
ar
X

iv
:0

71
2.

38
29

v2
 [

qu
an

t-
ph

]
 3

 J
an

 2
01

0

Quantum Property Testing of Group Solvability

Yoshifumi Inui ⋆,† François Le Gall †

⋆ Department of Computer Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

† ERATO-SORST Quantum Computation and Information Project
Japan Science and Technology Agency

5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

email: legall@qci.jst.go.jp

Abstract. Testing efficiently whether a finite set Γ with a binary operation · over
it, given as an oracle, is a group is a well-known open problem in the field of property
testing. Recently, Friedl, Ivanyos and Santha have made a significant step in the direction
of solving this problem by showing that it is possible to test efficiently whether the input
(Γ, ·) is an abelian group or is far, with respect to some distance, from any abelian group.
In this paper, we make a step further and construct an efficient quantum algorithm that
tests whether (Γ, ·) is a solvable group, or is far from any solvable group. More precisely,
the number of queries used by our algorithm is polylogarithmic in the size of the set Γ.

1 Introduction

In property testing, the problem considered is to decide whether an object given as an oracle has
some expected property or is far from any object having that property. This is a very active research
area and many properties including algebraic function properties, graph properties, computational
geometry properties and regular languages were proved to be testable. We refer to, for example,
[15, 19] for surveys on classical property testing. Quantum testers have also been studied [7, 11, 16],
and they are known to be strictly more powerful than classical testers in some cases [7, 16].
In this paper, we focus on testing group-theoretical properties. A famous example is testing

whether a function f : G → H, where H and G are groups, is a homomorphism. It is well known
that such a test can be done efficiently [5, 6, 21]. Another kind of problems deals with the case
where the input is a finite set Γ and an oracle of a binary operation · : Γ × Γ → Γ over it. A
classical algorithm testing associativity of the oracle · using O(|Γ|2) queries to the oracle has been
constructed by Rajagopalan and Schulman [18], and Ergün et al. [8] have proposed an algorithm,
using Õ(|Γ|) queries, testing if · is close to the multiplication of a group. But notice that, since each
element in Γ needs Θ(log |Γ|) bits to be encoded, the query complexities of these algorithms can be
considered as exponential in the input length when not Γ, but only |Γ| is given (e.g., Γ is supposed to
be the set of binary strings of length ⌈log2 |Γ|⌉). Designing an algorithm deciding whether (Γ, ·) is a
group that uses a number of queries to · polynomial in log |Γ| is indeed a well-known open problem.
Recently, Friedl et al. [10] have made a significant step in the direction of solving this problem by
constructing a classical algorithm with query and time complexities polynomial in log |Γ| that tests
whether (Γ, ·) is an abelian group or is far from any abelian group.
In this work, we make a step further and construct an efficient quantum algorithm that tests

whether (Γ, ·) is a solvable group or the distance between (Γ, ·) and any solvable group is at least
ǫ|Γ|2. More precisely, our algorithm uses a number of queries polynomial in log |Γ| and ǫ−1, and its
time complexity is polynomial in exp((log log |Γ|)2) and ǫ−1, i.e., subexponential in log |Γ|. Notice
that the class of solvable groups is far much larger than the class of abelian groups and includes a
vast class of non-abelian groups. To deal with those groups, we introduce new ideas relying on the

1

http://arxiv.org/abs/0712.3829v2

ability of quantum computation to solve fundamental group-theoretical problems, such as finding
orders of elements or working with superpositions of all the elements of a subgroup.
Besides the theoretical interest of this result, our algorithm can be used when studying group-

theoretical problems where the input is a black-box solvable group (i.e., given as a set a generators
and an oracle performing group operations). Most known algorithms for such problems can have an
unpredictable behavior when the input is not a solvable group. By applying our algorithm we can
detect (in the quantum setting) if the input is far from any solvable group, and we thus obtain robust
versions of the quantum algorithms already known for solvable black-box groups [9, 13, 14, 23]. We
also hope that this will be useful to design new quantum property testers or group-theoretical
quantum algorithms. In particular, our tester may be useful when considering quantum versions of
classical algorithms solving problems over black-box solvable groups [1, 2, 3, 4] as well.
Finally, we believe that our quantum algorithm may also be a first step in the direction of designing

efficient classical testers for solvable groups. Indeed, the efficient classical tester for abelian groups
proposed by Friedl et al. [10] was inspired by a quantum algorithm solving the same problem. In
this case, they were able to “dequantumize” the algorithm. A similar approach may be possible for
our algorithm too.

