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A Sequential Algorithm for Generating Random Graphs

Mohsen Bayati∗ Jeong Han Kim† Amin Saberi ‡

Abstract

We present a nearly-linear time algorithm for counting and randomly generating simple graphs with
a given degree sequence in a certain range. For degree sequence (di)

n
i=1 with maximum degree dmax =

O(m1/4−τ ), our algorithm generates almost uniform random graphs with that degree sequence in time
O(mdmax) where m = 1

2

∑
i di is the number of edges in the graph and τ is any positive constant. The

fastest known algorithm for uniform generation of these graphs [32] has a running time of O(m2
d
2

max). Our
method also gives an independent proof of McKay’s estimate [31] for the number of such graphs.

We also use sequential importance sampling to derive fully Polynomial-time Randomized Approxi-
mation Schemes (FPRAS) for counting and uniformly generating random graphs for the same range of
dmax = O(m1/4−τ ).

Moreover, we show that for d = O(n1/2−τ ), our algorithm can generate an asymptotically uniform
d-regular graph. Our results improve the previous bound of d = O(n1/3−τ ) due to Kim and Vu [28] for
regular graphs.

1 Introduction

The focus of this paper is on generating random simple graphs (graphs with no multiple edges or self loop)
with a given degree sequence. Random graph generation has been studied extensively as an interesting
theoretical problem (see [40, 11] for detailed surveys). It has also become an important tool in a variety of real
world applications including detecting motifs in biological networks [35] and simulating networking protocols
on the Internet topology [39, 18, 30, 13, 2]. The best algorithm for this problem was given by McKay and
Wormald [32] that uses certain switches on the configuration model and produces random graphs with uniform
distribution in O(m2d2max) time. However, this running time can be slow for the networks with millions of
edges. This has constrained practitioners to use simple heuristics that are non-rigorous and have often led
to wrong conclusions [34, 35]. Our main contribution in this paper is to provide a nearly-linear time, fully
polynomial randomized approximation scheme (FPRAS) for generating random graphs. An FPRAS provides
an arbitrary close approximation in time that depends only polynomially on the input size and the desired
error. (For precise definitions of FPRAS, see Definition 1 in Section 2.)

Recently, sequential importance sampling (SIS) has been suggested as a more suitable approach for de-
signing fast graph generation algorithms [14, 11, 29, 4]. Chen et al. [14] used the SIS method to generate
bipartite graphs with a given degree sequence. Later Blitzstein and Diaconis [11] used a similar approach for
generating general graphs with given degrees. But these results are mostly empirical, and in a few cases SIS
is shown to be slow [9]. However, the simplicity of these algorithms and their great performance in several
instances suggest that a further study of the SIS method is necessary.

The Result. Let d1, . . . , dn be non-negative integers with
∑n

i=1 di = 2m. Our algorithm for generating
a graph with degree sequence d1, . . . , dn is a generalization of Steger and Wormald’s algorithm for regular
graphs [38]. It works as follows: start with an empty graph and sequentially add edges between the pairs
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of non-adjacent vertices. In every step of the procedure, the probability that an edge is added between two
distinct vertices i and j is proportional to d̂id̂j(1 − didj/4m) where d̂i and d̂j denote the remaining degrees
of vertices i and j. The remaining degree of a vertex i is equal to di minus its current degree. We will
show that this algorithm produces an asymptotically uniform sample with running time O(mdmax) when
dmax = O(m1/4−τ ) and τ is any positive constant. Then, we use SIS to obtain an FPRAS for any ǫ, δ > 0
with running time O(mdmaxǫ

−2 log(1/δ)). The same result holds when the algorithm is used for generating
bipartite graphs. Moreover, we show that for d = O(n1/2−τ ), this algorithm can generate d-regular graphs
with an asymptotically uniform distribution. Our results improve the bounds of Kim and Vu [28] and Steger
and Wormald [38] for the regular graphs.

Related Work. McKay and Wormald [31, 33] give asymptotic estimates for the number of graphs with
dmax = O(m1/3−τ ). However, the error terms in their estimates are larger than what is needed to apply
Jerrum, Valiant and Vazirani’s [20] reduction to achieve an asymptotically uniform sampling. Jerrum and
Sinclair [21], however, use a random walk on the self-reducibility tree and give an FPRAS for uniformly
sampling the graphs with dmax = o(m1/4). The running time of their algorithm is O(m3n2ǫ−2 log(1/δ)) [37].
A different random walk that has been studied by [22, 23, 8], gives an FPRAS for the random generation of
bipartite graphs with all degree sequences and general graphs with almost all degree sequences. However, the
running time of all these algorithms is at least O(n4m3dmaxǫ

−2 log(1/δ)). Other Markov chains methods are
also studied in [15, 17, 19].

McKay and Wormald also introduced an algorithm based on a certain switching technique on the configura-
tion model that achieves the best performance [32]. It produces random graphs with uniform distribution (bet-
ter than FPRAS) and has a faster running time. Their algorithm works for graphs with d3max = O(m2/

∑

i d
2
i )

and d3max = o(m+
∑

i d
2
i ) with an average running time of O(m+(

∑

i d
2
i )

2). This leads to an O(n2d4) average
running time for d-regular graphs with d = O(n1/3).

Very recently and independently from our work, Blanchet [10] has used McKay’s estimate [31] and SIS
technique to obtain an FPRAS with running time of O(m2ǫ−2 log(1/δ)) for counting bipartite graphs with
given degrees when dmax = o(m1/4). His work is based on defining an appropriate Lyapunov function as well
as using Mckay’s estimate.

Our Technical Contribution. Our algorithm and its analysis are based on the beautiful works of Steger
and Wormald [38] and Kim and Vu [27]. The technical contributions of our work beyond their analysis are as
follows:

1. In both [38, 27] the output distribution of the proposed algorithms are asymptotically uniform. Here we
use SIS technique to obtain an FPRAS.

2. Both [38, 27] use McKay’s estimate [31] in their analysis. In this paper we give a combinatorial argument
to control the failure probability of the algorithm and obtain a new proof for McKay’s estimate.

3. We exploit the combinatorial structure and use a martingale tail inequality to show the concentration
results for d-regular graphs with d = O(n1/2−τ ) where the previous polynomial inequalities [26] do not
work.

Other Applications and Extensions. Our algorithm and its analysis provide more insight into the modern
random graph models, such as the configuration model or the random graphs with a given expected degree
sequence [16]. In these models, the probability of having an edge between vertices i and j of the graph is
proportional to didj . However, one can use our analysis or McKay’s formula [31] to see that in a random
simple graph, this probability is proportional to didj(1− didj/2m). We expect that by adding the correction
term and using the concentration result of this paper, it is possible to obtain sandwiching theorems similar to
[28].

In a follow up work, Bayati et al. [5] uses similar ideas to generate random graphs with large girth. These
graphs are useful for designing high performance Low-Density Parity-Check (LDPC) codes (cf. [3]).
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Organization of the Paper. The rest of the paper has the following structure. The algorithm and the
main results are stated in Section 2. In Section 3, we explain the intuition behind the weighted configuration
model and our algorithm while also describing the SIS approach. Finally Sections 4-7 are dedicated to the
analysis and the proofs.

2 Our Algorithm

Suppose that n nonnegative integers d1, d2, . . . dn with
∑n
i=1 di = 2m are given. Assume that this sequence is

also graphical. That is, there exists at least one simple graph with these degrees. We propose the following
procedure for sampling (counting) an element (the number of elements) of the set L(d̄) of all labeled simple
graphs G with vertices V = {v1, v2, . . . , vn} and degree sequence d̄ =(d1, d2, · · · , dn). Throughout this paper
m =

∑n
i=1 di/2 is the number of edges in the graph, dmax = maxni=1{di} and for the regular graphs, d refers

to the degrees; i.e. di = d for all i = 1, . . . , n. We denote the set of all d-regular graphs with n vertices by
L(n, d).

Procedure A

INPUT: A graphical degree sequence d̄ = (d1, d2, · · · , dn).
OUTPUT: A graph G with degree sequence d̄ or failure. An approximation N for the number of graphs with
degree sequence d̄ or 0.

(1) Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers and P be a real number. Initialize

them by E = Empty set, d̂ = d̄, and P = 1.

(2) Choose two vertices vi, vj ∈ V with probability proportional to d̂id̂j(1− didj
4m ) among all pairs vi, vj with

i 6= j and {vi, vj} /∈ E. Denote this probability by pij . Multiply P by pij , add {vi, vj} to E and reduce

each of d̂i, d̂j by 1.

(3) Repeat step (2) until no more edges can be added to E.

(4) If |E| < m report failure and output N = 0, otherwise output G = (V,E) and N = (m! P )−1.

Note that for the regular graphs the factors 1−didj/4m are redundant and Procedure A is the same as Steger
and Wormald’s [38] algorithm. The next two theorems characterize the output distribution of Procedure A.

Theorem 1. For an arbitrary number τ > 0 and for any degree sequence d̄ with maximum degree of
O(m1/4−τ ), Procedure A can be implemented so that it terminates successfully with probability (1 − o(1))
in expected running time O(mdmax). Furthermore, any graph G with degree sequence d̄ is generated with a
probability within 1± o(1) factor of the uniform probability.

For the regular graphs a similar result can be shown in a larger range for the degrees.

Theorem 2. For an arbitrary number τ > 0 and for d = O(n1/2−τ ), Procedure A generates all graphs G in
L(n, d) with probability within 1 ± o(1) factor of the uniform probability, except for the graphs in a subset of
size o(|L(n, d)|). In other words as n → ∞, the output distribution of Procedure A converges to the uniform
distribution in total variation distance.

The results above show that the output distribution of Procedure A is close to uniform only when n is
sufficiently large. Nevertheless, it is desirable to be close to uniform for all values of n. In order to do that,
we find an FPRAS for calculating |L(d̄)| and also for randomly generating the elements of L(d̄).

Definition 1. An FPRAS for approximately counting graphs with degree sequence d̄ is an algorithm that for
any ǫ, δ > 0, outputs an estimate X for |L(d̄)| where P{(1− ǫ)|L(d̄)| ≤ X ≤ (1 + ǫ)|L(d̄)|} ≥ 1− δ, and has a
running time polynomial in m, 1/ǫ, log(1/δ).
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Similarly, an FPRAS for randomly generating graphs with degree sequence d̄ is an algorithm that for any
ǫ > 0, has a running time polynomial in m, 1/ǫ, and with probability at least 0.5, it outputs a graph from the
set L(d̄) with probability within 1±ǫ

c of the uniform where c is a constant.
Throughout this paper we assume 0 < ǫ, δ < 1 and for convenience, we define a real valued random variable

X to be an (ǫ, δ)-estimate for a number y if P{(1− ǫ)y ≤ X ≤ (1 + ǫ)y} ≥ 1− δ.

The following theorem summarizes our main result.

Theorem 3. For an arbitrary number τ > 0, degree sequence d̄ with maximum degree of O(m1/4−τ ),
and any ǫ, δ > 0 the algorithm CountGraphs of Section 3 is an FPRAS with an expected running time of
O(mdmaxǫ

−2 log(1/δ)) for counting graphs with degree sequence d̄. Moreover, the algorithm GenerateGraph of
Section 3 is an FPRAS with an expected running time of O(mdmaxǫ

−2) for randomly generating graphs with
degree sequence d̄.

Remark 1. For generating bipartite graphs, step (2) of Procedure A should be modified to

(2) Choose two vertices vi, vj ∈ V with probability proportional to d̂id̂j(1− didj
2m ) among all pairs vi, vj with

{vi, vj} /∈ E, and vi, vj not belonging to the same part of the graph. Denote this probability by pij and

multiply P by pij. Add {vi, vj} to E and reduce each of d̂i, d̂j by 1.

Then corresponding versions of Theorems 1-3 can be shown.

3 Definitions and the Main Idea

Before explaining our approach let us quickly review the configuration model (cf. [7, 12, 36] for more details).
Let W = ∪ni=1Wi be a set of 2m =

∑n
i=1 di labeled mini-vertices with |Wi| = di. Consider a procedure that

finds a random perfect matching M between mini-vertices by choosing pairs of mini-vertices sequentially and
uniformly at random. Such a matching is also called a configuration on W . We can see that the number of
all distinct configurations is equal to (1/m!)

∏m−1
r=0

(
2m−2r

2

)
. Given a configuration M, we can obtain a graph

GM with degree sequence d̄ by combining the mini-vertices of each Wi to form a vertex vi, .
Note that the graph GM might have self edge loops or multiple edges. In fact McKay and Wormald’s

estimate [33] shows that this happens with very high probability except when dmax = O(log1/2m). In order
to fix this problem, Steger and Wormald [38] proposed that at any step one can only look at those pairs of
mini-vertices that lead to simple graphs (denote these by suitable pairs) and pick one uniformly at random.
For d-regular graphs when d = O(n1/28−τ ) Steger and Wormald have shown that this approach asymptotically
samples regular graphs with uniform distribution and Kim and Vu [27] have extended that to d = O(n1/3−τ ).

3.1 Weighted configuration model

Unfortunately, when the degree sequence is not uniform, the above procedure may generate some graphs with
a probability exponentially larger (or smaller) than uniform probability. In this paper, we will show that for
non-regular degree sequences suitable pairs should be picked non-uniformly. In fact, Procedure A is a weighted
configuration model where at any step a suitable pair {u, v} with u ∈ Wi and v ∈Wj is picked with probability
proportional to 1− didj/4m.

Here is a rough intuition behind Procedure A. Define the execution tree T of the configuration model as
follows: Consider a rooted tree where its root (the vertex at level zero) corresponds to the empty matching in
the beginning of the model and level r vertices correspond to all partial matchings that can be constructed
after r steps. There is an edge in T between a partial matching Mr from level r to a partial matching Mr+1

from level r + 1 if Mr ⊂ Mr+1. Any path from the root to a leaf of T corresponds to one possible way of
generating a random configuration.

Let us denote those partial matchings Mr whose corresponding partial graph GMr is simple by “valid”
matchings and denote the remaining partial matchings by “invalid”. Our goal is to sample valid leaves of the
tree T uniformly at random. Steger and Wormald’s improvement to the configuration model is to restrict the
algorithm at step r to the valid children of Mr and picking one uniformly at random. This approach leads to
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an almost uniform generation for the regular graphs [38, 27] since the number of valid children for all partial
matchings at level r of T, is almost equal. However, it is crucial to note that for non-regular degree sequences
if the (r + 1)th-edge matches two elements belonging to the vertices with larger degrees, the number of valid
children for Mr+1 will be smaller. Thus, there will be a bias towards graphs that have more of such edges.

In order to find a rough estimate of the bias, fix a graph G with degree sequence d̄. Let M(G) be the set of
all leavesM of the tree T that lead to graphG; i.e. those configurationsM with GM = G. It is easy to see that
|M(G)| = m!

