
Dynamic vs Oblivious Routing in Network
Design

Navin Goyal1, Neil Olver2, and F. Bruce Shepherd3

1 Microsoft Reseach India
Bangalore, India

navingo@microsoft.com

2 Department of Mathematics and Statistics
McGill University, Montreal, Canada

olver@math.mcgill.ca

3 Department of Mathematics and Statistics
McGill University, Montreal, Canada

bruce.shepherd@mcgill.ca

Abstract. Consider the robust network design problem of finding a min-
imum cost network with enough capacity to route all traffic demand ma-
trices in a given polytope. We investigate the impact of different routing
models in this robust setting: in particular, we compare oblivious routing,
where the routing between each terminal pair must be fixed in advance, to
dynamic routing, where routings may depend arbitrarily on the current
demand. Our main result is a construction that shows that the optimal
cost of such a network based on oblivious routing (fractional or integral)
may be a factor of Ω(logn) more than the cost required when using
dynamic routing. This is true even in the important special case of the
asymmetric hose model. This answers a question in [6], and is tight up
to constant factors. Our proof technique builds on a connection between
expander graphs and robust design for single-sink traffic patterns [7].

1 Introduction

One of the most widely studied applications of robustness in discrete optimiza-
tion has been in the context of network design. This is partly motivated by the
fact that traffic demands in modern data networks are often hard to determine
and/or are rapidly changing. In one general model (cf. [5]), the input consists
of a graph (network topology) where each edge comes with a cost to reserve
capacity. In addition, a universe of possible demand matrices is specified as a
polyhedron P (or more generally, as a convex body). In this paper our focus is
on undirected demands and so for a demand matrix D, the entries Dij and Dji

normally represent the same demand, and are hence equal. The problem is to
design a minimum cost network such that each demand matrix in the polytope
can be routed (according to routing models we describe shortly) in the resulting
capacitated network. Typically we seek to install edge capacities so that the sum
of costs is minimized, but other cost measures such as minimizing the maximum

ar
X

iv
:1

30
9.

41
40

v1
 [

cs
.C

C
]

 1
6

Se
p

20
13

congestion are also considered in the literature. We refer to the recent survey by
Chekuri [6] for a discussion of these models and previous work.

Since demands are potentially changing, there are two prime natural routing
models that are considered. The first is dynamic routing : for any given demand
D ∈ P, we may use a traffic routing tailored to this demand. We consider only
the case where the routing may be an arbitrary multicommodity flow, i.e. traffic
flows may be fractional. We also refer to this routing model as fr. Dynamic
routing, out of all possible routing models, clearly leads to the cheapest possible
solution. However, this model is typically considered impractical.

On the other extreme, oblivious routing models, inspired by routing in packet
networks, ask for a routing template that defines ahead of time how any future
demands will be routed. For each node pair i, j, the template f specifies a unit
network flow fij between i and j. The interpretation is that if there is a future
demand of Dij between nodes i, j, then along each ij path P , we should route
Dijfij(P) flow on this path. This scheme is obviously much simpler than dynamic
routing, and has the advantage that routings are stable, which can be important
in maintaining Quality of Service guarantees.

Flow templates may be either fractional, in which case they are called multi-
path routings (mpr), or integral, in which case they are called single-path routings
(spr). We also discuss a special case of spr templates called tree templates where
the support of f induces a tree in the network; we refer to this model as tr. We
can now formally define the robust network design problem (cf. [7]):

Definition 1. Given a graph G = (V,E) with |V | = n, edge costs c : E → R+,
a polytope P of demand matrices, and a routing model (fr, spr, mpr, tr),
the robust network design problem is defined as follows. Find a minimum cost
capacity installation of edge capacities u : E → R+ so that all demand matrices
in P can be routed in the given routing model. The cost of capacity installation
u is given by

∑
e∈E u(e)c(e).

For a given instance of robust network design (G, c,P), we use optFR(G, c,P),
optMPR(G, c,P), optSPR(G, c,P) and optTR(G, c,P) to denote the corre-
sponding cost of an optimally designed robust network for the four routing
models. If the context is clear, we may simply write, for instance, optFR.

Obviously we have

optFR ≤ optMPR ≤ optSPR ≤ optTR. (1)

It was already known that the gap between optFR and optSPR is O(log n)
(credited to A. Gupta, cf. [6]). This follows by an application of the approxima-
tion of arbitrary metrics by tree metrics [9]. One can further show, by similar
arguments but now using a theorem of [1] instead, that the gap between optFR
and optTR is at most Õ(log n), where Õ hides an O(poly log log n) factor.

Our Results. In this paper, we seek to understand to what extent these gaps are
realizable; in other words, for any pair of routing methods, what is the maximum
possible gap between the costs of their optimal solution?

