
ar
X

iv
:1

00
4.

20
33

v1
 [

cs
.D

S]
 1

2
A

pr
 2

01
0

Feasibility analysis of sporadic real-time

multiprocessor task systems

Vincenzo Bonifaci1 and Alberto Marchetti-Spaccamela2

1 Max-Planck Institut für Informatik, Saarbrücken, Germany
bonifaci@mpi-inf.mpg.de

2 Sapienza Università di Roma, Rome, Italy
alberto@dis.uniroma1.it

Abstract. We give the first algorithm for testing the feasibility of a sys-
tem of sporadic real-time tasks on a set of identical processors, solving
one major open problem in the area of multiprocessor real-time schedul-
ing [5]. We also investigate the related notion of schedulability and a
notion that we call online feasibility. Finally, we show that discrete-time
schedules are as powerful as continuous-time schedules, which answers
another open question in the above mentioned survey.

1 Introduction

As embedded microprocessors become more and more common, so does the need
to design systems that are guaranteed to meet deadlines in applications that are
safety critical, where missing a deadline might have severe consequences. In such
a real-time system, several tasks may need to be executed on a multiprocessor
platform and a scheduling policy needs to decide which tasks should be active
in which intervals, so as to guarantee that all deadlines are met.

The sporadic task model is a model of recurrent processes in hard real-time
systems that has received great attention in the last years (see for example [1, 5]
and references therein). A sporadic task τi = (Ci, Di, Pi) is characterized by a
worst-case compute time Ci, a relative deadline Di, and a minimum interarrival
separation Pi. Such a sporadic task generates a potentially infinite sequence of
jobs: each job arrives at an unpredictable time, after the minimum separation Pi

from the last job of the same task has elapsed; it has an execution requirement
less than or equal to Ci and a deadline that occurs Di time units after its arrival
time. A sporadic task system T is a collection of such sporadic tasks. Since the
actual interarrival times can vary, there are infinitely many job sequences that
can be generated by T .

We are interested in designing algorithms that tell us when a given sporadic
task system can be feasibly scheduled, with preemption and migration, on a set
of m ≥ 1 identical processors. The question can be formulated in several ways:

– Feasibility: is it possible to feasibly schedule on m processors any job se-
quence that can be generated by T ?

http://arxiv.org/abs/1004.2033v1

– Online feasibility: is there an online algorithm that can feasibly schedule on
m processors any job sequence that can be generated by T ?

– Schedulability: does the given online algorithm Alg feasibly schedule on m
processors any job sequence that can be generated by T ?

Previous work. Most of the previous work in the context of sporadic real-time
feasibility testing has focused on the case of a single processor [4]. The semi-
nal paper by Liu and Layland [13] gave a best possible fixed priority algorithm
for the case where deadlines equal periods (a fixed priority algorithm initially
orders the tasks and then – at each time instant – schedules the available job
with highest priority). It is also known that the Earliest Deadline First (EDF)
algorithm, that schedules at any time the job with the earliest absolute deadline,
is optimal in the sense that for any sequence of jobs it produces a valid schedule
whenever a valid schedule exists [7]. Because EDF is an online algorithm, this
implies that the three questions of feasibility, of online feasibility and of schedu-
lability with respect to EDF are equivalent. It was known for some time that
EDF-schedulability could be tested in exponential time and more precisely that
the problem is in coNP [6]. The above results triggered a significant research
effort within the scheduling community and many results have been proposed
for specific algorithms and/or special cases; nonetheless, we remark that the fea-
sibility problem for a single processor remained open for a long time and that
only recently it has been proved coNP-complete [9].

The case of multiple processors is far from being as well understood as the
single processor case. For starters, EDF is no longer optimal – it is not hard to
construct feasible task systems for which EDF fails, as soon as m ≥ 2. Another
important difference with the single processor case is that here clairvoyance does
help the scheduling algorithm: there exists a task system that is feasible, but for
which no online algorithm can produce a feasible schedule on every job sequence
[10]. Thus, the notions of feasibility and on-line feasibility are distinct.

On the positive side there are many results for special cases of the problem;
however we remark that no optimal scheduling algorithm is known, and no test
– of whatsoever complexity – is known that correctly decides the feasibility or
the online feasibility of a task system. This holds also for constrained-deadline
systems, in which deadlines do not exceed periods. The question of designing
such a test has been listed as one of the main algorithmic problems in real-time
scheduling [5].

Regarding schedulability, many schedulability tests are known for specific
algorithms (see [1] and references therein), but, to the best of our knowledge,
the only general test available is a test that requires exponential space [2].

Our results. We study the three above problems in the context of constrained-
deadline multiprocessor systems and we provide new results for each of them.