2 Definitions

2.1 Distances between sets

Let Γ be a set and · : Γ× Γ → X a binary operation over it, where X is some set. We say that
such couple (Γ, ·) is a pseudo-magma. If X ⊆ Γ, we say that (Γ, ·) is a magma. When there is no
ambiguity we will denote a pseudo-magma or a magma (Γ, ·) simply by Γ. We now define a distance
between two pseudo-magmas. In this paper we adopt the so-called edit distance. This is the same
distance as the one used by Friedl et al. [10].
Define a table of size k as a k × k matrix with entries in some arbitrary set. We consider three

operations to transform a table to another. An exchange operation replaces elements in a table by
arbitrary elements and its cost is the number of replaced elements. An insert operation at index i
inserts a row and a column of index i. Its cost is 2k + 1 if the original table is of size k. A delete
operation at index i deletes both the row of index i and the column of index i, giving a table of size
(k − 1)× (k − 1). Its cost is (2k − 1).
Let (Γ, ·) be a pseudo-magma, with · : Γ × Γ → X. A multiplication table for Γ is a table of

size |Γ| with entries in X for which both rows and columns are in one-to-one correspondence with
elements in Γ, i.e., there exists a bijection σ : {1, · · · , |Γ|} → Γ such that the element in the i-th row
and the j-th column is σ(i) · σ(j). The distance between two pseudo-magmas is defined as follows.

Definition 1. The edit distance between two tables T and T ′ is the minimum cost needed to trans-
form T to T ′ by the above exchange, insert and delete operations. The edit distance between two
pseudo-magmas Γ and Γ′, denoted d(Γ,Γ′), is the minimum edit distance between T and T ′ where
T (resp. T ′) runs over all tables corresponding to a multiplication table of Γ (resp. Γ′). For δ ≥ 0,
we say that a pseudo-magma Γ is δ-close to another pseudo-magma Γ′ if d(Γ,Γ′) ≤ δ. Otherwise
we say that Γ and Γ′ are δ-far.

Notice that if the sizes of Γ and Γ′ are the same, then the edit distance becomes the minimal
Hamming distance of the corresponding tables.

2.2 Property testing of group solvability

In this paper we assume that the reader is familiar with the standard notions of group theory.
We refer to any standard textbook for details. For completeness, we only recall the definition of

2

solvable groups.

Definition 2. A group G is solvable if there exists a collection of subgroups G0, . . . , Gk of G such
that:

(i) for each 0 < j ≤ k, the subgroup Gj−1 is normal in Gj and Gj/Gj−1 is cyclic;

(ii) {e} = G0 ⊳ · · · ⊳Gk = G.

We now give our definition of a quantum property tester of group solvability. We define such
a tester as a quantum algorithm A receiving as input a magma (Γ, ·). More precisely, the actual
input of the algorithm is the value |Γ|, and two oracles are available: an oracle that generates
random elements in Γ (the details of the implementation of this oracle are not essential because this
oracle will only be used in a classical subprocedure), and a quantum oracle that performs the binary
operation ·. Since the elements of Γ can be encoded by binary strings of length k = ⌈log2 |Γ|⌉, we
identify the elements with their encoding and suppose that this quantum oracle performs the map
|g〉|h〉|c〉 7→ |g〉|h〉|c⊕ g · h〉, where g and h are elements in Γ and c is a string in {0, 1}k . We denote
by A (Γ) the behavior of the algorithm A on an input (Γ, ·) given in this way. A more formal
definition of a quantum property tester can be given but the following definition will be sufficient
for our purpose.

Definition 3. Let d be the distance defined in Subsection 2.1. A quantum ǫ-tester of group solvability
is a quantum algorithm A such that, for any magma (Γ, ·), the following holds:

{

Pr[A (Γ) accepts] > 2/3 if d(Γ,S) = 0
Pr[A (Γ) rejects] > 2/3 if d(Γ,S) > ǫ|Γ|2.

Here we use d(Γ,S) to represent infG∈S d(Γ, G), where S denotes the set of finite solvable groups.

Notice that, a priori, requiring that the oracle is quantum may seem to give a problem different
than in the classical setting, where the oracle is classical. But this is not really the case: if a classical
procedure that computes the product g · h from g and h is available, such a quantum oracle can be
effectively constructed using standard techniques of quantum computation [17].
The main result of this paper is the following theorem.

Theorem 4. There exists a quantum ǫ-tester of group solvability that uses a number of queries
polynomial in log |Γ| and ǫ−1. The running time of this algorithm is polynomial in exp((log log |Γ|)2)
and ǫ−1.

2.3 Quantum algorithms for solvable groups

As stated in the following theorem, efficient quantum algorithms for studying the structure of
solvable groups have been constructed by Watrous [23]. Our algorithm deeply relies on these
algorithms.

Theorem 5. ([23]) Let G be a solvable group given as a black-box group. Then there exists a
quantum algorithm running in time polynomial in log |G| that outputs, with probability at least
3/4, t = O(log |G|) elements h1, . . . , ht of G and t integers m1, . . . ,mt such that, if we denote
Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t, the following holds.

(a) {e} = H0 ⊳H1 ⊳ · · ·⊳Ht−1 ⊳Ht = G; and

(b) Hi/Hi−1 is cyclic, for 1 ≤ i ≤ t, with |Hi|/|Hi−1| = mi.

