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Theoretical studies of the computational complexity of Evolutionary Algorithms
(EAs) have appeared since the 1990s (see Oliveto, He and Yao [8]). Since then
various mathematical techniques for the analysis of EAs have been constructed.
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Abstract

Drift analysis is a powerful tool used to bound the optimization time of
evolutionary algorithms (EAs). Various previous works apply a drift the-
orem going back to Hajek in order to show exponential lower bounds on
the optimization time of EAs. However, this drift theorem is tedious to
read and to apply since it requires two bounds on the moment-generating
(exponential) function of the drift. A recent work identifies a specializa-
tion of this drift theorem that is much easier to apply. Nevertheless, it is
not as simple and not as general as possible. The present paper picks up
Hajek’s line of thought to prove a drift theorem that is very easy to use in
evolutionary computation. Only two conditions have to be verified, one of
which holds for virtually all EAs with standard mutation. The other con-
dition is a bound on what is really relevant, the drift. Applications show
how previous analyses involving the complicated theorem can be redone
in a much simpler and clearer way. Therefore, the simplified theorem is
also a didactical contribution to the runtime analysis of EAs.

Introduction

An overview of many important tools can be found in Wegener [10].

Recently drift analysis, a technique that goes back to the 1940s (cf. the
introduction in [4]), was introduced for the analysis of EAs by He and Yao [6].
The authors concentrated on using drift analysis for the obtainment of both
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lower and upper bounds on the expected runtime of various EAs for different
problems. Also other applications of the technique are presented by He and Yao
[7]. Concerning lower bounds, Giel and Wegener [3] point out that a result on the
success probability may also be obtained rather than only the expected waiting
time. In this form the drift theorem has been used several times (e. g., Giel and
Wegener [3] for maximum matching, Oliveto, He and Yao [9] for vertex cover,
Friedrich, Oliveto, Sudholt and Witt [2] for analyzing diversity mechanisms etc.)
to prove exponential lower bounds on optimization times that even hold with
probabilities exponentially close to 1. Although the mentioned drift theorem
has turned out to be very useful, it often leads to tedious and complicated
calculations. This seems to be the price to pay for the sake of keeping the drift
theorem as general as possible. However, by considering the characteristics
of the stochastic processes defined by EAs, it is possible to derive conditions
which are more restrictive but considerably easier to verify. In fact, with similar
motivations, Happ, Johannsen, Klein and Neumann [5] have recently introduced
a simplified drift theorem.

In this paper we present a further simplification of the drift theorem which
is particularly suited for the analysis of EAs. Our proof resembles the argu-
mentation used by Hajek to verify the conditions of its complicated but general
theorem. It seems that, to a certain extent, many applications of the compli-
cated theorem rely on a historical accident. Hajek himself states simpler but
more restrictive conditions which he claims to be useful in applications. We
only slightly tweak these conditions to make them even easier to verify in the
analysis of EAs.

The rest of the paper is structured as follows. Section 2 presents some
background on drift analysis and the simplified drift theorem. A first example
of the usage of the technique is given in Section 3. In Section 4 we show that the
simplified drift theorem can also be used in the same setting of Happ et al. [5] and
that even significantly stronger results than theirs are obtained for the (1+1)-EA
with fitness-proportional selection for the optimization of linear functions. In
Section 5 we choose the maximum matching problem as an advanced application
to show that proofs are considerably simplified. We finish with some conclusions.

2 Previous Work and the Simplified Drift The-
orem

The following theorem goes back to Hajek [4] and since then, has been restated
in different forms several times (e. g., He and Yao [6] and Giel and Wegener [3]).
With the aim of proving exponential lower bounds on first hitting times, usually
four conditions to be fulfilled are listed. Interestingly, in essence, there is only
a single inequality, namely a bound on the moment-generating function of the
one-step drift, to be checked for the final statement of the theorem to hold.
By analyzing the original proof, it follows that the remaining conditions can be
either rephrased or removed. In particular, there is no need for the values A(¢)



and D(¥) to be constant or p(¢) to be polynomial. In any case, for the theorem
to be meaningful, it has to be assured that D(¢) is defined.

