
ar
X

iv
:0

81
1.

37
23

v1
 [

cs
.D

S]
 2

3
N

ov
 2

00
8

Tight Approximation Ratio of a General Greedy Splitting

Algorithm for the Minimum k-Way Cut Problem

Mingyu Xiao Leizhen Cai Andrew C. Yao

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Hong Kong SAR, CHINA

Email: myxiao(lcai)@cse.cuhk.edu.hk, andrewcyao@tsinghua.edu.cn

Abstract

For an edge-weighted connected undirected graph, the minimum k-way
cut problem is to find a subset of edges of minimum total weight whose
removal separates the graph into k connected components. The problem is
NP-hard when k is part of the input and W[1]-hard when k is taken as a
parameter.

A simple algorithm for approximating a minimum k-way cut is to iter-
atively increase the number of components of the graph by h − 1, where
2 ≤ h ≤ k, until the graph has k components. The approximation ratio of
this algorithm is known for h ≤ 3 but is open for h ≥ 4.

In this paper, we consider a general algorithm that iteratively increases
the number of components of the graph by hi−1, where h1 ≤ h2 ≤ · · · ≤ hq

and
∑q

i=1
(hi − 1) = k − 1. We prove that the approximation ratio of this

general algorithm is 2− (
∑q

i=1

(
hi

2

)
)/
(
k

2

)
, which is tight. Our result implies

that the approximation ratio of the simple algorithm is 2− h/k+O(h2/k2)
in general and 2− h/k if k − 1 is a multiple of h− 1.

Key words approximation algorithm, k-way cut, k-way split.

1

http://arxiv.org/abs/0811.3723v1

Approximation ratio for k-way cuts 2

1 Introduction

Let G = (V,E;w) a connected undirected graph with n vertices and m edges,
where each edge e has a positive weight w(e), and k a positive integer. A k-way
cut of G is a subset of edges whose removal separates the graph into k connected
components, and the minimum k-way cut problem is to find a k-way cut of
minimum total weight. We note that k-way cuts are also referred to as k-cuts or
multi-component cuts in the literature.

The minimum k-way cut problem is a natural generalization of the classical
minimum cut problem and has been very well studied in the literature. Gold-
schmidt and Hochbaum [1] proved that the minimum k-way cut problem is NP-
hard when k is part of the input and gave an O(n(1/2−o(1))k2) algorithm. Kamidoi

et al. [2] presented an O(n4k/(1−1.71/
√
k)−31) algorithm, and Xiao [3] presented an

O(n4k−log k) algorithm. These three algorithms are based on a divide-and-conquer
method. Karger and Stein [4] proposed a randomized algorithm that runs in
O(n2k−2 log3 n) expected time. Recently, Thorup [5] obtained an O(n2k log n)
algorithm via tree packing. On the other hand, Downey et al. [6] showed that
the problem is W[1]-hard when k is taken as a parameter, which indicates that
it is very unlikely to solve the problem in f(k)nO(1) time for any function f(k).
We also note that faster algorithms are available for small k. Nagamochi and
Ibaraki [7], and Hao and Orlin [8] solved the minimum 2-way cut problem (i.e.,
the minimum cut problem) in O(mn + n2 log n) and O(mn log(n2/m)) time re-
spectively. Burlet and Goldschmidt [9] solved the minimum 3-way cut problem
in Õ(mn3) time, Nagamochi and Ibaraki [10] gave Õ(mnk) algorithms for k ≤ 4,
and Nagamochi et al. [11] extended this result for k ≤ 6. Furthermore, Levine [12]
obtained O(mnk−2 log3 n) randomized algorithms for k ≤ 6.

In terms of approximation algorithms, Saran and Vazirani [13] gave two simple
algorithms of approximation ratio 2 − 2/k. Naor and Rabani [14] obtained an
integer program formulation of this problem with integrality gap 2, and Ravi and
Sinha [15] also derived a 2-approximation algorithm via the network strength
method.