In short, the answer is that except for the pair {optMPR,optSPR}, the gap
between any pair in (1) can be as large as Ω(log n); this is essentially tight.
The exception, the gap between optMPR and optSPR, is at least polylogarith-
mically large (Ω(log1/4−ε(n)) for any ε > 0). This follows indirectly from an
approximation-preserving reduction [16] from the uniform buy-at-bulk problem
to the general robust network design (optSPR). Andrews [2,3] showed that un-
der a plausible complexity theoretic assumption (NP 6⊆ ZPTIME(npolylog n)),
there is no polytime algorithm for uniform buy-at-bulk with approximation guar-
antee within O(log1/4−ε(n)), for any ε > 0. These two results imply that the gap
between optMPR,optSPR must be similarly large, since optMPR is polytime
computable, and could otherwise be used to approximate (the decision form of)
uniform buy-at-bulk. We will demonstrate all the other gaps in this paper; most
of the work is on the most interesting case, between optFR and optMPR.

Discussion. In the robustness paradigm, the question of how large these gaps
can be is asked for specific classes of demand polyhedra. A class that has received
much attention consists of the so-called “hose models” which come in symmetric
and asymmetric flavours. In the symmetric hose model, each terminal v has an
associated marginal bv, which represents an upper bound on the total amount of
traffic that can terminate at v. The demand polytope consists of all symmetric
demands which do not violate these “hose” constraints; i.e.

∑
j Dij ≤ bi for each

terminal i. The asymmetric hose problem is similar, but the terminals are divided
into sources and sinks; all demand is between source and sink nodes, and again,
total demand to or from a terminal cannot exceed its marginal. Classes such as
the hose model arise naturally in switch design, but they were also motivated
by applications in data networks [10,11]; one of these is referred to as the virtual
private network (VPN) problem.

It is implicit in Fingerhut et al. [10] and explicit in Gupta et al. [11] that
in the symmetric hose model, optMPR ≤ optSPR ≤ 2optFR. However, the
gap instance between optMPR and optFR that we demonstrate in this paper
is in fact an instance of the asymmetric hose problem, and hence there is a
logarithmic gap for this latter model.4 We describe a class of graphs G, cost
function c, and a demand polytope P, such that optFR(G, c,P) = O(n) but
optSPR(G, c,P) = Ω(n log n) and optMPR(G, c,P) = Ω(n log n). The polytope
P has the property that all demands share a common “sink” node.

It turns out that the problem of designing an spr routing template for our
gap instance corresponds to the well-studied rent-or-buy network flow problem,
which is a generalization of the Steiner tree problem. In this problem there is
only one demand matrix instead of a polytope of demands, but the cost function
is concave. We sketch the lower bound argument for optSPR separately in Sec-
tion 2.3 since it is much simpler; it proceeds by showing that the optimal spr
templates may be assumed to be tree templates for our gap instance.

The lower bound for optMPR is more involved. We show that the cost of
an mpr template for our gap instance can be characterized by a network design

4 This rectifies an earlier assertion (cf. Theorem 4.6 in [6]).

problem that we call buy-and-rent. Again there is only one demand to be satisfied,
but the cost function is more complex. The buy-and-rent cost function seems to
be new and natural: briefly, instead of asking that each edge be either rented or
bought, it allows that capacity may be partially bought and the rest rented. This
new cost function is more amenable to analysis, and leads to our lower bound
for optMPR.

Relation to congestion lower bounds. We remark that our lower bounds for the
total cost model also imply lower bounds for minimizing the maximum conges-
tion, essentially because if every edge had congestion at most α, the total cost
would also be bounded by a factor α. Since the polytope P we use is a sub-
set of the single-sink demands routable in G, this also implies a result in [13]
which gives an Ω(log n) bound for congestion via oblivious routing of single sink
demands (although their analysis also extends to the case of lower bounding
performance of a general online algorithm). Congestion minimization problems
can be seen as equivalent to a robust optimization where one uses maximum
edge congestion as a cost function; simply take the polytope consisting of all
single-sink demands which are routable in G (this is a superset of our choice
P). The construction in [13] uses meshes (grids), building on work of [4,14].
This construction does not seem to extend to the total cost model however, and
we use instead a construction based on expanders, extending and simplifying a
connection shown in earlier work [7].

Gaps for tree routing. In Section 3 we give a family of instances (using a different
demand polyhedron) showing that the gap between optSPR and optTR can be
Ω(log n). This immediately implies that the gaps between optFR and optTR
and between optMPR and optTR is Ω(log n) for this family of instances.