Theorem 1 (Hajek [4]) Let Xo, X1, Xa,... be the random variables describ-
ing a Markov process over a state space S and g: S — Rar a function mapping
each state to a non-negative real number. Pick two real numbers a(f) and b(¢)
depending on a parameter { such that 0 < a(f) < b(€) holds. Let T({) be the
random variable denoting the earliest point in time t > 0 such that g(X;) < a(f)
holds. If there are A(€) > 0 and p(€) > 0 such that the condition

E(e MO =050 | a(0) < g(X,) < b(0) < 1— ——

< ) forallt >0 (x)

holds then for all time bounds L(£) >0
Prob(T'(¢) < L(f) | g(Xo) > b(£)) < e O®O=aO) . 1(¢). D(¢) - p(¥),

where D(f) = max{1, E(e~ MO @0Xex)=00) | g(X,) > b(0)) }.

In the typical applications of Theorem 1 cited above, the main drift Con-
dition (x) is proved with p(¢) being a polynomial. Having accomplished this,
it often easily follows that D(¢) is at most a constant. The values a({) and
b(¢) are frequently chosen linear in the dimension of the search space n such
that b(¢) — a(f) = Q(n) and ¢ = Q(n) while A(£) is chosen constant. Conse-
quently, choosing L(£) = 2°™, where c¢ is a sufficiently small constant, the final
statement of the theorem boils down to Prob(T'(¢) < 2¢7) < 279 This is
as desired: even given exponential time, the probability of finding the optimum
(i.e., g(Xt) < a) is exponentially small w.r.t. the problem dimensionality.

Happ et al. [5] present a simplified version of the drift theorem called “Global
Gambler’s Ruin”, with conditions that are much easier to check. The main
simplification introduced to prove Condition (x) of the original theorem is as
follows: assuming S = Ny and g = id, they demand the existence of constant § >
1 such that, given X; = i, the condition Prob(X; 1 =i+ j) > 67 Prob(X; 41 =
i — ) holds for all j > 1. Intuitively, this means that for every step length j,
there is a bias (drift) towards increasing the state by j compared to decreasing
it by j; moreover, this bias increases exponentially w.r.t. j. In an application to
an EA with fitness-proportional selection, it turns out that the new condition
is relatively easy to verify. The drawback is that a(¢) and b(¢) have to be
chosen carefully to establish the exponential bias 67 for all j. Moreover, the
new theorem by Happ et al. [5] contains an additional condition on — in essence
— the moment-generating function E(§~(Xt+1=X¢) | X; > b(¢)) in order to bound
the value D(¢) of the original theorem. Despite being relatively easy to verify,
both conditions seem stronger than needed for our purpose.

Our main contribution is another simplification of the drift theorem, which
is particularly suited for the stochastic processes described by evolutionary al-
gorithms and even easier to apply than the version by Happ et al. [5]. With the
aim of proving that the process does not pass the interval [a, b] in exponential
time if started above state b, we intuitively need the following two conditions:



e Assuming to be in the interval at time ¢, there must be a drift, an expected
displacement, towards increasing the state, more precisely, there must be
some constant € > 0 such that ZjeszYOb(XtH =i+j| Xy =1i)>efor
all ¢ in the interval. There seems to be no need for the drift to be bounded
in the same manner for every j or even to increase with j.

e Drift alone is not enough. Considering exponentially long phases, it must
be exponentially unlikely to leave the interval towards the optimum by
using large jumps. The random step length towards the optimum has to
exhibit some exponential decay. This follows from Prob(X;41 =i —j |
Xy =14) <1/(1+46)7~" for constant §,7 > 0 and all i > a, i.e., within and
outside the interval. We will see that this second condition always holds
for standard bit flip mutations.

Besides, we will need a technical condition regarding the absolute convergence of
the power series appearing in the following proof. Since we usually consider finite
search spaces, we restrict the state space of the Markov process to {0,1,..., N}
for an arbitrarily large integer N and obtain such convergence for free. Weaker
conditions could be proven if applications in infinite search spaces are desired.

We are ready to state and prove our simplified drift theorem. Note an
additional difference to the version by Happ et al. [5]: a and b do not need to
be linear in the dimension of the search space.