First, for the feasibility problem, we give the first correct test, thus solving [5,
Open Problem 3] for constrained-deadline systems. The test has high complexity,
but it has the interesting consequence that a job sequence that witnesses the

2

infeasibility of a task system T has without loss of generality length at most
doubly exponential in the bitsize of T .

Then we give the first correct test for the online feasibility problem. The
test has exponential time complexity and is constructive: if a system is deemed
online feasible, then an optimal online algorithm can be constructed (in the
same time bound). Moreover, this optimal algorithm is without loss of generality
memoryless : its decisions depend only on the current (finite) state and not on
the entire history up to the decision point (see Section 2 for a formal definition).
These results suggest that the two problems of feasibility and online feasibility
might have different complexity.

For the schedulability problem, we provide a general schedulability test show-
ing that the schedulability of a system by any memoryless algorithm can be
tested in polynomial space. This improves the result of Baker and Cirinei [2]
(that provided an exponential space test for essentially the same class of algo-
rithms).

We finally consider the issue of discrete time schedules versus continuous time
schedules. The above results are derived with the assumption that the time line
is divided into indivisible time slots and preemptions can occur only at integral
points, that is, the schedule has to be discrete. In a continuous schedule, time is
not divided into discrete quanta and preemptions may occur at any time instant.
We show that in a sporadic task system a discrete schedule exists whenever a
continuous schedule does, thus showing that the discrete time assumption is
without loss of generality. Such equivalence is known for periodic task systems
(i.e. task system in which each job of a task is released exactly after the period Pi

of the task has elapsed); however, the reduction does not extend to the sporadic
case and the problem is cited among the important open problems in real-time
scheduling [5, Open Problem 5].

All our results can be extended to the arbitrary-deadline case, at the expense
of increasing some of the complexity bounds. In this extended abstract we restrict
to the constrained-deadline case to simplify the exposition.

Our main conceptual contribution is to show how the feasibility problem,
the online feasibility problem and the schedulability problem can be cast as the
problem of deciding the winner in certain two-player games of infinite duration
played on a finite graph. We then use tools from the theory of games to decide
who has a winning strategy. In particular, in the case of the feasibility problem
we have a game of imperfect information where one of the players does not see
the moves of the opponent, a so-called blindfold game [15]. This can be reformu-
lated as a one-player (i.e., solitaire) game on an exponentially larger graph and
then solved via a reachability algorithm. However, a technical complication is
that in our model a job sequence and a schedule can both have infinite length,
which when the system is feasible makes the construction of a feasible sched-
ule challenging. We solve this complication by an application of König’s Infinity
Lemma from graph theory [8]. This is the technical ingredient that, roughly
speaking, allows us to reduce the infinite job sequences with infinite length to

3

finite sequences and ultimately to obtain the equivalence between continuous
and discrete schedules.

The power of our new approach is its generality: it can be applied to all
three problems and – surprisingly – it yields proofs that are not technically
too complicated. We hope that this approach might be useful to answer similar
questions for other real-time scheduling problems.

Organization. The remainder of the paper is structured as follows. In Section 2
we formally define the model and set up some common notation. In Section 3 we
describe and analyze our algorithms for feasibility and schedulability analysis.
The equivalence between continuous and discrete schedules is treated in Section
4, and we finish with some concluding remarks in Section 5.

2 Definitions

Let N = {0, 1, 2, . . .} and [n] = {1, 2, . . . , n}. Given a set X , with
(

X

k

)

we denote
the set of all k-subsets of X .

Consider a task system T with n tasks, and m processors; without loss of
generality, m ≤ n. Each task i is described by three parameters: a worst-case
compute time Ci, a relative deadline Di, and a minimum interarrival time Pi.
We assume these parameters to be positive integers and that Di ≤ Pi for all i.

Let C := ×n
i=1([Ci] ∪ {0}), D := ×n

i=1([Di] ∪ {0}), P := ×n
i=1([Pi] ∪ {0}),

0 := (0)ni=1. A job sequence is a function σ : N → C. The interpretation is that
σ(t) = (σi(t))

n
i=1 iff, for each i with σi(t) > 0, a new job from task i is released

at time t with compute time σi(t), and no new job from task i is released if
σi(t) = 0. A legal job sequence has the additional property that for any distinct
t, t′ ∈ N and any i, if σi(t) > 0 and σi(t

′) > 0, then |t− t′| ≥ Pi. A job sequence
is finite if σ(t′) = 0 for all t′ greater or equal to some t ∈ N; in this case, we say
that the sequence has length t.

Let S := ∪m
k=0

(

[n]
k

)

. A schedule is a function S : N → S; we interpret S(t)
as the set of those k tasks (0 ≤ k ≤ m) that are being processed from time t to
time t+1 3. We allow that S(t) contains a task i even when there is no pending
job from i at time t; in that case there is no effect (this is formalized below).