2 A gap example

2.1 A robust network design instance

Let G = (V,E) be a graph on n nodes with constant degree d ≥ 3 and edge-
expansion at least 1; i.e. we have that |δG(S)| ≥ |S| for all S ⊆ V with |S| ≤ n/2.
Here δG(S) denotes the set of edges in E with one end-point in S and the other
outside S. It is well-known that such edge-expanders with the above parameters
exist. Now add a special sink node r to V to obtain our instance Ḡ = (V̄ , Ē) =
(V ∪ {r}, E ∪ {vr : v ∈ V }); see Figure 1.

We look at a single-sink hose model (cf. [7]), where our demands come from
a polytope P defined as follows. We have a specified marginal capacity bv at
each node: br = βn (where 0 < β < 1), and bv = 1 for all v ∈ V . Each demand
matrix Dij ∈ P has the property that

∑
j Dij ≤ bi for each node i ∈ V̄ , and

Dij > 0 only if r ∈ {i, j}. Although we often think of nodes routing flow towards
the sink, the demands and flows are undirected in this paper.

Thus each demand matrix we must support, identifies a single-sink network
flow problem. It is a simple exercise to see that:

r

G = (V,E)

Fig. 1. The gap instance. G is a d-regular expander

Lemma 1. If br is an integer, then our network is robust for P and a given
routing model if and only if for each subset X of br nodes in G, there is enough
capacity to route one unit from each node in X to r, using the prescribed routing
model.

We use this fact below. Finally, we also assign costs to the edges: each edge of
G has cost 1, and each edge in δḠ(r) has cost 1/β.

Our main result is the following theorem:

Theorem 1. For β = 1/ log n, there is a dynamic routing for the single-sink
hose model instance (defined above) of cost O(n), but every mpr solution (and
hence every spr solution) has cost Ω(n log n).

The first assertion is proved in the next section. In Section 2.3, we see that
determining optSPR for single-sink hose models is equivalent to the well-studied
single-sink rent-or-buy problem, and the rent-or-buy problem always has a tree
solution. This can be used to show that optSPR = Ω(n log n) for our instance
with β = 1/ log n. We give a sketch of a proof of this since it is considerably
simpler than (but implied by) the proof of the corresponding bound for mpr.
This mpr lower bound is demonstrated in Section 2.4.

We assume throughout the paper that br = βn is an integer.

2.2 A solution for the dynamic routing model

Put capacity β on each edge of δḠ(r), and capacity 1 on each edge of G. Clearly,
the cost of this reservation is O(n) independent of β. We show that this is a valid
fr capacity reservation. Using Lemma 1 it suffices to show that for any subset
of βn nodes X in G, all nodes in X can simultaneously route a unit flow to r. To

this end, we add a new node t to Ḡ and edges vt for v ∈ X with unit capacity
to form graph G′. We show that G′ supports a t-r flow of size |X| = βn. By the
max-flow min-cut theorem it suffices to show that all r-t cuts in G′ have size at
least βn, i.e. that for each S ⊆ V we have |δG′(S ∪ {t})| ≥ βn.

We have
|δG′(S ∪ {t})| = β|S|+ |X \ S|+ |δG(S)|.

Now, if |S| ≤ n/2 then using the fact that for G we have |δG(S)| ≥ |S| we get

|δG′(S ∪ {t})| ≥ β|S|+ |X \ S|+ |S|
≥ β|S|+ |X|
≥ |X|.

And if |S| > n/2 then using the fact that for G we have |δG(S)| ≥ n−|S| we
get

|δG′(S ∪ {t})| ≥ β|S|+ |X \ S|+ n− |S|
≥ β|S|+ |X \ S|+ β(n− |S|)
= βn+ |X \ S|
≥ βn.

Hence the above capacity reservation can support the fr routing model and
costs O(n).

2.3 Rent-or-buy: an Ω(log n) gap between fr and spr

Note that the optimal cost oblivious spr network can be cast as a minimum
cost (unsplittable) flow problem as follows. Each node v ∈ V must route one
unit of flow on a path Pv to r and the overall (truncated) cost of path choices
is:
∑
e c(e) min{N(e), br}, where N(e) is the number of nodes v whose path to r

used the edge e. Clearly, if the capacity of each edge is min{N(e), br}, then we
have sufficient capacity to route any demand matrix in P using as a template
the paths Pv. The converse is in fact also true and easy; any template gives rise
to a corresponding integer flow whose truncated cost is the same.

