
Improved Approximation Algorithms for Label
Cover Problems

Moses Charikar1?, MohammadTaghi Hajiaghayi2, and Howard Karloff2

1 Department of Computer Science, Princeton University,
Princeton, NJ 08540, USA, moses@cs.princeton.edu

2 AT&T Labs — Research, 180 Park Ave.,
Florham Park, NJ 07932, USA, {hajiagha,howard}@research.att.com

Abstract In this paper we consider both the maximization variant Max
Rep and the minimization variant Min Rep of the famous Label Cover
problem, for which, till now, the best approximation ratios known were
O(
√

n). In fact, several recent papers reduced Label Cover to other
problems, arguing that if better approximation algorithms for their prob-
lems existed, then a o(

√
n)-approximation algorithm for Label Cover

would exist.
We show, in fact, that there are a O(n1/3)-approximation algorithm for
Max Rep and a O(n1/3 log2/3 n)-approximation algorithm for Min Rep.
In addition, we also exhibit a randomized reduction from Densest k-
Subgraph to Max Rep, showing that any approximation factor for
Max Rep implies the same factor (up to a constant) for Densest k-
Subgraph.

1 Introduction

Label Cover was first introduced in Arora et al. [2] and is a canonical problem
used to show strong hardness results for many NP-hard problems [12]. It is
known that for Label Cover, there is no approximation algorithm achieving
a ratio 2log1−ε n, for any 0 < ε < 1, unless NP ⊆ DTIME(npolylog(n)) [2,12].
Label Cover has both maximization and minimization variants for both of
which the above hardness holds. Kortsarz [14] introduced slight variants of these
two problems called Max Rep and Min Rep. (See the end of this section for
formal definitions of both problems.) Indeed Max Rep is equivalent to the
maximization version of Label Cover, but Min Rep is slightly different from
the minimization version of Label Cover. Kortsarz [14] showed that for both
Max Rep and Min Rep, there is the same hardness of 2log1−ε n, for 0 < ε < 1,
unless NP ⊆ DTIME(npolylog(n)). The simpler definitions of Max Rep and
Min Rep make them particularly attractive for use in hardness reductions.

For the upper bound, it is known that both Max Rep and Min Rep admit
relatively simple O(

√
n) approximation algorithms [6,16]. Recently some authors

? Supported by NSF ITR grant CCF-0426582, NSF CAREER award CCF-0237113,
MSPA-MCS award 0528414, and NSF expeditions award 0832797.

suggested the possibility that O(
√

n) is the best approximation factor for these
two problems. See, e.g., [8], in which the authors write, “This ratio [O(

√
n)]

seems hard to improve and better ratio algorithms for LABEL-COVERmax are
not known even for very simple versions of the problem (e.g., when the structure
of the graph obeys the rules of the Unique Game Conjecture. . .). If LABEL-
COVERmax is indeed Ω(

√
n) hard to approximate, then so is DSF [Directed

Steiner Forest]. Indeed several recent papers reduced Min Rep/Max Rep to
other problems in order to obtain hardness results; therefore studying the ap-
proximability of Min Rep/Max Rep is an important goal. See [8] for Di-
rected Steiner Forest, [16] for Red-Blue Set Cover, [4,11] for Set
Cover with Pairs, [3] for Sparsest k-Transitive-Closure-Spanner, [10]
for Min-Power k-Edge-Disjoint Paths, [1] for `-Round Power Dominat-
ing Set, [5] for Target Set Selection, [15] for Vertex Connectivity
Survivable Network Design, and [9] for Stochastic Steiner Tree with
Non-uniform Inflation.

In this paper, we refute the possibility of Ω(
√

n) hardness for both Max Rep
and Min Rep by developing a O(n1/3)-approximation algorithm for Max Rep

and a O(n1/3 log2/3 n)-approximation algorithm for Min Rep. Our result for
Min Rep (see Section 2) uses a natural LP relaxation for the problem. We round
this LP based on an interesting generalization of the birthday paradox. Our result
for Max Rep (see Section 3) uses a direct combinatorial approach. Indeed, we
show that for Max Rep the integrality ratio for a natural LP relaxation is
Ω(

√
n

ln n) (in contrast to Min Rep for which the integrality ratio is Ω(n1/3−ε), for
all ε > 0.)

Our O(n1/3)- and O(n1/3 log2/3 n)-approximation algorithms for MaxRep
and MinRep might suggest a connection between these problems and the related
well-studied problem Densest k-Subgraph, for which the best approximation
factor so far is O(n1/3−δ) [7], for some small fixed δ > 0. The current best in-
approximability result only rules out a polynomial time approximation scheme
(PTAS) under the assumption that NP 6⊆ BPTIME(2nε

) [13]. We show indeed
that there is a randomized reduction from Densest k-Subgraph to Max Rep,
which preserves the approximation factor up to a constant factor (see Section 4).