3

Moreover, given any 0 ≤ i ≤ t, and any element g in Hi, there exists a quantum algorithm running
in time polynomial in log |G| that outputs, with probability at least 3/4, the (unique) factorization
of g over Hi, i.e., integers a1, . . . , ai with each ak ∈ Zmk

, such that g = haii h
ai−1

i−1 · · · ha11 .

In the algorithm of Theorem 5, the group is supposed to be input as a black-box group: the
input is a set of strings representing a set of generators of the group and an oracle performing
the group product is available. The oracle necessary for Watrous’s algorithm [23] is the map
|g〉|h〉|c〉 7→ |g〉|h〉|c⊕ g ·h〉, for any elements g, h ∈ G and any string c in {0, 1}k . Notice that this is
the same oracle as the one given to a quantum tester of group solvability as defined in Subsection
2.2.

3 Our Quantum Algorithm

In this section we describe our quantum algorithm. We first give an overview of the algorithm in
Subsection 3.1. Then, in Subsection 3.2, we explain the details. Finally, we analyse its correctness
and complexity in Subsection 3.3.

3.1 Outline of our algorithm

Our algorithm consists of four parts.

Decomposition of Γ
We first construct, using Theorem 5, t = O(log |Γ|) elements h1, . . . , ht of Γ that satisfy, if Γ is a
solvable group, the relations {e} = H0⊳H1 = 〈h1〉⊳· · ·⊳Hi = 〈h1, · · · , hi〉⊳· · ·⊳Ht = 〈h1, · · · , ht〉 =
Γ, where each Hi is a subgroup of Γ, normal in Hi+1, such that Hi+1/Hi is cyclic. If Γ is a solvable
group, this decomposition gives a so-called power-conjugate presentation of Γ. If Γ is not a solvable
group, these elements h1, . . . , ht will still define some pseudo-magmasH0, . . . ,Ht, although in general
these sets satisfy no group-theoretic property (in particular, they are not necessarily magmas).

Test of embedding

Then, we take sufficiently many elements of Γ and check that they are all in Ht. Success of this
test implies that |Γ\Ht| is small enough. Of course, if Γ is a solvable group, then Γ = Ht with
high probability and this test always succeeds. Assume that Γ is far from any solvable group H̃t. If
the test succeed, since the inequality d(Γ, H̃t) ≤ d(Γ,Ht) + d(Ht, H̃t) holds for any solvable group
H̃t, this will imply that Ht is far from any solvable group H̃t too (because the value of d(Γ,Ht) is
basically a function of |Γ\Ht|, and thus small).

Construction of the group Gt

We construct, using the information about the structure of Γ obtained at the first part of the
algorithm, t solvable groups G1, . . . , Gt and a function ψ : Gt → Ht in a way such that, if Γ is a
solvable group, then ψ is a group isomorphism from Gt to Ht.

Test of homomorphism

Finally, the algorithm will test whether ψ is “almost” an homomorphism. We will show that this
test is robust: if ψ is close to an homomorphism, then Ht is close to the solvable group Gt. If Ht is
far from any solvable group, then this cannot hold and the homomorphism test must fail with high
probability.

Again, the similar idea of constructing a group G, a function ψ : G→ Γ and use homomorphism
tests was at the heart of the property tester for abelian groups proposed by Friedl et al. [10] and
inspired this work (notice that the Friedl et al. first constructed a quantum property tester for
abelian groups, and then were able to remove the quantum part in their algorithm). However there
are new difficulties that arise when considering property testers for solvable groups. The first one is

4

that analyzing the decomposition the Hi’s is more difficult and the power of quantum computation
seems necessary to perform this task efficiently. The second complication is that, now, the groups
Gi’s we are considering are solvable, i.e., in general not commutative. In this case, we have to be
very careful in the definition of Gi and additional tests have to be done to ensure that the Gi’s we
define are really groups.

3.2 Algorithm

Our algorithm appears in Figure 1 and each of the four parts are explained in details in Subsections
3.2.1 to 3.2.4. If all the tests performed succeed, we decide that Γ is a solvable group. Otherwise
we decide that Γ is (ǫ|Γ|2)-far from any solvable group.

PART I: Decomposition of Γ
1. Take O(log |Γ|) random elements uniformly and independently in Γ.
2. Use the first algorithm of Theorem 5 on them and obtain the set {h1, . . . , ht} and integers
m1, ...,mt.
3. For each i ∈ {1, . . . , t}, use Shor’s order finding algorithm on hi and obtain some integer ni.
4. Compute the decompositions of all hmi

i and hni−1
i · (hk · hi) over Hi−1, for i ∈ {1, . . . , t}

and k ∈ {1, . . . , i− 1}, and check the obtained decompositions.