Theorem 2 (Simplified Drift Theorem) Let Xy, ¢t > 0, be the random vari-
ables describing a Markov process over the state space S := {0,1,..., N} and
denote Ay(i) == (Xyy1 — Xy | Xy =4) fori € S and t > 0. Suppose there exist
an interval [a,b] of the state space (of asymptotically growing length b — a) and
three constants §,e,7 > 0 such that for all t >0

1. E(A(i)) > e fora<i<b
2. Prob(Au(i) = —j) < 1/(14+8)I7" fori>a and j > 1

then there is a constant ¢* > 0 such that for T* := min{t > 0: X; < a | Xo > b}
it holds Prob(T* < 2¢7(b=a)) = 9—%(b—a),

Proof: Abbreviating ¢ := b — a, we apply Theorem 1 for suitable parameters
M), D(0), p(£), L(¢) and the given interval [a,b]. As e and ¢ are not allowed to
depend on ¢, this will not be needed for A\, D and p either, hence we omit the
index ¢. Moreover, we set g := id. The following argumentation is also inspired
by Hajek’s work [4].

Fix t > 0 and some ¢ such that a < 7 < b and denote p; := Prob(A.(i) = j).
To prove Condition (x), it is sufficient to identify a constant A > 0 such that

S(A) = eMp_j < 1.
JEZ



Using the series expansion for e* = 372 (Aj)*/k!, we have

k S )
) IS 1+Z(/\j)'p*j+zz% -

JEZ k=0 ’ JEZ k=2 jEZ

where all series converge absolutely for any A > 0 since p; = 0 for [j| > N;
however, their limits might depend on N. Identifying E(A;(¢)) and using the
first condition of the theorem, the drift, we obtain for all v > A

ey
SOV < 1—AE(A() gl—)\s+)\2-26272p].
k 2 je7 : \_?,_/
=:C()
Given any v > 0, choosing \ := min{vy,e/(2C(v))} results in
SO < 1—Ae+A- O) = 1-2 <4
g 20( )y T AT

as desired. Choosing v := In(1 4+ §/2), which does not depend on N, and
exploiting the second condition yields

=Y ep; < Y (1+6/2) +Z Hg/fr

JEZ 7<0

< (1+§>+(1+5)T-(2+§) < (1+5)T<3+§>7

hence C(v) < (1 4 6)"(3 + 4/58)/In*(1 4 §/2), which does not depend on N
either. Since, moreover, ¢,d,r do not depend on ¢ = b — a, neither will C(y),
v, A, nor our bound on S()\). This establishes Condition (x) of Theorem 1 for
p=p{)=0(1) and A = A(£) = Q(1).

To bound the probability of a success within L(¢) steps, we still need a
bound on D = D({) = max{l, E(e"*X+1=% | X, > b)}. Since A < v and
X: > b, the expectation in the maximum is at most C’'(y) = O(1), hence
also D = O(1). Altogether, we have e Dp = 27 = 2=%0=a) " Choosing
L(¢) = 2¢ =9 for some sufficiently small constant ¢* > 0, Theorem 1 yields
Prob(T(¢) < L(£)) < L(¢) - 2=(b=a) = 2=9(=a) "and the theorem follows. [

Our drift theorem can easily be applied to Randomized Local Search (RLS),
which flips only one bit per iteration. Then Condition 2 is trivial and the
theorem resembles the well-known Gambler’s Ruin Theorem [1]. However, the
generalized drift technique was previously used to obtain lower bounds on the
first hitting time of the (1+1)-EA, which can flip several bits in a step. Then the
original Gambler’s Ruin Theorem does not apply. For maximization problems,
the (141)-EA is defined as follows.



(14+1)-EA
e Choose uniformly at random an initial bit string = € {0,1}"™;
e Repeat the following steps until a termination criterion is satisfied:

1. Create ' by flipping each bit in = with probability p,, := 1/n;
2. Replace z with o’ iff f(2') > f(2);

In the rest of the paper we will show that proofs regarding lower bounds on the
runtime of the (1+1)-EA that hold with overwhelming probability are really
easy to obtain by using the proposed drift theorem. Our proofs are universal
enough to apply, after some tiny changes, also for RLS. This is however not
everywhere made explicit in this preliminary technical report.