We end this section with exact definitions of Max Rep and Min Rep.

Definition 1. (Max Rep)
Instance: A bipartite graph G = (A, B,E), where |A| = |B| = n, and an equi-

table partition A of A and B of B into k sets of same size q = n
k each (assuming

that n mod k = 0).
Objective: Choose A′ ⊆ A and B′ ⊆ B with |A′ ∩ Ai| = |B′ ∩ Bj | = 1 for
each i, j = 1, . . . , k such that the subgraph induced by A′ ∪B′ has the maximum
number of edges.

In Definition 1 the bipartite graph and the partition of A and B induce a
“supergraph” H in the following way: The vertices of H are the sets Ai and Bj .
Two sets Ai and Bj are adjacent by a “superedge” in H if and only if there
exist ai ∈ Ai and bj ∈ Bj which are adjacent in G. In this case, we say pair

(ai, bj) covers the superedge (Ai, Bj). In the Max Rep problem the goal is to
select one element, called a representative, from each Ai and each Bj such that
the number of covered superedges in H is maximized. Another natural objective
function considered in the literature is as follows:

Definition 2. (Min Rep)
Instance: A bipartite graph G = (A,B, E), where |A| = |B| = n, and equitable

partitions A of A and B of B into k sets of same size q = n
k .

Objective: Choose A′ ⊆ A and B′ ⊆ B such that pairs (a, b), a ∈ A′ and b ∈ B′,
cover all the superedges of H, while minimizing |A′|+ |B′|.

2 O(n1/3 log2/3 n)-Approximation Algorithm for Min Rep

There is a trivial k-approximation algorithm for Min Rep, namely, select both
vertices of one edge corresponding to each superedge. (The optimum selects at
least one vertex of each Ai (Bj) to which there is a superedge attached and
we choose at most k since there are at most k superedges attached to each Ai

(Bj).) In this section, we present a O(
√

q log k) approximation algorithm for
the Min Rep problem using a natural LP relaxation and a rounding scheme
whose analysis is based on a generalization of the birthday paradox. By using
the better of these two algorithms, and remembering that q = n/k, we obtain
an O(n1/3 log2/3 n)-approximation algorithm.

First, we start with an LP relaxation as follows:

OPT = minimize
∑

u∈A

pu +
∑

v∈B

pv (1)

subject to∑

u∈Ai,v∈Bj s.t. (u,v)∈E(G)

fuv = 1 ∀i, j : (Ai, Bj) is a superedge

∑

v∈Bj s.t. (u,v)∈E(G)

fuv ≤ pu ∀1 ≤ i, j ≤ k,∀u ∈ Ai

∑

u∈Ai s.t. (u,v)∈E(G)

fuv ≤ pv ∀1 ≤ i, j ≤ k,∀v ∈ Bj

fuv ≥ 0 ∀u ∈ A, v ∈ B s.t. (u, v) ∈ E(G).

In the IP corresponding to LP 1, px for x ∈ A∪B is a binary variable which
specifies whether vertex x has been chosen or not in our integral solution. (In
the LP, intuitively it specifies the fraction of vertex x that is chosen.) In the IP,
for all i, j such that (Ai, Bj) is a superedge, choose u ∈ Ai, v ∈ Bj such that u, v
are both chosen and set fuv = 1; set fu′v′ = 0 for all other u′ ∈ Ai, v

′ ∈ Bj . (In
the LP, f specifies the “flow” from u to v and satisfies capacity constraint px on
each vertex x ∈ A ∪B.)

Our algorithm, called MinRepAlg, for rounding LP 1 is relatively simple,
though its proof is involved and is based on an interesting generalization of the
birthday paradox. The algorithm is as follows.

1. Find an optimal solution f∗, p∗ to LP 1.
2. For each x ∈ A ∪B, let p1

x = min{1,
√

qpx}.
3. Let S1 = ∅ be the current set of selected elements.
4. Repeat the following O(log k) times: for each vertex x ∈ (A ∪ B) − S1, flip

an independent biased coin and put x into S1 with probability p1
x.

Since in MinRepAlg, we amplify each (probability) variable p by a factor√
q, the objective function would be at most

√
q times the optimum solution to

LP 1. Next, we show that, for each currently-uncovered superedge, the probabil-
ity that one iteration will cover that superedge is boundedly away from 0. Since
there are at most k2 such pairs, with high probability after O(log k) iterations
of the while loop, with total cost O(

√
q log k)z∗LP , we cover all superedges in

supergraph H.

Theorem 1. If we choose each vertex x ∈ A∪B with probability p1
x, any single

superedge (Ai, Bj) is covered with constant probability.