∏n
i=1 di!. Moreover, for exactly (1− qr) |M(G)| of these leaves, a fixed edge {i, j} of G appears in

the first r steps of the path leading to them; i.e. {i, j} ∈ Mr. Here qr = (m−r)/m. Furthermore, we can show
that for a typical matching after step r, the number of unmatched mini-vertices in each Wi is roughly diqr.
Thus the expected number of unsuitable pairs {u, v} is about

∑

i∼Gj
didjq

2
r(1 − qr). Similarly, the expected

number of unsuitable pairs corresponding to self edge loops is approximately
∑n
i=1

(
diqr
2

)
≈ 2mq2rλ(d̄) where

λ(d̄) =
∑n

i=1

(
di
2

)
/(
∑n

i=1 di). Therefore, defining γG =
∑

i∼Gj
didj/4m and using

(
2m−2r

2

)
≈ 2m2q2r we can

approximate PA(G), the probability of generating G with Procedure A by

PA(G) ≈ m!

(
n∏

i=1

di!

)
m−1∏

r=0

1

2m2q2r − 2mq2rλ(d̄)− 4m(1− qr)q2rγG

≈ eλ(d̄)+γG m!

(
n∏

i=1

di!

)
m−1∏

r=0

1
(
2m−2r

2

) ∝ eγG .

Hence, adding the edge {i, j} roughly creates an exp(didj/4m) bias. To cancel that effect we need to reduce the
probability of picking {i, j} by exp(−didj/4m) ≈ 1− didj/4m. We will rigorously prove the above argument
in Section 4.

3.2 Obtaining a fully polynomial randomized approximation scheme

The output distribution of Procedure A denoted by PA is asymptotically uniform. But when m is small, it
is desirable to reduce the deviation of the output distribution from the uniform distribution. Note that it is
not possible to use an accept/reject scheme to obtain uniform distribution since the probability PA(G) is not
known for any given graph G. In fact, for an output G of Procedure A, the variable P is the probability of
generating one ordering of the edges of G among all m! possible permutations. Different orderings can have
probabilities that vary exponentially which further complicates the calculation of PA(G).

However, we can use the Sequential Importance Sampling (SIS) method, similar to [14], to find very close
estimates for PA(G) and |L(d̄)|. Then with a simple accept/reject scheme we can obtain a distribution that
is very close to the uniform distribution. For example if PA(G)|L(d̄)| ≥ 1 then we can accept graph G with

probability
(
PA(G)|L(d̄)|

)−1
. This approach will be explained in more detail in this section.

3.2.1 FPRAS for Counting via SIS.

Denote the set of all orderings N that lead to a graph in L(d̄) by K(d̄). Therefore, |K(d̄)| = m! |L(d̄)|. Let Q
be the uniform distribution on |K(d̄)|. Procedure A samples an ordering N ∈ K(d̄) from a “trial distribution”
PA, where PA(N ) > 0 for all N ∈ K(d̄). Thus, we have

EPA(
1

PA
) =

∑

N∈K(d̄)

1

PA(N )
PA(N ) = |K(d̄)|.

Hence, we can estimate |K(d̄)| by

|̂K(d̄)| = 1

k

k∑

i=1

1

PA(Ni)

from k iid samples N1, . . . ,Nk drawn from PA(N ). Now in order to estimate |L(d̄)| = |K(d̄)|/m! we can use

|̂L(d̄)| = 1

k

k∑

i=1

1

m!PA(Ni)
.
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Note that when an ordering N is the output of Procedure A then the number N , that is also an output of
Procedure A, is equal to 1

m!PA(N ) . Hence, we propose the following algorithm for estimating |L(d̄)|.

Algorithm: CountGraphs

INPUT: A graphical degree sequence d̄, positive numbers ǫ, δ, and an integer k = k(ǫ, δ).
OUTPUT: An (ǫ, δ)-estimate X for the number of graphs with degree sequence d̄.

(1) Run Procedure A k = k(ǫ, δ) times, and denote the corresponding values for the random variable N by
N1, . . . , Nk.

(2) Output X = N1+···+Nk

k as an estimate for |L(d̄)|.

We will show in Section 8.1, that the variance of the random variable N is small enough and therefore, an
integer k = k(ǫ, δ) = O(ǫ−2 log(1/δ)) exists such that the algorithm CountGraphs produces an (ǫ, δ)-estimate
for |L(d̄)|.

3.2.2 Approximating PA(G) with SIS.

Similar to the above discussion, we will use SIS to to find a very close approximation for PA(G) for each graph
G. Recall that for any graph G, each ordering N of the edges of G is generated with probability PA(N ) by
Procedure A. Now let S(G) be the set of all m! orderings of G. Therefore, the probability PA(G) is given by

PA(G) =
∑

N∈S(G)

PA(N ). (3.1)

LetH be the uniform distribution on the set S(G). Then equation (3.1) is equivalent to PA(G) = m! EH(PA(N )).
Therefore, we use H as trial distribution and draw ℓ iid samples N1, . . . ,Nℓ from H. Then for each sample

Ni we calculate PA(Ni) and report

P̂A(G) =
m!

ℓ

ℓ∑

i=1

PA(Ni)

as an estimate for PA(G). This is given by Procedure B.

Procedure B

INPUT: A graph G with degree sequence d̄, and an integer ℓ = ℓ(ǫ, δ).
OUTPUT: A real number PG that is an (ǫ, δ)-estimate for PA(G).

(1) Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers, and P be a real number. Initialize

them by E = empty set, d̂ = d̄, and P = 1.

(2) Choose an edge e = {vi, vj} of G among all those edges that are not in E, uniformly at random. Update
P by

P =
d̂id̂j(1 − didj

4m )P
∑

(vr,vs)/∈E

vr 6=vs
d̂rd̂s(1− drds

4m )
.

Add {vi, vj} to E and reduce each of d̂i, d̂j by 1.

(3) Repeat step (2) until |E| = m.

(4) Repeat steps (1) to (3) exactly ℓ = ℓ(ǫ, δ) times and let P1, . . . , Pℓ be the corresponding values for P .
Output PG = m!P1+···+Pℓ

ℓ as an estimate for m! EH(PA(πG)) = PA(G).

6



Note that the variable P at the end of step (3) is exactly PA(N ) for an element N ∈ S(G) that is sampled
from distribution H. Therefore, it is easy to see that EB(P ) = EH(PA(N )) = PA(G)/m! which makes PG an
unbiased estimate for PA(G). In Section 8.2, by controlling the variance of the random variable P , we will
show the existence of an ℓ = ℓ(ǫ, δ) = O(ǫ−2 log(1/δ)) such that the value of PG is an (ǫ, δ)-estimate for PA(G)
.

3.2.3 FPRAS for Random Generation.

Now that we can find (ǫ, δ)-estimates for both |L(d̄)| and PA(G) then an FPRAS for random generation is
within reach. Algorithm GenerateGraph, given below provides such an FPRAS.

Algorithm: GenerateGraph

INPUT: A graphical degree sequence d̄ and a positive numbers ǫ.
OUTPUT: A graph G with degree sequence d̄.

(1) Let ǫ′ = min(0.25, 1− 1√
1+ ǫ

2

, 1√
1− ǫ

2

− 1) and δ < 0.25.

(2) Run Algorithm CountGraph, to obtain X as an (ǫ′, δ)-estimate for |L(d̄)|.

(3) Repeat Procedure A to obtain one successful outcome G.

(4) Run Procedure B to obtain an (ǫ′, δ)-estimate, PG, for PA(G).

(5) Report G with probability min( 1
cXPG

, 1) and end. Otherwise go to step (3).

We will show in Section 4 that a universal constant c exists (independent of all parameters m, d̄, ǫ) where
the inequality cXPG ≥ 1 holds whenever X ≥ (1−ǫ′)|L(d̄)| and PG ≥ (1−ǫ′)PA(G). Also note that we always
assume 0 < ǫ < 1. Therefore, ǫ′ is well defined.

4 Analysis

Let us fix a simple graph G with degree sequence d̄. Recall the weighted configuration model from Section 3
which is equivalent to Procedure A. Denote the set of all perfect matchings on the mini-vertices of W that
lead to G by R(G). Any two elements of R(G) can be obtained from one another by permuting the labels of
the mini-vertices in anyWi. Due to this symmetry, all matchings in R(G) are generated with equal probability
using Procedure A. In other words for a fixed element M in R(G) we have PA(G) = (

∏n
i=1 di!)PA(M).

Now we will find PA(M). First note that there are m! different orders for picking the edges of M se-
quentially. Moreover, different orderings can have different probabilities. Denote the set of these orderings by
S(M). Thus

PA(G) =

(
n∏

i=1

di!

)
∑

N∈S(M)

PA(N ).

For any ordering N = {e1, . . . , em} in the set S(M) and each r with 0 ≤ r ≤ m− 1 denote the probability of

picking edge er+1 at step r+1 of Procedure A by P (er+1|e1, . . . , er). Hence PA(N ) =
∏m−1
r=0 P (er+1|e1, . . . , er)

and each term P (er+1|e1, . . . , er) is given by

P
(

er+1 = {i, j}|e1, . . . , er
)

=
(1 − didj/4m)

∑

{u,v}∈Er
d
(r)
u d

(r)
v (1 − dudv/4m)

(4.1)

7



where d
(r)
i denotes the residual degree of vertex i at step r + 1 and the set Er consists of all possible edges

after picking e1, . . . , er. Note that d
(r)
i is also equal to the number of unmatched mini-vertices in Wi at step

r + 1. For the analysis we use the notations {i, j} and {vi, vj} interchangeably.
Denote the number of unsuitable pairs after choosing the edges in Nr = {e1, . . . , er} by ∆r(N ). Thus,

the denominator of the right hand side of (4.1) can be written as
(
2m−2r

2

)
−Ψr(N ) where Ψr(N ) = ∆r(N ) +

∑

{u,v}∈Er
d
(r)
u d

(r)
v dudv/4m. This is because

∑

{u,v}∈Er
d
(r)
u d

(r)
v is the number of the suitable pairs at step

r+1, and is equal to
(
2m−2r

2

)
−∆r(N ). The quantity Ψr(N ) can be also viewed as sum of the weights of the

unsuitable pairs. Now using 1 − x = e−x+O(x2) for 0 ≤ x ≤ 1, when dmax = O(m1/4−τ ) the expression for
PA(G) is

PA(G) =

(
n∏

i=1

di!

)


∏

i∼Gj

(1− didj
4m

)




∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
−Ψr(N )

=

(
n∏

i=1

di!

)

e−γG+o(1)
∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
−Ψr(N )

where γG was defined in Section 3 to be γG =
∑

i∼Gj
didj/4m. The next step is to show that Ψr(N ) is sharply

concentrated around a number ψr(G), independent of the ordering N . More specifically for

ψr(G) = (2m− 2r)2
(
λ(d̄)

2m
+
r
∑

i∼Gj
(di − 1)(dj − 1)

4m3
+

(
∑n

i=1 d
2
i )

2

32m3
+ o(1)

)

the following is true

∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
−Ψr(N )

= [1 + o(1)]m!

m−1∏

r=0

1
(
2m−2r

2

)
− ψr(G)

. (4.2)

The proof of this concentration result uses Kim and Vu’s polynomial method [26] and is quite technical. It
generalizes Kim and Vu’s [27] calculations for the regular graphs to the general degree sequences. Section 7
is dedicated to this cumbersome analysis. But for the case of regular graphs, in Section 4.1, we will use a
different technique based on Azuma’s inequality to show concentration in a larger region.

The next step is to show that when dmax = O(m1/4−τ ),

m−1∏

r=0

1
(
2m−2r

2

)
− ψr(G)

=

m−1∏

r=0

1
(
2m−2r

2

)eλ(d̄)+λ
2(d̄)+γG+o(1). (4.3)

The proof of equation (4.3) is algebraic and is given in Section 7.2.
The above analysis can now be summarized in the following lemma.

Lemma 1. For dmax = O(m1/4−τ ), Procedure A generates all graphs with degree sequence d̄ with asymptoti-
cally equal probability. More specifically

∑

N∈S(M)

PA(N ) =
m!

∏m
r=0

(
2m−2r

2

)eλ(d̄)+λ
2(d̄)+o(1).

Now we can prove the first theorem.

of Theorem 1. Lemma 1 shows that PA(G) is asymptotically independent of G. Therefore, we only need to
show Procedure A always succeeds with probability 1 − o(1). We will show this in Section 5 by proving the
following lemma.

Lemma 2. For dmax = O(m1/4−τ ), the probability of failure of Procedure A is o(1).
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Therefore, all graphs G are generated with asymptotically uniform probability. Note that this fact, com-
bined with equation (4.2) will also give an independent proof of McKay’s formula [31] for the number of
graphs.

Finally we are left with the analysis of the running time which is summarized in the following lemma. The
proof of this lemma is given in Section 6.

Lemma 3. Procedure A can be implemented so that the expected running time is O(mdmax) for dmax =
O(m1/4−τ ).

This completes the proof of Theorem 1.

4.0.4 Proof of Theorem 3.

First we will prove that Algorithm CountGraphs is an FPRAS for the counting problem. This is shown by
the following lemma.

Lemma 4. For any ǫ, δ > 0 there exist k = k(ǫ, δ) = O(ǫ−2 log(1/δ)) such that the output X of Algorithm
CountGraphs is an (ǫ, δ)-estimate for |L(d̄)|.
Proof. Since EA(N) = L(d̄),

P
[

(1− ǫ)|L(d̄)| < X < (1 + ǫ)|L(d̄)|
]

= P



− ǫEA(N)
√

VarA(N)
k

<
X − EA(X)
√

VarA(N)
k

<
ǫEA(N)
√

VarA(N)
k



 (4.4)

On the other hand, as a consequence of the Central Limit Theorem, when k goes to infinity, the quantity
X−EA(X)√
VarA(N)/k

converges to a random variable Z which has a normal distribution with mean zero and variance

1. Therefore similar to the discussion given in [10], the inequality ǫEA(N)√
VarA(N)/k

> zδ guarantees that X is an

(ǫ, δ)-estimate for |L(d̄)| where P(|Z| > zδ) = δ. This condition is equivalent to the following lower bound for
the number of repetitions of Procedure A

k > z2δ ǫ
−2VarA(N)

EA(N)2
.

Moreover, the tail of the normal distribution, P(|Z| > x), for very large values of x can be approximated by

the quantity ax−1e−x
2/2(2π)−1 where a > 0 is a constant. This means that the quantity z2δ is of O(log(1/δ)).

