
Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs

Telikepalli Kavitha

Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the prob-
lem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algo-
rithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted
graphs. Zwick [14] showed that for any fixed ε > 0, stretch1 1 + ε distances between all pairs of vertices in a
weighted directed graph on n vertices can be computed in Õ(nω) time, where ω < 2.376 is the exponent of matrix
multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all
pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that
all-pairs stretch 3 distances can be computed in Õ(n2) time and all-pairs stretch 7/3 distances can be computed in
Õ(n7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances
in G, for any 0 < ε < 1.
We show that all pairs stretch (2 + ε) distances for any fixed ε > 0 in G can be computed in expected time
O(n9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinato-
rial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n9/4) for computing
all-pairs stretch 5/2 distances in G.

1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most fundamental algorithmic graph problems.
Efficient algorithms for the APSP problem are very important in several applications. The complexity of the
fastest known algorithm for the APSP problem in a graph with m edges, n vertices and real non-negative
edge weights is O(mn + n2 log logn) [12]. Thus this algorithm has a running time of Θ(n3) when m =
Θ(n2). In fact, the best known upper bound on the worst case time complexity of this problem (in terms
of n) is O(n3/ logn) [5], which is marginally subcubic. An almost cubic running time is inefficient for
several applications, and this has motivated faster algorithms to compute approximate solutions for the
APSP problem.

Let G = (V,E) be an undirected graph with non-negative edge weights. A path in G between u,v ∈ V
is said to be of stretch t if its length is at most t · δ (u,v) where δ (u,v) is the distance between u and v in
G. In this paper we are interested in computing small stretch paths/distances between all pairs of vertices.
Zwick [14] showed that for any ε > 0, stretch 1 + ε distances between all pairs of vertices in a weighted
directed graph on n vertices can be computed in time Õ(nω/ε · log(W/ε)), where ω < 2.376 is the exponent
of matrix multiplication and W is the largest edge weight in the graph, after the edge weights are scaled
so that the smallest non-zero edge weight in the graph is 1. It is also known that finding paths of stretch
less than 2 between all pairs of vertices in an undirected graph on n vertices is at least as hard as Boolean
matrix multiplication of two n× n matrices. Given an undirected weighted graph on n vertices, computing
all-pairs stretch 3 distances in Õ(n2) time and all-pairs stretch 7/3 distances in Õ(n7/3) time is known
[7] (these algorithms use only combinatorial techniques, i.e., fast matrix multiplication subroutines are not
used). Researchers have been trying to explore the possible trade-off between stretch and running time for
the problem of computing all-pairs t-stretch distances for t ∈ [2,3).

1 A path in G between u,v ∈V is said to be of stretch t if its length is at most t times the distance between u and v in G.

1.1 Our Main Results

In this paper we consider faster algorithms for the problem of computing all-pairs stretch t distances for
2 < t < 3 in a weighted undirected graph G on n vertices. We first present a combinatorial algorithm
STRETCH5/2 and show the following result. (For any pair of vertices u,v in G, let δ (u,v) denote the distance
between u and v in G.)

Theorem 1. Algorithm STRETCH5/2(G) runs in expected time O(n9/4), where n is the number of vertices
in the input graph G and constructs an n×n table d such that: δ (u,v) ≤ d[u,v] ≤ 5/2 ·δ (u,v).

We then augment our combinatorial algorithm STRETCH5/2(G) with a fast rectangular matrix multiplica-
tion subroutine and present the algorithm STRETCH2+ε(G) and prove the following result.

Theorem 2. Given any ε > 0, algorithm STRETCH2+ε(G) constructs an n×n table d such that δ (u,v) ≤
d[u,v] ≤ (2 + ε)δ (u,v) in expected time O(n9/4 logn)+ Õ(n2.248(log2 W)/ε2), where n is the number of
vertices in the input graph G and W is the largest edge weight after scaling the edge weights so that the
smallest non-zero edge weight is 1.

Thus when all edge weights in G are polynomial in n and ε > 0 is a constant, STRETCH2+ε(G) com-
putes all-pairs stretch 2+ ε distances in expected time O(n9/4 log n) since Õ(n2.248) is o(n9/4).