The proof of the above theorem uses the following lemma.

Lemma 2. Consider a superedge (Ai, Bj) for which LP 1 routes one unit of
flow f from vertices u ∈ Ai to v ∈ Bj and satisfies capacity constraints with
respect to the p variables. Then there exists a flow f̂ from vertices u ∈ Ai to
vertices v ∈ Bj that

1. has value at least 1
3 and at most 1,

2. that satisfies the capacity constraint px on each vertex x ∈ Ai ∪Bj, and
3. such that every nonzero f̂uv is at least 1/(6q).

Proof. We start with a flow f ′ = f initially and decrease it in iterations until its
flow from Ai to Bj becomes at most 1

3 . We also maintain node capacities p′ = p
initially and reduce them in each iteration maintaining the property that the
modified flow f ′ is a feasible flow for the modified node capacities p′. We build a
new flow f̂ = 0 initially and increase it iteratively such that in each iteration, we
increase flow f̂ by at least some α on one edge from Ai to Bj and simultaneously,
we decrease flow f ′ by at most 2α; we will ensure that α ≥ 1/(6q). We do this
increasing of f̂ and decreasing of f ′ in such a manner that flow f ′ + f̂ always
satisfies capacity constraints p. Thus when the flow f ′ becomes less than 1

3 , the
flow f̂ is at least 1

3 and we are done.
Now consider f ′ whose flow is at least 1

3 during the process. Let A′i = {x ∈
Ai, p

′
x < 1

6q} and B′
j = {x ∈ Bj , p

′
x < 1

6q}. First, we show that there is an edge
(u, v) ∈ E(G) with u ∈ Ai −A′i and v ∈ Bj −B′

j . If it is not the case, all flow of
f ′ should pass through either a vertex of A′i or a vertex B′

j and thus its flow is
less than 2q 1

6q = 1
3 , a contradiction. Let α = min{p′u, p′v} ≥ 1

6q . We now add a

flow α from u to v in f̂ and reduce the flow f ′ as follows: Assume without loss of
generality that p′u ≤ p′v. Then we reduce the flow in f ′ along all edges incident
on u to zero. Note that the total flow reduction in this step is at most α. We
also reduce flow arbitrarily along edges incident to v other than (u, v) such that
the total flow on these edges is at most p′v − α. The total flow reduction in this
step is also bounded by α. Finally, we reduce p′u and p′v by α. This maintains
the property that flow f ′ is feasible for capacities p′, and that f ′ + f̂ is feasible
for the original capacities p. In this way, the flow of f ′ is decreased by at most
2α, and the flow of f̂ on any one edge has been increased by at least 1

6q . ut
We are now ready to prove Theorem 1.

Proof. [of Theorem 1] Fix i, j such that (Ai, Bj) is a superedge. First by
Lemma 2, we obtain a flow f̂ from the flow f in LP 1 and use the properties of f̂
instead of f in the statement of the lemma in the rest of the proof. Let p̂x ≤ px,
for each vertex x ∈ Ai ∪Bj , be the total flow of f̂ passing through vertex x.

If p̂x ≥ 1√
q , for x ∈ Ai ∪Bj , then since

√
qpx ≥ √

qp̂x ≥ 1, vertex x is chosen
in our random selection with probability 1. Without loss of generality, assume
that x ∈ Ai. Let Nx be the set of all vertices y ∈ Bj for which x has positive flow
f̂xy to y. If there is a y with p̂y ≥ 1√

q , then vertex y is also chosen in our random
selection with probability 1. Thus in this case we will satisfy the superedge
(Ai, Bj) with probability 1 and we are done. If it is not the case, then each vertex
y ∈ Nx will be selected in our random process with probability at least

√
qf̂xy.

This means that the probability that we do not select in our random process any
vertices in Nx is at most Πy∈Nx(1 − √qf̂xy) ≤ e−

√
q

∑
y∈Nx

f̂xy ≤ e
−√q 1√

q = 1
e

(since
∑

y∈Nx
f̂xy = p̂x ≥ 1√

q). Thus with probability at least 1− 1
e , we select a

vertex in Nx and thus satisfy the superedge (Ai, Bj).
In the rest of the proof, we assume p̂x ≤ 1√

q , for x ∈ Ai ∪ Bj , and thus
√

qf̂uv ≤ 1 for u ∈ Ai and v ∈ Bj .
The outline of the rest of the proof is as follows. Instead of directly analyzing

the probability that the randomized rounding chooses both endpoints of some
edge in G[Ai ∪ Bj], for a general bipartite graph between Ai and Bj with q =
|Ai| = |Bj |, we first transform the bipartite graph, in a natural way, into a
perfect matching graph. We do this by replacing a vertex v of degree d(v) by
d(v) “clones,” associating a different edge incident to v with each clone, and
keeping the flow values on edges unchanged. We then choose each clone with
probability

√
q times the flow on the incident edge. (Note that the scaling factor

is the square root of q, not the square root of the number of boys or girls in
the perfect matching.) We argue that with at least positive constant probability,
there is an edge e of G[Ai ∪ Bj] with at least one clone of each endpoint of
e chosen. However, this is not what algorithm MinRepAlg does, in fact (it
doesn’t detour through a perfect matching graph), so we then argue that the
probability that algorithm MinRepAlg chooses both endpoints of some edge of
G[Ai ∪Bj] is at least as high as it is in the perfect matching, and hence at least
a positive constant.