Therefore, if we show that the variance ratio VarA(N)/EA(N)2 is bounded from above by a constant, then
with k = O(log(1/δ)ǫ−2) repetitions, we can obtain an (ǫ, δ)-estimate. In fact we will prove the stronger
statement

VarA(N)

EA(N)2
= o(1) (4.5)

in Section 8.1. This finishes the proof of Lemma 4.

Note that By Theorem 1, Procedure A uses O(mdmax) operations. Therefore the running time of Algorithm
CountGraphs is k(ǫ, δ) times O(mdmax) which is O(mdmaxǫ

−2 log(1/δ)). This shows that the algorithm
CountGraphs is an FPRAS for estimating |L(d̄|.

Now we will prove that Algorithm GenerateGraph is an FPRAS for the random generation problem as well.
First notice that if the ratio VarB(P )/EB(P )

2 is bounded from above by a constant, then similar calculations as
in the proof of Lemma 4 for the tail of the normal distribution can be used to find ℓ = ℓ(ǫ, δ) = O(ǫ−2 log(1/δ))
such that the output of Procedure B, PG, is an (ǫ, δ)-estimate for PA(G). In fact we will show the stronger
result

VarB(P )

EB(P )2
= o(1) (4.6)

in Section 8.2. Therefore, equation (4.6) gives the following lemma.
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Lemma 5. For any ǫ, δ > 0 and a graph G with degree sequence d̄, there exist ℓ = ℓ(ǫ, δ) = O(ǫ−2 log(1/δ))
for Procedure B such that its output, PG, is an (ǫ, δ)-estimate for PA(G).

The next step in analyzing Algorithm GenerateGraph is to prove the existence of constant c that is used
in Step (5).

Lemma 6. There exists a constant c such that for all parameters m, d̄, ǫ and all graphs G with degree sequence
d̄, the inequality cXPG ≥ 1 holds whenever X ≥ (1 − ǫ′)|L(d̄)| and PG ≥ (1− ǫ′)PA(G).

Proof. By Theorem 1,
[
1− o(1)

]
|L(d̄)|−1 ≤ PA(G) ≤

[
1+ o(1)

]
|L(d̄)|−1. Let M be large enough such that for

all m > M the o(1) terms are less than 1/2. Now define

d = min

(
1

2
, min
m≤M

min
G∈L(d̄)

(PA(G)|L(d̄)|)
)

and

e = max

(
3

2
, max
m≤M

max
G∈L(d̄)

(PA(G)|L(d̄)|)
)

.

Therefore, d and e are positive and finite constants that are independent of all of the parameters m, d̄, ǫ and
d ≤ PA(G)|L(d̄)| ≤ e. Now when X ≥ (1− ǫ′)|L(d̄)| and PG ≥ (1 − ǫ′)PA(G),

d

4
≤ d(1− ǫ′)2 ≤ PGX.

This is because ǫ′ ≤ 0.25. Therefore c = 4/d suffices.

Now we need to analyze the output distribution and the running time of Algorithm GenerateGraph.
Consider one iteration of Algorithm GenerateGraph from step (1) to step (5). Let Ev1 be the event that
at least one of the fractions X

|L(d̄)| or PG

PA(G) is not in the interval [1 − ǫ′, 1 + ǫ′]. Let Ev2 be the event that

a graph is reported in step (5). This means Evc2 is when ”Otherwise go to step (3)” is called. Therefore,
P(Ev1) ≤ 2δ < 0.5 and P(Ev1) + P(Ev2|Evc1)P(Evc1) + P(Evc2|Evc1)P(Evc1) = 1.

For each graph G ∈ L(d̄) let Ev2(G) be the event that G is reported in step (5). Each graph G is reported
with probability P(Ev2(G)|Evc1) = PA(G)/(cXPG) that satisfies

1− ǫ/2

c|L(d̄)| ≤ 1

c(1 + ǫ′)2|L(d̄)| ≤ P(Ev2(G)|Evc1) ≤
1

c(1− ǫ′)2|L(d̄)| ≤
1 + ǫ/2

c|L(d̄)| . (4.7)

Note that the events Ev2(G)|Ev1 are not important and have low probability. Now we obtain

P(Ev2) ≥ P(Evc1)
∑

G∈L(d̄)

P(Ev2(G)|Evc1) ≥
0.5(1− ǫ/2)

c
.

Therefore, the expected number of times that “Otherwise go to Step (3)” is called is P(Ev2)
−1 ≤ 4c. This

means that the expected running time of Algorithm GenerateGraph is at most 4c times the expected running
time of a successful run of Procedure A plus 4c times the expected running time of Procedure B plus the
expected running time of Algorithm CountGraphs. The total number of operations can be written as

4cO(mdmax) + 4cO(mdmaxǫ
′−2 log(1/δ)) +O(mdmaxǫ

′−2 log(1/δ))

which is O(mdmaxǫ
−2), since ǫ′ ≥ min(ǫ/4, 0.25) gives ǫ′−2 = O(ǫ−2).

Notice that the probability that Algorithm GenerateGraph eventually reports a graph, in an iteration that
Ev1 did not occur, is at least 1− P(Ev1) > 0.5. Moreover, the probability that the reported graph is a fixed
graph G ∈ L(d̄) satisfies

∞∑

i=0

P(Evc2)
iP(Ev2(G)|Evc1)P(Evc1) =

P(Ev2(G)|Evc1)P(Evc1)
P(Ev2)

∈ [
1− ǫ

c′|L(d̄)| ,
1 + ǫ

c′|L(d̄)| ]

where c′ = P(Evc1)
cP(Ev2)

. This finishes the proof of Theorem 3.
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4.1 Concentration inequality for regular graphs

The aim of this section is to prove Theorem 2. Recall that L(n, d) denotes the set of all simple d-regular graphs
with m = nd/2 edges. Let PU be the uniform probability on L(n, d). Similar to the analysis of Procedure
A for general degree sequences, let G be a fixed graph in L(n, d) and M be a fixed matching on W with
GM = G. The main goal is to show that for d = o(n1/2−τ ) the probability of generating G with Procedure A
is at least 1− o(1) times PU(G); i.e.

PA(G) ≥
(
1− o(1)

)
PU(G). (4.8)

For the moment, assume (4.8) is true. We will show that Theorem 2 follows. Later we will show why (4.8)
holds.

of Theorem 2. First, we will show that the total variation distance between the probability measures PA and
PU, dTV(PA,PU) ≡ supS⊂L(n,d) |PA(S) − PU(S)| is o(1). We will use the following upper bound on the total
variation distance

dTV(PA,PU) ≤
∑

G∈L(n,d)

|PA(G)− PU(G)|.

Therefore, we have the upper-bound

∑

G∈L(n,d)

|PA(G)− PU(G)| =
∑

G∈L(n,d)

PA≥PU

(

PA(G)− PU(G)
)

+
∑

G∈L(n,d)

PA<PU

|PA(G)− PU(G)|

=
∑

G∈L(n,d)

(

PA(G)− PU(G)
)

+ 2
∑

G∈L(n,d)

PA<PU

|PA(G)− PU(G)|

(a)

≤ 2
∑

G∈L(n,d)

PA<PU

|PA(G)− PU(G)|

(b)

≤ 2 o(1)
∑

G∈L(n,d)

PA<PU

PU(G) ≤ o(1).

Here (a) uses
∑

G∈L(n,d) PA(G) ≤ 1 and
∑

G∈L(n,d) PU(G) = 1. To see why (b) holds, note that PU(G) −
PA(G) ≤ o(1)PU(G) which is equivalent to inequality (4.8).

Now, dTV(PA,PU) = o(1) implies that PA(G) ≤
(
1+o(1)

)
PU(G) except for graphs G in a subset of L(n, d)

with size o(|L(n, d)|). This finishes the proof of Theorem 2.

4.1.1 Proof of inequality (4.8).

In order to prove inequality (4.8) we prove the following equivalent inequality

(d!)n
∑

N∈S(M)

P(N ) ≥ 1− o(1)

|L(n, d)| . (4.9)

Our proof of inequality (4.9) builds upon the steps in Kim and Vu [28]. First define µr = µ
(1)
r + µ

(2)
r where

µ(1)
r =

(2m− 2r)2(d− 1)

4m

µ(2)
r =

(2m− 2r)2(d− 1)2r

4m2
.
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Let m1 = m
d2ω where ω goes to infinity very slowly; e.g. ω = O(logδ n) for some small δ > 0. The following

summarizes the analysis of Kim and Vu [28] for d = O(n1/3−τ )

|L(n, d)|(d!)n
∑

N∈S(M)

P(N )
(c)
=

1− o(1)

m!

∑

N∈S(M)

m−1∏

r=0

(
2m−2r

2

)
− µr

(
2m−2r

2

)
−∆r(N )

(d)

≥ 1− o(1)

m!

∑

N∈S(M)

m1∏

r=0

(

1 +
∆r(N ) − µr

(
2m−2r

2

)
−∆r(N )

)

(e)

≥
(

1− o(1)
) m1∏

r=0

(

1− 3
T

(1)
r + T

(2)
r

(2m− 2r)2

)

(f)

≥
(

1− o(1)
)

exp

(

−3e

m1∑

r=0

T
(1)
r + T

(2)
r

(2m− 2r)2

)

. (4.10)

Here we explain these steps in more detail. Our main focus will be on step (e) which is the main step. For
the rest, we provide a brief description and a reference to [28]. Step (c) follows from equation (3.5) of [28]

and writing McKay-Wormald’s estimate [33] for |L(n, d)| as a multiple of the product
∏m−1
r=0

[(
2m−2r

2

)
− µr

]
.

Similarly, step (d) follows from the algebraic calculations in page 455 of [28].
The important step (e) follows from a sharp concentration. For simplicity write ∆r instead of ∆r(N ) and

break ∆r into two terms ∆
(1)
r + ∆

(2)
r . Here ∆

(1)
r and ∆

(2)
r denote the number of unsuitable pairs in step r

corresponding to the self edge loops and to the double edges respectively. For pr = r/m, qr = 1 − pr Kim

and Vu [28] used their polynomial concentration inequality [26] to derive two bounds T
(1)
r , T

(2)
r and to show

that with with very high probability |∆(1)
r − µ

(1)
r | < T

(1)
r and |∆(2)

r − µ
(2)
r | < T

(2)
r . More precisely for some

constants c1, c2 the bounds are

T (1)
r = c1 log

2 n
√

nd2q2r(2dqr + 1) , T (2)
r = c2 log

3 n
√

nd3q2r(d
2qr + 1).

Now it is easy to see that for each i ∈ {1, 2} the bound T
(i)
r and the quantity µ

(i)
r are o

(
(2m− 2r)2

)
. This

validates the step (e).
Finally, the step (f) is straightforward using 1− x ≥ e−ex for 0 ≤ x ≤ 1.
The rest of the proof focuses on showing that the right hand side of inequality (4.10) is at least 1 − o(1).

Kim and Vu show that for d = O(n1/3−τ ) the exponent in equation (4.10) is o(1). Using similar calculations
as equation (3.13) in [28] it can be shown that for d = O(n1/2−τ ) and m2 = (m log3 n)/d

m1∑

r=0

T
(1)
r

(2m− 2r)2
= o(1) ,

m1∑

r=m2

T
(2)
r

(2m− 2r)2
= o(1).

But unfortunately the summation
∑m2

r=0
T (2)
r

(2m−2r)2 is Ω(d3/n). In fact it turns out that the random variable

∆
(2)
r has large variance for d = O(n1/2−τ ).

Let us explain the main difficulty for moving from d = O(n1/3−τ ) to d = O(n1/2−τ ). Note that ∆
(2)
r

is defined on a random subgraph GNr of graph G which has exactly r edges. Both [38] and [27, 28] have
approximated the subgraph GNr with Gpr in which each edge of G appears independently with probability

pr = r/m. But when d = O(n1/2−τ ), this approximation causes the variance of ∆
(2)
r to become exponentially

large.

In order to fix the problem, we modify ∆
(2)
r before moving to Gpr . It can be shown via simple algebraic

calculations that: ∆
(2)
r − µ

(2)
r = Xr − Yr where

Xr =
∑

u∼GNr
v

[d(r)u − qr(d− 1)][d(r)v − qr(d− 1)]

Yr = qr(d− 1)
∑

u

[

(d(r)u − qrd)
2 − dprqr

]

.
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This modification is critical since the equality ∆
(2)
r − µ

(2)
r = Xr − Yr does not hold in Gpr .

The next task is to find a new bound T̂
(2)
r such that |Xr − Yr| < T̂

(2)
r with very high probability and

∑m2

r=0
T̂ (2)
r

(2m−2r)2 = o(1). It is easy to see that in Gpr both Xr and Yr have zero expected value.

At this time we will move to Gpr and show that Xr and Yr are sharply concentrated around zero. It is
easy to see that with probability at least 1/n, the subgraph Gpr has exactly r edges. This is in fact Lemma
21 which is proven in Section 7. Therefore, Xr and Yr will be sharply concentrated around 0 in GNr as well.
In the following we will show the concentration of Xr in Gpr . The concentration of Yr can be shown similarly.

Consider the edge exposure martingale (page 94 of [1]) for Gpr that examines the edges of G in the order
e1, . . . , em. In particular for any 0 ≤ ℓ ≤ r define Zrℓ = E(Xr | e1, . . . , eℓ). Therefore, Zrm is just the value
of Xr and Zr0 is its expected value E(Xr) in Gpr . To simplify the notation, let us drop the index r from

Zrℓ , d
(r)
u , pr and qr.

The next step is to bound the martingale difference |Zi − Zi−1| and use a martingale concentration in-
equality. In order to bound the quantity |Zi − Zi−1|, assume that ei = {u, v}. The difference between Zi
and Zi−1 is in the terms involving ei in the summation

∑

u′∼Gpv
′ [du′ − q(d− 1)][dv′ − q(d − 1)]. But ei only

participates in du and dv. Thus, for any u′ where u′ ∼Gp u, the term [du′ − q(d − 1)][du − q(d − 1)] appears
in both Zi and Zi−1. The value of du′ − q(d − 1) is unchanged by revealing the status of ei, but the value of
du− q(d− 1) can fluctuate by at most 1. Moreover, if ei ∈ Gp then an extra term [du− q(d− 1)][dv − q(d− 1)]
is also added to Zi. This means we have

|Zi − Zi−1| ≤
∣
∣
∣
∣

(
du − (d− 1)q

)(
dv − (d− 1)q

)
∣
∣
∣
∣

+

∣
∣
∣
∣

∑

u′∼Gpu

(
du′ − (d− 1)q

)
∣
∣
∣
∣
+

∣
∣
∣
∣

∑

v′∼Gpv

(
dv′ − (d− 1)q

)
∣
∣
∣
∣
. (4.11)

Bounding the above difference should be done carefully since the standard worst case bounds are weak for our
purpose.