3 An Application for the (14+1)-EA

In this section we present a first application of Theorem 2. We choose the
Needle-in-a-haystack function which is well known to be hard for EAs. The
whole search space consists of a plateau except for one point representing the
global optimum. W.1.0.g. we choose the optimum to be the point represented
by the bit string of all ones. The function is the following:

1 ifz=1" and
NEBDLE, () = { 0 otherwise.
Theorem 3 With probability at most 2= the (141)-EA finds the optimum
of the NEEDLE,, function in less than 2" steps for some constant ¢ > 0.

Proof: Let X; denote the number of zeroes in the bit string at time step t.
We set a := 0, the global optimum and b := n/2 — yn for an arbitrarily small
constant v > 0. Such a value for b is suitable because by Chernoff bounds the
probability that the initial bit string has less than n/2 — yn zeroes is 27",
Now we use the proposed simplified drift theorem for the rest of the proof. It
therefore remains to check that the two conditions of Theorem 2 hold.

Given a string in state i < n/2 — +yn, i.e., with i zeroes, let A(7) denote the
random increase of the number of zeroes. Condition 1 holds if E(A(i)) > e for
some constant € > 0. Since the (141)-EA flips 0-bits and 1-bits independently,
an expected number of i/n 0-bits and (n — ¢)/n 1-bits is flipped. Hence,

B = -1 = 2 s gy

7
n n n

So we can choose £ = 2+.

Condition 2 is: Prob(A(i) = —j) < 1/(1+6)7~". In order to reach state i — j
from state 4, at least j bits have to flip. Hence Prob(A(i) = —j) < (’;) (1/n)? <
1/4! < (1/2)?~1, which proves the condition for § = 1 and r = 1 even indepen-
dently of ¢ and of acceptance. So from Theorem 2 it follows for a constant ¢* > 0



that the global optimum is found in 2¢°® = 2¢" steps, where ¢ := c*b/n>0isa
different constant, with probability at most 2~ () = 2—(n) ([l

In the previous proof also a = n/2—2yn could have been used, implying that
the (141)-EA most of the time is at distance almost n/2 from the optimum.

4 An Application for the (141)-EA with Fitness-
proportional Selection

Recently Happ et al. [5] have presented a simplified drift theorem called Global
Gambler’s Ruin. They introduced the new theorem to prove that the (14+1)-EA
using fitness-proportional selection requires exponential runtime for optimizing
ONEMAX and linear functions in general. The algorithm works as follows:

(141)-EA with Fitness-proportional Selection
e Choose uniformly at random an initial bit string « € {0,1}";
e Repeat the following steps until a termination criterion is satisfied:

1. Create 2’ by flipping each bit in z with probability p,, := 1/n;
2. Replace x with 2’ with probability f(z')/(f(z") + f(z));

A function f: {0,1}"™ — R is linear if it can be written as f(z1,...,z,) =
wo + wiz1 + - -+ + wpx, with coefficients w; > 0, 0 < i < n. In the special case
w; = --- =w, =1 and wy = 0 we obtain the ONEMAX function counting the

number of ones of the bit string. Concerning linear functions, Happ et al. [5]
prove that with overwhelming probability at most 0.97n bits are set correctly by
the (1+1)-EA with fitness-proportional selection after an exponential number
of steps. We show that Theorem 2 can be used for this purpose and that it
can lead to significantly stronger results. We remark that the following proof
also holds for fitness-proportional RLS, where the stronger statement is already
known [5].

Theorem 4 Let 0 < n < 1/4 be an arbitrarily small constant. Then there is
a constant ¢ > 0 such that the (1+1)-EA with fitness-proportional selection for
linear functions (for ONEMAX ) sets at most 2n/3+nn (resp. at most n/2+nn)
bits correctly in 2°" steps with probability at most 2~ ™),

Proof: Setting a := n/3 — 2yn and b := n/3 — yn, where v := /2 < 1/8,
and given a current number of a < i < b zeroes, let A(i) and A%®!(i) denote the
random change in this number before and after selection, respectively. Using the
arguments from the proof of Theorem 3, we get E(A(i)) = (n—2i)/n > 1/3427.
E(A(i)) is mostly determined by small steps. Choosing r := yn/4, define
1, := 1{]A(:)| < r} as the indicator r.v. for the event |A(¢)| < r. Since flipping
at least k bits in a step has probability at most 1/k! and at most n bits flip,

E(A(d)-1,) > E(A®)) — :

2 W n = BE(A®)) - 274



and accordingly for E(A®(i)). By concentrating on steps of length at most r,
we therefore introduce only an exponentially small error.