A simple algorithm [13] for approximating a minimum k-way cut is to itera-
tively increase the number of components of the graph by h−1, where 2 ≤ h ≤ k,
until the graph has k components. This algorithm has an approximation ratio of
2− 2/k for h = 2 [13], and Kapoor [16] claimed that it achieves ratio 2−α(h, k)
for h ≥ 3, where α(h, k) = h/k− (h− 2)/k2 +O(h/k3). Unfortunately, his proof
for h ≥ 3 is incomplete. Later, Zhao et al. [17] established Kapoor’s claim for
h = 3: the ratio is 2−3/k for odd k and 2−(3k−4)/(k2−k) for even k. However,
for h ≥ 4, it seems quite difficult to analyze the performance of this algorithm
and it has been an open problem whether we get a better approximation ratio
with this approach.

In this paper, we consider a general algorithm that iteratively increases the
number of components of the graph by hi − 1, where h1 ≤ h2 ≤ · · · ≤ hq and∑q

i=1(hi − 1) = k − 1. We prove that the approximation ratio of this general

Approximation ratio for k-way cuts 3

algorithm is 2 − (
∑q

i=1

(hi

2

)
)/
(k
2

)
, which is tight. Our result implies that the

approximation ratio of the simple algorithm is 2−h/k+O(h2/k2) in general and
2− h/k if k− 1 is a multiple of h− 1, which settles the open problem mentioned
earlier in the affirmative.

The rest of the paper is organized as follows. In Section 2, we formalize
our general greedy splitting algorithms and present our main results on their
approximation ratios. We prove our main results in Section 3 while the proof of
a purely analytical lemma is given in Section 4, and conclude with some remarks
in Section 5.

2 Algorithms and main results

In this section, we formalize our greedy splitting algorithms and present our
main results on their approximation ratios. We note that Zhao et al. [18, 19]
have studied such algorithms for general multiway cut and partition problems.
First we extend the notion of k-way cuts to disconnected graphs. A k-way split of
a graph is a subset of edges whose removal increases the number of components
by k− 1. Therefore for a connected graph, a k-way split is equivalent to a k-way
cut. We note that the time for finding a minimum k-way split in a general graph
is the same as finding a k-way cut [17].

One general approach for finding a light k-way cut is to find minimum hi-way
splits successively for a given sequence (h1, h2, · · · , hq).

Algorithm iterative-split(G, k, (h1, h2, · · · , hq))

Input: Connected graph G = (V,E;w), integer k and sequence (h1, h2, · · · , hq)
of integers satisfying 2 ≤ h1 ≤ h2 ≤ · · · ≤ hq and

∑q
i=1(hi − 1) = k − 1.

Output: A k-way cut of G.

1. For i := 1 to q find a minimum hi-way split Ci of G and let G← G− Ci.

2. Return
⋃q

i=0 Ci as a k-way cut.

A special case of the above algorithm is when all hi’s in the integer sequence,
with the possible exception of the first one, are equal. The following gives a
precise description of this special case.

Algorithm iterative-h-split(G, k, h)

Input: Connected graph G = (V,E;w), integers k and h.

Output: A k-way cut of G.

1. Let p = ⌊k−1
h−1⌋ and r = (k − 1) mod (h− 1).

2. If r 6= 0, then find a minimum (r+1)−way split C0 of G and let G← G−C0.

3. For i := 1 to p find a minimum h-way split Ci of G and let G← G− Ci.

4. Return
⋃p

i=0 Ci as a k-way cut.

Approximation ratio for k-way cuts 4

The above two algorithms run in polynomial time if hq and h are bounded
by some constant, and our main results of the paper are the following two tight
bounds for their approximation ratios.

Theorem 2.1 The approximation ratio of algorithm iterative-split is

2−

∑q
i=1

(hi

2

)
(k
2

) .

Corollary 2.2 The approximation ratio of algorithm iterative-h-split is

2−
h

k
+

(h− 1− r)r

k(k − 1)
= 2−

h

k
+O(

h2

k2
),

where r = (k − 1) mod (h− 1).

Remark. We note that when k − 1 is a multiple of h − 1, iterative-h-split is
a (2− h/k)-approximation algorithm, and Corollary 2.2 for h = 3 yields a result
of Zhao et al. [17].