This truncated routing cost problem is simply a so-called single-sink rent-
or-buy (ssrob) problem (see e.g. [8,12]). We are given a network G with edge
costs c(e), and a special sink node t. A parameter B ≥ 1 is also given (this will
equal br in the instance corresponding to spr). We also have a list of sources
si for i = 1, 2 . . . , p; each source needs to route to the sink t. For each edge in
the network, we may either purchase it at a cost of Bc(e), in which case it is
deemed to have infinite capacity, or otherwise we may rent it. In that case, we
must pay c(e) per unit of capacity that we use on the edge. The goal is to find
which edges to buy and which to rent in order to support a flow from each node
to t, at the smallest possible cost. In other words, we seek a fractional flow f
of the demands that minimizes

∑
e∈E c(e) min{f(e), B} (we will see next that

the optimal solution will always be integral, ensuring that we do in fact have a

correspondence with spr). In general, we may also consider such single-sink flow
problems with concave costs

∑
e ge(f(e)) where each ge is a concave function.

The following result is immediate from the concavity of the cost function:

Proposition 1. Any single-sink flow problem with nondecreasing concave costs
has an optimal solution whose support is a tree. In particular, such an optimal
solution always exists for the ssrob problem.

Proof. Let f be a flow giving an optimal solution to the flow problem, chosen so
that supp(f) is setwise minimal. We show that then supp(f) must form a tree.

Let us consider f as a directed flow, where each terminal sends flow to the
sink. If there is any directed cycle in the support of f , then we may simply
reduce flow on this cycle until some arc becomes zero; this does not increase the
cost since our cost function is nondecreasing. So we may assume our support is
acyclic in the directed sense. Suppose now that there is some undirected cycle C
in the support which by assumption corresponds to some forward (traversing C
in order) arcs F and some reverse arcs R. Let ε = min{f(a) : a ∈ R∪F}. Define
two solutions f+,f− by f±(a) = f(a) ± ε for a ∈ F , and f±(a) = f(a) ∓ ε
for a ∈ R. By concavity, C(f) ≥ (1/2)[C(f+) + C(f−)]. Then since f was an
optimal solution, C(f+) = C(f−) = C(f). Hence both f+ and f− are optimal,
and one of them must have smaller support than f , a contradiction. ut

Note that the preceding result shows that in the case of single-sink hose
models, optSPR = optTR. It is not the case that optMPR = optTR in this
setting however. If that were the case, ssrob would be polynomially solvable,
but the case where br = 1 already captures the Steiner Tree problem. Because of
this tree structure, arguing why the gap holds in the case of spr is considerably
simpler. The argument contains some intuition as to why the gap also holds for
mpr, so we describe the approach now.

By Proposition 1, we may represent the optimal spr solution with a tree T ,
which we think of as being rooted at r. First let us suppose that the solution
uses only one edge rv from δ(r), so that all terminals must route via v. Since G
was bounded degree this means that many nodes (a constant fraction) must use
long paths, of length logd(n). If these all had to pay one unit along their whole
path, then this already costs Ω(n log n). But it is not as easy as that; if we have
a subtree Tw rooted at node w that contains at least br = βn nodes, then in fact
we only need to pay for br units on the edge out of w.

Imagine removing the edges of T which are used by more than βn terminals,
leaving a number of subtrees, each containing at most βn terminals. If T is
fairly balanced, there are around Θ(n/(βn)) = Θ(1/β) such subtrees. (If T is
very unbalanced, there could be many more—consider a caterpillar. For the full
proof, one must use the larger distances of leaves to the root to get the required
bound.) Roughly speaking, in each such subtree, a good fraction of the leaves
are a distance roughly log βn from the root of this subtree. Since there is no
cost sharing within this subtree, these nodes really do pay βn log(βn). Thus the
subtrees combined pay

Ω (1/β · βn log(βn)) = Ω (n log(βn)) .

If we set β = 1
logn , this yields a cost of Ω(n log n).

To make the above argument precies, we must balance the use of multiple
edges into r. Label the children of r in T , 1 through m, and let ki be the size of
subtree i. Let L be the set of heavy children of r in T , i.e., ki > βn; let R be the
set of light children of r.

Suppose i is a heavy child. The subtree Ti routed at i has some set of heavy
edges H, i.e., edges with flow more than br = βn; let p = |H|. Now consider the
tree T ′i obtained from Ti by contracting the edges in H. The root of T ′i has degree
at most pd; all other nodes have maximum degree d. The maximum number of
nodes that are a distance less than j from the root is

j∑
i=1

pdi = pd(dj − 1)/(d− 1).

Taking j = logd(ki/10p), the above is a constant fraction of the nodes, and the
rest must be further away. So a constant fraction of the nodes are a distance
Ω(log(ki/p)) away from the root of T ′i . Since the edges in T ′i are not heavy, these
nodes contribute

Ω(ki log(ki/p)) = Ω(ki log(βn/p))

to the cost of tree Ti. Adding the cost of the heavy edges, we get a total cost of

Ω(p · βn+ ki log(ki/p)).