A(7) can be decomposed according to A(i) :== A1 (i)—A~ (i), where AT (i) :=
A(2) - 1{A(%) > 0} and A~ (7) := —A(7) - 1{A(7) < 0}. By considering only the
flipping 0-bits, we get E(A™(i)) < 1/3 —~. Using E(A(i)) > 1/3 + 2v, we
obtain E(A™ (3))/E(A~ (i) = (E(AG)) + E(A™(1))/E(A (1)) = 2+ 3.

We get a lower bound on E(A®'(7)) by weighting A~ (i) with upper bounds
(here 1) on the selection probability and A™ (i) with lower bounds. For the
lower bounds, we pessimistically assume all zeroes of the current string « to have
coefficients 0 and wy = 0. Then f(z') < f(x) for all offspring =’ of = and the

selection probability is at least f(x]:)(i}(x) > 2f ;?;))7 which is linear w.r.t. f(z’).

We assume at most r flipping bits. If a random subset of r out of n —i > 3
ones flips, each bit flips with probability . Using the linearity of expectation
and of f, the expected offspring value e(z’) is at least f(x)(1 — ). Thus,
using the law of total probability, the selection probability for the random z’ is

at least e(2')/(2f(z)) > & — Sty 2 7 — 7. Since the bound is independent of
A(i) - 1.,
B@) = (5-7) BAYD) 1)~ BA () 1) -2

Y]

32 36 = 40

for n large enough, where we have used that v < 1/8 along with F(A™(i)) >
(1/3 = 29)(1 = 1/n)""1 > (1/3 — 2vy)/e > 1/36, which follows by considering
only 1-bit mutations. This bounds the drift for general linear functions by a
constant.

With ONEMAX, the situation is even simpler. Since then f equals the num-
ber of ones, we can bound the probability of accepting a string z’ with up
to r more ones than = by f(z')/(2f(x)) < (f(z) +r)/(2f(x)) < flx)(1+
v/2)/(2f(z)) = 1/2 + v/4 using f(z) > n/2. Setting a := n/2 — 2yn and
b := n/2 — yn, a similar calculation as in the third paragraph of this proof
yields E(AT(7))/E(A™(i)) > 1+ 2v. Finally, we obtain E(A%*!(7)) > ((1/2 —
/4 (1 +27) — (1/2 +7/4)) - E(A~(i)) — 27" > ~/100 for n large enough in
the same manner as above.

The rest of the argumentation, in particular the proof of Condition 2 of
Theorem 2 carries over from the proof of Theorem 3. (|

2 29y 1
<7_3%> BA-()-1,)—2%m > 20 L pam 5 7

5 An Advanced Application: Maximum Match-
ing

Giel and Wegener [3] considered the graph depicted in Figure 1 to prove that
the (14+1)-EA has an expected runtime which is exponential in the number of
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Figure 1: The Gy graph (i.e. h = 3 and ¢ = 11) with an almost perfect
matching and its augmenting path.

graph edges for the well known mazimum matching problem in the worst case.
One of the crucial parts of their proof is represented by the following theorem.

Theorem 5 Starting with an almost perfect matching with an augmenting path
of length £, the probability that the (1+1)-FEA finds the perfect matching of the
Gh.o graph within 2¢¢ steps, ¢ > 0 an appropriate constant, is bounded by 2-9(0)
if h > 3.