Motivation. During the last 10-15 years, many new combinatorial algorithms [2, 6, 1, 8, 7, 13, 3, 9] were
designed for the all-pairs approximate shortest paths problem in order to achieve faster running times in
weighted and unweighted graphs. In weighted graphs, the current fastest randomized combinatorial algo-
rithms (from [4]) for computing all-pairs stretch t distances for t < 3 in G with m edges and n vertices are:
computing all-pairs stretch 2 distances in expected Õ(m

√
n + n2) time and computing all-pairs stretch 7/3

distances in expected Õ(m2/3n + n2) time. These algorithms are improvements of the following determin-
istic algorithms: an Õ(n3/2m1/2) algorithm for stretch 2 distances and an Õ(n7/3) algorithm for stretch 7/3
distances by Cohen and Zwick [7]. However when m = Θ(n2), there is no improvement in the running time
and stretch 2 distances are computed in Θ̃ (n5/2) time and stretch 7/3 distances are computed in Θ̃ (n7/3)
time. There is an algorithm [4] with expected running time Õ(n2) for computing approximate (u,v) dis-
tances for all pairs (u,v), where the distance returned is at most 2δ (u,v)+ maximum weight of an edge on
a u-v shortest path. However, note that we cannot claim that the stretch here is at most 3− ε for any fixed
ε > 0. Thus there was no o(n7/3) algorithm known for computing all-pairs stretch (3− ε) distances for any
constant ε > 0. We try to fill this gap in this paper.

Our techniques. Our algorithms construct a decreasing sequence of sets: V = S0 ⊇ S1 ⊇ S2 ⊇ S3. Vertices in
each Si perform Dijkstra in a specific subgraph Gi+1 of G, where the density of Gi+1 is inversely proportional
to the cardinality of Si. Then these sets Si cooperate with each other. For instance, vertices in S1 and S2
exchange information about the distances they have computed. Then each v ∈ S i performs Dijkstra again in
the subgraph Gi+1 augmented with new “edges”, corresponding to the new knowledge of distances that v
has acquired. We show that now each pair (u,v) has enough data to compute a stretch 5/2 estimate of its
distance δ (u,v).

The step where each vertex in the set Si performs Dijkstra twice in a subgraph Gi+1 bears a lot of
similarity with schemes in [7] for computing all-pairs small stretch distances. The new idea here is the
cooperation between the sets Si - this cooperation forms a crucial step of our algorithm and that is what
ensures a small stretch. In our analysis of algorithm STRETCH5/2(G) we actually get a bound of 7/3 on the
stretch in all cases, except one where we get a stretch of 5/2.

2

Improved stretch. The stretch in this algorithm can be improved to 2+ε by using a subroutine for witnessing
a Boolean product matrix. This subroutine for witnessing a Boolean product matrix is implemented using
fast rectangular matrix multiplication. If we assume that all edge weights are O(nc) for some fixed c and ε >
0 is any constant, then the expected running time of this step is also O(n9/4). But we have to be more careful
in constructing the set S1 in this algorithm and so the overall cost of the algorithm becomes O(n9/4 logn).

Note that these algorithms can be easily modified to also report the corresponding approximate shortest
path, and the time for doing so, is proportional to the number of edges in the approximate shortest path.

Related results. An active area of research in algorithms that report all-pairs small stretch distances is in
designing compact data structures, to answer distance queries. Instead of storing an n× n look-up table,
these algorithms use o(n2) space. More specifically, for any integer k ≥ 1, the data structure uses O(kn1+1/k)
space and it answers any distance query with stretch 2k−1, in O(k) time [13]. It was shown in [13] that any
such data structure with stretch t < 3 must use Θ(n2) space on at least one input graph. Hence, in algorithms
that compute all-pairs stretch 3− ε distances for ε > 0, what one seeks to optimize is the running time of
the algorithm, since the space requirement is Θ(n2).

For unweighted graphs, there are many results known for computing all-pairs small stretch paths or
distances. More results, in particular, results with additive error are known when the graph is unweighted.
Aingworth et al. [1] showed a simple and elegant Õ(n5/2) algorithm for finding all distances in unweighted
undirected graphs with an additive one-sided error of at most 2. Dor et al. [8] improved and extended
this algorithm and they find all-pairs distances in unweighted undirected graphs with an additive one-sided
error of at most 2(k − 1) in O(kn2− 1

k m 1
k polylog n) time. The algorithms in [3, 9] compute approximate

distances in unweighted graphs with both multiplicative as well as additive errors simultaneously. Note that
the techniques used in unweighted graphs do not typically generalize to weighted graphs.

Organization of the paper. The preliminaries are given in Section 2. In Section 3 we present our algorithm
STRETCH5/2(G) and prove the bound on its stretch. In Section 4 we present our algorithm STRETCH2+ε(G)
and prove its correctness.