First, we construct a bipartite graph M = (A′, B′, E′), for the given i, j, in
which for each vertex a ∈ Ai (resp., b ∈ Bj), we put r vertices a1, a2, . . . , ar

(resp., b1, b2, . . . , br) in A′ (resp., B′) called clones of vertex a (resp., b), where r
is the number of edges incident to a (resp., b) in G[Ai ∪Bj] that carry nonzero
flow (and thus a flow of at least 1

6q) in f̂ . We associate each clone ai of a (resp.,
bj of b) with a different edge of G incident to a (resp., b). We put edges between
vertices (clones) in E′ corresponding to edges in G[Ai∪Bj] that carry a nonzero
flow in f̂ (and we put this flow as the flow of the new edge). Since each edge
carrying positive flow in the bipartite graph between Ai and Bj gives rise to one
edge in M whose endpoints have degree 1, M is a bipartite perfect matching,
with |A′| = |B′|, which is at most the number of edges in G[Ai ∪Bj].

We now consider a random process in which we build a set S by selecting each
vertex (clone) c in M independently with probability

√
q times the f̂ flow of the

unique edge incident to c in M . Let the subset of Ai∪Bj chosen by MinRepAlg
be called S1. We will prove two things: (1) first, that the chance that, in the
perfect matching graph M , S contains an edge, is at least 1 − e−1/54 > 0, and
(2) second, the chance that S1 contains an edge in G is at least as large as the
chance that S contains an edge in the perfect matching graph M .

Now we prove (1), that both endpoints of some edge in M are chosen with
constant probability. Consider one fixed edge d = (cA, cB) carrying a flow f̂d. We
select both cA and cB with probability (

√
qf̂d)2 = qf̂2

d . Thus with probability
1− qf̂2

d , edge d will be not selected. The probability that no edges are selected
then is at most Πd∈E′(1 − qf̂2

d). (We have independence because the graph is
a perfect matching.) Since each edge carries a flow of at least 1

6q and the total

flow is at most one (by Lemma 2), |E′| ≤ 6q. Hence, since flow of f̂ is at least 1
3

by Lemma 2, Πd∈E′(1− qf̂2
d) ≤ e−q

∑
d∈E′ f̂2

d ≤ e
−q

(
∑

d∈E′ f̂d)2

|E′| ≤ e−q
(1
3)2

6q = e−
1
54 .

Thus with constant probability 1−e−
1
54 > 0 we satisfy any one given superedge.

This completes the proof of (1).
Now we prove (2). Build a new probabilistic process as follows. Define p2

x,
for x ∈ Ai ∪ Bj , to be the probability that at least one of the clones of x is
chosen to be in S. This is, of course, at most the sum of the probabilities that
each individual clone is chosen to be in S, which is itself at most the probability
that x ∈ S1 (since the flow values add). Build a set S2 by choosing each node
x ∈ Ai ∪ Bj independently with probability p2

x. The algorithm, on the other
hand, builds S1 using probabilities p1

x ≥ p2
x. It is a fairly obvious fact that, since

p1
x ≥ p2

x, the chance that S1 contains an edge is no smaller than the chance that
S2 contains an edge, but we prove it anyway.

Lemma 3. Suppose we are given an r-node graph H and two probabilities p1
x ≥

p2
x for each vertex x. Consider experiment E`, for ` = 1, 2, with probability mea-

sure P`, in which we build set S` by putting each vertex x into S` with probability
p`

x, independently. Then P1[S1 contains an edge] ≥ P2[S2 contains an edge].

Proof. We can pick one sequence of r independent random reals ξx in [0, 1] and
put x into S` if ξx ≤ p`

x. As S2 ⊆ S1 always, in every run in which S2 contains
an edge, so does S1. ut

But now we can view the construction of S2 as putting a node x into S2 if
and only if at least one of its clones is chosen for S. It is clear that S contains an
edge in M implies that S2 contains an edge in G (but not the converse), so that
the chance that S contains an edge is dominated by the chance that S2 contains
an edge, which itself is dominated by the chance that S1 contains an edge, and
we are done with the proof of Theorem 1. ut

2.1 The Integrality Ratio of Min Rep

Next, we show that the integrality ratio of LP 1 is indeed Ω(n
1
3−ε) for all ε > 0

and thus our algorithm in this section is essentially the best that we can hope
for using the LP.