First, we start by a useful observation. For a typical ordering N of the edges of G, the residual degrees,
du, dv, du′ , dv′ are roughly dq ± √

dq. We will make this more precise. For any vertex ū ∈ G consider the
event

Lū =
{
|dū − dq| ≤ c log1/2 n(dq)1/2

}

where c > 0 is a large constant.

Lemma 7. For all 0 ≤ r ≤ m2 we have P(Lcū) = o( 1
m4 ).

Proof. Note that in the Gp model the residual degree of a vertex ū, dū, is sum of d independent Bernoulli
random variables with mean q. Two generalizations of Chernoff inequality (Theorems A.1.11, A.1.13 in page
267 of [1]) state that for a > 0 and X1, . . . , Xd i.i.d. Bernoulli(q) random variables:

P(X1 + · · ·+Xd − qd ≥ a) < e
− a2

2qd+ a3

2(qd)2

P(X1 + · · ·+Xd − qd < −a) < e−
a2

2qd

Applying these two for a =
√
12qd logn proves Lemma 7.

To finish bounding the martingale difference we look at the last two terms in the right hand side of equation
(4.11). For the vertex u consider the event

Ku =
{∣
∣
∑

u′∼Gpu

(du′ − (d− 1)q)
∣
∣ ≤ c

[
(dq)3/2 + qd+ dq1/2

]
logn

}

where c > 0 is a large constant. We will use the following lemma to show that the complement of Ku has very
low probability.
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Lemma 8. For all 0 ≤ r ≤ m2 the event Kc
u has probability o( d

m4 ).

Proof. For any vertex u let NG(u) ⊂ V (G) denote the neighbors of u in G. Consider the subsets

AG(u), BG(u), CG(u) ⊂ E(G)

where AG(u) consists of the edges that are adjacent to u, BG(u) has those edges with both endpoints in NG(u),
and CG(u) contains those edges with exactly one endpoint in NG(u) and one endpoint outside NG(u) ∪ {u}.
For any edge e of G let te = 1{e/∈Gp}. Then we can write

∑

u′∼Gpu

(
du′ − (d− 1)q

)

=
∑

u′∈NGp (u)

∑

e∈AG(u′)\AG(u)

(te − q)

=
∑

u′∈NG(u)

∑

e∈AG(u′)\AG(u)

(te − q)−
∑

u′∈NG(u)\NGp (u)

∑

e∈AG(u′)\AG(u)

(te − q)

=
∑

e∈CG(u)

(te − q)

︸ ︷︷ ︸

(i)

+2
∑

e∈BG(u)

(te − q)

︸ ︷︷ ︸

(ii)

−
∑

u′∈NG(u)\NGp (u)

(
d′u − 1− q(d− 1)

)

︸ ︷︷ ︸

(iii)

.

Here each of (i) and (ii) is a sum of O(d2) i.i.d. Bernoulli(q) random variables minus their expectations.

Therefore similar to Lemma 7, both (i) and (ii) can be shown to be O(
√

12qd2 logn) with a probability at
least 1− o(1/m4). For (iii) we can say

∑

u′∈NG(u)\NGp (u)

(
d′u − 1− q(d− 1)

)
≤ du max

u′∈NG(u)\NGp (u)
(|du′ − 1− q(d− 1)|).

Now using Lemma 7 for du and each term du′−1−q(d−1) we can say (iii) isO
(
[dq +

√
12qd logn ]

√
12qd logn

)

with a probability at least 1− o(d/m4). These finish the proof of Lemma 8.

The final step in bounding the martingale difference is to apply Lemmas 7, 8 and the union bound to event
L =

⋂m2

r=0

⋂ n
u=1(Lu ∩Ku) and obtain P(Lc) = o(1/m2).

Hence for the martingale difference we have

|Zi − Zi−1|1L ≤ O(dq + dq1/2 + (dq)3/2) logn.

Note that Azuma’s inequality cannot be used directly, since the martingale difference |Zi−Zi−1| can be large
outside the set L. But the complement of L has very low probability and we can use the following variation
of Azuma’s inequality.

Proposition 2 (Kim [25]). Consider a martingale {Yi}ni=0 adaptive to a filtration {Bi}ni=0. If for all k there
are Ak−1 ∈ Bk−1 such that E[eωYk |Bk−1]1Ak−1

≤ Ck for all k = 1, 2, · · · , n with Ck ≥ 1 for all k, then

P(Y −E[Y ] ≥ λ) ≤ e−λω
n∏

k=1

Ck +P(∪n−1
k=0Ak)

of Theorem 2. Applying the above proposition for a large enough constant c′ > 0 gives

P

(

|Xr| > c′
√

6r log3 n
(
dq + d(q)1/2 + (dq)3/2

)2
)

≤ e−3 logn + P(Lc) = o(
1

m2
).

Now using the fact that Gp has r edges with probability at least 1/n, the same event in the random model GNr

has probability o(1/m). A similar bound holds for Yr since the martingale difference for Yr is O(|dq(du−qd)|) =
O((dq)3/2 log1/2 n)) using Lemma 7.
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Therefore defining T̂
(2)
r = c′(dq + d(q)1/2 + (dq)3/2)

√

6r log3 n , we only need to show

m2∑

r=0

(dq + d(q)1/2 + (dq)3/2)
√

6r log3 n

(2m− 2r)2
= o(1).

But using ndq = 2m− 2r we have

m2∑

r=0

(
dq + dq1/2 + (dq)3/2

)√

6r log3 n

n2d2q2

=

m2∑

r=0

O

(
d1/2 log1.5 n

n1/2(2m− 2r)
+

d log1.5 n

(2m− 2r)3/2
+

d1/2 log1.5 n

n(2m− 2r)1/2

)

= O
(d1/2 log(nd)

n1/2
+

d

(n log3 n)1/2
+

d

n1/2

)

log1.5 n = o(1)

for d = O(n1/2−τ ).

5 Probability of Failure of Procedure A

In this section we will prove Lemma 2 from Section 4. First we present the following remark.

Remark 2. Lemma 1 gives an upper bound for the number of simple graphs with degree sequence d̄ indepen-
dently from all known formulas for |L(d̄)|. If dmax = O(m1/4−τ ) then

|L(d̄)| ≤ e−λ(d̄)−λ
2(d̄)+o(1)

∏m
r=0

(
2m−2r

2

)

m!
∏n
i=1 di!

.

In this section we will show that the above inequality is in fact an equality. This is done by proving that the
probability of failure of Procedure A is very small.

First we will characterize the degree sequence of the partial graph that is generated up to the time of
failure. Then we apply the upper bound of Remark 2 to derive an upper bound on the probability of failure
and show that it is o(1).

Lemma 9. If Procedure A fails in step s then 2m− 2s ≤ d2max + 1.

Proof. Procedure A fails when there is no suitable pair left to choose. If the failure occurs in step s then the
number of unsuitable edges is equal to the total number of possible pairs, that is

(
2m−2s

2

)
. On the other hand,

it can be easily shown that the number of unsuitable edges at step s is at most d2max(2m−2s)/2 (see Corollary
3.1 in [38] for more detail). Therefore 2m− 2s ≤ d2max + 1.

Failure in step s means there are some Wi’s which have unmatched mini-vertices (d
(s)
i 6= 0). Let us call

them “unfinished” Wi’s. Since the algorithm fails, any two unfinished Wi’s should be already connected.
Hence there are at most dmax of them. This is because for all i: |Wi| = di ≤ dmax. The main goal is now
to show that this scenario is a very rare event. Without loss of generality assume that W1,W2, . . . ,Wk are
all the unfinished sets. The argument given above shows k ≤ dmax. Moreover, by construction k ≤ 2m− 2s.
The algorithm up to this step has created a partial matching Ms where graph GMs is simple and has degree

sequence d̄(s) = (d1−d(s)1 , . . . , dk−d(s)k , dk+1, . . . , dn). Let Ad(s)1 ,...,d
(s)
k

denote the above event of failure. Hence

P(fail) =

d2max+1
∑

2m−2s=2

max(dmax,2m−2s)
∑

k=1

n∑

i1,...,ik=1

PA(Ad(s)1 ,...,d
(s)
k

). (5.1)

The following lemma is the central part of the proof.
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Lemma 10. The probability of the event that Procedure A fails in step s and the vertices v1, . . . , vk are the

only unfinished vertices; i.e. d
(s)
i 6= 0 i = 1, · · · , k, is at most

(1 + o(1))
d
k(k−1)
max

∏k
i=1 d

d
(s)
i

i

m(k2)(2m)2m−2s

(
2m− 2s

d
(s)
1 , . . . , d

(s)
k

)

.

Proof. Following the above notation, the event that we are considering is denoted by A
d
(s)
1 ,...,d

(s)
k

. Note that

graph GMs should have a clique of size k on vertices v1, . . . , vk. Therefore, the number of such graphs should

be less than |L(d̄(s)k )| where d̄(s)k =(d1−d(s)1 −(k−1), . . . , dk−d(s)k −(k−1), dk+1, . . . , dn). Thus, PA(Ad(s)1 ,...,d
(s)
k

)

is at most |L(d̄(s)k )| PA(GMs). On the other hand we can use Remark 1 to derive an upper bound for |L(d̄(s)k )|
because m− s and k are small relative to m and it is easy to show that dmax = O([s−

(
k
2

)
]1/4−τ ). The result

of these steps is

PA(Ad(s)1 ,...,d
(s)
k

) ≤




(2s− k(k − 1))! exp

[

−λ(d̄(s)k )− λ2(d̄
(s)
k ) + o(1)

]

[s−
(
k
2

)
]! 2s−(

k
2)

∏n
i=1(d

(s)
i )!



PA(GMs).

The next step is to bound PA(GMs). We can use the same methodology as in the beginning of Section 4 to
derive

PA(GMs) =

∏n
i=1 di!(

∏k
i=1

[

d
(s)
i

]

!
)

∑

Ns∈S(Ms)

PA(Ns)

= s! exp

(

−
∑

i∼Gs j
didj

4m
+ o(1)

)
s−1∏

r=0

1
(
2m−2r

2

)
− ψr(GMs)

= s! exp

(
m

s
λ(d̄) +

m2

s2
λ2(d̄) + o(1)

) s−1∏

r=0

1
(
2m−2r

2

) .

Similar to ψr, the quantity ψr(GMs) is an approximation for the expected value of Ψr conditioned on obtaining
GMs at step s. Now using the simple algebraic approximation

m

s
λ(d̄) +

m2

s2
λ2(d̄)− λ(d̄

(s)
k )− λ2(d̄

(s)
k ) = O

(

λ(d̄)
[

λ(d̄)− λ(d̄
(s)
k )
])

= O(
d4max

m2
) = o(1)

the following is true

PA(Ad(s)1 ,...,d
(s)
k

) ≤ eo(1)
[2s− k(k − 1)]! (2m− 2s)! s! 2(

k
2)
∏k
i=1 di!

[s−
(
k
2

)
]! (2m)!

∏k
i=1

[
(d

(s)
i )!(di − k − d

(s)
i + 1)!

]

≤ eo(1)
∏k
i=1 d

d
(s)
i +k−1
i

∏2m
ℓ=2s+1 ℓ

∏(k2)
j=1(2s− 2j + 1)

(
2m− 2s

d
(s)
1 , . . . , d

(s)
k

)

. (5.2)

The next step is to use m − s = O(d2max) and k = O(dmax) to show that
∏(k2)
j=1(2s − 2j + 1) ≥ m(k2) and

(1/m2m−2s)
∏2m
ℓ=2s+1 ℓ ≥ e−O(d4max/m). These two facts combined with equation (5.2) finish the proof of

Lemma 10.

Now we are ready to prove the main result of this section.

of Lemma 2. First, we show that the event of failure has a negligible probability when there is only one
unfinished vertex left, i.e., when k = 1. In this case Lemma 10 simplifies to PA(Ad(s)1

) = O
(
(Dm )2m−2s

)
.

Therefore, summing over all possibilities of k = 1 gives

d2max+1
∑

2m−2s=2

n∑

i=1

PA(Ad(s)i

) = O





d2max+1
∑

2m−2s=2

d2m−2s−1
max

m2m−2s−1



 = O(
dmax

m
) = o(1).
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For k > 1 we use Lemma 10 differently. Using d
k(k−1)
max /m(k2) ≤ d2max/m and equation (5.1) we have

P(fail) ≤ o(1)

+
eo(1)d2max

m

d2max+1
∑

2m−2s=2

(a)
︷ ︸︸ ︷

max(dmax,2m−2s)
∑

k=2

n∑

i1,...,ik=1

k∏

i=1

d
d
(s)
i
i

(
2m− 2s

d
(s)
1 , . . . , d

(s)
k

)

(2m)2m−2s
.

Now note that the double sum (a) is at most (d1 + . . .+ dn)
2m−2s = (2m)2m−2s since

∑k
i=1 d

(s)
i = 2m− 2s.

Therefore

P(fail) ≤ o(1) + eo(1)
d2max

m

d2max+1
∑

2m−2s=2

1 = O(
d4max

m
) = o(1).

6 Running Time of Procedure A

In this section we prove Lemma 3.

Proof. Our proof is very similar to the analysis of Steger and Wormald [38]. They use a non-trivial data
structure and algorithm to efficiently choose a pair of vertices vi ∈ V and vj ∈ V with probabilities proportional

to d̂i and d̂j respectively. They explain their methods for regular graphs but they only use the fact that the
maximum degree is bounded. We include their analysis in Section 6.1 for the sake of completeness.

We need to add a few steps to their method. After choosing vertices vi and vj with the above probabilities,
toss a biased coin that comes head with probability 1 − didj/4m. Accept the pair {vi, vj} if the coin shows

head, i 6= j, and {vi, vj} /∈ E. Add {vi, vj} to E and reduce each of d̂i, d̂j by 1. Otherwise reject the pair
{vi, vj} and repeat. The expected number of repeats is bounded by a constant because dmax = O(m1/4−τ )
and therefore 1− didj/4m > 1/2.

Efficient calculation of P is also straightforward. Note that

pij =
(1− didj/4m)d

(r)
i d

(r)
j

(
2m−2r

2

)
−Ψr(N )

.