Proof: An almost perfect matching is just one fitness level away from the
global optimum. In order to find the maximum matching, the edges of the only
augmenting path in the graph have to be either inverted or the path has to
be shortened to its minimum (i.e. three adjacent edges not belonging to the
matching are obtained). If the latter case happens, then the extra edge may
be added by just using one bit flip. Given an almost perfect matching, a move
of length j = 1 occurs if at least two adjacent edges flip on either side of the
augmenting path. The augmenting path may be lengthened or shortened. In
the former case the process drifts away from the optimum while in the latter
case it heads towards it. To apply Theorem 2, we set a := 0, the minimum
augmenting path length and b := ¢ — 1 where ¢ is its maximum length.
Usually there are 2h edges adjacent to the augmenting path, h at each side,
that flipped together with the first edge belonging to the path would lengthen
it. However, if the augmenting path starts at the beginning of the graph (or at
the other end), then there are only h such edges (actually this shows that the
length of the augmenting path is not enough to describe the underlying Markov
process exactly, yet it gives good enough bounds). In this case, the probability
of performing a move of length 1 lengthening the augmenting path of length ¢ is
only bounded by p; (i) > (h/m?)(1 —1/m)™~2, where m is the number of edges
of the graph. On the other hand, the probability to shorten the augmenting
path with a move of length 1 is bounded from above by p_1(i) < (2/m?)(1 —
1/m)™=2 +3/m* (see [3]). Since most other mutations of the (1+1)-EA due to
worse fitness will be rejected in this setting, we use the condition R that a step is
relevant meaning it is accepted and changes the current state. The probability
Pre1 Of a relevant step is bounded by (1/m?)(1—1/m)™ 2 < pra < (2h+2)/m2.
Let R(i) = (A(¢) | R) denote the random increase of the path length in
relevant steps for a current length i. It suffices to concentrate on the contribution



of steps of length 1, i.e., we consider Ry (i) := R(i) - 1{|R(¢)| < 1}. We obtain

pi(d)  p-1(9) < h—2—0(m™?) S 1
DPrel Drel - 2h+2 - 8

E(Ry (i) = —0(m™?)

since h > 3 while the unconditional decrease A, (i) = —A(7) - 1{A(i) < -1},
for negative steps of length greater than 1, in expectation is at most

Zyp —5( Z] (+1)—5 < % Zmﬂ = O(m™)
=3

because p_; < (j + 1)/m* [3].
Hence, the total conditional drift is

E(A: (1)
Prel

1

E(R(i)) > E(R1(3)) — > ——0(m ) —-0(m *)-em? = 3 —0(m™?)

OO|’—‘

and Condition 1 is proved. Condition 2, with § = 1 and r = 3, follows from

i i+ 1 1 1\’ 7?
P-j < min 1,]%-67712 < min 1’2—‘ < | =
Prel m=J m J=7 2

for m > 2. From Theorem 2, the proof follows. O

The bounds on p; () by Giel and Wegener [3] do not imply p; (i) > p—;(3) for
every j, hence the theorem by Happ et al. [5] does not apply with these bounds.
Without further work on the bounds for p;(¢), it is crucial but also sufficient to
focus on the effect of steps of length 1.

6 Conclusion

A simplified drift analysis theorem has been introduced for proving lower bounds
on the runtime of EAs that hold with high probability. The two hypotheses of
the theorem are easy to check for stochastic processes such as those described
by EAs. The first condition holds if the distance to the optimum increases
in expectation by at least a constant amount. In other terms, there is a drift
leading away from the optimum. The second condition describes an exponential
decay in the probabilities of advancing towards the optimum that depends on the
step size. Such a condition is trivially fulfilled for the (14+1)-EA with standard
mutation and many other EAs with a mutation operator that exhibits enough
locality. The simplified drift theorem allowed us to redo previous analyses with
significantly reduced effort.

For scenarios where bounding the drift directly is more intricate a corollary
of the simplified theorem might be mentioned. It is sufficient to decompose the
drift into the effects of steps of a given length and to prove a bias leading away
from the optimum for every step length. In fact, also Happ et al. [5] exploited

10



a similar idea. Our corollary, though, seems to be easier to verify since we do
not require the bias to increase with the step length. Moreover, compared to
the latter work, we do not require that the length of the drift interval [a, b] is
Q(n). Our generalization is necessary, for example, in the study by Friedrich et
al. [2] where b—a = ¢/n. To the best of our knowledge all previous applications
of drift analysis to evolutionary computation can be proven in a considerably
simpler shape with the proposed simplified drift theorem. As a result, not only
is Theorem 2 considered as an important didactical contribution to the runtime
analysis of EAs, but we also believe it will turn out to be useful in future work.
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