A backlog configuration is an element of B := C×D×P. At time t, a backlog
configuration (ci, di, pi)

n
i=1 ∈ B 4 will denote the following:

– ci ∈ [Ci]∪{0} is the remaining compute time of the unique pending job from
task i, if any; if there is no pending job from task i, then ci = 0;

– di ∈ [Di] ∪ {0} is the remaining time to deadline of the unique pending job
from task i, if any; if there is no pending job from task i, or the deadline has
already passed, then di = 0;

3 Since Di ≤ Pi, there can be at most one pending job from task i. In the arbitrary-
deadline case, this can be generalized by considering O(Di/Pi) jobs.

4 For notational convenience, here we have reordered the variables so as to have n-
tuples of triples, instead of triples of n-tuples.

4

– pi ∈ [Pi]∪{0} is the minimum remaining time to the next activation of task
i, that is, the minimum pi such that a new job from task i could be legally
released at time t+ pi.

A configuration (ci, di, pi)
n
i=1 ∈ B is a failure configuration if for some task i,

ci > 0 and di = 0.

Remark 1. The set B is finite, and its size is 2O(s), where s is the input size of
T (number of bits in its binary encoding).

Given a legal job sequence σ and a schedule S, we define in the natural way an
infinite sequence of backlog configurations 〈σ, S〉 := b0b1 The initial configu-
ration is b0 := (0, 0, 0)ni=1, and given a backlog configuration bt = (ci, di, pi)

n
i=1,

its successor configuration bt+1 = (c′i, d
′
i, p

′
i)

n
i=1 is obtained as follows:

– if σi(t) > 0, then c′i = σi(t) − xi, where xi is 1 if i ∈ S(t), and 0 otherwise;
moreover, d′i = Di and p′i = Pi;

– if σi(t) = 0, then c′i = max(ci−xi, 0), where xi is defined as above; moreover,
d′i = max(di − 1, 0) and p′i = max(pi − 1, 0).

We can now define a schedule S to be feasible for σ if no failure configuration
appears in 〈σ, S〉. Finally, a task system T is feasible when every legal job se-
quence admits a feasible schedule. Stated otherwise, a task system is not feasible
when there is a legal job sequence for which no schedule is feasible. We call such
a job sequence a witness of infeasibility.

A deterministic online algorithm Alg is a sequence of functions:

Algt : C
t+1 → S, t = 0, 1, 2, . . .

By applying an algorithm Alg to a job sequence σ, one obtains the schedule S
defined by S(t) = Algt(σ(0), . . . , σ(t)). Then Alg feasibly schedules σ whenever
S does. A memoryless algorithm is a single function Malg : B ×C → S; it is
a special case of an online algorithm in which the scheduling decisions at time t
are based only on the current backlog configuration and on the tasks that have
been activated at time t.

Finally, a task system T is online feasible if there is a deterministic online
algorithm Alg such that every legal job sequence from T is feasibly scheduled by
Alg. We then say that Alg is optimal for T , and that T is schedulable by Alg.
Online feasibility implies feasibility, but the converse fails: there is a task system
that is feasible, but that does not admit any optimal online algorithm [10].

3 Algorithms for feasibility and schedulability analysis

3.1 Feasibility

We first model the process of scheduling a task system as a game between two
players over infinitely many rounds. At round t = 0, 1, 2, . . ., the first player (the
“adversary”) selects a certain set of tasks to be activated. Then the second player

5

(acting as the scheduler) selects a set of tasks to be processed, and so on. The
game is won by the first player if a failure configuration is eventually reached.

In order to capture the definition of feasibility correctly, the game must pro-
ceed so that the adversary has no information at all on the moves of the sched-
uler; in other words, the job sequence must be constructed obliviously from the
schedule. This is because if the task system is infeasible, then a single witness job
sequence must fail all possible schedules simultaneously. Models of such games,
where the first player has no information on the moves of the opponent, have
been studied in the literature under the name of blindfold games [15]. One ap-
proach to solving these games is to construct a larger one-player game, in which
each state encodes all positions that are compatible with at least one sequence
of moves for the second player.

Given a task system T , we build a bipartite graph G+(T) = (V1, V2, A).
Nodes in V1 (V2) will correspond to decision points for the adversary (scheduler).
A node in V1 or V2 will encode mainly two kinds of information: (1) the counters
that determine time to deadlines and next earliest arrival dates; and (2) the set
of all plausible remaining compute times of the scheduler.