3 Performance analysis

In this section, we will prove our main results on the approximation ratios of our
approximation algorithms. For this purpose, we first establish a relation between
the weight w(Ch) of a minimum h-way split Ch and the weight w(Ck) of a k-way
split Ck, which will be the main tool in our analysis. For convenience, we allow
h = 1 (note that a minimum 1-way split is an empty set). For a collection of
mutually disjoint subsets V1, V2, · · · , Vt ∈ V , we use [V1, V2, · · · , Vt] to denote the
set of edges uv such that u ∈ Vi and v ∈ Vj for some Vi 6= Vj .

Lemma 3.1 Let G be an edge-weighted graph, h ≥ 1, and k ≥ max{2, h}. For

any minimum h-way split Ch and any k-way split Ck of G, the following holds.

w(Ch)

w(Ck)
≤ (2−

h

k
)
h− 1

k − 1
. (1)

Proof. First we consider the case that G is connected. In this case, Ck and Ch,
respectively, are k-way and minimum h-way cuts of G, and thus Ck corresponds
to a partition Π = {V1, V2, . . . , Vk} of the vertex set V of G such that each Vi is
a component of G− Ck.

We can merge any k − (h − 1) elements in Π into one element to form a
new partition Π′ = {V ′

1 , V
′
2 , . . . , V

′
h} of V . Let E(Π′) = [V ′

1 , V
′
2 , . . . , V

′
h]. Then

G−E(Π′) has at least h components, and therefore the weight w(E(Π′)) of E(Π′)
is at least w(Ch). There are

(k
h−1

)
different ways to form Π′, and therefore the

total weight W of all E(Π′) is at least
(k
h−1

)
w(Ch).

Approximation ratio for k-way cuts 5

On the other hand, we can put an upper bound on W by relating it to the
weight of Ck. Consider the set Eij of edges in Ck between Vi and Vj . For a
partition Π′, Eij ⊆ E(Π′) iff Vi and Vj are not merged in forming Π′. The

number of Π′s for which Vi and Vj are merged is
(k−2
h−1

)
, implying that each Eij

is counted
(k
h−1

)
−
(k−2
h−1

)
times in calculating W . Therefore

W = (

(
k

h− 1

)
−

(
k − 2

h− 1

)
) · w(Ck) ≥

(
k

h− 1

)
· w(Ch),

which yields the inequality in the lemma.

For the case that G is disconnected, we construct a connected graph G′ =
(V ′, E′;w′) from G as follows:

1. Add a new vertex v.

2. For each component H of G, add an edge eH between v and an arbitrary
vertex of H.

3. Set the weight of eH to ∞.

4. Set w′(e) = w(e) for all other edges of G′.

Then every k-way split in G is a k-way cut in G′, and every minimum h-way
split in G is a minimum h-way cut in G′. Since G′ is connected, the lemma holds
for G′ and hence for k-way and minimum h-way splits of G.

For convenience, define for all h ≥ 1 and k ≥ max{2, h},

f(k, h) = (2−
h

k
)
h− 1

k − 1
.

We note that the bound in Lemma 3.1 is tight, which can be seen by considering
a k-way cut and a minimum h-way cut of the complete graph Kk. This also gives
a combinatorial explanation of f(k, h): the ratio between the number of edges
covered by h − 1 vertices in Kk and the number of edges of Kk. We also need
the following properties of f(k, h) in our analysis.

Fact 3.2 Function f(k, h) monotonically increases for h ∈ [1, k] and monotoni-

cally decreases for k ∈ [h,∞).

Fact 3.3 For all a ≥ 0, h ≥ 2, and k ≥ a+ h,

f(k − a, h)(1 − f(k, a+ 1)) ≤ f(k, h). (2)

Proof. Straightforward manipulation gives

f(k − a, h)(1 − f(k, a+ 1)) = (2−
2a+ h

k
)
h− 1

k − 1
≤ f(k, h).