We verify that this is at least Ω(ki ln(βn)). It suffices to show that p · βn +
ki ln(ki/p) ≥ ki ln(βn). But this is equivalent to

pβn

ki
≥ ln

(
pβn

ki

)
,

which is clearly true since x ≥ lnx for all x > 0.
For i ∈ R, a lower bound can be obtained by considering only the edge ir,

which contributes ki/β (remembering that edges adjacent to r have cost 1/β).
So we have the following lower bound on the cost of the tree solution:∑

i∈R
ki/β +

∑
i∈L

ki log(βn)/C,

where C is some constant. This is at least

n ·min(1/β, log(βn)/C).

Setting β = 1/ log n gives the result.

2.4 Buy-and-rent: an Ω(log n) gap between fr and mpr

The main difficulty in analyzing the mpr model is that we can no longer restrict
to tree like routings as we could for spr; there is no equivalent of Proposition 1

for mpr. In particular, the mpr problem for our instance is not captured by a
ssrob problem. Instead, we get a new kind of routing cost model as explained
below.

Let us first examine more closely the cost on edges induced by an mpr routing
template for a single-sink hose design problem. As in Lemma 1, it is sufficient
to consider the cases where we wish the network to support the routing of any
βn of the nodes in V to the sink r simultaneously. Suppose that fi(e) represents
the flow that node i sends on edge e in a template, then for the single sink hose
design problem, the formula for the capacity needed by e is:

max
D∈P

∑
i∈V

Dirfi(e) = max
W⊆V :|W |=βn

∑
i∈W

fi(e), (2)

where P is the set of single-sink hose matrices. In other words, the capacity
needed on edge e is just the sum of the βn largest values of fi(e).

We introduce a new routing cost model which we call (single-sink) buy-and-
rent (bar). This exactly models the mpr cost model defined above, but is more
manageable in terms of analysis. In the buy-and-rent problem, there are costs on
the edges, and unit demands from some subset W of nodes called terminals. Each
terminal wishes to (fractionally) route one unit of demand to the sink r. Apart
from the costs c(e) on the edges, we also have a parameter k. The difference from
rent-or-buy is that we may now purchase some capacity amount γ(e) ∈ [0, 1] (in
rent-or-buy we would buy an infinite capacity link) and the interpretation is
that every terminal is allowed to use up to γ(e) units of capacity on the edge. If
it chooses to route any more on that edge, then it must pay for the additional
rental cost. The cost of purchasing capacity on an edge e is kγ(e)c(e).

Buy-and-rent can be considered as an LP relaxation of (single-sink) rent-or-
buy; this formulation is in fact very similar to the LP relaxation used by Swamy
and Kumar [17] to give constant factor approximation algorithms for connected
facility location and single-sink rent-or-buy. Their formulation is stronger how-
ever (in that the optimum for their LP lies between the bar and spr optima),
and so does not exactly model the mpr problem. In particular, in buy-and-rent,
solutions may conceivably use flow paths that alternate several times between
rented capacity and purchased capacity. In contrast, a solution to the LP of
Swamy and Kumar [17] always has a connected “core” of purchased edges con-
taining the sink node and terminals use rented capacity to route to that core.

Proposition 2. The buy-and-rent problem with parameter k = βn, and the
single-sink hose design problem in the mpr routing model have the same optimal
solution.

Proof. Suppose that (f i) is an mpr routing template for the robust hose design
problem. Consider the bar solution for parameter k = βn obtained as follows.
For each edge e, order the terminals so that fπ(1)(e) ≥ fπ(2)(e) ≥ . . . fπ(n)(e).
Then we purchase γ(e) = fπ(k)(e) units of capacity on edge e, and we use the
same routing f i as the mpr solution. This guarantees that for any edge, none of
the terminals π(j) with j > k, pays to route on edge e since we purchased enough

capacity for them to travel for free. For each terminal π(j) with j ≤ k, it must pay
the rental cost to route fπ(j)(e)− fπ(k)(e) ≥ 0. This costs c(e) times the amount∑
j≤k(fπ(j)(e) − fπ(k)(e)) =

∑
j≤k fπ(j)(e) − kfπ(k)(e). Since the purchased ca-

pacity cost kfπ(k)(e)c(e), the total buy-and-rent cost is c(e)
∑
j≤k fπ(j)(e) which

is the cost of edge e in the mpr template using (2).

Conversely, suppose that we have a minimum cost solution for bar and
consider the robust design cost for using the same routing as a template. Without
loss of generality γ(e) = fπ(k)(e) since if γ(e) was larger than this, then by
reducing the capacity bought by sufficiently small ε > 0, the rental costs are
unaffected for terminals π(j) for j ≥ k. And for terminals π(j) with j < k,
their rental cost increases by at most εc(e). Hence the total rental cost increases
by (k − 1)εc(e), and the total cost of bought capacity reduces by kεc(e), thus
decreasing the overall cost.