Let B+ := D × P × 2C. Each of V1 and V2 is a copy of B+, so each node
of V1 is identified by a distinct element from B+, and similarly for V2. We
now specify the arcs of G+(T). Consider an arbitrary node v1 ∈ V1 and let
((di, pi)

n
i=1, Q) be its identifier, where Q ∈ 2C. Its successors in G+(T) are all

nodes v2 = ((d′i, p
′
i)

n
i=1, Q

′) ∈ V2 for which there is a tuple (ki)
n
i=1 ∈ C such that:

1. pi = 0 for all i ∈ supp(k), where supp(k) = {i : ki > 0} (this ensures that
each task in k can be activated);

2. p′i = Pi, and d′i = Di for all i ∈ supp(k) (activated jobs cannot be reactivated
before Pi time units);

3. p′i = pi and d′i = di for all i /∈ supp(k) (counters of other tasks are not
affected);

4. each (c′i)
n
i=1 ∈ Q′ is obtained from some (ci)

n
i=1 ∈ Q in the following way:

c′i = ki for all i ∈ supp(k), and c′i = ci for all i /∈ supp(k) (in every possible
scheduler state, the remaining compute time of each activated job is set to
the one prescribed by k);

5. Q′ contains all (c′i)
n
i=1 that satisfy Condition 4.

Now consider an arbitrary node v2 ∈ V2, say v2 = ((di, pi)
n
i=1, Q). The only

successor of v2 will be the unique node v1 = ((d′i, p
′
i)

n
i=1, Q

′) ∈ V1 such that:

1. d′i = max(di − 1, 0), p′i = max(pi − 1, 0) for all i ∈ [n] (this models a “clock-
tick”);

2. for each (c′i)
n
i=1 ∈ Q′, there are an element (ci)

n
i=1 ∈ Q and some S ∈ S

such that c′i = max(ci − 1, 0) for all i ∈ S and c′i = ci for all i /∈ S (each
new possible state of the scheduler is obtained from some old state after the
processing of at most m tasks);

3. for each (c′i)
n
i=1 ∈ Q′, one has, for all i, c′i = 0 whenever d′i = 0 (this ensures

that the resulting scheduler state is valid);
4. Q′ contains all (c′i)

n
i=1 that satisfy Condition 2 and Condition 3.

6

That is, the only successor to v2 is obtained by applying all possible decisions
by the scheduler and then taking Q′ to be the set of all possible (valid) resulting
scheduler states. Notice that because we only keep the valid states (Condition
3), the set Q′ might be empty. In this case we say that the node v1 is a failure
state; it corresponds to some deadline having been violated. Also notice that any
legal job sequence σ induces an alternating walk in the bipartite graph G+(T)
whose (2t+ 1)-th arc corresponds to σ(t).

Finally, the initial state is the node v0 ∈ V1 for which di = pi = 0 for all i,
and for which the only possible scheduler state is 0. (See Figure 1 on page 15
in the Appendix for a partial illustration of the construction in the case of the
task system T = ((1, 2, 2), (2, 2, 2)), for m = 1.) Note that, given two nodes of
G+(T), it is easy to check their adjacency, in time polynomial in |B+|.

Definition 1. For a legal job sequence σ, the set of possible valid scheduler
states at time t is the set of all (ci)

n
i=1 ∈ C for which there exists a schedule S

such that (i) 〈σ, S〉 = b0b1b2 . . . with no configuration b0, b1, . . . , bt being a failure
configuration, and (ii) the first component of bt is (ci)

n
i=1. We denote this set by

valid(σ, t).

Lemma 1. Let t ≥ 0 and let ((di, pi)
n
i=1, Q) ∈ V1 be the node reached by follow-

ing for 2t steps the walk induced by σ in the graph G+(T). Then Q = valid(σ, t).

Proof (sketch). By induction on t. When t = 0 the claim is true because the only
possible scheduler state is the 0 state. For larger t it follows from how we defined
the successor relation in G+(T) (see in particular the definition of Q′). ⊓⊔

Lemma 2. Task system T is infeasible if and only if, in the graph G+(T), some
failure state is reachable from the initial state.

Proof (sketch). If there is a path from the initial state to some failure state,
by Lemma 1 we obtain a legal job sequence σ that witnesses that for some t,
valid(σ, t) = ∅, that is, there is no valid scheduler state for σ at time t; so there
cannot be any feasible schedule for σ.