PART II: Test of embedding

5. Check that |Γ| = m1 × · · · ×mt and |Γ\Ht|/|Γ| < ǫ/4.

PART III: Construction of the group Gt

6. For j from 2 to t check that Conditions (a), (b) and (c) of Proposition 7 hold.

PART IV: Test of homomorphism

7. Check that Prx,y∈Gt [ψ(x ◦ y) = ψ(x) · ψ(y)] > 1− η with η = ǫ/422.

Figure 1: Quantum ǫ-tester of group solvability

3.2.1 Decomposition of Γ

The first step in our algorithm finds a power-conjugate representation of Γ when Γ is a solvable
group. We will prove that when Γ is far from any solvable group, then the output of this step
cannot be a power-conjugate representation of a group close to Γ and that this can be detected by
our algorithm at part II, III or IV.
We begin by picking s = Θ(log |Γ|) random elements α1, · · · , αs uniformly and independently

from the ground set Γ. For simplicity, we first suppose that Γ is a solvable group, and then discuss
the general case.

Case where Γ is a solvable group. Denote Γ′ = 〈α1, · · · , αs〉. Then, with high probability,
Γ = Γ′. Here we rely on the standard fact in computational group theory that, for any group K,
Θ(log |K|) random elements taken uniformly in K constitute, with high probability, a generating
set of K. We now run the first algorithm of Theorem 5 with input Γ′ presented as a black-box
group as follows: α1, · · · , αs is the set of generators and the operation · is the oracle performing
group multiplication. The output of the algorithm is then, with high probability, a set of t elements
h1, . . . , ht of Γ and t integers m1, . . . ,mt such that, if we denote Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t, the
following holds:

5

(a) {e} = H0 ⊳H1 ⊳ · · ·⊳Ht−1 ⊳Ht = Γ′; and

(b) Hi/Hi−1 is cyclic for 1 ≤ i ≤ t and satisfies |Hi|/|Hi−1| = mi.

We then use Shor’s quantum algorithm [20] to compute the order ni of each hi in Γ. Moreover, we
further analyze the structure of Γ′ and use the second algorithm of Theorem 5 to decompose the
elements hmi

i and hni−1
i · (hk · hi) over Hi−1, for each i ∈ {2, . . . , t} and each k ∈ {1, . . . , i − 1}.

Notice that, indeed, each hmi

i and hni−1
i · (hk · hi) = h−1

i · hk · hi are in Hi−1 when Γ is a solvable
group. We denote the decompositions obtained by

hmi

i = h
r
(i)
i−1

i−1 ·

(

· · · ·

(

h
r
(i)
3
3 ·

(

h
r
(i)
2
2 · h

r
(i)
1
1

)))

for 2 ≤ i ≤ t, (1)

hni−1
i · (hk · hi) = h

s
(i)
k,i−1

i−1 ·

(

· · · ·

(

h
s
(i)
k,3

3 ·

(

h
s
(i)
k,2

2 · h
s
(i)
k,1

1

)))

for 1 ≤ k < i ≤ t, (2)

where each r
(i)
ℓ and each s

(i)
k,ℓ are in Zmℓ

. (The parentheses are superfluous when · is associative,
but not in the general case we discuss below.)

General Case. In general, we do not know whether Γ is a solvable group or not but we do exactly
the same as above: we first run the first algorithm of Theorem 5 on the set {α1, · · · , αs} with the
oracle ·. If this algorithm errs, we conclude that Γ is not a solvable group (this decision is correct
with high probability because, if Γ is a solvable group, then the algorithm of Theorem 5 succeeds
with high probability). Now suppose that we have obtained elements h1, . . . , ht and a set of integers
m1, . . . ,mt. We define the following sets by recurrence: H1 = {ha1|a ∈ Zm1}, and, for 2 ≤ j ≤ t,
Hj = {haj ·h|a ∈ Zmj

, h ∈ Hj−1}. Here, and in many other places in this paper, we use the notation
hr, for h ∈ Γ and r ≥ 1, to denote the product h · (· · · · (h · (h · h))), since · is not in general
associative. Moreover we use the convention h0 = hm1

1 for any h ∈ Γ. Notice that the value of hr

can be computed using O(log r) queries to the oracle · using repeated squaring methods.
Notice that, in general, the pseudo-magmas Hi’s have no group-theoretical structure at all (in

particular they may not be magmas). We then use Shor’s order finding algorithm [20] on each hi
and obtain some integer ni. Then we run the second algorithm of Theorem 5 to decompose the
elements hmi

i and hni−1
i · (hk ·hi) over Hi−1, for each i ∈ {2, . . . , t} and each k ∈ {1, . . . , i−1}. If the

algorithm errs or outputs something irrelevant, we conclude that Γ is not a solvable group. Suppose
that the algorithm succeeds and outputs decompositions. We use the notations of Equations (1)
and (2) to denote the decompositions obtained. We check whether these decompositions are correct,
i.e., we compute the right sides of Equations (1) and (2) and check that they match the left sides.
If they are correct, we move to the next step (Subsection 3.2.2). Otherwise, we conclude that Γ is
not a solvable group.

