG is a forest. Repeatedly splitting a vertex with degreé with
2 supporting vertices will result in an expansiéh= (V’,E’) with A(G') < 3, |V/| < V| +|E| = 2|V| -1,
and WG') < 1. Thus the Theorem holds. We now considé¢By> 2.

a

Figure 2: Inside a bag, vertexof degree 3 is split with the support of a neighlban the same bag. A new
neighboring bag is created, containingi, and the new vertex from the splitting.

Stage 1: Reducing the maximum degree inside a ba§Ve sequentially scan the bags‘bfand apply
the following operations. If a baB contains a vertex with d(v) > 3, letu € B be a neighbor of, split v
with the support{u}. Denote the new vertex by. (This is equivalent to placing at the edgeiv.) Create
a new bad®’ containing{u,Vv,v } and attach it t@. This process extends thiesubtree and the-subtree of
T by a leaf bad®’, and adds a triviaV'-subtree B'), thus results in a tree decomposition. Since the new bag
has 3 vertices, and@W) > 2, the width of the new tree decomposition remains the saimgeréf2 illustrates
the process of adding one bag.
Denote byG; = (V1,E;) the resulting graph, and by, = (74, ;) the resulting tree decomposition. Let
k < |E| be the number of splittings. We have

(3.a) The maximum degree of an induced subgrapB:ddy vertices in a bag of; is at most 2.
(3.b) W(T3) = w(T).

Stage 2: Completing the construction We now construct a grap®’ = (V’,E’) from G; and later show
that it is an expansion @, thus an expansion @. Fix a total ordering< on 7. DefineV' CV; x V) x ¥}
as follows

V' ={(vB,B): (ve BNB)A(B=B' VBB € %)}.

For eachv € V4, let T, be thev-subtree of7;. There are three types of edgesdh

Figure 3. A graph and a tree decomposition that satisfiesdhdition in Stage 2 (of having 2 induced
degree within each bag).

(3.) LetBg be a bagy € By, andB; < B, < --- < B are the neighbors dy in T,. An ordering edge
connects a vertefy, By, B;) with (v,Bp,Bj1), 0<i <t—1.

(3.ii) An intra-tree edgeconnects(v,B,B’) with (v,B’,B), whereB £ B’, andBB' € E(T,). In this case,
ve BNB.

(3.ii)) An inter-tree edgeonnectdv, B, B) with (u,B,B), for u# v, uvC E;. In this casey,v € B.

The edge seE’ consists of all possible ordering and intra-tree edgesphlyt one inter-tree edge for one
edge ofE;. Figured B anfl5 illustrate the operations in Stage 2.

Stages 1 and Stage 2 take polynomial time. Using the follgwiaims, we verify thaG’ satisfies the
properties in the Theorem. O

Claim3.2 The graphG' is an expansion db.

Proof. Contracting all ordering edges associated with an occoererfiv in a bagBy combines all(v, Bp)

into a single vertex associated with this occurrence. Adisthvertices are connected through intra-tree
edges, and this graph is precis@ly SinceT, andT, are connected through one inter-tree edge if and only
if uv e E, contracting the intra-tree edges (after contracting tidering edges) give&. Since no parallel
edges were created in the whole proc&anust be an expansion &. O

Claim 3.3 The graphG’ satisfiesA(G') < 3.

Proof. A vertex(u,B,B) is incident to at most one ordering edge, no intra-tree ealge at most two inter-
tree edges. By Property (8.a), its degree3. A vertex(u,B,B’) with B # B’ is incident to at most two
ordering edges, at most one intra-tree edge (conne¢tirg, B)), and no inter-tree edge. Therefore its
degree< 3, andA(G') < 3. O

Claim 3.4. The graphG' satisfies WG') <w+ 1.

Proof. Our construction of a tree decompositidr for G’ uses the following procedure. Suppose at some
stage we have constructed two bags represented as ordésedl=svy, Vo, -+, }, B={V},V,,--- ,V{}.
Thenbridging the two bags involves the following steps:

(Step 1) Create bad®, By, ---, By, wherevi, 1 <i <t,

Bi = {V1>V27"' >Viflavi>\/i>\/i+lv"' 7\/t}

(Step 2) ConnecAtoBq, BjtoBj.1, 1<i<t—1, andB; toB.