Conversely, if no failure state is reachable from the initial state, for any legal
job sequence σ one has valid(σ, t) 6= ∅ for all t by Lemma 1. This immediately
implies that no finite job sequence can be a witness of infeasibility. We also need
to exclude witnesses of infinite length. To do this, we apply König’s Infinity
Lemma [8, Lemma 8.1.2] (also stated in the Appendix). Consider the infinite
walk induced by σ inG+(T) and the corresponding infinite sequence of nonempty
sets of possible valid scheduler states Q0, Q1, . . ., where Qt := valid(σ, t). Each
scheduler state q ∈ Qt (t ≥ 1) has been derived by some scheduler state in
q′ ∈ Qt−1 and so q and q′ can be thought of as neighbors in an infinite graph on
the disjoint union of Q0, Q1, . . . (see Figure 2 in the Appendix). Then König’s
Lemma implies that there is a sequence q0q1 . . . (with qt ∈ Qt) such that for all
t ≥ 1, qt is a neighbor of qt−1. This sequence defines a feasible schedule for σ. ⊓⊔

Theorem 1. The feasibility problem for a sporadic constrained-deadline task

system T can be solved in time 22
O(s)

, where s is the input size of T . Moreover,

if T is infeasible, there is a witness job sequence of length at most 22
O(s)

.

7

Algorithm 1 Algorithm for the feasibility problem

for all failure states vf ∈ V1 do

if Reach(v0, vf , 2|B
+|) then

return infeasible

end if

end for

return feasible

Algorithm 2 Reach(x, y, k)

if k = 0 then

return true if x = y, false if x 6= y
end if

if k = 1 then

return true if (x, y) ∈ A, false otherwise
end if

for all z ∈ V1 ∪ V2 do

if Reach(x, z, ⌊k/2⌋) and Reach(z, y, ⌈k/2⌉) then
return true

end if

end for

return false

Proof. The graph has 2|B+| = 22
O(s)

nodes, so the first part follows from Lemma
2 and the existence of linear-time algorithms for the reachability problem. The
second part follows similarly from the fact that the witness sequence σ can be
defined by taking σ(t) as the set of task activations corresponding to the (2t+1)-
th arc on the path from the initial state to the reachable failure state. ⊓⊔

We can in fact improve exponentially the amount of memory needed for
the computation. The idea is to compute the state graph as needed, instead
of storing it explicitly (Algorithm 1). We enumerate all failure nodes; for each
failure node vf , we check whether there exists a path from v0 to vf in G+(T) by
calling the subroutine Reach (Algorithm 2). This subroutine checks recursively
whether there is a path from x to y of length at most k by trying all possible
midpoints z. Some readers might recognize that Reach is nothing but Savitch’s
reachability algorithm [16]. This yields the following improvement.

Theorem 2. The feasibility problem for a sporadic constrained-deadline task
system T can be solved in space 2O(s), where s is the input size of T .

Proof. Any activation of Algorithm 2 needs O(log |B+|) = 2O(s) space, and the
depth of the recursion is at most O(log |B+|) = 2O(s). ⊓⊔

3.2 Online feasibility

An issue with the notion of feasibility as studied in the previous section is that,
when the task system turns out to be feasible, one is still left clueless as to how

8

the system should be scheduled. The definition of online feasibility (see Section
2) addresses this issue. It could be argued from a system design point of view
that one should focus on the notion of online feasibility, rather than on the notion
of feasibility. In this section we discuss an algorithm for testing online feasibility.

The idea is again to interpret the process as a game between the environment
and the scheduler, with the difference that now the adversary can observe the
current state of the scheduler (the remaining compute times). In other words,
the game is no longer a blindfold game but a perfect-information game. We
construct a graph G(T) = (V1, V2, A) where V1 = B and V2 = B × C. The
nodes in V1 are decision points for the adversary (with different outgoing arcs
corresponding to different tasks being activated) and the nodes in V2 are decision
points for the scheduler (different outgoing arcs corresponding to different sets
of tasks being scheduled). There is an arc (v1, v2) ∈ A if v2 = (v1, k) for some
tuple k = (ki)

n
i=1 ∈ C of jobs that can legally be released when the backlog

configuration is v1; notice the crucial fact that whether some tuple k can legally
be released can be decided on the basis of the backlog configuration v1 alone.
There is an arc (v2, v

′
1) if v2 = (v1, k) and v′1 is a backlog configuration that

can be obtained by v1 after scheduling some subset of tasks; again this depends
only on v1 and k. In the interest of space we omit the formal description of the
adjacency relation (it can be found in the Appendix).

The game is now played with the adversary starting first in state b0 =
(0, 0, 0)ni=1. The two players take turns alternately and move from state to state
by picking an outgoing arc from each state. The adversary wins if it can reach a
state in V1 corresponding to a failure configuration. The scheduler wins if it can
prolong play indefinitely while never incurring in a failure configuration.

Lemma 3. The first player has a winning strategy in the above game on G(T)
if and only if T is not online feasible. Moreover, if T is online feasible, then it
admits an optimal memoryless deterministic online algorithm.