Theorem 4. The integrality ratio of LP 1 for Min Rep is Ω(n1/3−ε) for any
ε > 0, for all large enough n.

Proof. Consider an instance of Min Rep with k = n/q groups of q boys each
and k = n/q groups of q girls each. Between the ith group Ai of boys and the
jth group Bj of girls there is a random perfect matching. It is clear that one
can assign fe = 1/q for any edge e and pu = 1/q for any vertex u. This implies
that z∗LP ≤ 2n/q. To study the integrality ratio, we look at the smallest feasible
set S (i.e., the smallest set of vertices such that for all i, j, there is at least
one edge between Ai and Bj both of whose endpoints are in S). Let S be a
feasible set, s = |S|. The size s of S is the sum of 2n/q terms, one for each
Ai and Bj . Let a = s/(2n/q) = sq/(2n), the average size of the intersection
of S with some Ai or Bj . Of the 2n/q terms, whose sum is s, fewer than 1/4
of them (i.e., (1/2)n/q) can exceed 4a = 2sq/n, and hence at least (3/2)n/q of
them are at most 4a. Since at most n/q of them can be intersections with the
n/q Ai’s, at least (1/2)n/q of them are intersections with n/q Bj ’s. Similarly, at
least (1/2)n/q of them are intersections with the n/q Ai’s. Hence there are sets
I ⊆ {1, 2, ..., n/q} and J ⊆ {1, 2, ..., n/q}, |I|, |J | = (1/2)n/q (provided that n/q
is even), such that |S∩Ai| ≤ 4a = 2sq/n for all i ∈ I and |S∩Bj | ≤ 4a = 2sq/n
for all j ∈ J , and such that there is an edge between S ∩ Ai and T ∩ Bj . Let
Si be any subset of Ai which contains S ∩ Ai and which has size exactly 4a.
Analogously, let Tj be any subset of Bj which contains T ∩ Bj and which has
size exactly 4a. Clearly there is an edge between Si and Tj .

Fix an s and let a = sq/(2n). As just shown, the existence of an S, of size s,
for graph G implies the existence of I, J ⊆ {1, 2, ..., n/q}, |I| = |J | = (1/2)n/q,
Si ⊆ Ai for all i ∈ I, and Tj ⊆ Bj for all j ∈ J , |Si| = |Tj | = 4a, such that for
all i ∈ I, j ∈ J , the perfect matching in G between Ai and Bj contains an edge
between Si and Tj . (Si, Tj have size exactly 4a.) Hence the probability that there
is an S is at most the probability that there exist I, J ⊆ {1, 2, ..., n/q}, both of
size (1/2)n/q, and Si ⊆ Ai, Tj ⊆ Bj for all i ∈ I, j ∈ J , with |Si| = |Tj | = 4a,

such that for all i ∈ I, j ∈ J , the perfect matching in G between Ai and Bj

contains an edge between Si and Tj .
Given fixed I, J, (Si), (Tj), what is the probability that the random graph

contains, for each i ∈ I, j ∈ J , an edge whose left endpoint is in Si and whose
right one is in Tj? The chance that the random graph does not contain both
endpoints of some edge in the random perfect matching between Ai and Bj is
the chance that all the edges in the (i, j) perfect matching (the one between Ai

and Bj) emanating from Si end outside Tj . There are exactly 4a such edges.
We will prove a lower bound on the probability that a random perfect matching
does not contain both endpoints of some edge whose left endpoint is in Si and
whose right one is in Tj . In order for the mate of each vertex in Si to lie outside
of Tj , the mate of the first one must be chosen to be one of q − 4a nodes not
in Tj among the q vertices in Bj , the mate of the second must be chosen to be
one of the remaining q− 4a− 1 nodes not in Tj among the remaining q− 1 ver-
tices in Bj , etc. Hence the probability is exactly q−4a

q
q−4a−1

q−1 · · · q−4a−(4a−1)
q−(4a−1) ≥

(
q−8a

q

)4a

=
(
1− 8a

q

)4a

. Hence the chance that the (i, j) perfect matching does
contain an edge whose left endpoint is in Si and whose right one is in Tj is at most
1− (1− 8a/q)4a. The chance that the random matching works for all (n/q)2/4
pairs (i, j) with i ∈ I, j ∈ J is at most [1 − (1 − 8a/q)4a](n/q)2/4. Let A =
(

n/q
n/(2q)