Approximation ratio for k-way cuts 6

The next inequality is an analytical result critical to the proof of our main
theorem. Let q ≥ 2. For any integers 2 ≤ h1 ≤ h2 ≤ · · · ≤ hq, 0 ≤ a ≤ h1 − 1
and k − 1 ≥

∑q
i=1(hi − 1), let

D = f(k − a, h1 − a) +
q∑

i=2

f(k − a, hi) (3)

and
F = max{D, f(k, a+ 1) + (1− f(k, a+ 1))D}. (4)

Lemma 3.4 F ≤
∑q

i=1 f(k, hi).

To avoid distraction from our main discussions, we delay the proof of this
purely analytical lemma to Section 4.

We are now ready to prove our main results. For this purpose, we call a
sequence ((C1, h1), . . . , (Cq, hq)) a nondecreasing q-sequence of minimum splits if
integers 2 ≤ h1 ≤ h2 ≤ · · · ≤ hq and each Ci, 1 ≤ i ≤ q, is a minimum hi-way
split of Gi = G−

⋃i−1
j=1Gj . To prove Theorem 2.1, it suffices to prove the following

theorem. We note that although the proof is an inductive one, the argument in
the proof is subtle, and the condition h1 ≤ h2 ≤ · · · ≤ hq is crucial to the proof.

Theorem 3.5 Let ((C1, h1), . . . , (Cq, hq)) be a nondecreasing q-sequence of min-

imum splits of a weighted graph G = (V,E;w), where w : E → R+, and Sk a

k-way split of G satisfying k − 1 ≥
∑q

i=1(hi − 1). Then

w(
q⋃

i=1

Ci) ≤
q∑

i=1

f(k, hi) · w(Sk). (5)

Proof. We use induction on q. For q = 1, the theorem is established by
Lemma 3.1. For the inductive step, let q ≥ 2, C ′

1 = C1 ∩ Sk, Sk′ = Sk −C ′
1, and

C ′′
1 = C1 − C ′

1. Then C ′
1 is an (a + 1)-way split of G for some 0 ≤ a ≤ h1 − 1,

C ′′
1 is a minimum (h1 − a)-way split of G − C ′

1 (otherwise C1 would not be
a minimum h1-way split of G), and Sk′ is a (k − a)-way split of G − C ′

1. It
follows that Sk′ is a k′-way split of G − C1 for some k′ ≥ k − a. Note that
((C2, h2), . . . , (Cq, hq)) is a nondecreasing (q − 1)-sequence of minimum splits of
G−C1 and k′−1 ≥

∑q
i=2(hi−1). By the induction hypothesis and the fact that

each f(k′, hi) is at most f(k − a, hi) (Fact 3.2), we have

w(
q⋃

i=2

Ci) ≤
q∑

i=2

f(k′, hi) · w(Sk′) ≤
q∑

i=2

f(k − a, hi) · w(Sk′). (6)

Let W = w(C1) +
∑q

i=2 f(k − a, hi) · w(Sk′). Then w(
⋃q

i=1 Ci) ≤ W by (6), and
we will establish the theorem by proving W ≤

∑q
i=1 f(k, hi) · w(Sk).

Approximation ratio for k-way cuts 7

If w(C ′
1) > f(k, a + 1)w(Sk), then w(Sk′) = w(Sk) − w(C ′

1) ≤ (1 − f(k, a +
1))w(Sk). By Lemma 3.1, we have w(C1) ≤ f(k, h1) · w(Sk) and it follows from
Fact 3.3 that

W ≤ (f(k, h1) +
q∑

i=2

f(k − a, hi)(1− f(k, a+ 1))) · w(Sk)

≤
q∑

i=1

f(k, hi) · w(Sk).

Otherwise, w(C ′
1) ≤ f(k, a+ 1) · w(Sk) and we have

W = w(C ′
1) + w(C ′′

1) +
q∑

i=2

f(k − a, hi) · w(Sk′).