Proof (sketch). If the first player has a winning strategy s, then for any online
algorithm Alg, the walk in G(T) obtained when player 1 plays according to s
and player 2 plays according to Alg, ends up in a failure configuration. But
then the job sequence corresponding to this walk in the graph (given by the
odd-numbered arcs in the walk) defines a legal job sequence that is not feasibly
scheduled by Alg.

If, on the other hand, the first player does not have a winning strategy, from
the theory of two-player perfect-information games it is known (see for example
[11, 14]) that the second player has a winning strategy and that this can be
assumed to be, without loss of generality, a deterministic strategy that depends
only on the current state in V2 (a so-called memoryless, or positional, strategy).
Hence, for each node in V2 it is possible to remove all but one outgoing arc so
that in the remaining graph no failure configuration is reachable from b0. The
set of remaining arcs that leave V2 implicitly defines a function from V2 = B×C
to S, that is, a memoryless online algorithm, which feasibly schedules every legal
job sequence of T . ⊓⊔

9

Theorem 3. The online feasibility problem for a sporadic constrained-deadline
task system T can be solved in time 2O(s), where s is the input size of T . If T
is online feasible, an optimal memoryless deterministic online algorithm for T
can be constructed within the same time bound.

Proof. We first construct G(T) in time polynomial in |B × (B × C)| = 2O(s).
We then apply the following inductive algorithm to compute the set of nodes
W ⊆ V1 ∪ V2 from which player 1 can force a win; its correctness has been
proved before (see for example [11, Proposition 2.18]). Define the set Wi as
the set of nodes from which player 1 can force a win in at most i moves, so
W = ∪i≥0Wi. The set W0 is simply the set of all failure configurations. The set
Wi+1 is computed from Wi as follows:

Wi+1 = Wi ∪ {v1 ∈ V1 : (v1, w) ∈ A for some w ∈ Wi}

∪ {v2 ∈ V2 : w ∈ Wi for all (v2, w) ∈ A}.

At any iteration either Wi+1 = Wi (and then W = Wi) or Wi+1 \Wi contains at
least one node. Since there are 2O(s) nodes, this means that W = Wk for some
k = 2O(s). Because every iteration can be carried out in time 2O(s), it follows
that the set W can be computed within time (2O(s))2 = 2O(s). By Lemma 3, T
is online feasible if and only if b0 /∈ W .

The second part of the claim follows from the second part of Lemma 3 and
from the fact that a memoryless winning strategy for player 2 (that is, an optimal
memoryless scheduler) can be obtained by selecting, for each node v2 ∈ V2 \W ,
any outgoing arc that does not have an endpoint in W . ⊓⊔

3.3 Schedulability

In the case of the schedulability problem, we observe that the construction of
Section 3.1 can be applied in a simplified form, because for every node of the
graph there is now at most one possible valid scheduler state, which can be
determined by querying the scheduling algorithm. This implies that the size of
the graph reduces to 2|B| = 2O(s). By applying the same approach as in Section
3.1, we obtain the following.

Theorem 4. The schedulability problem for a sporadic constrained-deadline task
system T can be solved in time 2O(s2) and space O(s2), where s is the input size
of T .

Proof (sketch). Any activation of Algorithm 2 needs O(log |B|) = O(s) space,
and the depth of the recursion is at most O(log |B|) = O(s), so in total a space
of O(s2) is enough. The running time can be found by the recurrence T (k) =

2O(s) ·2·T (k/2)+O(1) which gives T (k) = 2O(s log k) and finally T (2|B|) = 2O(s2).
⊓⊔

10

4 Continuous versus discrete schedules

In this section we show that, under our assumption of integer arrival times for
the jobs, the feasibility of a sporadic task system does not depend on whether
one is considering discrete or continuous schedules.

Let J be the (possibly infinite) set of jobs generated by a job sequence σ. In
this section we do not need to keep track of which tasks generate the jobs, so
it will be convenient to use a somewhat different notation. Let rj , cj , dj denote
respectively the release date, compute time and absolute deadline of a job j; so
job j has to receive cj units of processing in the interval [rj , dj]. A continuous
schedule for J on m processors is a function w : J × N → R+ such that:

1. w(j, t) ≤ 1 for all j ∈ J and t ∈ N;
2.

∑

j∈J w(j, t) ≤ m for all t ∈ N.

Quantity w(j, t) is to be interpreted as the total amount of processing dedicated
to job j during interval [t, t + 1]. Thus, the first condition forbids the parallel
execution of a job on more than one processor; the second condition limits the
total volume processed in the interval by the m processors. The continuous
schedule w is feasible for σ if it additionally satisfies

3.
∑

rj≤t<dj
w(j, t) ≥ cj for all j ∈ J .