)2(q
4a

)n/q
[
1−

(
1− 8a

q

)4a
](n/q)2/4

, the first binomial coefficient repre-

senting the choices of I and J , the second representing the subsets Si of Ai and Tj

of Bj . If A < 1, then there is a fixed graph for which no set S of size s is good. A ≤

22n/qq4an/q

[
1−

(
1− 8a

q

)4a
](n/q)2/4

. We choose a =
√

q/32 so that q/(8a) =

4a. Note that (1− 8a/q)4a = (1− 1/(q/(8a)))q/(8a) ≥ 1/4 for q/(8a) = 4a suffi-
ciently large. So [1−(1−8a/q)4a](n/q)2/4 ≤ [1−(1/4)](n/q)2/4. Letting q = nδ for a
fixed δ, we have A ≤ 22n1−δ

(nδ)4an/q(3/4)(n/q)2/4. Since 4an/q = 4n1−δ
√

q/32 =
(1/
√

2)n1−δ/2, we have A ≤ (3/4)(1/4)n2(1−δ)
22n1−δ

nδ(1/
√

2)n1−δ/2
. We have A ≤

2−0.01n2(1−δ)+2n1−δ+(lg n)(δ/
√

2)n1−δ/2
. Since obviously 2(1 − δ) > 1 − δ, we will

have A < 1, in fact, A → 0, if 2(1 − δ) > 1 − δ/2, i.e., 2 − 2δ > 1 − δ/2, i.e.,
1 > (3/2)δ, i.e., δ < 2/3. Hence if δ < 2/3, then for q = nδ and a =

√
q/32, as

specified above, there is an instance for which no set S of size a(2n/q) is feasible.
For this instance, z∗IP >

√
q/32(2n/q). Since z∗LP ≤ 2n/q, the integrality ratio

exceeds
√

q/32, which is Ω(nδ/2). Since δ < 2/3 is arbitrary, for all ε > 0 the
integrality ratio is Ω(n1/3−ε). ut

3 O(n
1
3)-Approximation Algorithm for Max Rep

In this section, we provide an O(n
1
3)-approximation algorithm for Max Rep.

However, in contrast to Section 2, in which we use a natural LP for the problem,
we can show that the integrality gap of a natural LP for Max Rep is Ω(

√
n). This

forces us to use a combinatorial approach to obtain a non-trivial approximation

factor O(n
1
3).

We consider the best of three algorithms:

1. Matching: Find a maximal matching in the supergraph H. For each edge
(Ai, Bj) in this matching, pick ai ∈ Ai and bj ∈ Bj such that (ai, bj) ∈ E(G).

2. Random-Choice: For each Bj , pick bj ∈ Bj at random. For each Ai, pick
ai ∈ Ai that has the maximum number of edges to the set of all selected bj

vertices. Repeat, flipping the roles of A and B.
3. Random-Neighbor: For each a ∈ A, construct a solution in the following

fashion and eventually pick the best such solution: For each Bj , pick bj ∈ Bj

at random from amongst those vertices that are neighbors of a (if there is
no neighbor of a in Bj , pick an arbitrary bj ∈ Bj). For each Ai, pick ai ∈ Ai

that has the maximum number of edges to the selected bj vertices over all
j. Repeat, flipping the roles of A and B.

Theorem 5. The best of these three algorithms is a 2(2n)1/3-approximation
algorithm.

Proof. Suppose that the maximal matching in H has size `. Renumber the Ai’s
and Bj ’s such that the matching has edges (Ai, Bi), i = 1, . . . , `. There are no
edges between Ai and Bj for i, j > `. Let A′ = ∪`

i=1Ai, and B′ = ∪`
j=1Bj . The

edges in the optimal solution can be decomposed into two groups: those that go
between A′ and B and those that go between A and B′. (Edges between A′ and
B′ appear in both.) Hence the optimal solution restricted to one of these two
groups much contain at least half the number of edges in the optimal solution.
Without loss of generality, assume that the optimal solution restricted to edges
between A and B′ contains at least half the number of edges in the optimal
solution.

We introduce some notation to facilitate the analysis. Let Xij = 1 if there is
an edge in the optimal solution from Ai to Bj (and 0 otherwise). Let Nij be the
number of edges from the optimal vertex a∗i in Ai to the remaining vertices in
Bj , called “nonoptimal” since they’re not in the optimal solution.

Define p and r as follows:

k∑

i=1

∑̀

j=1

Xij = p(k`) (2)

k∑

i=1

∑̀

j=1

Nij = r(`n). (3)

Thus OPT ≤ 2
∑k

i

∑`
j=1 Xij = 2pk` and algorithm Matching gives a 2pk ap-

proximation.
Next, we analyze algorithm Random-Choice. The algorithm picks random

vertices in B and picks the best vertices in A for the chosen vertices in B.