Similarly, if γ(e) < fπ(k)(e), then increasing the bought capacity γ by some
small ε > 0, has cost of kεc(e). But the reduction in rental costs is at least the
reduction in rental cost of the first k terminals which is kεc(e), and thus the
overall cost does not increase as a result of increasing γ. Hence the cost of edge e
is just the purchase cost c(e) ·kfπ(k)(e) plus the rental cost c(e)

∑
j≤k(fπ(j)(e)−

fπ(k)(e)) and this is identical to the robust design cost when using the same
template. ut

We again take β = 1/ log n (so k = n/ log n). We now prove that any solution
to the bar problem on our expander instance is expensive; this together with
the preceding proposition implies our main result, Theorem 1.

Theorem 2. Any solution to the bar problem with β = 1/ log n on the expander
instance (defined in Sec. 2.1) has cost Ω(n log n).

Proof. Consider an arbitrary bar solution, determined by bought capacity γe
on each edge, and a flow template (f i : for each terminal i).

For a set A of edges, let γ(A) :=
∑
e∈A γe. Thus γ(δ(r)) :=

∑
v∈V γvr is the

total bought capacity on the port edges (these are the edges connecting r to the
nodes in V), and γ(E) :=

∑
e∈E γe is the capacity bought in the expander. The

cost of buying capacity in the expander is then k · γ(E), so we may assume that
γ(E) < log2 n, or else the solution already costs Ω(n log n). A similar argument
for port edges (but recalling that these edges cost log n) allows us to assume
that γ(δ(r)) < log n.

For a terminal v, let Bi(v) be the set of nodes (or sometimes, their induced
graph) in the expander that are a distance at most i from v. We are particularly
interested in balls of radius R := blogd

√
nc − 1 = blog n/(2 log d)c − 1; we use

B(v) as shorthand for BR(v). Note that since G is d-regular,

|B(v)| ≤
R∑
i=0

di ≤ dR+1 ≤ n1/2.

Let γE(v) :=
∑
e∈E:e⊂B(v) γ(e) and γP (v) :=

∑
w∈B(v) γ(wr). A single γ(e)

for an edge e = u1u2 contributes to many γE(v)’s, but not too many:

|{v : e ⊂ B(v)}| ≤ |{v : u1 ∈ B(v)}| = |B(u1)| ≤ n1/2.

So we must have that∑
v∈V

γE(v) ≤ n1/2γ(E) ≤ n1/2 log2 n. (3)

Similarly, ∑
v∈V

γP (v) ≤ n1/2 log n. (4)

Consider an arbitrary terminal v. The unit of flow from v can be divided up
into three types depending on how the flow enters r:

– A fraction µrv of flow that rents on the port edge it uses.
– A fraction µbv of flow that uses bought port capacity, on a port within a

distance R from v.
– A fraction µtv representing all remaining flow; this flow must “travel” and

use port edges that are further than R from v.

Clearly µrv + µbv + µtv = 1.
We now aim to find a lower bound on the total rental cost paid by the

terminals. Flow that rents the port edge must pay log n just for this edge, giving
a cost of µrv log n. Now consider the µtv fraction of flow that travels outside the
ball B(v) in the expander before using a port edge. This flow must cross each of
the cuts Ci := δ(Bi(v)), for 0 ≤ i ≤ R.

The maximum amount of flow that can travel across cut Ci for free (using the
bought capacity) is γ(Ci), and so there is a rental cost of at least µtv − γ(Ci) in
crossing cut Ci. Summing over all the cuts, we find that the rental cost associated
with this travelling flow is at least

R−1∑
i=0

(µtv − γ(Ci)) ≥ Rµtv − γE(v).

Thus the rental cost associated with terminal v is at least

log n · µrv +Rµtv − γE(v).

Summing this over all terminals v, we obtain a total rental cost of at least

C(rent) ≥
∑
v∈V

(log n · µrv +R · µtv)−
∑
v∈V

γE(v)

≥ R
∑
v∈V

(µrv + µtv)−
∑
v∈V

γE(v) since R ≤ log n

≥ R
∑
v∈V

(µrv + µtv)− n1/2 log2 n by (3).

Finally, note that∑
v∈V

(µrv + µtv) =
∑
v∈V

(1− µbv) ≥
∑
v∈V

(1− γP (v))

≥ n− n1/2 log n by (4).