Finally, a task system T is feasible with respect to continuous schedules if any
legal job sequence σ from T has a feasible continuous schedule. For the sake of
clarity we call a system that is feasible in the sense defined in Section 2 feasible
with respect to discrete schedules.

Theorem 5. A sporadic constrained-deadline task system T is feasible with re-
spect to continuous schedules iff it is feasible with respect to discrete schedules.

Proof. If a task system is feasible with respect to discrete schedules, it is obvi-
ously also feasible with respect to continuous schedules: a discrete schedule is
just a special case of a continuous schedule where w(j, t) ∈ {0, 1}. So assume
that a task system T is feasible with respect to continuous schedules, but not
with respect to discrete schedules. Then there must be a witness job sequence
σ that cannot be scheduled by any discrete schedule, but can be scheduled by
some continuous schedule. By Theorem 1, we can assume that σ has some finite

length L ≤ 22
O(|T |)

. So it generates a finite collection of jobs J . But any feasible
continuous schedule for a finite collection of jobs can be converted into a fea-
sible discrete schedule [3, 6, 12] (see Appendix for a self-contained proof). This
contradicts the initial assumption. ⊓⊔

5 Conclusion

We have given upper bounds on the complexity of testing the feasibility, the
online feasibility, and the schedulability of a sporadic task system on a set of

11

identical processors. It is known that these three problems are at least coNP-
hard [9]; however, no sharper hardness result is known. A natural question is to
characterize more precisely the complexity of these problems, either by improving
on the algorithms given here, or by showing that these problems are hard for
some complexity class above coNP.

Acknowledgments. We thank Sanjoy K. Baruah, Nicole Megow and Sebastian
Stiller for useful discussions.

References

1. T. P. Baker and S. K. Baruah. Schedulability analysis of multiprocessor sporadic
task systems. In S. H. Son, I. Lee, and J. Y.-T. Leung, editors, Handbook of

Real-Time and Embedded Systems, chapter 3. CRC Press, 2007.
2. T. P. Baker and M. Cirinei. Brute-force determination of multiprocessor schedula-

bility for sets of sporadic hard-deadline tasks. In Proc. of 11th Conf. on Principles

of Distributed Systems, pages 62–75, 2007.
3. S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–625,
1996.

4. S. K. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms and com-
plexity. In J. Y.-T. Leung, editor, Handbook of Scheduling: Algorithms, Models,

and Performance Analysis, chapter 28. CRC Press, 2003.
5. S. K. Baruah and K. Pruhs. Open problems in real-time scheduling. Journal of

Scheduling, 2009. doi:10.1007/s10951-009-0137-5.
6. S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity con-

cerning the preemptive scheduling of periodic, real-time tasks on one processor.
Real-Time Systems, 2(4):301–324, 1990.

7. M. L. Dertouzos. Control robotics: The procedural control of physical processes.
In Proc. IFIP Congress, pages 807–813, 1974.

8. R. Diestel. Graph theory. Springer, Heidelberg, 3rd edition, 2005.
9. F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task

systems is coNP-hard. In Proc. 21st Symp. on Discrete Algorithms, pages 1029–
1034, 2010.

10. N. Fisher, J. Goossens, and S. K. Baruah. Optimal online multiprocessor scheduling
of sporadic real-time tasks is impossible. Technical Report 09–009, University of
North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC,
2009.

11. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer

Science. Springer, 2002.
12. W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quar-

terly, 21:177–185, 1974.
13. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.
14. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
15. J. H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274–301, 1984.
16. W. J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Journal of Computer and Systems Sciences, 4(2):177–192, 1970.

12

A Appendix

A.1 König’s Infinity Lemma

A ray is an infinite graph (V,E) of the form

V = {x0, x1, x2, ...}, E = {(x0, x1), (x1, x2), (x2, x3), . . .}.

König’s Infinity Lemma. Let Q0, Q1, . . . be an infinite sequence of disjoint
nonempty finite sets of nodes, and let G be a graph on their union. Assume that
every node q in a set Qt with n ≥ 1 has a predecessor q′ in Qt−1, so that (q′, q)
is an arc of G. Then G contains a ray q0, q1, . . . with qt ∈ Qt for all t.