In order to obtain a lower bound on the number of superedges covered, we
compute the expected number of superedges covered if we pick random vertices
in Bj , j = 1, . . . , `, and instead of the best vertex in Ai, we use the vertex a∗i ∈ Ai

which is in the optimal solution.

For a superedge (Ai, Bj), i = 1, . . . , k and j = 1, . . . , `, the probability that
this edge is covered by Random-Choice is (Xij +Nij)/(n/k). Hence the expected
number of superedges covered is at least k

n

∑k
i=1

∑`
j=1(Xij + Nij) = k

n (pk` +
r`n). Hence the approximation ratio of algorithm Random-Choice is at most

2pk`
k
n (pk`+r`n)

≤ min
{

2n
k , 2p

r

}
.

Finally, we analyze algorithm Random-Neighbor. Suppose the vertex a chosen
by the algorithm in the first step is in, say, Ah, and also is in the optimal solution.
Consider set Bj and the vertex b∗j ∈ Bj in the optimal solution. The number of
edges from a to Bj is Xhj +Nhj . The algorithm picks a random neighbor of a in
Bj . Thus the probability that b∗j is chosen is Xhj

Xhj+Nhj
. As before, instead of pick-

ing the best choice of vertices in A for the chosen vertices in B, we lower bound
the expected number of superedges covered by replacing the vertex ai by the
vertex a∗i ∈ Ai in the optimal solution. If b∗j ∈ B is chosen, the number of edges
from the set of a∗i ’s is

∑k
i=1 Xij . Thus the expected number of superedges cov-

ered is at least
∑`

j=1
Xhj

Xhj+Nhj
(
∑k

i=1 Xij). In this calculation, we assumed that
a = a∗h was chosen in the first step. We average over h = 1, . . . , k. Thus the ex-
pected number of covered edges is at least 1

k

∑k
h=1

∑`
j=1

Xhj

Xhj+Nhj
(
∑k

i=1 Xij).

Let Cj =
∑k

i=1 Xij and let Nj =
∑k

i=1 Nij . Then the previous expression

is 1
k

∑`
j=1 Cj

∑k
h=1

Xhj

Xhj+Nhj
.Note that

∑k
h=1

Xhj

Xhj+Nhj
≥ Cj

(
1

1+
Nj
Cj

)
by the

arithmetic-geometric-harmonic means inequality. In order to obtain a lower

bound for this expression, consider the minimum value of
∑

j

C3
j

Cj + Nj
over

all choices of Cj and Nj subject to the constraint that
∑

j Cj and
∑

j Nj are
fixed. Now let Cj , Nj be the respective values that minimize this expression.

Then for any indices f 6= g, the function (of x)
Cf

3

Cf + (Nf − x)
+

Cg
3

Cg + (Ng + x)
must be minimized for x = 0. Thus, the derivative of this function at x = 0
must be zero. Hence Cf

3/(Cf + Nf)2 = Cg
3/(Cg + Ng)2. Hence there is a con-

stant α such that for all indices f , (Cf + Nf)2 = αCf
3. Hence α

∑
j C

3/2
j =∑

j Cj +
∑

j Nj = pk` + r`n. Thus the expected number of superedges cov-

ered is at least 1
k

∑`
j=1

C3
j

αC
3/2
j

= 1
k

∑`
j=1

C
3/2
j

α ≥ 1
k

(
∑`

j=1 C
3/2
j)2

(pk`+r`n) . Convexity of

f(x) = x3/2 shows that this expression is minimized when all Cj are equal.
Hence a lower bound on the expected number of superedges covered is given
by 1

k
(`(pk)3/2)2

(pk`+r`n) = `2p3k2

pk`+r`n . Thus the approximation ratio of this procedure is at

most 2pk`(pk`+r`n)
`2p3k2 =

2(1+(r
p) n

k)

p .

Thus we have the following upper bounds on the approximation ratio of the
algorithm: 2pk, 2n

k , 2p
r , 2

1+(r
p) n

k

p . We consider two cases:

Case 1: (r
p)n

k ≥ 1. In this case, the fourth bound is at most
4(r

p) n
k

p . The product

of the first, third and fourth bounds is 16pk × p
r ×

(r
p) n

k

p = 16n. Hence at least
one upper bound is at most 2(2n)1/3.
Case 2: (r

p)n
k < 1. In this case, the fourth bound is at most 4

p . Now the product
of the first, second and fourth bound is 2pk × 2n

k × 4
p = 16n. Hence at least one

upper bound is at most 2(2n)1/3. ut

4 Reduction From Densest k-Subgraph to Max Rep

In this section, we consider the Densest k-Subgraph (DkS) problem, in which
the goal is to find an induced subgraph of order k of a given graph with the
maximum number of edges.