We refer to the constructed path graph aslihidge bridging A andB, and eactB; as a vertex in the bridge.
Note that for each, 1 <i <t, |Bj| <t+1, andv; or V| appear together iB;. When we apply bridging,
vertices in the two bags will be ordered so that the gaamdV, take valuegv,B1,By) and(v,B/,B5) in V'
for some common underlyinge V;.

We now describe the construction ‘Bf.

(Step 1) For each ba € 14, adjacent to bagB; < B, < --- < By in ‘I, create bagéBy, B;), Vi, 0 <i <t.
For eachv € By, letB;, < Bj, < --- < Bj, be the neighbors d8y in Ty. Place(v, By, Bo) in (B, Bo)
(thus an inter-tree edge connectifwByp, By) and(u, By, Bp) is contained in the ba@Bo, Bp)). For
all j, 1< j<¢, place(v, Bo,Bi;) in (Bo,Bi), Vi, ij—1 <i <ij, with ig = 0. In particular, any
(v,B,B’) € V' is contained in(B,B').

(Step 2) Bridge(Bo, Bi) with (Bg,Bj;1), 0 <i <t—1. Thus the ordering edge connectifigBy, B;) and
(v,Bo,Bi1) is contained in some vertex of this bridge.

(Step 3) IfBB € 4, bridge(B,B') and(B',B). Thus an intra-tree edge connectiwgB,B’) and(v,B’,B) is
contained in a vertex of this bridge.

Figure[® shows part of the tree decompositions before thlgjimg operations for the ternary expansion
in Figure[5.

We have shown above that each edge is contained in some bag.wEhneed only to show that bags
containing a vertex must form a subtree. By constructiory, \&rtex (v,B,B) is contained in a single
bag (B, B), which forms a tree. Letv,Byp,B) € V' andBy # B. Suppose the neighbors Bj in ‘7; are
B1 < B2 < -+ < B, and those containingareB;, < B, < --- < Bj,. Also,B= B, for somej, 1< j </,
and letjo =ij_1 +1 (with io = 0). Then(v,Bo,B) is placed in(Bo, Bj,), (Bo,Bj,+1), -, (Bo,Bj;), as well
as all the vertices bridging them together. In additionBy,B) also appears in a connected subgraph of
the bridge bridging By, B) and(B,Bg). Thus the bags containing, By, B) form a path. This completes the
proof that7” is a tree decomposition fd@®'.

Recall that(B,B) andB are of the same size, while foe£ 0 |(Bo, B;)| < |B|. Furthermore, the size of a
vertex in a bridge is at most{lthe size of the end bag. Therefore, we conclude tHat'w< w(‘7;) +1=
w(7Z)+1=w+1. O

4 The treewidth bound in Theorem[3.1 is sharp

We now demonstrate a family of graphs of growing treewiddn,which any ternary expansion increases
treewidth by one.

Let K, be the complete graph withvertices (-clique), andK,, be the complete bipartite graph whose
two sets of vertices are denoted py : i € Z,} and{V :i € Zn}. The graptK, is obtained fronKp by
deleting the edgesV,, i € Z,. Recall that for a graph withr2vertices, gperfect matchings a subgraph
consisting ofn vertex-disjoint edges. We call two edgese, € E engagedf there is an edgev € E such
thate; ande, are incident tas andv, respectively.

Definition 4.1. Let G = (V,E) be a graph witHV| even. A perfect matchiny! of G is called abramble
matchingif any two edges irM are engaged if.

Since contracting edges in a bramble matchinGef (V,E) producey,», we immediately obtain
Proposition 4.2. If G = (V,E) admits a bramble matching then @) > [V|/2— 1.
Proposition 4.3. For n > 3, w(Kp) = n— 1.