Therefore, pij can be easily calculated from
(
2m−2r

2

)
−Ψr(N ). At the beginning of Procedure A we have

(
2m

2

)

−Ψ(N0) =

(
2m

2

)

−
∑

u

(
du
2

)

− (
∑

u d
2
u)

2 −∑u d
4
u

8m

which can be calculated with O(n) operations. Now we show that in step r+1, pij can be updated from step
r with O(dmax) operations. This is because by choosing a pair {vi, vj} at step r + 1:

[(
2m− 2r − 2

2

)

− Ψr+1(N )

]

−
[(

2m− 2r

2

)

−Ψr(N )

]

=
∑

(va,vb)∈Er+1

d(r+1)
a d

(r+1)
b (1− dadb

4m
)−

∑

(va,vb)∈Er

d(r)a d
(r)
b (1− dadb

4m
)

= −d(r)i d
(r)
j (1 − didj

4m
)−

∑

(vi′ ,vi)∈Er

d
(r)
i′ (1− didi′

4m
)−

∑

(vj′ ,vj)∈Er

d
(r)
j′ (1 − djdj′

4m
)

= −d(r)i d
(r)
j (1− didj

4m
) + Ξi,r + Ξj,r +

di + dj
4m

Ωr +Oi,r +Oj,r
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where Ξi,r =
∑

vi′∼GNr
vi
d
(r)
i′ (1 − didi′

4m ), Ωr =
∑n
i′=1 d

r
i′di′ , and Oi,r = d

(r)
i (1 − d2i /4m) − (2m − 2r). It is

clear to see from Ωr+1 − Ωr = −di − dj that Ωr can be updated at each step by only one operation, and the
calculation of Oi,r , Oj,r takes constant time. Moreover, each of Ξi,r,Ξj,r is a summation with at most dmax

terms. We will show in the next section that it is possible to find neighbors of vi and vj in GNr with O(dmax)
operations. Therefore Ξi,r,Ξj,r can be calculated with O(dmax) operations. Thus the running time of the new
implementation of Procedure A is O(mdmax) for general degree sequences. Now using Lemma 2, the running
time of Procedure A is of O(mdmax).

6.1 Steger and Wormald’s method for choosing a suitable pair

Steger and Wormald’s (SW) [38] implementation has three phases and uses the configuration model.
In the first phase, the algorithm puts all of the mini-vertices in an array L where all of the matched mini-

vertices are kept in the front. It is also assumed that the members of each pair of matched mini-vertices will
be two consecutive elements of L. There is another array I that keeps location of each mini-vertex inside array
L. Then two elements of L (selected uniformly at random) can be checked for suitability in time O(dmax).
This is because from I we can find the neighbors of the selected elements in the partially constructed graph
GNr . Note that in our modification (Procedure A), the pair is accepted with probability 1 − didj/4m when
they belong toWi,Wj . This also completes the above argument for updating Ψr(N ) with O(dmax) operations.
Repeat the above till a suitable pair is found then update L and I.

Phase 1 ends when the number of remaining mini-vertices falls below 2d2max. Hence using Corollary 3.1 in
[38], throughout phase 1 the number of suitable pairs is more than half of the total number of available pairs.
Therefore, the expected number of repetitions in the above process is at most 2. This means the expected
running time of phase 1 is O(mdmax).

Phase 2 starts when the number of available mini-vertices is less than 2d2max and finishes when the number
of available vertices is at least 2dmax. In this phase instead of choosing the mini-vertices, choose a pair of
vertices of GNr (two random set Wi,Wj in the configuration model) from the set of vertices that are not fully
matched. Repeat the above till vi, vj is not already an edge in GNr . Again the expected number of repetitions
is at most 2. Now randomly choose one mini-vertex in each selected Wi. If both of the mini-vertices are not
matched yet add the edge, otherwise pick another two mini-vertices. The expected number of repetitions here
is at most O(d2max) and hence the expected running time of the phase 2 is at most O(d4max).

Phase 3 starts when the number of available vertices (not fully matched Wi’s) is less than 2dmax. We can
construct a graph H , in time O(d2max), that indicates the set of all possible connections. Now choose an edge

{vi, vj} of H uniformly at random and accept it with probability d̂id̂j/d
2
max. Again, the expected number

of repetitions will be at most O(d2max). Update H in constant time and repeat the above till H is empty.
Therefore the expected running time of phase 3 is also O(d4max).

Hence, the total running time for dmax = O(m1/4−τ ) will be O(mdmax).

7 Generalizing Kim and Vu’s Analysis

The aim of this section is to show equation (4.2) via generalization of Kim and Vu’s analysis [27]. Let us
define

f(N ) =

m−1∏

r=0

(
2m−2r

2

)
− ψr(G)

(
2m−2r

2

)
−Ψr(N )

then equation (4.2) is equivalent to
E(f(N )) = 1 + o(1) (7.1)

where the expectation is with respect to the uniform distribution on the set S(M) of all m! orderings of the
matching M. Proof of equation (7.1) is done by partitioning the set S(M) into smaller subsets and looking
at the deviation of f on each set separately. The partition is explained in Section 7.3. But before that we
need to define some notation.
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7.1 Definitions

In Section 4 we saw that the probability of choosing an edge between Wi and Wj at step r + 1 of Procedure

A is equal to (1− didj
4m )

[(
2m−2r

2

)
− Ψr(N )

]−1
where

Ψr(N ) =
∑

{vi,vj}/∈Er

d
(r)
i d

(r)
j +

∑

{vi,vj} ∈ Er

d
(r)
i d

(r)
j

didj
4m

.

To simplify the notation, throughout the rest of this section, we will use Ψr and ∆r to denote Ψr(N ) and
∆r(N ) respectively. We will also use the notation {vi, vj} and {i, j} interchangeably. Moreover, the notation
{i, j} includes the cases of i = j as well.

For our analysis we need to write Ψr = ∆r + Λr where

∆r =

(
2m− 2r

2

)

−
∑

{i,j} ∈ Er

d
(r)
i d

(r)
j ,

Λr =
∑

{i,j}

i6=j

d
(r)
i d

(r)
j

didj
4m

−
∑

{i,j} /∈ Er
i6=j

d
(r)
i d

(r)
j

didj
4m

.

Notice that ∆r counts the number of possibilities for creating a self loop (i = j) or making double edges. We
distinguish between these two cases by an extra index. That is

∆(1)
r =

n∑

i=1

(
d
(r)
i

2

)

= # of self loops, and

∆(2)
r = ∆r −∆(1)

r = # of double edges.

Note that since all the existing pairs are suitable, the only type of multiple pairs that can be created at step
r + 1 are double pairs. Moreover,

4mΛr =
∑

{i,j}

i6=j

d
(r)
i d

(r)
j didj −

∑

{i,j} /∈ Er
i6=j

d
(r)
i d

(r)
j didj

=
(
∑n

i=1 d
(r)
i di)

2 −∑n
i=1(d

(r)
i )2d2i

2
−

∑

{i,j} /∈ Er
i6=j

d
(r)
i d

(r)
j didj .

We distinguish between these three summations by adding a numerical index to Λr; i.e.

Λ(1)
r =

n∑

i=1

d
(r)
i di , Λ(2)

r =

n∑

i=1

(d
(r)
i )2d2i , Λ(3)

r =
∑

{i,j} /∈ Er
i6=j

d
(r)
i d

(r)
j didj .

Hence,

Λr =
(Λ

(1)
r )2 − Λ

(2)
r

8m
− Λ

(3)
r

4m
.

The following simple bounds will be very useful throughout Section 7.

Lemma 11. For all r the following equations hold.

(i) ∆r ≤ (2m−2r)d2max

2

(ii) Λ
(1)
r ≤ dmax(2m− 2r)

(iii) Λr ≤ (2m−2r)2d2max

8m
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Proof. (i) At step r there are 2m − 2r mini-vertices left and for each each u ∈ Wi there are at most

dmax − 1 mini-vertices in Wi that u can connect to. Hence, ∆
(1)
r ≤ (2m−2r)(dmax−1)

2 . Similarly u can
connect to at most (dmax − 1)2 mini-vertices in some Wj with i 6= j to create a double edge. Thus,

∆
(2)
r ≤ (2m−2r)(dmax−1)2

2 . Now using ∆r = ∆
(1)
r +∆

(2)
r the proof of (i) is clear.

(ii) Λ
(1)
r ≤ dmax

∑

u d
(r)
u = dmax(2m− 2r).

(iii) It follows from the definition of Λr that

Λr =
∑

{i,j} ∈ Er

d
(r)
i d

(r)
j

didj
4m

≤ d2max

4m

∑

{i,j} ∈ Er

d
(r)
i d

(r)
j ≤ d2max

4m

(
2m− 2r

2

)

.

In order to define ψr we look at a slightly similar model. Recall that GNr is the partial graph that
is constructed up to step r. Imposing the uniform distribution on S(M), graph GNr turns to a random
subgraph of G that has exactly r edges. We can approximate this graph by a different random subgraph
of G. This is done, by selecting each edge of G independently with probability pr = r/m and denoting
the resulted graph by Gpr . Now using Gpr as an approximation to GNr , we are ready evaluate quantities

Epr (∆
(1)
r ), Epr (∆

(2)
r ), Epr (Λ

(1)
r ), Epr (Λ

(2)
r ), and Epr (Λ

(3)
r ). Throughout this section we often use the notations

∆
(i)
pr , Λ

(i)
pr , and Ψpr to emphasis that the model is Gpr instead of GNr .

Lemma 12. For each r the following equations hold.

(i) Epr (∆
(1)
r ) = (2m−2r)2

2

(∑n
i=1 (

di
2 )

2m2

)

= (2m−2r)2

2

(λ(d̄)
m

)

(ii) Epr (∆
(2)
r ) = (2m−2r)2

2

(
r
∑

i∼Gj(di−1)(dj−1)

2m3

)

(iii) Epr (Λ
(1)
r ) = (2m− 2r)

∑n
i=1 d

2
i

2m

(iv) Epr (Λ
(2)
r ) = (2m− 2r)2

∑n
i=1 d

4
i

4m2 + 2r(2m− 2r)
∑n

i=1 d
3
i

4m2

(v) Epr (Λ
(3)
r ) = (2m−2r)2

2

(
r
∑

i∼Gj didj(di−1)(dj−1)

2m3

)

Proof. (i) In the random model of Gpr each edge has a probability of r
m to be chosen. Let Xi the number

of unsuitable edges that connect two mini-vertices of Wi at (r + 1)th step of creating N . Hence, Xi is
equal to the number of unordered tuples {j, i, k} where {j, i}, {i, k} ∈ E(G) \ E(GNr ) which gives

∆(1)
r =

n∑

i=1

Xi. (7.2)

On the other hand for a fixed i, the number of tuples {j, i, k} where {j, i}, {i, k} ∈ E(G) is exactly
(
di
2

)
, and with probability (1− r

m )2 the edges {j, i}, {i, k} do not belong to E(GNr ). Thus, the equality

E(Xi) = (1− r
m )2

(
di
2

)
holds and it can be used in (7.2) to complete the proof of (i).

(ii) Define Yij to be the number of unsuitable edges between Wi and Wj at (r + 1)th step of creating N . It
is not hard to see that Yij also counts the number of unordered tuples {k, i, j, l} where {i, j} ∈ E(GNr )
but {k, i}, {j, l} ∈ E(G) \E(GNr ). Hence,

∆(2)
r =

∑

i∼Gj

Yij . (7.3)

On the other hand for a fixed i ∼G j, the number of tuples {k, i, j, l} where {k, i}, {j, l} belong to
E(G) is exactly (di − 1)(dj − 1). Moreover, the edges {k, i}, {j, l} do not belong to E(GNr ) with
probability (1− r

m )2, and the edge {i, j} belongs to E(GNr ) with probability r
m . This gives the equality

E(Yij) =
r
m (1− r

m )2(di − 1)(dj − 1) which can be used with (7.3) to complete the proof of (ii).
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(iii) The proof directly follows from E(d
(r)
i ) = (1− r

m )di.

(iv) Since each d
(r)
i is a summation of di Bernoulli iid random variables, We can show

E

[

(d
(r)
i )2

]

= (1− r

m
)2d2i +

r

m
(1− r

m
)di

which proves (iv).

(v) The proof is similar to (ii), except we are using the following instead of (7.3)

Λ(3)
r =

∑

i∼Gj

didj
4m

Yij .

The next step is to define ψr as an approximation to Epr (Ψr). For that we will use Lemma 12 and the
following two estimates

Epr (
Λ
(2)
r

8m
) =

(2m− 2r)2

2

[

O(
d3max

m2
) +O(

d2max

m2

2r

2m− 2r
)

]

,

Epr (
Λ
(3)
r

4m
) =

r(2m− 2r)2

2
O(
d4max

m3
).

Note that here we used the bound

n∑

i=1

dsi =
∑

i∼Gj

(ds−1
i + ds−1

j ) = O(mds−1
max)

that will be repeatedly used in this section.
Now Epr (Ψr) is given by the following expression

Epr (Ψr) =
(2m− 2r)2

2

[

λ(d̄)

m
+
r
∑

i∼Gj
(di − 1)(dj − 1)

2m3

+
(
∑n

i=1 d
2
i )

2

16m3
+O

(
rd4max

m3
+

rd2max

(m− r)m2

)]

. (7.4)

Definition 3. The expected value of Ψr is denoted by ψr. i.e. ψr = Epr (Ψr).

The following lemma is equivalent to (7.4).

Lemma 13. For all r,

ψr =
(2m− 2r)2

2

(
λ(d̄)

m
+
r
∑

i∼Gj
(di − 1)(dj − 1)

2m3
+

(
∑n

i=1 d
2
i )

2

16m3
+ ςr

)

where ςr = O(
rd4max

m3 +
rd2max

(m−r)m2 ).

It is also straightforward to show that the following upper bound holds for ψr.

Lemma 14. For all r the quantity ψr is bounded above by O(
d2max(2m−2r)2

2m ).

Now we are ready to prove equation (4.3).
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7.2 Algebraic Proof of the Equation (4.3)

For simplicity, we define χG to be
∑

i∼Gj
(di − 1)(dj − 1). Therefore,

m−1∏

r=0

(
2m−2r

2

)

(
2m−2r

2

)
− ψr

=

m−1∏

r=0

(

1 +
ψr

(
2m−2r

2

)
− ψr

)

=
m−1∏

r=0

(

1 +
λ(d̄)
m +

r
∑

i∼Gj(di−1)(dj−1)

2m3 +
(
∑

i d
2
i )

2

16m3 + ςr

1− 1
2m−2r −O(

d2max

m )

)

= exp
[m−1∑

r=0

log
(

1 +
λ(d̄)
m + rχG

2m3 +
(
∑

i d
2
i )

2

16m3 + ςr

1− 1
2m−2r −O(

d2max

m )

)]

= exp
[m−1∑

r=0

log
(

1 +
λ(d̄)

m
+
rχG
2m3

+
(
∑

i d
2
i )

2

16m3
+O(

d4max

m2
+

rd2max

(m− r)m2
)
)]

= exp
[m−1∑

r=0

(λ(d̄)

m
+
rχG
2m3

+
(
∑

i d
2
i )

2

16m3
+O(

d4max

m2
+

rd2max

(m− r)m2
)
)]

(7.5)

= exp
[

λ(d̄) +
m(m− 1)χG

4m3
+

(
∑

i d
2
i )

2

16m2
+O

(d4max

m
+
d2max

m
log(2m)

)]

= exp
[

λ(d̄) +
χG
4m

+
(
∑

i d
2
i )

2

16m2
+ o(1)

]

= exp
[

λ(d̄) +

∑

i∼Gj
didj

4m
−
∑

i∼Gj
(di + dj)

4m
+

1

4
+

(
∑

i d
2
i )

2

16m2
+ o(1)

]

(7.6)

=
(
1 + o(1)

)
exp

[

λ(d̄) + λ2(d̄) +

∑

i∼Gj
didj

4m

]

(7.7)

where (7.5) uses log(1 + x) = x− O(x2) and (7.6) uses dmax = O(m1/4−τ ). The bound ψr

(2m−2r)2 = O(
d2max

m )

was used a few times as well.