Theorem 6. An f(n)-approximation algorithm for Max Rep implies the exis-
tence of a randomized O(f(n))-approximation algorithm for DkS.

Proof. From an instance of DkS, we produce an instance of Max Rep by ran-
domly dividing vertices of the given graph for DkS into k groups of equal size
s = bn

k c, e.g., by using a random permutation of all vertices, and disregard the
rest of vertices. Next we place bk/2c groups on one side (call this L) and the
other dk/2e groups on the other side (call this R) of the instance for Max Rep.
Any feasible solution to the Max Rep instance obtained directly gives a solution
to the original DkS instance of the same value. Both instances have the same
number n of vertices.

We claim that the expected value of the optimal solution to the Max Rep
instance obtained thus is at least a constant times the optimal value for DkS.
Consider the optimal solution S of size k to the DkS instance. We produce a
solution to the Max Rep instance as follows. For every group in the instance,
if the group contains a unique vertex of S, then this unique vertex is picked as
the group representative. If there are zero or at least 2 vertices from S then an
arbitrary vertex is picked as the group representative (and we don’t count edges
incident to that vertex). We show that the expected value of this solution is at
least a constant times the value of the DkS optimal solution. For any vertex
v ∈ S, with constant probability v is placed alone in its group. Furthermore, for
two distinct vertices u, v ∈ S, the probability that u and v are both alone in
their groups, u is in the L side and v is on the R side, is bounded below by a
constant greater than 0. Hence E[z∗MaxRep] ≥ cz∗DkS , for a positive constant c.

Now the reduction is apparent. Given an f(n)-approximation algorithm A
for Max Rep, take an n-node instance I of DkS, randomly convert it as above
into an n-node instance I ′ of Max Rep, use A to generate a solution A(I ′) of
value at least f(n)z∗MaxRep, and report A(I ′) as a feasible solution to the DkS
instance. That E[z∗MaxRep] ≥ cz∗DkS implies that the expected size of the DkS
solution returned is at least cf(n) · z∗DkS . ut

5 Conclusion

Obtaining improvements over the approximation guarantees in this paper would
be instructive. Given the reduction demonstrated in Section 4, possibly one
can use ideas from the Densest k-Subgraph algorithm to build an n1/3−δ-
approximation algorithms for some fixed δ > 0. However, the main remain-
ing open problem is whether, for Max Rep or Min Rep, there is a O(nε)-
approximation algorithm for each ε > 0.

References

1. A. Aazami and M. D. Stilp, Approximation algorithms and hardness for domi-
nation with propagation, in APPROX 2007, pp. 1–15.

2. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate
optima in lattices, codes, and systems of linear equations, J. Comput. System Sci.,
54 (1997), pp. 317–331.

3. A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P.
Woodruff, Transitive-Closure Spanners, ArXiv e-prints, (2008).

4. L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Hajiaghayi, D. John-
son, H. Karloff, M. Resende, and S. Sen, Optimal Node Placement For Path-
Disjoint Network Monitoring, 2008, manuscript.

5. N. Chen, On the approximability of influence in social networks, in SODA 2008,
pp. 1029–1037.

6. M. Elkin and D. Peleg, The hardness of approximating spanner problems, The-
ory Comput. Syst., 41 (2007), pp. 691–729.

7. U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algo-
rithmica, 29 (2001), pp. 410–421.

8. M. Feldman, G. Kortsarz, and Z. Nutov, Improved approximation for the
directed steiner forest problem, in SODA 2009, pp. 922-931.

9. A. Gupta, M. Hajiaghayi, and A. Kumar, Stochastic steiner tree with non-
uniform inflation, in APPROX 2007, pp. 134–148.

10. M. T. Hajiaghayi, G. Kortsarz, V. S. Mirrokni, and Z. Nutov, Power
optimization for connectivity problems, Math. Program., 110 (2007), pp. 195–208.

11. R. Hassin and D. Segev, The set cover with pairs problem, in FSTTCS 2005,
pp. 164–176.

12. D. S. Hochbaum, ed., Approximation algorithms for NP-hard problems, PWS
Publishing Co., Boston, MA, USA, 1997. see the section written by Arora and
Lund.

13. S. Khot, Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite
clique, SIAM J. Comput., 36 (2006), pp. 1025–1071.

14. G. Kortsarz, On the hardness of approximating spanners, Algorithmica, 30
(2001), pp. 432–450.

15. G. Kortsarz, R. Krauthgamer, and J. R. Lee, Hardness of approximation
for vertex-connectivity network design problems, SIAM Journal on Computing, 33
(2004), pp. 185–199.

16. D. Peleg, Approximation algorithms for the Label-CoverMAX and Red-Blue Set
Cover problems, J. Discrete Algorithms, 5 (2007), pp. 55–64.