Thus

C(rent) ≥ R · (n− n1/2 log n)− n1/2 log2 n

= Ω(n log n),

since R = Θ(log n). ut

3 Single path routing vs. tree routing

As discussed in the introduction, for any robust network design problem we have
optTR = Õ(log n)optFR. We now show that this is essentially best possible by
exhibiting a problem instance such that optTR = Ω(log n)optSPR, and so also
optTR = Ω(log n)optFR.

Consider a graph on n vertices with girth (length of the shortest cycle in the
graph) Ω(log n), and with cn edges, where c is a constant strictly larger than 1.
The requirement c > 1 makes the existence of such graphs nontrivial, but they
do exist. For example, Lemma 15.3.2 in [15] states that there exist graphs with
girth ` and 1

9n
1+1/(`−1) edges. Taking ` := (log n)/100 gives a graph satisfying

our requirements.
This graph defines the network topology for our problem instance: all the

nodes are terminals, and all edges have unit cost. The demand polytope is given
by a single demand: there is a unit demand between terminals connected by an
edge.

Clearly, a good spr template is the network itself, and its cost is cn, the
number of edges. Now, if we take any tree template, then edges of the network
that are not included in the tree have to be routed on a path of length Ω(log n)
because of the girth property. There are at least cn− (n− 1) = (c− 1)n+ 1 such
edges, and so the total cost of the tree template is Ω(n log n).

4 Conclusions

We have shown that oblivious routing (even splittable) can perform quite poorly
compared to dynamic routing in some situations. However, fully dynamic routing
is problematic to implement. Is it possible that some tradeoff between the two
extremes of dynamic and oblivious routing could produce significantly better
results while remaining practical?

Another very natural question concerns the gap between mpr and spr for the
single-sink robust network design problem with arbitrary demand polytopes. We

are not aware of any single-sink instances for which the gap is superconstant. The
single-sink robust design problem (computing optSPR) could still conceivably
have a constant factor approximation algorithm for well-described polytopes.
This would be of interest since it generalizes a host of well-known problems
such as Steiner tree, single-sink rent-or-buy, and single-sink buy-at-bulk (the
last follows from a transformation given in [16]).

Acknowledgements. We would like to thank Gianpaolo Oriolo for some very
helpful discussions. We also thank an anonymous reviewer for ESA, for some
detailed and useful input. A final version of this paper was published in Algo-
rithmica.

The second author was supported by a MELS Quebec Merit Scholarship for
Foreign Students, and a Schulich Fellowship. The third author is supported by
a NSERC Discovery Grant.

References

1. I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees.
In Proc. of IEEE FOCS, pages 781–790, 2008.

2. M. Andrews. Hardness of buy-at-bulk network design. In Proc. of IEEE FOCS,
pages 115–124, 2004.

3. M. Andrews. Private Communication, 2010.
4. Y. Bartal and S. Leonardi. On-line routing in all-optical networks. Theor. Comput.

Sci., 221(1-2):19–39, 1999.
5. W. Ben-Ameur and H. Kerivin. New economical virtual private networks. Com-

mun. ACM, 46(6):69–73, 2003.
6. C. Chekuri. Routing and network design with robustness to changing or uncertain

traffic demands. SIGACT News, 38(3):106–128, 2007.
7. C. Chekuri, G. Oriolo, M. G. Scutella, and F. B. Shepherd. Hardness of robust

network design. Networks, 50(1):50–54, 2007.
8. F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected

facility location problems via random facility sampling and core detouring. In Proc.
of ACM-SIAM SODA, pages 1174–1183, 2008.

9. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

10. A. J. Fingerhut, S. Suri, and J. S. Turner. Designing least-cost nonblocking broad-
band networks. J. Algorithms, 24(2):287–309, 1997.

11. A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual
private network: a network design problem for multicommodity flow. In Proc. of
ACM STOC, pages 389–398, 2001.

12. A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost shar-
ing: Simpler and better approximation algorithms for network design. J. ACM,
54(3):11, 2007.

13. M. Hajiaghayi, R. Kleinberg, H. Räcke, and T. Leighton. Oblivious routing on
node-capacitated and directed graphs. ACM Trans. Algorithms, 3(4):51, 2007.

14. B. M. Maggs, F. Meyer aud der Heide, B. Vöcking, and M. Westerman. Exploiting
locality for networks of limited bandwidth. In Proc. of IEEE FOCS, pages 284–293,
1997.

15. J. Matousek. Lectures on Dicrete Geometry. Springer, 2002.

16. N. Olver and F. B. Shepherd. Approximability of robust network design. In Proc.
of ACM-SIAM SODA, pages 1097–1105, 2010.