3.2.2 Test of embedding

In the second part of our algorithm, we first check that |Γ| = m1×· · ·×mt. Then, we want to check
whether |Γ\Ht| is small enough. Otherwise we conclude that Γ is not a solvable group. Indeed, if
Γ is a group, then with high probability (on the choice of α1, . . . , αs and on the randomness of the
algorithm of Theorem 5) Γ = Ht.
More precisely we check whether |Γ\Ht|/|Γ| < ǫ/4 holds. In order to perform this test, we simply

take c1 elements of Γ and check whether they are all inHt (by using the second algorithm of Theorem
5 and checking the obtained decompositions). It is easy to show that, when taking c1 = Θ(ǫ−1), we
can detect whether |Γ\Ht|/|Γ| > ǫ/4 with constant probability.

6

3.2.3 Construction of the group Gt

We now show how to construct an abstract group Gt defined by the power-conjugate presentation
found in Part I of our algorithm (Equations (1) and (2)) when such a group exists, i.e., when the
presentation is consistent with the definition of a group.
We first define by recurrence the family of magmas {Gj}1≤j≤t, where each Gj is equal (as a set)

to Zmj
×· · ·×Zm1 . G1 is defined as the cyclic group (Zm1 ,+), where + is the addition modulo m1.

For any i ∈ {2, . . . , t}, denote by ui the element (r
(i)
i−1, . . . , r

(i)
1) of Gi−1 and, for any i ∈ {2, . . . , t}

and k ∈ {1, . . . , i− 1}, denote by vi,k the element (s
(i)
k,i−1, . . . , s

(i)
k,1) of Gi−1.

Definition 6. Define G1 = (Zm1 ,+) and, for 2 ≤ j ≤ t, let Gj be the magma (Zmj
×Gj−1, ◦j) with

(a, x) ◦j (b, y) =







(

a+ b, φ
(b)
j (x) ◦j−1 y

)

if a+ b < mj
(

a+ b−mj, uj ◦j−1 φ
(b)
j (x) ◦j−1 y

)

if a+ b ≥ mj

where φj : Gj−1 → Gj−1 maps any element (aj−1, · · · , a1) of Gj−1 to the element

φj((aj−1, · · · , a1)) = v
aj−1

j,j−1 ◦j−1

(

· · · ◦j−1

(

va2j,2 ◦j−1 v
a1
j,1

))

of Gj−1, and φ
(b)
j means φj composed by

itself b times.

We will usually denote ◦j or ◦j−1 simply by ◦ when there is no ambiguity.
In order to illustrate this definition, let us consider the case where all the Hj’s are solvable groups.

In this case, each Hj = {h
aj
j · · · · · ha11 | aj ∈ Zmj

} is in bijection with Zmj
× · · · × Zm1 (as a set).

Fix a j and consider Hj. Each element h
aj
j · · · ha11 is associated with the element (aj , . . . , a1) of Gj .

Now the element φj((aj−1, · · · , a1)) corresponds to the element

h−1
j · (h

aj−1

j−1 · · · ha11) · hj =

(

h
s
(j)
j−1,j−1

j−1 · · · h
s
(j)
j−1,1

1

)aj−1

· · ·

(

h
s
(j)
1,j−1

j−1 · · · h
s
(j)
1,1

1

)a1

.

In other words, the map φj in Gj−1 corresponds to the automorphism h 7→ h−1
j hhj of Hj. For any

two elements g and g′ in Hj−1, since h
a
j · g · h

b
j · g

′ = ha+b
j · (h−b

j · g · hbj) · g
′ we see that the Gj ’s are

defined to be isomorphic to the Hj’s in the case where the Hj’s are solvable groups.
If the Hj’s are not groups, then the Gj ’s constructed in Definition 6 are not necessarily groups.

But we now show that when some additional conditions are satisfied, the Gj ’s become groups.
In technical words these are necessary and sufficient conditions to make the presentation of Gj a
consistent presentation of successive cyclic extensions. In the next proposition, we denote by xj,k,
for 1 ≤ k ≤ j ≤ t, the element of Gj with one 1 at the index k (from the right) and zeros at all the
other indexes.

Proposition 7. Let 1 < j < t. Suppose that Gj−1 is a solvable group and, if j ≥ 3, suppose
additionally that Gj−2 is a solvable group and φj−1 is a group automorphism of Gj−2. Assume that
the following three conditions hold.

(a) xj−1,k ◦ vj−1,j−1 = vj−1,j−1 ◦ vj−1,k for all 1 ≤ k < j − 1; and

(b) φj(uj) = uj ; and

(c) φ
(mj)
j (xj−1,i) = u−1

j ◦ xj−1,i ◦ uj for all 1 ≤ i ≤ j − 1.

Then Gj is a solvable group and φj is a group automorphism of Gj−1.