Since C ′′
1 is a minimum (h1 − a)-way split of G − C ′

1, we have w(C ′′
1) ≤ f(k −

a, h1 − a) · w(Sk′) by Lemma 3.1. It follows that

W ≤ w(C ′
1) + f(k − a, h1 − a) · w(Sk′) +

q∑

i=2

f(k − a, hi) · w(Sk′)

= w(C ′
1) +D · w(Sk′)

for D = f(k − a, h1 − a) +
∑q

i=2 f(k − a, hi) as defined in (3). Define x =
w(C ′

1)/w(Sk) and we have W ≤ (x+ (1− x)D)w(Sk). Since 0 ≤ x ≤ f(k, a+1),
the maximum value of x+ (1 − x)D over the interval [0, f(k, a + 1)] must be at
either x = 0 or x = f(k, a+ 1) as it is a linear function in x. This means

W

w(Sk)
≤ max{D, f(k, a+ 1) + (1− f(k, a+ 1))D}.

Therefore by Lemma 3.4, we have

W ≤ (
q∑

i=1

f(k, hi)) · w(Sk).

This completes the inductive step and therefore proves the theorem.

We can obtain Theorem 2.1 for Algorithm iterative-split from Theorem 3.5
as follows (note that

∑q
i=1(hi − 1) = k − 1):

q∑

i=1

f(k, hi) =
q∑

i=1

(2−
hi
k
)
hi − 1

k − 1

=
2

k − 1

q∑

i=1

(hi − 1)−
1

k(k − 1)

q∑

i=1

hi(hi − 1)

= 2−

∑q
i=1

(hi

2

)
(k
2

) .

Approximation ratio for k-way cuts 8

For Algorithm iterative-h-split, we can easily derive Corollary 2.2 from Theo-
rem 2.1.

Remark The bound in Theorem 3.5 is tight for k − 1 =
∑q

i=1(hi − 1) and
therefore the approximation ratios in Theorem 2.1 and Corollary 2.2 are tight.
To see this, consider the following graph G that consists of the disjoint union
of q + 1 copies H1,H2, · · · ,Hq,K of the complete graph Kk. For each Hi, fix a
subset Vi of hi − 1 vertices and let Ei denote edges in Hi that are covered by Vi.
Each edge in Ei has weight 1, and each of the remaining edges of Hi has weight
∞. Set the weight of every edge in K to 1.

A minimum k-way split Ck of G consists of all edges in K, but iterative-

split may return
⋃q

i=1Ei as a k-way split C ′
k of G. Since w(Ck) =

(k
2

)
and

w(C ′
k) =

∑q
i=1 |Ei| = f(k, hi)

(k
2

)
, we have w(C ′

k)/w(Ck) =
∑q

i=1 f(k, hi).

4 Proof of Lemma 3.4

In this section, we complete our performance analysis by proving Lemma 3.4: F ≤∑q
i=1 f(k, hi), where F = max{D, W ′} forD = f(k−a, h1−a)+

∑q
i=2 f(k−a, hi)

and W ′ = f(k, a+1)+ (1− f(k, a+1))D. For this purpose, we first derive some
useful properties of f(k, h).

Fact 4.1 For all h1, h2 ≥ 0 and k ≥ max{h1 + h2 + 1, 2},

f(k, h1 + h2 + 1) = f(k, h1 + 1) + f(k − h1, h2 + 1)(1 − f(k, h1 + 1)).

Proof. Let e(k, h) denote the number of edges covered by h vertices in the
complete graph Kk, and mk the number of edges in Kk. Then

e(k, h1 + h2) = e(k, h1) + e(k − h1, h2),

and thus
e(k, h1 + h2)

mk
=

e(k, h1)

mk
+

e(k − h1, h2)

mk−h1

·
mk−h1

mk
.

Since mk−h1
= mk − e(k, h1), we obtain

e(k, h1 + h2)

mk
=

e(k, h1)

mk
+

e(k − h1, h2)

mk−h1

· (1−
e(k, h1)

mk
),

and the lemma follows from the fact that f(k, h) = e(k, h − 1)/mk.

Fact 4.2 For all a ≥ 0, h2 ≥ h1 ≥ 2, k ≥ a+ h2,

f(k − a, h2)− f(k, h2) ≤
h2 − 1

h1 − 1
[f(k − a, h1)− f(k, h1)].