7.3 Partitioning the set of orderings S(M)

In order to prove equation (7.1), we need to study the large deviation behavior of function f on the set S(M).
For that we partition the set S(M) in four “major” steps. At each step, one subset of S(M) will be removed
from it.

Step 1) Consider those orderings N ∈ S(M) where at any state during the algorithm, the number of unsuitable
edges does not exceed a constant (strictly less than 1) fraction of the number of all available edges. More
specifically, for a small number 0 < τ ≤ 1/3 let

S∗(M) =

{

N ∈ S(M) | Ψr(N ) ≤ (1− τ/4)

(
2m− 2r

2

)

: ∀ 0 ≤ r ≤ m− 1

}

.

Then the first element of the partition will be S(M) \ S∗(M).

Step 2) Consider those orderings N from the set S∗(M) for which Ψr(N ) − ψr > Tr(logn)
1+δ for all 0 ≤ r ≤

m − 1. The function Tr will be defined in Section 7.4 and δ is a small positive constant. For example
δ < 0.1 works. Denote the set of all such N by A.

Step 3) From the set S∗(M) \A, remove those elements with Ψr(N ) > 0 for some r with 2m− 2r ≤ (logn)1+2δ.
Put these elements in the set B.
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Step 4) The last element of the partition is the remaining subset C = S∗(M) \ (A ∪ B).
The journey towards proving equation (4.2) is divided into these five parts

E(f(N )1A) = o(1), (7.8)

E(f(N )1B) = o(1), (7.9)

E(f(N )1C) ≤ 1 + o(1), (7.10)

E(f(N )1C) ≥ 1− o(1), (7.11)

E(f(N )1S(M)\S∗(M)) = o(1). (7.12)

These parts will be all proved is Section 7.5. The hardest of these proofs is for (7.8) which is carried out
by partitioning the set A into further subsets and using Vu’s inequality on them. The remaining proofs for
(7.9)-(7.12) are based on the standard combinatorial and algebraic bounds.

7.4 More notation

In order to prove (7.8) we need more notation. Remember from Section 7.3 that δ > 0 is a very small constant.
Let ω = (logn)δ. Let λ0 = ω logn and λi = 2iλ0 for i = 1, 2, . . . , L. L is such that λL−1 < cd2max logn ≤ λL
where c is a large constant that is specified later.

Definition 4. Let qr = (1 − r/m), pr = 1− qr ∀0 ≤ r ≤ m− 1. Then let

βr(λ) = c
√

λ(md2maxq
2
r + λ2)(d2maxqr + λ),

γr(λ) = c
√

λ(md2maxq
3
r + λ3)(d2maxq

2
r + λ2),

νr = 8md2maxq
3
r .

Now the function Tr for all 0 ≤ r ≤ m− 1 is defined by

Tr(λ) =

{
3βr(λ) + 2min(γr(λ), νr) if 2m− 2r ≥ ωλ.
λ2/ω Otherwise.

The intuition behind this definition will become clear when we use Vu’s concentration inequality in Section
7.5.2. Note that inequalities αr(λ) ≤ βr(λ) and ζr(λ) ≤ βr(λ) hold and we will use them in Section 7.5 to
simplify the computations. Moreover, with the above definition, since λi = 2λi−1, the following relation holds
between Tr(λi), Tr(λi−1).

Tr(λi) ≤ 8Tr(λi−1). (7.13)

Now we will subpartition A and B. Define subsets A0 ⊆ A1 ⊆ . . . ⊆ AL ⊆ S∗(M) by

Ai = {N ∈ S∗(M) | Ψr(N ) − ψr < Tr(λi), ∀ 0 ≤ r ≤ m− 1}.
Moreover, define A∞ by A∞ = S∗(M) \ ∪Li=0Ai. Then we have

A = A∞ ∪
(
∪Li=1Ai \Ai−1

)
.

Since the main objective of partitioning A is to prove (7.8), we are only interested in finding upper bounds

for f(N ) =
∏m−1
r=0

(

1 + Ψr(N )−ψr

(2m−2r
2 )−Ψr(N )

)

. Therefore, the cases with Ψr(N ) ≤ ψr are not troublesome.

Let K be an integer such that 2K−1 < (logn)2+δ + 1 ≤ 2K . Next step is to consider a chain of subsets
B0 ⊆ B1 ⊆ · · · ⊆ BK ⊆ A0 that are defined by

Bj = {N ∈ A0 | Ψr(N ) < 2j, ∀ r ≥ (2m− ωλ0)/2}.
It is not hard to see that the set C that was defined in step 4 in Section 7.3 is equal to the set B0. Note
that Tr’s are chosen such that for all r ≥ (2m− ωλ0)/2 we have Tr(λ0) = λ0 logn and by Lemma 14, for all
r ≥ (2m− ωλ0)/2 we have ψr = o(1). Thus, for all such r and all elements of A0,

Ψr < λ0 logn+ ψr < 2K .

This shows that A0 =
(
∪Kj=0 Bj

)
∪ C and also B = ∪Kj=1Bj .
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7.5 Proofs of (7.8), (7.9) and (7.10)

In this section we will bound the expected value E(f(N )) on the sets A∞, C, and on each of the sets of the
form Ai \Ai−1 and Bj \Bj−1.

Lemma 15. For all 1 ≤ i ≤ L,

(a) P(Ai \Ai−1) ≤ e−Ω(λi).

(b) For all N in Ai \Ai−1 we have f(N ) ≤ eo(λi).

Lemma 16. For a large enough constant c,

(a) P(A∞) ≤ e−cd
2
max logn.

(b) For all N in A∞ we have f(N ) ≤ e4d
2
max logn.

Lemma 17. For all 1 ≤ j ≤ K,

(a) P(Bj \Bj−1) ≤ e−Ω(2j/2 logn)

(b) For all N in Bj \Bj−1 we have f(N ) ≤ eO(23j/4).

Lemma 18. For all N ∈ C we have f(N ) ≤ 1 + o(1).

Now it is easy to see that equation (7.8) follows from Lemmas 15 and 16. Note that by the definition of
K we have 2K/4 ≪ logn which gives 23j/4 ≪ 2j/2 logn. Thus, we can deduce (7.9) from Lemma 17. Finally,
(7.10) is consequence of Lemma 18.

Proof of Lemma 15 uses Vu’s concentration inequality but for the other three lemmas, typical algebraic
and combinatorial bounds are sufficient. Throughout the rest of this section we present a quick introduction
to Vu’s concentration inequality. Then we prove the above lemmas.

7.5.1 Vu’s Concentration inequality.

Proofs of Lemmas 15(a) and 16(a) use a very strong concentration inequality proved by Vu [41] which is a
generalized version of an earlier result by Kim and Vu [26]. Consider independent random variables t1, t2, . . . , tn
with arbitrary distribution in [0, 1]. Let Y (t1, t2, . . . , tn) be a polynomial of degree k and coefficients in (0, 1].
For any multi-set A of elements t1, t2, . . . , tn let ∂AY denote the partial derivative of Y with respect to variables
in A. For example if Y = t1 + t31t

2
2 and A = {t1, t1}, B = {t1, t2} then

∂AY =
∂2

∂t21
Y = 6t1t

2
2 , ∂BY =

∂2

∂t1∂t2
Y = 6t21t2

For all 0 ≤ j ≤ k, let Ej(Y ) = max|A|≥j E(∂AY ). Define parameters ck, dk recursively as follows: c1 = 1, d1 =

2, ck = 2k1/2(ck−1 + 1), dk = 2(dk−1 + 1).

Theorem 4 (Vu). Take a polynomial Y as defined above. For any collection of positive numbers E0 > E1 >
· · · > Ek = 1 and λ satisfying

(a) Ej ≥ Ej(Y ), and

(b) Ej/Ej+1 ≥ λ+ 4j logn, 0 ≤ j ≤ k − 1

the following is true.

P
(

|Y − E(Y )| ≥ ck
√

λE0E1
)

≤ dke
−λ/4.
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7.5.2 Proof of part (a) of Lemmas 15 and 16.

In order to show part (a) of Lemma 15 we prove the stronger property

P(Aci−1) ≤ e−Ω(λi). (7.14)

This property combined with λL ≥ cd2max logn proves part (a) of Lemma 16 as well. From (7.13) we have

Aci−1 ⊆ {Ψr − ψr ≥
Tr(λi)

8
}.

Hence, in order to show (7.14) it is sufficient to show the following two lemmas.

Lemma 19. For all r such that 2m− 2r ≥ ωλi:

P

(

|Ψr(N ) − ψr| ≥
3βr(λi) + 2min(γr(λi), νr)

8

)

≤ e−Ω(λi)

Lemma 20. For any r such that 2m− 2r < ωλi we have

P
(
Ψr(N ) − ψr ≥ λ2i /ω

)
≤ e−Ω(λi).

Now we focus on Lemma 19. For each variable ∆r,Λr,Ψr denote their analogues quantity in Gpr by
∆pr ,Λpr ,Ψpr .

Lemma 21. For all r we have Ppr
(
{|E(Gpr )| = r}

)
≥ 1

n .

Proof. let f(m, r) = Ppr ({|E(Gpr )| = r}) then it can be seen that

f(m, r + 1)

f(m, r)
=

(1 + 1/r)r

(1 + 1
m−r−1)

m−r ≤ 1 ∀r ≤ (m− 1)/2.

Hence, the minimum of f(m, r) is around r = m/2. Using Stirling’s approximation we can get f(m, r) ≥
1√
2m

≥ 1
n .

By Lemma 21, with probability at least 1/n, Gpr has exactly r edges. Hence, using λi ≫ logn, for proving
Lemma 19 we only need to show

P

(

|Ψpr − ψr| ≥
3βr(λi) + 2min(γr(λi), νr)

8

)

≤ e−Ω(λi). (7.15)

In order to prove (7.15) we define

αr(λ) = c
√

λ(mdmaxq2r + λ2)(dmaxqr + λ),

ζr(λ) = c
d2max

m

√

λ(mdmaxq2r + λ2)(q + λ).

It is flashforward that αr(λ), ζr(λ) ≤ βr(λ). Therefore, (7.15) is the result of the following lemma. Throughout
the rest of the proof we fix r, i and remove all sub-indices r, i for simplicity.

Lemma 22. For all p we have

(i) P
(

|∆(1)
p − E(∆

(1)
p )| ≥ α

8

)

≤ e−Ω(λ)

(ii) P
(

|∆(2)
p − E(∆

(2)
p )| ≥ min(β+γ,β+ν)

8

)

≤ e−Ω(λ)

(iii) P

(

| (Λ
(1)
p )2−Λ(2)

p

8m − E(Λ(1)
p )2−E(Λ(2)

p )

8m | ≥ ζ
8

)

≤ e−Ω(λ)
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(iv) P

(

|Λ
(3)
p

4m − E(Λ(3)
p )

4m | ≥ min(β+γ,β+ν)
8

)

≤ e−Ω(λ)

Proof. (i) Similar to Kim and Vu’s proof, for each edge e of G consider a random variable te which is equal
to 0 when e is present in Gp and 1 otherwise. These te’s will be i.i.d. Bernoulli with mean q. Now note
that

∆(1)
p =

∑

u

∑

u∈e∩f, e6=f
tetf

and

E(∆(1)
p ) =

∑

u

(
du
2

)

q2 ≤ mdmaxq
2.

For each te we have

E(∂te∆
(1)
p ) = E(

∑

f :f∩e6=∅
tf ) ≤ 2(dmax − 1)q < 2dmaxq.

Moreover, any partial second order derivative is at most 1. Hence,

E0(∆
(1)
p ) ≤ max(mdmaxq

2, 2dmaxq, 1),

E1(∆
(1)
p ) ≤ max(2dmaxq, 1) and,

E2(∆
(1)
p ) ≤ 1.

Now set E0 = 4mdmaxq
2 + 4λ2, E1 = 2dmaxq+ 2λ, and E2 = 1. Then since λ≫ logm, the conditions of

Theorem 4 are fulfilled. On the other hand, for c sufficiently large in the definition of α, c2
√
λE0E1 ≤ α/8.

(ii) We need to prove the following statements

P

(

|∆(2)
p − E(∆(2)

p )| ≥ β + γ

8

)

≤ e−Ω(λ), (7.16)

P

(

|∆(2)
p − E(∆(2)

p )| ≥ β + ν

8

)

≤ e−Ω(λ). (7.17)

Consider the same random variables te from part (i). Let Q be the set of all paths of length 3 in G.
Then

∆(2)
p =

∑

{e,f,g}∈Q
tetg(1 − tf ) =

∑

{e,f,g}∈Q
tetg −

∑

{e,f,g}∈Q
tetf tg

Now let Y1 =
∑

{e,f,g}∈Q tetg/4 and Y2 =
∑

{e,f,g}∈Q tetf tg. Similar to part (i) we have

E0(Y1) ≤ max(md2maxq
2/4, d2maxq/2, 1) , E1(Y1) ≤ max(d2maxq/2, 1) and E2(Y1) ≤ 1.

Therefore, set E0 = md2maxq
2/2 + 2λ2, E1 = d2maxq/2 + 2λ, and E2 = 1. These satisfy the conditions of

Theorem 4. Again by considering c large enough we have

P(|Y1 − E(Y1)| ≥ β/32) ≤ e−Ω(λ). (7.18)

For Y2 we have

E0(Y2) ≤ max(md2maxq
3, 2d2maxq

2, 2dmaxq, 1) , E1(Y2) ≤ max(2d2maxq
2, 2dmaxq, 1)

and
E2(Y2) ≤ max(2dmaxq, 1) and E3(Y2) = 1.

As before, set E0 = 2md2maxq
3 + 3λ3, E1 = 2d2maxq

2 + 2λ2, and E2 = 2dmaxq + λ, E3 = 1 to obtain

P(|Y2 − E(Y2)| ≥
γ

8
) ≤ e−Ω(λ). (7.19)
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Combining (7.18) and (7.19), equation (7.16) is proved. Finally, equation (7.17) is the result of (7.18)
and the following,

|∆(2)
p − E(∆(2)

p )| ≤ |4Y1 − 4E(Y1)|+ E(Y2)

≤ |4Y1 − 4E(Y1)|+md2maxq
3

≤ |4Y1 − 4E(Y1)|+
ν

8
.