7

Proof. If φj is an automorphism of Gj−1, then Conditions (b) and (c) imply that Gj , as defined in
Definition 6, is a so-called cyclic extension of Gj−1 and thus a solvable group (see for example [22,
Section 9.8]). We will show below that Condition (a) implies that φj is an endomorphism of Gj−1.

Since φ
(mj)
j is an automorphism of Gj−1 from Condition (c), φj is thus an automorphism too.

We now prove that φj is an endomorphism of Gj−1. If j = 2, then this is obviously the case:

φ2 is the endomorphism of G1 = (Zm1 ,+) mapping a to av
(2)
11 . In the following we suppose that

j ≥ 3. We first start with a few useful observations. First notice that, for any a and b in Zmj−1 ,
the equality φj((a+ b, e)) = φj((a, e)) ◦ φj((b, e)), where e denotes the unity element of Gj−2, holds
from the definition of φj . Also notice that, for any a in Zmj−1 and any x in Gj−2, the equality
φj((a, x)) = φj((a, e)) ◦ φj−1(x) holds.
Any element z ∈ Gj−2 can be written in the form z = x

αj−2

j−1,j−2 · · · x
α1
j−1,1 for some integers

α1, . . . , αj−2. Condition (a) then implies that the equality

z ◦ vj−1,j−1 = vj−1,j−1 ◦ v
αj−2

j−1,j−2 ◦ · · · ◦ v
α1
j−1,1 = vj−1,j−1 ◦ φj−1(z)

holds (since φj−1 is an endomorphism of Gj−2 and φj−1(xj−1,k) = vj−1,k for any 1 ≤ k < j − 1).
More generally, for any b ∈ Zmj−1 and any z ∈ Gj−2, we have

z ◦ φj((b, e)) = z ◦ vbj−1,j−1 = vbj−1,j−1 ◦ φ
(b)
j−1(z) = φj((b, e)) ◦ φ

(b)
j−1(z).

Let a, b be two elements of Zmj−1 and x, y be two elements of Gj−2. Putting together the above
observations we can write

φj((a, x)) ◦ φj((b, y)) = φj((a, e)) ◦ φj−1(x) ◦ φj((b, e)) ◦ φj−1(y)

= φj((a, e)) ◦ φj((b, e)) ◦ φ
(b+1)
j−1 (x) ◦ φj−1(y)

= φj((a, e)) ◦ φj((b, e)) ◦ φj−1(φ
(b)
j−1(x) ◦ y)

= φj((a, e)) ◦ φj((b, φ
(b)
j−1(x) ◦ y))

= φj((a+ b, v ◦ φ
(b)
j−1(x) ◦ y)),

where v = uj if a+ b ≥ mj and v = e otherwise. We conclude that

φj((a, x)) ◦ φj((b, y)) = φj((a, x) ◦ (b, y)),

and thus φj is an endomorphism of Gj−1.

To illustrate the three conditions of Proposition 7, let us again consider the case where (Γ, ·) is a
group. Then conditions (b) and (c) hold due to the facts that uj in Gj−1 corresponds to the element
h
mj

j and that φj corresponds to the automorphism h 7→ h−1
j hhj of Hj−1. Condition (a) follows from

Equation (2).
For each j ∈ {2, . . . , t}, testing that Conditions (a) and (b) hold can be done using a number

of multiplications in the group Gj−1 polynomial in log |Γ|. The best known classical algorithm for
computing products in a solvable group given as a power-conjugate presentation is an algorithm by
Höfling [12] with time complexity O(exp((log log |Gj−1|)

2)) = O(exp((log log |Γ|)2)). Notice that if

Condition (a) holds then φj is a homomorphism. Then each term φ
(mj)
j (xj−1,i) in Condition (c) can

be computed using a number of group products polynomial in log |Γ| by computing, step by step

by increasing ℓ from 0 to ⌊logmj⌋, the values φ
(2ℓ)
j (xj−1,k) for all 1 ≤ k ≤ j − 1. The total time

complexity of checking that all the Gi’s are solvable groups is thus O(exp((log log |Γ|)2)). No query
to the oracle · is needed.

8

3.2.4 Test of homomorphism

We now suppose that the Gi’s have passed all the tests of Proposition 7 and thus Gt is a solvable
group. Let ψ be the surjective map from Gt to Ht defined as

ψ(at, at−1, · · · , a1) = hatt · (h
at−1

t−1 · (· · · · (ha22 · ha11)).

We will test whether ψ is a homomorphism from Gt to Ht. If (Γ, ·) is a solvable group, then ψ is
an homomorphism by construction. We now show that this test is robust.

Proposition 8. Let η be a constant such that 0 < η < 1/120. Assume that |Ht| > 3|Gt|/4. Suppose
that

Prx,y∈Gt [ψ(x ◦ y) = ψ(x) · ψ(y)] > 1− η. (3)

Then there exists a solvable group H̃t that is (211η|Γ|2)-close to Ht.