Proof. If n>3,i—1#i+1, for anyi € Z,. Thus the edgeg_,v; andV(vi,; are connected by the edge
Vi_,Viy1. Therefore, the edgel/Vvi, , :i € Zy} form a bramble matching. By Propositibn 4.2(Kuy) >
n— 1. On the other hand, the following is a tree decompositiof,gf with width n— 1: a center bag
containing{V; : i € Zn}, andn bagsBy, k € Z,, connected to it, wherBy includes{v; : i # k} U {v,}. Thus

W(Kn’n) =NnN— 1 I:l
Proposition 4.4. Let n> 19, and G, be a ternary expansion dfn’n. Thenw(Gp) > n.

Proof. For a vertexv € V(K_mn), denote its expansion i@, by T, (which is a tree). Contract all vertices in
Ty, andTy, for i # 0. According to the Tree-partitioning Lemmalb.1 in AppenBixhere must exist an edge
uvin Ty, such that the number of leaves closeu{ghan tov) is betweer{n—1)/3 and Zn— 1) /3. Contract
all edges other thaaw. Similarly, in Ty,, contract all edges except an edge’ having the same property
asuw. Denote the resulting grapgh = (V,E). Then each ofu,w,u’,w'} is connected to> (n—1)/3 > 6
neighbors from the rest &f. Without loss of generality, assume that the following atges ofG:

/ /
{UV;, W5, UV;, WV, U' Vs, WVg, U'V7, WVg }.

/ / / / / !/ / / / / / /
u w U1 (%] V3 (1 (% Vg (%4 Vg Vg Up—1

Figure 4: The solid lines form the bramble matchMgdefined in Equatiohl 1.
We construct a brambling matchimg of n+ 1 edges as shown in Figurk Kt = M1 UMj UMy, where

My = {uv,w\,,uvs,Wvs},
MZ/I. = {Vl\/37 VZ\/47 V3\/7> V4\/87 \/5V7> \/6\/8}7 anda
My = {vivi;;:9<i<n—2}U{VyVh_1}. (1)

By direct inspectionM is a bramble matching. Therefore(Kg,) > n, by Propositio_4]2. O

5 Discussion

The main result of this paper is good news for many applicatiomains and generally means that sparsi-
fication of instances does not adversely affect their isiticomplexity, if performed carefully. Theorem

8

3.1 shows that such an expansion does not need to increageehédth by more than 1. For example,
extending CNF-SAT with equality clauses (which is triadlupported by most SAT solvers today), one can
reduce CNF-SAT to 3,3-SAT, where each clause has up to thiezal$ and every variable participates in
at most clauses. Such a reduction could simplify the desighiraplementation of high-performance SAT
solvers, which have become a popular topic in the last 1Gsy#@ainks to important applications in Al, VLSI
CAD, logistics, etc. In this special case, our graph-thécmkresult is consistent with domain-specific work
in [14], which reduces SAT to 3-SAT in a different way, but nmelgo increase treewidth by at most one.
Another application would be to optimize VLSI circuits foetber layout by breaking down large AND, OR,
XOR gates into trees of smaller gates and applying fan-otiinagation using buffer insertion (as outlined
in the Introduction).

The step-by-step description of our algorithm in the praoTlbeorem 3.1 may seem daunting, but the
main insight behind this algorithm is rather simple — to engba given vertex, one must replicate the tree
structure of a good tree decomposition around this vertexh@ype that the idea to reuse the local structure
of tree decompositions will find other uses as well. Perh#psmost surprising part of our work is the
detailed analysis of how treewidth can change during thegeed construction — it can grow only by 1,
regardless of the parameters of the input graph, and soe®tannot be preserved by any expansion.

An interesting direction to extend our main result is to dvtie reliance of our algorithm on a tree
decomposition. Perhaps, such an algorithm might also netpmstructing a tree decomposition or deter-
mining the treewidth. It is also an interesting graph-tle¢ioal problem to characterize the class of graphs
that admit ternary expansions of the same treewidth. Ndiaung the graphs in our example as a minor
appears to us a likely characterization.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Comptgxaf finding embeddings in ktree. SIAM
J. Algebraic Discrete Method$8(2):277—-284, 1987.

[2] H. L. Bodlaender. Treewidth: Characterizations, aggions, and computations. Technical Report
UU-CS-2006-041, Institute of Information and ComputingeBces, Utrecht University, 2006.