Proof. See for example [8, Lemma 8.1.2] (the result is stated there in terms of
undirected graphs, but the proof works equally well for the directed case.) ⊓⊔

A.2 Definition of G(T) in Section 3.2

Recall that B = C × D × P and that G(T) = (V1, V2, A), where V1 = B
and V2 = B × C. We specify the adjacency relation A. Consider an arbitrary
node v1 ∈ V1 with v1 = (ci, di, pi)

n
i=1. Its successors in G(T) are all nodes

v2 = ((c′i, d
′
i, p

′
i)

n
i=1, (ki)

n
i=1) ∈ V2 with (ki)

n
i=1 ∈ C such that:

1. pi = 0 for all i ∈ supp(k), where supp(k) = {i : ki > 0} (this ensures that
each task in k can be activated);

2. p′i = Pi, and d′i = Di for all i ∈ supp(k) (activated jobs cannot be reactivated
before Pi time units);

3. p′i = pi and d′i = di for all i /∈ supp(k) (counters of other tasks are not
affected);

4. c′i = ki for all i ∈ supp(k), and c′i = ci for all i /∈ supp(k) (the remaining
compute time of each activated job is set to the one prescribed by k);

Now consider an arbitrary node v2 ∈ V2, say v2 = ((ci, di, pi)
n
i=1, (ki)

n
i=1). Its

successors in G(T) are all nodes v1 = ((c′i, d
′
i, p

′
i)

n
i=1) ∈ V1 for which there is

some S ∈ S such that:

1. d′i = max(di − 1, 0), p′i = max(pi − 1, 0) for all i ∈ [n] (this models a “clock-
tick”);

2. c′i = max(ci − 1, 0) for all i ∈ S and c′i = ci for all i /∈ S (the new remain-
ing compute times are obtained from the old remaining compute times by
processing at most m tasks).

A.3 Missing details for Theorem 5

Proof (Missing details for Theorem 5). We show that any finite job set J has a
discrete schedule whenever it has a continuous schedule. We setup an instance
of a maximum flow problem whose solutions correspond to continuous schedules
for σ, and whose integral solutions correspond to discrete schedules for σ; see
also a similar construction in [3, 6, 12]. We build a network N consisting of four
types of nodes:

13

1. a source node a;
2. for every t = 0, 1, . . . ,maxj∈J dj , a node xt;
3. for every job j in σ, a node qj ;
4. a sink node z.

The arcs of the network are as follows:

1. from a to each Type 2 node, an arc with capacity m (m is the number of
processors);

2. from each Type 2 node xt to each Type 3 node qj such that rj ≤ t < dj , an
arc with capacity 1;

3. from each Type 3 node qj to z, an arc with capacity cj .

Let K be the sum of the capacities of Type 3 edges.
Assume that a feasible continuous schedule w exists for σ. We now define a

flow by setting the flow on each arc (a, xt) to be
∑

j∈J w(j, t); the flow on each
arc (xt, qj) to w(j, t); and the flow on each arc (qt, z) to cj . Now conditions (1)
and (2) in the definition of continuous schedule for w ensure that the capacity
constraints are satisfied. Condition (3) ensures that the amount of flow entering
any Type 3 node qj is at least

∑

rj≤t<dj

w(j, t) ≥ cj .

Notice that some Type 3 node might have more flow entering the node than
leaving it; but in that case we can still obtain a feasible flow of the same value
by decreasing the incoming flow, and the capacities will not be violated.

Since all the capacities are integral we know there must be an optimal integral
flow; its value will be K. From this we can extract a discrete schedule by setting
w(j, t) equal to the flow on arc (xt, qj); this value must be either 0 or 1 by
integrality. The total flow collected at each node qj is exactly cj . We obtain a
feasible discrete schedule for σ, contradicting our initial assumption. ⊓⊔

14

d1: 0, t1: 0,
d2: 0, t2: 0

c1: 0, c2: 0

I

v0

d1: 0, t1: 0,
d2: 0, t2: 0

c1: 0, c2: 0

II

d1: 2, t1: 2,
d2: 0, t2: 0

c1: 1, c2: 0

II

...

d1: 1, t1: 1,
d2: 1, t2: 1

c1: 0, c2: 2
c1: 1, c2: 1
c1: 1, c2: 2

I

d1: 2, t1: 2,
d2: 2, t2: 2

c1: 1, c2: 2

II

d1: 1, t1: 1,
d2: 1, t2: 1

c1: 0, c2: 2
c1: 1, c2: 1
c1: 1, c2: 2

II

d1: 0, t1: 0,
d2: 0, t2: 0

∅

I

d1: 0, t1: 0,
d2: 2, t2: 2

c1: 0, c2: 2

II

...

Fig. 1. A subgraph of the graph G+(T) for the task system T = ((1, 2, 2), (2, 2, 2)) and
m = 1. Nodes labeled with “I” are in V1, nodes labeled with “II” are in V2.

15

Q0

v0

Q1 Q2 Q3

valid scheduler state

Walk in G+(T) (nodes in V1)

Fig. 2. Illustration of how König’s Lemma applies to the proof of Lemma 2. A prefix
of an infinite ray is shown in solid lines.

16