Proof. From Condition (3), Theorem 2 of [10] implies that there exists a group (H̃t, ∗) with |H̃t| ≤
|Gt|, and a homomorphism ψ̃ : Gt → H̃t such that:

(a) |H̃t\Ht| ≤ 30η|H̃t|;

(b) Prh,h′∈H̃t
[h ∗ h′ 6= h · h′] ≤ 91η; and

(c) Prx∈Gt [ψ̃(x) 6= ψ(x)] ≤ 30η.

Notice that, strictly speaking, Theorem 2 of [10] is stated only in the case where Ht is a magma,
i.e., closed under ·. This is not the case here because Ht may not be a magma, but only a pseudo-
magma. However, careful inspection of the proof of Theorem 2 of [10] shows that exactly the same
result holds when Ht is a pseudo-magma too. The distance between H̃t and Ht is determined by
the number of elements being a member of either set and the number of pairs of two elements for
which the result of the multiplication differ. In particular, this distance has for upper bound the
cost of the following transform: starting from the table of H̃j, we first delete rows and columns
corresponding to elements in H̃t\Ht, insert rows and columns corresponding to elements in Ht\H̃t,
and then exchange multiplication entries which differ between two tables. It follows from (a) and (b)
that the number of elements in H̃t\Ht is less than 30η|H̃t| and the number of pairs (h, h′) ∈ H̃t× H̃t

such that h ∗ h′ 6= h · h′ is less than 91η|H̃t|
2. It remains to show that Ht\H̃t is small enough too

and that H̃t is a solvable group.
Suppose towards a contradiction that |ψ̃(Gt)| < |Gt|. Then |ψ̃(Gt)| ≤ |Gt|/2. From Condition

(c), we obtain |Ht| = |ψ(Gt)| ≤ |Gt|/2 + 30η|Gt| ≤ 3|Gt|/4. This gives a contradiction. Thus
|ψ̃(Gt)| = |H̃t| = |Gt| and ψ̃ is an isomorphism from Gt to H̃t. Since Gt is a solvable group, H̃t

is solvable too. Since |Ht| ≤ |Gt|, it also follows that |Ht| ≤ |H̃t| and thus |Ht\H̃t| ≤ |H̃t\Ht| ≤
30η|H̃t|.
Deleting |H̃t\Ht| rows and column from the table of H̃t costs

2|H̃t||H̃t\Ht| − |H̃t\Ht|
2 ≤ 60η|H̃t|

2.

Then inserting |Ht\H̃t| rows and columns similarly costs at most 60η|H̃t|
2 too. Thus the distance

between Ht and the solvable group H̃t is at most [(60 + 60 + 91)η|H̃t|
2] ≤ 211η|Γ|2.

More precisely, we perform the following test. We want to test which of Prx,y∈G[ψ(x ◦ y) =
ψ(x) ·ψ(y)] = 1 and Prx,y∈Gt [ψ(x◦y) = ψ(x) ·ψ(y)] ≤ 1−η with η = ǫ/422 holds. We take c2 pairs
(x, y) of elements of Gt and test whether they all satisfy ψ(x ◦ y) = ψ(x) · ψ(y). It is easy to show
that, when taking c2 = Θ(η−1) = Θ(ǫ−1), we can decide which case holds with constant probability.

9

3.3 Correctness and complexity

We now evaluate the performance of our algorithm. This gives the result of Theorem 4.
First, suppose that the magma (Γ, ·) is a solvable group. With high probability the set of elements

taken at step 1 of the algorithm of Figure 1 is a generating set of Γ and the first algorithm of
Theorem 5 succeeds on this set. In this case, each of the tests realized at steps 3 to 5 succeeds with
high probability (since the success probability of Shor’s algorithm and of the second algorithm of
Theorem 5 can be amplified), and then all the tests at steps 6 and 7 succeed with probability 1.
Thus the global error probability is constant.
Now, we would like to show that any magma Γ that is (ǫ|Γ|2)-far from any solvable group is

rejected with high probability. Take such a magma Γ. ThenHt is (
ǫ
2 |Γ|

2)-far from any solvable group

H̃t or |Γ\Ht|/|Γ| > ǫ/4. This assertion holds because for any solvable group H̃t, the inequalities
ǫ|Γ|2 < d(Γ, H̃t) ≤ d(Γ,Ht) + d(Ht, H̃t) hold and d(Γ,Ht) = 2|Γ\Ht||Γ| − |Γ\Ht|

2 ≤ 2|Γ\Ht||Γ|
since Ht ⊆ Γ and the operation is the same. If the latter holds, it should be rejected with high
probability at test 5. Now suppose that the former holds and that all the steps 1–6 succeed. Then
with high probability |Ht| ≥ (1− ǫ/4)|Γ| ≥ 3|Γ|/4 = 3|Gt|/4. From Proposition 8 this implies that
Prx,y∈Gt [ψ(x ◦ y) = ψ(x) · ψ(y)] ≤ 1− ǫ/422. This is detected with high probability at step 7.
The algorithm queries the oracle Γ a number of times polynomial in log |Γ| at each of the steps