(iii) Here we will prove

P

(

| (Λ
(1)
p )2

8m
− E(Λ

(1)
p )2

8m
| ≥ c1d

2
maxq

√

λ(λ +mq)

)

≤ e−Ω(λ), (7.20)

and

P

(

|Λ
(2)
p

8m
− E(

Λ
(2)
p

8m
)| ≥ c1d

2
max

m

√

λ(mdmaxq2 + 2λ2)(q + λ)

)

≤ e−Ω(λ). (7.21)

Note that by making c in the definition of ζ large enough, (7.20) and (7.21) together give us (iii). First
we prove (7.20). Write

Λ
(1)
p

2dmax
=

∑

e={u,v}∈E(G)

du + dv
2dmax

te

which is a polynomial with coefficients in (0, 1]. As before

E0(
Λ
(1)
p

2dmax
) ≤ max(mq, 1) , E1(

Λ
(1)
p

2dmax
) ≤ 1.

Now set E0 = λ+mq and E1 = 1. Thus,

P

(

| Λ
(1)
p

2dmax
− E(

Λ
(1)
p

2dmax
)| ≤ c1

√

λ(λ+mq)

)

≤ d1e
−Ω(λ).

(7.22)

By Lemma 11(ii) we have Λ
(1)
p ≤ 2mdmaxq. Hence, inequality |(Λ(1)

p )2−E(Λ
(1)
p )2| ≥ 8c1md2maxq

√

λ(λ +mq)
gives

| Λ
(1)
p

2dmax
− E(

Λ
(1)
p

2dmax
)| ≥ c1

√

λ(λ+mq).

Now using (7.22) equation (7.20) is trivial.

The proof of (7.21) is similar to the proofs in (i) and (ii). We start with the following polynomial

representation for Λ
(2)
p

Λ
(2)
p

2d2max

=

n∑

i=1

d2i
2d2max




∑

e=(i,.)

te





2

=

n∑

i=1

d2i
2d2max




∑

e=(i,.)

te



+ 2

n∑

i=1

d2i
2d2max

∑

e∩f=i
tetf .

Then we represent the right hand side by Z1 + Z2 where Z1 =
∑n

i=1
d2i

2d2max

(
∑

e=(i,.) te

)

and Z2 =

2
∑n
i=1

d2i
2d2max

∑

e∩f=i tetf . The next step is to use Vu’s inequality for both Z1 and Z2 separately. The
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concentration for Z2 is less sharp and it will dominate the concentration for Z1 + Z2. For Z1 the
inequalities

E0(Z1) ≤ max(mq, 1) , E1(Z2) ≤ 1

show that the same E0, E1 as in (7.22) can be used to obtain the inequality

P

(

|2d
2
maxZ1

8m
− E(

2d2maxZ1

8m
)| ≤ c2

d2max

m

√

λ(λ+mq)

)

≤ d2e
−Ω(λ).

(7.23)

Now for Z2 the bounds on the partial derivatives are given by E0(Z2) ≤ max(mdmaxq
2

2 , q, 1), E1(Y1) ≤
max(q, 1), and E2(Y1) = 1. Therefore, E0 = mdmaxq

2 +2λ2 and E1 = q+λ, E2 = 1 satisfy the conditions
of Theorem 4 and we obtain the inequality

P

(

|2d
2
maxZ2

8m
− E(

2d2maxZ2

8m
)| ≤ c3

d2max

m

√

λ(mdmaxq2 + 2λ2)(q + λ)

)

≤ d2e
−Ω(λ).

(7.24)

The final inequality (7.21) can now be shown by combining equations (7.23) and (7.24).

(iv) This case is treated exactly the same as (ii) because we have the following

Λ
(3)
p

d2max

=
∑

{e,f,g}∈R, e={u,v}

dudv
d2max

tetg(1− tf ).

of Lemma 20. Using Lemma 11(iii) and the definition of Ψ, from Ψp ≥ λ2/ω we can get

∆p ≥ λ2

ω
− Λp

≥ λ2

ω
−md2maxq

2

>
λ2

ω
− d2maxω

2λ2

4m
(7.25)

>
λ2

2ω
(7.26)

where (7.25) uses 2mq = 2m− 2r < ωλ and (7.26) holds since d2maxω
3 ≪ m.

Since 2m − 2r is small then Gp is very dense. Let us consider its complement Gq which is sparse. Let
N0(u) = N(u) ∪ {u}. Then using

∆pr ≤
∑

u

dGq (u)
∑

v∈N0(u)

dGq (v)

and ∆p ≥ λ2/2ω, one of the following statements should hold.

(a) Gq has more than ω2λ/4 edges.

(b) For some u,
∑

v∈N0(u)
dGq (v) ≥ λ/ω3.

If (a) holds, since 2mq ≤ ωλ then

P(Gq has more than
ω2λ

4
edges) ≤

(
m
ω2λ
4

)

q
ω2λ
4

≤ (
4mqe

ω2λ
)

ω2λ
4

≤ e−
ω2λ
4 (logω−1−log 2) = e−Ω(λ).
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If (b) holds then the number of edges in G that contribute to
∑

v∈N0(u)
dGq (v) is at most d2max and each edge

can contribute at most twice. Hence,

P(
∑

v∈N0(u)

dGq (v) ≥ λ/ω3) ≤
(
d2max
λ

2ω3

)

q
λ

2ω3

≤ (
2d2maxqω

3e

λ
)

λ
2ω3

≤ (
d2maxω

4e

m
)

λ
2ω3

= e−
λ

2ω3 (logm−log(d2maxω
4)−1) ≤ e−Ω( λ

ω3 logm) = e−Ω(λ).

Note that we need δ in the definition of ω to be small enough such that logm≫ ω3 and for δ < .1 this is true.

7.5.3 Proof of part (b) of Lemmas 15 and 16.

Note that:

f(N ) =

m−1∏

r=0

(

1 +
Ψr(N )− ψr

(
2m−2r

2

)
−Ψr(N )

)

and since Ψr(N ) ≤ (1− τ/4)
(
2m−2r

2

)
for N ∈ S∗(M) then

f(N ) ≤
m−1∏

r=0

(

1 +
16/τ max(Ψr(N )− ψr, 0)

(2m− 2r)2

)

.

of Lemma 15(b). Using 1 + x ≤ ex we only need to show

m−1∑

r=0

max(Ψr(N ) − ψr, 0)

(2m− 2r)2
≤ o(λ).

To simplify the notation, let g(r) = max(Ψr(N )−ψr,0)
(2m−2r)2 . Note that 0 ≤ g(r) ≤ 1 which gives

∑λ/ω1/2

2m−2r=2 g(r) =

o(λ). Hence, we only need to show
∑2m−2

2m−2r=λ/ω1/2 g(r) = o(λ) . Also note that the numerator of g(r) is at

most Tr(λ). Therefore, using the definition of Tr(λ),

2m−2∑

2m−2r=λ/ω1/2

g(r) ≤
ωλ∑

2m−2r=λ/ω1/2

λ2

(2m− 2r)2ω
+

ωλ2
∑

2m−2r=ωλ

3βr(λ) + 2νr
(2m− 2r)2

+

2m−2∑

2m−2r=ωλ2

3βr(λ) + 2γr(λ)

(2m− 2r)2
.

Therefore, it suffices to show

ωλ∑

2m−2r=λ/ω1/2

λ2

(2m− 2r)2ω
+

ωλ2
∑

2m−2r=ωλ

3βr(λ) + 2νr
(2m− 2r)2

+
2m−2∑

2m−2r=ωλ2

3βr(λ) + 2γr(λ)

(2m− 2r)2
= o(λ)
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A series of elementary inequalities will now be used to bound these three summations. We will use qr =
2m−2r

2m
to obtain

2m−2∑

2m−2r=2

(λmd4maxq
3
r)

1/2

(2m− 2r)2
=

λ1/2d2max

2m
√
2

2m−2∑

2m−2r=2

1√
2m− 2r

= O(
λ1/2d2max

m

∫ 2m

x=2

1√
x
dx) = O(

λ1/2d2max√
m

) = o(λ)

2m−2∑

2m−2r=2

(λ2md2maxq
2
r)

1/2

(2m− 2r)2
=
λdmax

2m1/2

2m−2∑

2m−2r=2

1

2m− 2r
= O(

λdmax

m1/2
logm) = o(λ),

2m−2∑

2m−2r=2

(λ3d2maxqr)
1/2

(2m− 2r)2
=
λ3/2dmax

(2m)1/2

2m−2∑

2m−2r=2

1

(2m− 2r)3/2
= O(

λ3/2dmax

m1/2
) = o(λ),

and
2m−2∑

2m−2r=ωλ

λ2

(2m− 2r)2
≤ λ2

∫ 2m

x=ωλ

x−2dx = o(λ).

Furthermore, we can show the following bounds

2m−2∑

2m−2r=2

(λ3md2maxq
3
r )

1/2

(2m− 2r)2
=
λ3/2dmax

2m
√
2

2m−2∑

2m−2r=2

1√
2m− 2r

= O(
λ3/2dmax√

m
),

2m−2∑

2m−2r=2

λ2dmaxqr
(2m− 2r)2

= O(
λ2dmax logm

2m
),

2m−2∑

2m−2r=ωλ2

λ3

(2m− 2r)2
= O(λ3

∫ ∞

x=ωλ2

x−2dx) = O(
λ3

ωλ2
) = o(λ), (7.27)

and

ωλ2
∑

2m−2r=2

md2maxq
3
r

(2m− 2r)2
=

ωλ2
∑

2m−2r=2

d2max(2m− 2r)

8m2
= O(

ω2λ4d2max

m2
). (7.28)

Remark 3. All previous equations are of order o(λ), since λ ≤ λL = O(d2max logn) and dmax = o(m
1
4−τ ).

Note that we also used
√
A+B ≤

√
A+

√
B to find upper bounds for βr, γr.

of Lemma 16(b). Similar to proof of Lemma 15(b) we will show

f(N ) ≤
m∏

r=m−d2max+1

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

m−d2max∏

r=0

(
1 + 16/τ

max(Ψr(N )− ψr, 0)

(2m− 2r)2
)

≤
(
2d2max

2

)d2max

·
m−d2max∏

r=0

(
1 + 16/τ

Ψr
(2m− 2r)2

)

≤ (2d4max)
d2max ·

m−d2max∏

r=0

(
1 + 16/τ

d2max

2m− 2r

)
(7.29)

≤ e
d2max log(2d4max)+3

∑m
i=d2max+1

d2max
i

≤ ed
2
max

(
log(2d4max)+3 log dmax+logm

)

≤ e4d
2
max logn (7.30)
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where (7.29) use Lemma 11, and (7.30) uses m ≤ ndmax/2 and dmax ≪ m1/3 ≤ n1/2.

7.5.4 Proof of Lemma 18.

By the definition of C :
∑ωλ0

2m−2r=2 g(r) = 0. Thus, we only need to show that if Ψr(N )− ψr ≤ Tr(λ0) for all
r with 2m− 2r ≥ ωλ0 then

m∑

2m−2r=ωλ0

g(r) = o(1).

For that it is sufficient to prove
m∑

2m−2r=ωλ0

Tr(λ0)

(2m− 2r)2
= o(1).

The proof is similar to the proof of Lemma 15 (b) with a slight modification. Instead of using (7.27) and
(7.28) we use

2m−2∑

2m−2r=ωλ3
0

λ30
(2m− 2r)2

= O(λ30

∫ ∞

ωλ3
0

x−2dx) = O(
λ30
ωλ30

) = o(1),

and
ωλ3

0∑

2m−2r=2

md2maxq
3
r

(2m− 2r)2
=

ωλ3
0∑

2m−2r=2

(2m− 2r)d2max

m2
= O(

d2maxω
2λ60

m2
) = o(1).

For the other equations in the proof of Lemma 15 (b) let λ = λ0 and they will be o(1).

7.5.5 Proof of Lemma 17.

of Lemma 17(a). We have 2m−2r ≤ ωλ0 ≪ (logn)2. This means proving the bound only for one r is enough.
Similar to the proof of Lemma 20, from Ψp ≥ 2j−1 we get ∆p ≥ 2j−2. Thus, one of the following statements
hold

(a) Gq has more than 2j/2−2 edges

(b) For some u,
∑

v∈N0(u)
dGq (v) ≥ 2j/2−1

and rest of the proof will be exactly as in Lemma 20.

of Lemma 17(b). By the definition of Bj

ωλ0∑

2m−2r=2

g(r) ≤
ωλ0∑

2m−2r=2

2j

(2m− 2r)2
= O(2j).

7.6 Proof of (7.11)

From Lemma 19, for all r with 2m− 2r ≥ ωλ0,

P
(

|Ψr − ψr| ≥ αr(λ0) + βr(λ0) + (1 + d2max/4m)γr(λ0) + ζr(λ0)
)

= o(1). (7.31)

Let N be an ordering with |Ψr−ψr| ≤ αr(λ0)+βr(λ0)+ (1+d2max/4m)γr(λ0)+ ζr(λ0) for all 2m− 2r ≥ ωλ0.
Then

f(N ) ≥
2m−2∏

2m−2r=ωλ3
0

(

1− (16/τ)
αr(λ0) + βr(λ0) + γr(λ0) + ζr(λ0)

(2m− 2r)2

)

×
ωλ3

0∏

2m−2r=2

(

1− (16/τ)
ψr

(2m− 2r)2

)

. (7.32)
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In section 7.5.3 it was shown that 3
τ

∑2m−2
2m−2r=ωλ3

0

αr(λ0)+βr(λ0)+γr(λ0)+ζr(λ0)
(2m−2r)2 = o(1). Now one can use 1− x ≥

e−2x when 0 ≤ x ≤ 1/2 to see that the first product in the right hand side of (7.32) is 1 − o(1). The

second product is also 1 − o(1) because of ωλ30d
2 = o(m) and the bound ψr = O

[

(2m− 2r)2
d2max

m

]

given

Lemma 14. These, together with (7.31) finish the proof of (7.11). In fact they show the stronger statement
E(f(N )1S∗(M)) > 1− o(1).

Remark 4. The proofs of this section and Section 7.5 yield the following corollary which will be used in
Section 7.7.

Corollary 5. For sufficiently large c in the definition of λL,

E

(

exp

[
1

τ2

m−1∑

r=0

max(Ψr(N ) − ψr, 0)

(2m− 2r)2

])

= 1 + o(1) (7.33)

Proof. Bounds of Section 7.5 show that the contribution of the sets Ai \Ai−1 and Bj \Bj−1 are all o(1) and
the contribution of C is 1 + o(1). The contribution of A∞ also is o(1) by taking the constant c large enough.