[3] R. Dechter and J. Pearl, Network-based Heuristics fongraint-Satisfaction ProblemsArtificial
Intelligence 34(1):1-38, 1987.

[4] R. Dechter and I. Rish, Directional Resolution: The BalRutnam Procedure Revisitedroc. Princi-
ples of Knowledge Representation and Reasoning,(KBj-145, 1994.

[5] R. Dechter, K. Kask, E. Bin, and R. Emek Generating Ran@wiutions for Constraint-Satisfaction
ProblemsProc. AAAI/IAAI1L5-21, 2002.

[6] R. Dechter. Bucket elimination: a unifying frameworkr fieasoning. Artificial Intelligence 113(1-
2):41-85, 1999.

[7] R. Diestel.Graph theoryvolume 173 ofGraduate Texts in MathematicSpringer-Verlag, Berlin, third
edition, 2005.

[8] S. L. Lauritzen and D. J. Spiegelhalter. Local compuwotadi with probabilities on graphical structures
and their application to expert systendsRoy. Statist. Soc. Ser, B0(2):157-224, 1988.

[9] I. Markov and Y. Shi. Simulating quantum computation lpntracting tensor networks. To appear in
SIAM Journal on Computin@007.

[10] N. Robertson and P. D. Seymour. Graph minors. Ill. Rlaree-width. J. Combin. Theory Ser.,B
36(1):49-64, 1984.

[11] N. Robertson and P. D. Seymour. Graph minors. X. Obstms to tree-decomposition]. Combin.
Theory Ser. B52(2):153-190, 1991.

[12] R. Seidel. A new method for solving constraint satistat problems. Innternational Joint Confer-
ence on Atrtificial Intelligence (IJCAI-81338—-342, 1981.

[13] P. Saxena, N. Menezes, P. Cocchini and D.A. KirkpatriBepeater scaling and its impact on CAD.
IEEE Trans. on Computer-Aided Design of Integrated Cig@B(4):451-463, 2004.

[14] Y. Zabiyaka and A. Darwiche, On tractability and hypeet width, Technical ReporD-150, UCLA
Computer Science, 2007.

10

Appendix A: Tree-partitioning Lemma

Lemma 5.1. Consider a tree T with k 3 leaves in which no vertex has degree greater than three.aVhil
every tree-edge separates the tree into two connected cwnfx) for at least one edge each component
contains between/8 and2k/3 — 1 leaves, inclusively.

Proof. We regardl as a tree rooted at a non-leaf vertexNote that each vertex, excapthas no more than
two children. For a vertex of T, define the size of, s(v), to be the number of leaves of the subtree rooted
atv. Letv be the child ofr with the largest size among its siblings. Tren) > k/3. If s(v) < 2k/3, thenrv
satisfies the requirement. Otherwise, traverse down tleddilwing the edge that connects the child with
the larger size. Suppos# is the edge so thatis the first vertex encountered havirg2k/3 size. Since
s(u) > 2k/3, ands(v) > s(u)/2 > k/3, uv satisfies the requirement. 0

Appendix B: Figures

(A, 5, 5) (A,6,5) (C,5,5)

(4.1.1) (45,0385
0 (A,l, f

AOl
A02

&
S
(K1,3,3) ¥k, 3,3)

(H2727 2)
Figure 5: The ternary expansion of the graph in Fidgure 3 #fteisteps in Stage 2. The straight solid lines
areorderingedges, the dashed lines amra-tree edges, and the curves anger-treeedges. The expansions
of vertexA, B, C, andD are drawn in separate positions at the upper part, and afitbiees are at the lower
part.

11

Figure 6: Part of the final tree decomposition corresponthirtfe original Bags 0 andBeforethe bridging
operations, which will create a sequence of new bag betwags feparated by dash bars in the Figure. The
shaded vertices are the re-occurrences of a non-shadeer (eliack or white) vertices. The edges between
non-shaded vertices will be contained in some are contamedme bag. The bridging operations will
increase the treewidth by 1.

12

	Introduction
	Definitions
	Main result and its proof
	The treewidth bound in Theorem ?? is sharp
	Discussion