1 to 4, and a number of times polynomial in log |Γ| and ǫ−1 at steps 5 and 7. Additional com-
putational work is needed at steps 6 and 7 to compute a polynomial number of products in the
groups Gi’s. Since each product can be done (without queries) using O(exp((log log |Gi|)

2)) =
O(exp((log log |Γ|)2)) time using the algorithm by Höfling [12], the total time complexity of the
algorithm is polynomial in exp((log log |Γ|)2) and ǫ−1.

Acknowledgments

The authors thank anonymous reviewers for helpful comments and suggestions.

References

[1] V. Arvind and N. V. Vinodchandran, Solvable black-box group problems are low for PP, The-
oretical Computer Science, 180(1-2), pp. 17–45, 1997.

[2] L. Babai and R. Beals, Las Vegas algorithms for matrix groups, Proceedings of the 34th Annual
Symposium on Foundations of Computer Science, pp. 427–436, 1993.

[3] L. Babai, G. Cooperman, L. Finkelstein, E. Luks and Á. Seress, Fast Monte Carlo algorithms
for permutation groups, Journal of Computer and System Sciences, 50(2), pp. 296–307, 1995.

[4] L. Babai and E. Szemerédi, On the complexity of matrix group problems, Proceedings of the
25th Annual IEEE Symposium on Foundations of Computer Science, pp. 229–240, 1984.

[5] M. Ben-Or, D. Coppersmith, M. Luby and R. Rubinfeld, Non-Abelian homomorphism test-
ing, and distributions close to their self-convolutions, Proceedings of the 8th International
Workshop on Randomization and Computation, pp. 273–285, 2004.

[6] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 73–
83, 1990.

[7] H. Buhrman, L. Fortnow, I. Newman and H. Röhrig, Quantum property testing, Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 873–882, 2001.

10

[8] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld and M. Viswanathan, Spot-checkers, Journal
of Computer and System Sciences, 60(3), pp. 717–751, 2000.

[9] K. Friedl, G. Ivanyos, F. Magniez, M. Santha and P. Sen, Hidden translation and orbit coset
in quantum computing, Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, pp. 1–9, 2003.

[10] K. Friedl, G. Ivanyos and M. Santha, Efficient testing of groups, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pp. 157–166, 2005.

[11] K. Friedl, F. Magniez, M. Santha and P. Sen, Quantum testers for hidden group properties,
Proceedings of the 28th International Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science, 2747, pp. 419–428, 2003.

[12] B. Höfling, Efficient multiplication algorithms for finite polycyclic groups, preprint, available
at http://www-public.tu-bs.de:8080/∼bhoeflin/, 2004.

[13] Y. Inui and F. Le Gall, Efficient algorithms for the hidden subgroup problem over a class of
semi-direct product groups, Quantum Information and Computation, 7(5&6), pp. 559–570,
2007.

[14] G. Ivanyos, F. Magniez and M. Santha, Efficient quantum algorithms for some instances of
the non-Abelian hidden subgroup problem, International Journal of Foundations of Computer
Science, 14(5), pp. 723–740, 2003.

[15] M. Kiwi, F.Magniez and M. Santha, Exact and approximate testing/correcting of algebraic
functions: a survey, Proceedings of the 1st Summer School on Theoretical Computer Science,
Lecture Notes in Computer Science, 2292, pp. 30–83, 2000.

[16] F. Magniez and A. Nayak, Quantum complexity of testing group commutativity, Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science, 3580, pp.1312–1324, 2005.

[17] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge
University Press, 2000.

[18] S. Rajagopalan and L. Schulman, Verification of identities, Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, pp. 612–616, 1996.

[19] D. Ron, Property testing, In Handbook of Randomized Computing, Kluwer Academic Pub-
lishers, pp. 597–649, 2001.

[20] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM Journal on Computing, 26(5), pp. 1484–1509, 1997.

[21] A. Shpilka and A. Wigderson, Derandomizing homomorphism testing in general groups, Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 427–435, 2004.

[22] C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, 1994.

[23] J. Watrous, Quantum algorithms for solvable groups, Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pp. 60–67, 2001.

11

http://www-public.tu-bs.de:8080/~bhoeflin/

	1 Introduction
	2 Definitions
	2.1 Distances between sets
	2.2 Property testing of group solvability
	2.3 Quantum algorithms for solvable groups

	3 Our Quantum Algorithm
	3.1 Outline of our algorithm
	3.2 Algorithm
	3.2.1 Decomposition of
	3.2.2 Test of embedding
	3.2.3 Construction of the group Gt
	3.2.4 Test of homomorphism

	3.3 Correctness and complexity