17. C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location
problems. Algorithmica, 40(4):245–269, 2004.

1

A Upper bounds on the gaps

For the sake of completeness, in this appendix we give a proof of Gupta’s obser-
vation that the gap between optFR and optSPR is O(log n). We also show that
the gap between optFR and optTR is Õ(log n), via a similar proof. A sketch
proof of Gupta’s observation appears in Chekuri [6].

We use basic notions about finite metric spaces; an excellent exposition of
this topic is found in Matousek’s book [15]. We begin with some notation and
state a theorem that we need. We are given an instance (G, c,P) of the robust
network design problem on n nodes. The cost function c induces a metric dG(·, ·)
on nodes of G in the usual way: the distance dG(x, y) between nodes x and y
is given by the length of the shortest x-y path in G, with edge e having length
c(e). We also define the complete graph CG on V where edge {x, y} has length
dG(x, y).

Now using the result and notation of [9], a metric d can be approximated by
distribution over dominating tree metrics in the following sense. A metric (V, d′)
is said to dominate a metric (V, d) if for all x, y ∈ V we have d′(x, y) ≥ d(x, y).
Given a probability distribution D over a family of tree metrics S on V , we say
that (S,D) α-probabilistically approximates a metric (V, d) if every metric in S
dominates d, and for all x, y ∈ V we have Ed′∈(S,D)[d

′(x, y)] ≤ α · d(x, y).

Building upon previous work, Fakcharoenphol et al. [9] proved that every
finite metric on n nodes can be O(log n)-probabilistically approximated by a
distribution over tree metrics.

Now getting back to our robust network design instance, we find a distribu-
tion (S,D) over tree metrics which O(log n)-probabilistically approximates dG.
Trees in S can be taken to be spanning trees of CG (they need not be sub-
trees of G though). For a capacity reservation u on the edges of G, its cost is
costG(u) :=

∑
e∈E c(e)u(e). We can also define the cost of this reservation on a

tree metric T by costT (u) :=
∑
e∈E dT (e)u(e). Let u∗ be the optimum capacity

reservation for the fr routing model, so costG(u∗) = optFR. By the theorem of
[9] we have by linearity of expectation applied to costT (u∗):

costG(u∗) ≤ Ed′∈(S,D) costT (u∗) ≤ O(log n) costG(u∗).

So there exists a tree T ∈ S such that

costG(u∗) ≤ costT (u∗) ≤ O(log n) costG(u∗).

Let uT denote the optimal capacity vector for the robust network design
problem on the graph T 5; N.B. all routing models are equivalent on a tree T .
We also have costT (uT) ≤ costT (u∗). This is because the dynamic solution gives
an oblivious solution for T with cost at most costT (u∗) as follows. For any edge
e in G, add u∗(e) units of capacity on the path in T between the endpoints of e.
The overall capacity u′ installed then costs costT (u∗). For any valid demand, the
dynamic solution satisfied the demand by assigning flows f(P) to paths in G.
Moreover,

∑
P :e∈P f(P) ≤ u∗(e) and thus by definition, u′ has enough capacity

to support routing all such flow paths P , between u, v say, on the unique u− v
path in T . Since costT (uT) ≤ cost(u′) we are done. Hence

costG(u∗) ≤ costT (uT) ≤ O(log n) costG(u∗).

Let fT be the routing template on T that determines uT . This can be trans-
ferred to an spr routing template in G with a capacity reservation uG(T) on
G with the same cost as follows: Each edge in T corresponds to a path in G.
For edge xy in T we reserve uT (xy) capacity on each edge on the path in G
corresponding to edge xy. If an edge in G lies on several such paths then the
capacity reserved on it is the sum of the uT -values for all of these paths. Clearly
the cost of the resulting capacity reservation uG(T) on G is the same as the cost
of uT . Also, the routing template fT for uT can be simulated on G in the natural
fashion in the spr routing model. Thus, we have a reservation uG(T) supporting
a spr routing on G and with costG(uG(T)) = costT (uT) ≤ O(log n) costG(u∗).
Noting that optSPR ≤ costG(uG(T)) and optFR = costG(u∗) completes the
proof that optSPR = O(log n)optFR.

Note that the above proof does not give us that optTR = O(log n)optFR
because the support of uG(T) need not be a tree. We can prove a slightly weaker

result, namely optTR = Õ(log n)optFR by invoking a theorem of [1]: For any
metric dG induced by a graph G on n nodes there is a distribution on the span-
ning trees of G which Õ(log n)-probabilistically approximates dG. The remaining
details are essentially the same as in the above, except that this time the support
of uG(T) is indeed a tree.

5 Computing the capacity of an edge e ∈ T amounts to solving a linear program over
P with objective

∑
i∈A,j∈B Dij where A,B are the two components of T − e.

	Dynamic vs Oblivious Routing in Network Design