Approximation ratio for k-way cuts 9

Proof.

⇔ f(k − a, h2)−
h2 − 1

h1 − 1
f(k − a, h1) ≤ f(k, h2)−

h2 − 1

h1 − 1
f(k, h1)

⇔ −
(h2 − h1)(h2 − 1)

(k − a)(k − a− 1)
≤ −

(h2 − h1)(h2 − 1)

k(k − 1)

⇔ (k − a)(k − a− 1) ≤ k(k − 1).

Fact 4.3 For all a ≥ 0, h ≥ 2, k ≥ a+ h,

f(k − a, h− a) +
k − h

h− 1
f(k − a, h) ≤

k − 1

h− 1
f(k, h).

Proof.

⇔
a2 + a(1 + 2h− 4k)− (h− 2k)(k − 1)

(k − a)(k − a− 1)
≤

2k − h

k

⇔ k(a2 + a(1 + 2h− 4k)− (h− 2k)(k − 1)) ≤ (2k − h)(k − a)(k − a− 1)

⇔ a(a+ 1)(h − k) ≤ 0.

Fact 4.4 For all 2 ≤ h1 ≤ hi (i = 2, 3, · · · , q), 0 ≤ a < h1,
∑q

i=1 (hi − 1) ≤ k−1,

f(k − a, h1 − a) +
q∑

i=2

f(k − a, hi) ≤ f(k, h1) +
q∑

i=2

f(k, hi).

Proof. Let ∆ = f(k − a, h1 − a) +
q∑

i=2
f(k − a, hi) − f(k, h1) −

q∑
i=2

f(k, hi). By

Fact 4.2, we have

q∑

i=2

(f(k − a, hi)− f(k, hi)) ≤
q∑

i=2

hi − 1

h1 − 1
(f(k − a, h1)− f(k, h1))

=
k − h1
h1 − 1

(f(k − a, h1)− f(k, h1)).

Therefore

∆ ≤ f(k − a, h1 − a)− f(k, h1) +
k − h1
h1 − 1

(f(k − a, h1)− f(k, h1))

= f(k − a, h1 − a) +
k − h1
h1 − 1

f(k − a, h1)−
k − 1

h1 − 1
f(k, h1).

It follows from Fact 4.3 that ∆ ≤ 0, which proves the lemma.

Approximation ratio for k-way cuts 10

Now, we are ready to prove Lemma 3.4: F ≤
∑q

i=1 f(k, hi). Recall that
F = max{D,W ′} for D = f(k−a, h1−a)+

∑q
i=2 f(k−a, hi) and W ′ = f(k, a+

1) + (1 − f(k, a + 1))D. As D ≤
∑q

i=1 f(k, hi) by Fact 4.4, we need only show
that W ′ ≤

∑q
i=1 f(k, hi). This can be done by using Fact 4.1 and Fact 3.3 as

follows:

W ′ = f(k, a+ 1)− f(k − a, h1 − a)f(k, a+ 1) + f(k − a, h1 − a)

+
q∑

i=2

f(k − a, hi)(1− f(k, a+ 1))

= f(k, h1) +
q∑

i=2

f(k − a, hi)(1− f(k, a+ 1)) (by Fact 4.1)

≤
q∑

i=1

f(k, hi). (by Fact 3.3)

5 Concluding remarks

In this paper, we have determined the exact approximation ratio of a general
splitting algorithm iterative-split for the minimum k-way cut problem. The
answer is a surprisingly simple expression 2−

∑q
i=1

(hi

2

)
/
(k
2

)
, yet it takes a some-

what subtle and involved inductive argument to prove the result. It would be
interesting to find a direct and simpler proof.

We note that for iterative-split, the requirement that h1 ≤ h2 ≤ · · · ≤ hq is
crucial for obtaining the approximation ratio of the algorithm, which is unknown
if we drop the requirement. We also note that if we restrict hq to be at most
h, then iterative-h-split, a special case of iterative-split, achieves the best
approximation ratio among all possible choices of h1 ≤ h2 ≤ · · · ≤ hq.