7.7 Proof of (7.12)

In this section we deal with those orderings N for which the condition

Ψr(N ) ≤ (1− τ/4)

(
2m− 2r

2

)

(∗)

is violated for some r. If this happens for some r then from Lemma 11(iii) and d4max = o(m) we have

∆r(N ) ≥ Ψr(N )− d2max

8m
(2m− 2r)2

> Ψr(N )− τ/4

(
2m− 2r

2

)

> (1 − τ/2)

(
2m− 2r

2

)

.

On the other hand using Lemma 11(i) we have ∆r(N ) ≤ d2max(2m−2r)
2 . So for 2m−2r ≥ d2max

2−τ we have ∆r(N ) ≤
(1 − τ/2)

(
2m−2r

2

)
. Thus condition (∗) is violated only for r very close to m. Let St(M), t = 1, . . . ,

d2max

2−τ , be

the set of all ordering N for which (∗) fails for the first time at r = m− t. We will use
∑∞
t=1

1
mτt = o(1) to

prove (7.12). In particular we show

E(f(N )1St) ≤ O
( 1

mτt

)

.

Note that
(
2m−2r

2

)
−Ψr(N ) =

∑

{i,j} ∈ Er
d
(r)
i d

(r)
j (1− didj

4m ) ≥ (m− r)(1 − d2max

4m ) since at step r there should

be at least m− r suitable edges to complete the ordering N . Hence using dmax = O(m
1
4−τ ) we have

(
2m−2r

2

)

(
2m−2r

2

)
−Ψr(N )

≤ 2m− 2r − 1 +O(
d4max

m
) ≤ 2m− 2r. (7.34)

This gives
m−1∏

r=m−t

(
2m−2r

2

)

(
2m−2r

2

)
−Ψr(N )

≤ 2tt! ≤ 2tt

and since t is the first place that (∗) is violated, then
m−t−1∏

r=0

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
− Ψr(N )

≤ exp

[
16

τ

m−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

]

.
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Thus,

f(N )1St = 1St

m−1∏

r=0

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ 2tt1St exp

[
16

τ

m−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

]

.

Now using Hölder’s inequality

E(f(N )1St) ≤ 2ttE

(

1St exp

[
16

τ

m−t−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

])

≤ 2ttE(1St)
1−τ/2E

(

1St exp

[
32

τ2

m−t−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

])τ/2

.

But using Corollary 5, the second term in the above product is 1 + o(1) and we only need to show

2ttP(St)
1−τ/2 ≤

(

1 + o(1)
) 1

mτt
.

Let r = m− t and Γ(u) = NGNr
(u) be the set of all neighbors of u in GNr . Note that

∆r(N ) =
1

2

∑

u

d(r)u
∑

v∈Γ(u)∪{u}
(d(r)v − 1u=v)

and (
2m− 2r

2

)

=
1

2

∑

u

d(r)u
∑

v

(d(r)v − 1u=v).

Now ∆r(N ) > (1− τ/2)
(
2m−2r

2

)
> (1 − τ)

(
2m−2r

2

)
implies that a vertex u with d

(r)
u > 0 exists and

∑

v∈Γ(u)∪{u}
(d(r)v − 1u=v) > (1 − τ)

∑

v

(d(r)v − 1u=v).

Equivalently

∑

v/∈Γ(u)∪{u}
d(r)v ≤ τ

∑

v

(d(r)v − 1u=v) ≤ τ(2m− 2r − 1) ≤ 2τt. (7.35)

Any of the last t edges of N that that have at least one endpoint outside of Γ(u), contributes at least once to
the left hand side of (7.35). So there are at most 2τt such edges. Let k = du − |Γ(u)| and let ℓ be the number
of edges that are entirely in Γ(u). Then we should have k ≥ 1 and ℓ ≥ (1 − 2τ)i. Thus, the probability that

d
(r)
u > 0 and

∑

v/∈Γ(u)∪{u} d
(r)
v ≤ 2τt, for a fixed vertex u is upper bounded by

∑

k≥1, ℓ≥(1−2τ)t

(
du
k

)((du−k
2 )
ℓ

)(m−du−(du−k
2 )

t−k−ℓ
)

(
m
t

) .

Hence,

P(St) ≤
∑

u

∑

k≥1, ℓ≥(1−2τ)t

(
du
k

)((du−k
2 )
ℓ

)(m−du−(du−k
2 )

t−k−ℓ
)

(
m
t

) .

Now using
(
du
k

)

≤ dku
k!
,

((du−k
2

)

ℓ

)

≤ (d2u/2)
ℓ

ℓ!
,

(
m− du −

(
du−k

2

)

t− k − ℓ

)

≤ mt−k−ℓ

(t− k − ℓ)!
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for t = O(d2max) = o(m1/2) we have
(
m

t

)

=
(
1 + o(1)

)mt

t!
.

This means

P(St) ≤
(
1 + o(1)

)∑

u

∑

k≥1, ℓ≥(1−2τ)t

dku
k!

(d2u/2)
ℓ

ℓ!
mt−k−ℓ

(t−k−ℓ)!
mt

t!

=
(
1 + o(1)

)∑

u

∑

k≥1, ℓ≥(1−2τ)t

(du/m)k(d2u/2m)ℓt!

k!ℓ!(t− k − ℓ)!

≤
(
1 + o(1)

)
2τt
∑

u

(du/m)(d2u/2m)(1−2τ)t

(
t

2τt

)

≤
(
1 + o(1)

)
t
dmax

m

∑

u

(d2u/2m)(1−2τ)t2t (7.36)

≤
(
1 + o(1)

)
t22t/3

dmax

m

∑

u

(
d2u
m

)(1−2τ)t

(7.37)

≤
(
1 + o(1)

)
2t22t/3

(
d2max

m

)(1−2τ)t

(7.38)

where (7.36) and (7.37) are based on τ ≤ 1/3 and
(
a
b

)
≤ 2a. Moreover, (7.38) uses

∑

u d
k
u =

∑

u∼Gv
(dk−1
u +

dk−1
v ) ≤ 2mdk−1

max. Now we can use t ≤ d2max

2−τ , dmax ≤ m
1
4−τ , and τ ≤ 1/3 to get

2ttP(St)
1−τ/2 ≤

(
1 + o(1)

)
4t

(

22−τ/3

2− τ

d4−5τ+2τ2

max

m1−2.5τ+τ2

)t

≤
(
1 + o(1)

)
4t

(

d4−5τ+2τ2

max

m1−2.5τ+τ2

)t

≤
(
1 + o(1)

)
4t
(

m−2.75τ+3.5τ2−2τ3
)t

≤ O
(
m−τt).

8 Bounding the Variance of the SIS estimate

In this section we will prove two variance bounds from Section 4. We will borrow some notation and results
from Section 7.

8.1 Proof of Equation (4.5)

It is easy to see that instead of proving (4.5) directly, we can consider the equivalent formulation EA(N
2)/EA(N)2 ≤

1 + o(1). For the numerator we have

EA(N
2) =

∑

G

∑

N

(
1

m! PA(N )

)2

PA(N ) =
∑

G

∑

N

1

(m!)2 PA(N )
.

On the other, we have the following estimate from the analysis of Theorem 1,

|L(d̄)| = [1 + o(1)]
∏m−1
r=0

[(
2m−2r

2

)
− ψr

]

m!
∏n
i=1 di!

.
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Therefore,

EA(N
2)

EA(N)2
=

∑

G

∑

N
1

(m!)2 PA(N )

|L(d̄)|2

=

∑

G

∑

N
∏m−1
r=0

[

(2m−2r
2 )−Ψr(N )

(2m−2r
2 )−ψr

]

m!|L(d̄)|

=

∑

G E(g(N ))

|L(d̄)| (8.1)

where g(N ) =
∏m−1
r=0

(2m−2r
2 )−Ψr(N )

(2m−2r
2 )−ψr

and the expectation E is with respect to the uniform distribution on the

set of all m! orderings, S(M). The goal is now to show that if G ∈ L(d̄) then

E(g(N )) ≤ 1 + o(1). (8.2)

Note that equations (8.1) and (8.2) finish the proof. Thus, we only need to prove equation (8.2).

of Equation (8.2). Before starting the proof it is important to see that g(N ) = f(N )−1 and the aim of Section
7 was to show that E(f(N )) = 1 + o(1). In this section we will show that the concentration results of Section
7 are strong enough to bound the variance of g(N ) as well.

Recall the definitions for variables λi and T (λi) from Section 7. Here we will consider a different partitioning
of the set S(M). Define subsets F0 ⊆ F1 ⊆ . . . ⊆ FL ⊆ S(M) as follows:

Fi = {N ∈ S(M) | ψr −Ψr(N ) < Tr(λi) : ∀ 0 ≤ r ≤ m− ωλi/2}

and F∞ = S(M) \ ∪Li=0Fi. The following two lemmas are equivalent versions of Lemmas 15, 18.

Lemma 23. For all 1 ≤ i ≤ L,

(a) P(Fi \ Fi−1) ≤ e−Ω(λi).

(b) For all N in Fi \ Fi−1 we have g(N ) ≤ eo(λi).

Lemma 24. If N ∈ F0 then g(N ) ≤ 1 + o(1).

Proof of these Lemmas is similar to the proofs for Lemmas 15 and 18, and the only extra information that
is required is

ωλ∑

2m−2r=2

g(N ) ≤ 2
ψr

(2m−2r)2

2

= O(
ωλd2max

m
).

Then for Lemma 23 we use
ωλd2max

m = o(λ) and for Lemma 24 we use
ωλ0d

2
max

m = o(1). The combination of
these two lemmas gives E(g(N )) ≤ 1 + o(1).

8.2 Proof of Equation (4.6)

Similar to Section 8.1 we will use lemmas from Section 7. The main technical point in this section is a new
result which exploits the combinatorial structure of the model to obtain a tighter bound than in Section 7.

Equation (4.6) is equivalent to
EB(P

2)

EB(P )2
< 1 + o(1).

First notice that
EB(P

2)

EB(P )2
=
m!

∑

N PB(N )2

PB(G)2
=

E(f(N )2)

E(f(N ))2
.

Therefore, all we need to show is E(f(N )2) = 1 + o(1).
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Consider the same partitioning of the set S(M) as in Section 7. It is straightforward to see that Lemmas
15, 16, 17, and 18 give us the following stronger results as well

E(f(N )21A) = o(1),

E(f(N )21B) = o(1),

E(f(N )21C) ≤ 1 + o(1).

Thus, the only missing part is the following

E(f(N )21S∗(M)\S∗(M)) = o(1) (8.3)

which we will prove by using the combinatorial properties of the model.

of equation (8.3). Recall that S∗(M) \ S∗(M) consists of those orderings N that violate the condition

Ψr(N ) ≤ (1− τ/4)

(
2m− 2r

2

)

(∗)

for some r. If this happens for some r then from Lemma 11(iii) and d4max = o(m) we have

∆r(N ) ≥ Ψr(N )− d2max

8m
(2m− 2r)2

> Ψr(N )− τ/4

(
2m− 2r

2

)

> (1 − τ/2)

(
2m− 2r

2

)

.

On the other hand using Lemma 11(i) from Section 7: ∆r(N ) ≤ d2max(2m−2r)
2 . So for 2m− 2r ≥ d2max

2−τ we have

∆r(N ) ≤ (1 − τ/2)
(
2m−2r

2

)
. Thus condition (∗) is violated only for r very close to m. For these values of r

we use the following combinatorial lemma to find an upper bound for f(N ).

Lemma 25. For all r such that 2m− 2r ≤ d2max

2−τ ,

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ 2dmax.

Proof. Let nr be the number of available vertices (vi’s with Wi 6= 0) at step r + 1. Without loss of generality

assume that all such vertices are v1, . . . , vnr . For each 1 ≤ i ≤ nr let d̃
(r)
i be the number of neighbors of vi among

v1, . . . , vnr at step r+1. Then the number of suitable pairs at step r+1 is at least 1/2
∑nr

i=1(nr−1− d̃(r)i )d
(r)
i .

Now consider the cases nr ≥ 2dmax or nr < 2dmax separately.

1. For nr ≥ 2dmax the number of suitable pairs at step r+1 is at least 1/2
∑nr

i=1(dmax)d
(r)
i = dmax(m− r).

Therefore,
(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ (m− r)(2m− 2r − 1)

dmax(m− r)(1 − d2max

4m )
≤ 2dmax.

Here we used d2max = o(m) and (2m− 2r) ≤ d2max

2−τ ≤ 3d2max/5.

2. For nr < 2dmax we use nr ≥ 1 + d̃
(r)
i + d

(r)
i to show that the number of suitable pairs is at least

1/2
∑nr

i=1(nr − 1− d̃
(r)
i )d

(r)
i ≥ 1/2

∑nr

i=1(d
(r)
i )2 ≥ 1/2

(
∑nr

i=1 d
(r)
i )2

nr
. Hence,

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ (m− r)(2m− 2r − 1)
(m−r)(2m−2r)

nr
(1 − d2max

4m )

≤ nr
1− 1

d2max

1− o(1)
≤ 2dmax.
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Lemma 25 gives
m−1∏

r=m−t

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ 2tdtmax.

From here we will closely follow the steps taken in Section 7.7. Since t is the first place that (∗) is violated
m−t−1∏

r=0

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
− Ψr(N )

≤ exp

[
16

τ

m−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

]

.

So,

f(N )1St = 1St

m−1∏

r=0

(
2m−2r

2

)
− ψr

(
2m−2r

2

)
−Ψr(N )

≤ 2tdtmax1St exp

[
16

τ

m−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

]

.

Now using Hölder’s inequality

E(f(N )21St)

≤ 22td2tmaxE

(

1St exp

[
32

τ

m−t−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

])

≤ 22td2tmaxE(1St)
1−τ/2E

(

1St exp

[
64

τ

m−t−1∑

r=0

max(Ψr(N )− ψr, 0)

(2m− 2r)2

])τ/2

.

From Corollary 5 the second term in the above product is 1 + o(1) and we only need to show

22td2tmaxP(St)
1−τ/2 ≤

(

1 + o(1)
) 1

mτt
.

Now using the bound given by equation (7.38) for P(St) we have

22td2tmax2t
tP(St)

1−τ/2 ≤
(
1 + o(1)

)
2t

(

24−τ/3

2− τ

d4−5τ+2τ2

max

m1−2.5τ+τ2

)t

≤
(
1 + o(1)

)
2t

(

4
d4−5τ+2τ2

max

m1−2.5τ+τ2

)t

≤
(
1 + o(1)

)
2t
(

4m−2.75τ+3.5τ2−2τ3
)t

≤ O
(
m−τt).
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