Skip to main content
Log in

New Approximation Algorithms for Minimum Cycle Bases of Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over \(\mathbb{F}_{2}\) generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G.

Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications.

We present two new algorithms to compute an approximate minimum cycle basis. For any integer k≥1, we give (2k−1)-approximation algorithms with expected running time O(kmn 1+2/k+mn (1+1/k)(ω−1)) and deterministic running time O(n 3+2/k), respectively. Here ω is the best exponent of matrix multiplication. It is presently known that ω<2.376. Both algorithms are o(m ω) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Θ(m ω) bound.

We also present a 2-approximation algorithm with expected running time \(O(m^{\omega}\sqrt{n\log n})\) , a linear time 2-approximation algorithm for planar graphs and an O(n 3) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1997)

    Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected o(n 2) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  4. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs. Algorithmica 40(1), 51–62 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Callahan, P., Kosaraju, R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential field. J. ACM 42(1), 67–90 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method. Proc. R. Soc. Lond. Ser. A 350, 61–70 (1976)

    Article  MATH  Google Scholar 

  7. Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press/McGraw-Hill, Cambridge (1989)

    Google Scholar 

  9. Kreisbasenbibliothek CyBaL: http://www-m9.ma.tum.de/dm/cycles/cybal (2004)

  10. de Pina, J.C.: Applications of shortest path methods. PhD thesis, University of Amsterdam, The Netherlands (1995)

  11. Gleiss, P.M.: Short cycles, minimum cycle bases of graphs from chemistry and biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der Universität Wien (2001)

  12. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: 8th Scandinavian Workshop on Algorithm Theory (2002)

  13. Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for minimum cycle basis in directed graphs. In: ICALP 2006, 33rd International Colloquium on Automata, Languages and Programming. LNCS, vol. 4051, pp. 250–261. Springer, Berlin (2006)

    Chapter  Google Scholar 

  14. Hartvigsen, D., Mardon, R.: The all-pairs min cut problem and the minimum cycle basis problem on planar graphs. J. Discrete Math. 7(3), 403–418 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21, 549–568 (1974)

    MATH  MathSciNet  Google Scholar 

  16. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM J. Comput. 16, 359–366 (1987)

    Article  MathSciNet  Google Scholar 

  17. Huber, M.: Implementation of algorithms for sparse cycle bases of graphs. Technical report, Technische Universität München (2002). http://www-m9.ma.tum.de/dm/cycles/mhuber

  18. Kavitha, T.: An \(\tilde{O}(m^{2}n)\) randomized algorithm to compute a minimum cycle basis of a directed graph. In: Proceedings of ICALP. LNCS, vol. 3580, pp. 273–284. Springer, Berlin (2005)

    Google Scholar 

  19. Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle basis in directed graphs. Theory Comput. Syst. 40(4), 485–505 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for minimum cycle bases of graphs. In: STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 4393, pp. 512–523. Springer, Berlin (2007)

    Google Scholar 

  21. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: An \(\tilde{O}(m^{2}n)\) algorithm for minimum cycle basis of graphs. Algorithmica (2007). doi:10.1007/s00453-007-9064-z

    Google Scholar 

  22. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Leydold, J., Stadler, P.F.: Minimal cycle bases of outerplanar graphs. Electron. J. Combin. 5, 1–14 (1998)

    MathSciNet  Google Scholar 

  24. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed graph. Inf. Process. Lett. 94(3), 107–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Appl. Math. 155(3), 337–355 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. J. Exp. Algorithmics 11, 1–14 (2006)

    MathSciNet  Google Scholar 

  27. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica (2007). doi:10.1007/s00453-007-9112-8

    Google Scholar 

  28. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proceedings of the 32nd International Colloquium in Automata, Languages and Programming. LNCS, vol. 3580, pp. 261–272. Springer, Berlin (2005)

    Chapter  Google Scholar 

  29. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs. Usp. Mat. Nauk 19, 171–175 (1964)

    MATH  MathSciNet  Google Scholar 

  30. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. Wiley, New York (1981)

    MATH  Google Scholar 

  31. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)

    Article  Google Scholar 

  32. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architecture, pp. 1–10 (2001)

  33. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Michail.

Additional information

A preliminary version of this paper appeared in the 24th International Symposium on Theoretical Aspects of Computer Science [20].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, T., Mehlhorn, K. & Michail, D. New Approximation Algorithms for Minimum Cycle Bases of Graphs. Algorithmica 59, 471–488 (2011). https://doi.org/10.1007/s00453-009-9313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9313-4

Keywords

Navigation