Finally, we may use iterative-split as a general framework for designing
approximation algorithms for various cut and partition problems, and the ideas
in this paper may shed light on the analysis of this general approach for these
problems.

References

[1] Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of Operations Research 19(1) (1994) 24–
37 A preliminary version appeared in FOCS1988.

[2] Kamidoi, Y., Yoshida, N., Nagamochi, H.: A deterministic algorithm for
finding all minimum k-way cuts. SIAM Journal on Computing 36(5) (2006)
1329–1341

Approximation ratio for k-way cuts 11

[3] Xiao, M.: An improved divide-and-conquer algorithm for finding all mini-
mum k-way cuts. In: Proceedings of the 19th International Symposium on
Algorithms and Computation (ISAAC 2008). (2008) 208–219

[4] Karger, D.R., Stein, C.: A new approach to the minimum cut problem.
Journal of the ACM 43(4) (1996) 601–640 Preliminary portions appeared
in SODA1993 and STOC1993.

[5] Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC 2008). (2008) 159–166

[6] Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond,
F.A.: Cutting up is hard to do: the parameterized complexity of k-cut and
related problems. Electr. Notes Theor. Comput. Sci. 78 (2003) 1–14

[7] Nagamochi, H., Ibaraki, T.: Computing edge connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics 5(1) (1992)
54–66

[8] Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a
graph. In: Proceedings of the third annual ACM-SIAM symposium on Dis-
crete algorithms (SODA1992), Philadelphia, PA, USA, Society for Industrial
and Applied Mathematics (1992) 165–174

[9] Burlet, M., Goldschmidt, O.: A new and improved algorithm for the 3-cut
problem. Operations Research Letters 21(5) (1997) 225–227

[10] Nagamochi, H., Ibaraki, T.: A fast algorithm for computing minimum 3-way
and 4-way cuts. Mathematical Programming 88(3) (2000) 507–520

[11] Nagamochi, H., Katayama, S., Ibaraki, T.: A faster algorithm for computing
minimum 5-way and 6-way cuts in graphs. In: Asano, T., Imai, H., Lee,
D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
Springer, Heidelberg. (1999)

[12] Levine, M.S.: Fast randomized algorithms for computing minimum
{3,4,5,6}-way cuts. In: Proceedings of the 11th annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA2000), Philadelphia, PA, USA, Society
for Industrial and Applied Mathematics (2000) 735–742

[13] Saran, H., Vazirani, V.V.: Finding k-cuts within twice the optimal.
SIAM J. Comput. 24(1) (1995) 101–108 A preliminary version appeared
in FOCS1991.

[14] Naor, J., Rabani, Y.: Tree packing and approximating k-cuts. In: Proceed-
ings of the twelfth annual ACM-SIAM symposium on discrete algorithms
(SODA2001), Philadelphia, PA, USA, Society for Industrial and Applied
Mathematics (2001) 26–27

Approximation ratio for k-way cuts 12

[15] Ravi, R., Sinha, A.: Approximating k-cuts via network strength. In: Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete al-
gorithms (SODA2002), Philadelphia, PA, USA, Society for Industrial and
Applied Mathematics (2002) 621–622

[16] Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees.
In: Proceedings of the 5th International IPCO Conference on Integer Pro-
gramming and Combinatorial Optimization, London, UK, Springer-Verlag
(1996) 132–146

[17] Zhao, L., Nagamochi, H., Ibaraki, T.: Approximating the minimum k-way
cut in a graph via minimum 3-way cuts. J. Comb. Optim. 5(4) (2001) 397–
410 A preliminary version appeared in ISAAC1999.

[18] Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for ap-
proximating multiway partition problems. Math. Program. 102(1) (2005)
167–183

[19] Zhao, L., Nagamochi, H., Ibaraki, T.: On generalized greedy splitting al-
gorithms for multiway partition problems. Discrete Applied Mathematics
143(1-3) (2004) 130–143

	Introduction
	Algorithms and main results
	Performance analysis
	Proof of Lemma ??
	Concluding remarks