2 Preliminaries

We have the following sampling scheme: V = S0 ⊇ S1 ⊇ S2 ⊇ S3 ⊇ S4 = /0
where each Si, i = 1,2,3 is obtained by sampling vertices in Si−1 with probability n−1/4. Note that the
expected size of S1 is n3/4, of S2 is

√
n, and of S3 is n1/4. For each vertex u ∈ V and for i = 1,2,3, define

δ (u,Si) as the distance between u and the vertex in Si that is nearest to u. Let si(u) ∈ Si be the vertex in
Si that is nearest to u. That is, δ (u,Si) = δ (u,si(u)) ≤ δ (u,x) for all x ∈ Si. In case there is more than one
vertex in Si with distance δ (u,Si) to u, then break the tie arbitrarily to define si(u). Note that since S4 = /0,
we define δ (u,S4) = ∞.

Now we need to define certain neighborhoods around a vertex u.

Definition 1 (from [13]). For any vertex u and for i = 1,2,3, define balli(u) as:

balli(u) = {v ∈V : δ (u,v) < δ (u,Si)}.

That is, balli(u) is the set of all vertices v that are strictly closer to u than the nearest vertex in S i is to u.

The graphs of interest to us in our algorithms are the graphs Gi = (V,Ei) for i = 1,2,3, where

Ei = {(u,v) ∈ E : v ∈ balli(u)}.

3

Note that Gi, for i = 1,2,3, are undirected graphs. Each Gi is a subgraph of G, where each vertex x ∈ V
keeps edges to only those of its neighbors that lie in balli(x). Note that constructing these graphs Gi is easy.
In G, connect a dummy vertex s∗ to all the vertices of the set Si and assign weight zero to all these edges.
Now run Dijkstra’s shortest paths algorithm with source s∗ in G. The distance returned between s∗ and u is
the distance δ (u,Si), for any u ∈ V . The vertex si(u) is the successor of s∗ in the shortest s∗-u path in this
graph. To form the edge set Ei of Gi, each u looks at its adjacency list and retains only those neighbors v
where δ (u,v) < δ (u,Si). We have E1 ⊆ E2 ⊆ E3 ⊆ E = E4.

The following claims, which are simple to show, are stated in the form of Proposition 1 and Proposition 2.
They will be used repeatedly in the paper and their proofs are given in the Appendix.

Proposition 1. For Si ⊆V, (i ∈ {1,2,3}) the following assertions are true.

1. For any two vertices u,v ∈V , if v ∈ balli(u), then the subgraph Gi = (V,Ei) preserves the exact distance
between u and v.

2. The subgraph Gi = (V,Ei ∪E(si(u))) preserves the exact distance between u and si(u), where E(si(u))
is the set of edges incident on si(u).

Proposition 2. If the set Si ⊆ V is formed by selecting each vertex independently with probability q, then
the expected size of the set Ei is O(n/q).

We now define the set bunchi(u). For any vertex u ∈V and i = 1,2,3, the set bunchi(u) ⊆ Si is defined
as follows: bunchi(u) = {x ∈ Si| δ (u,x) < δ (u,Si+1)}∪{si(u)}. That is, bunch3(u) = S3 since δ (u,S4) = ∞,
while bunch2(u) consists of s2(u) and all the vertices in S2 that belong to ball3(u) and bunch1(u) consists
of s1(u) and all the vertices in S1 that belong to ball2(u). The following result about the expected size of
bunchi(u) and the complexity of computing the set bunchi(u) was shown in [13].

Lemma 1. [13] Given a graph G = (V,E), let the set Si+1 be formed by picking each vertex of a set Si ⊆V
independently with probability q. Then
(i) the expected number of x ∈ Si such that δ (u,x) < δ (u,Si+1) is at most 1/q for each u, and
(ii) the expected time to compute the sets bunchi(u), summed over all u ∈V , is O(m/q).

Another concept that we use is the notion of overlap of balli(u) and balli(v). We define this term below
and Fig. 1 illustrates this.

Definition 2. Let u,v ∈V . For any i = 1,2,3, we say that balli(u) and balli(v) overlap if

δ (u,Si)+δ (v,Si) > δ (u,v).

PSfrag replacements

uu vv SP(u,v)SP(u,v)

si(u)si(u)
si(v)si(v)

Fig. 1. In the figure on the left, balli(u) and balli(v) do not overlap; whereas on the right, they overlap.

4

Remark 1. The set S1 can also be obtained deterministically in O(m+n) time using algorithms from [1, 8];
then S1 would dominate all vertices of degree at least n1/4 and |S1| would be O(n3/4 log n). The edge set |E1|
will be the set of the lightest n1/4 edges touching each vertex (see [1, 7, 8] for the details).

Then the set S2 will be obtained by sampling vertices in S1 with probability n−1/4 and the set S3 will be
obtained by sampling vertices in S2 with probability n−1/4. We will use this construction of V ⊇ S1 ⊇ S2 ⊇ S3
in Section 4, since there we need |S1| to be O(n3/4 logn) always.

3 All-pairs stretch 5/2 distances

Let G = (V,E) be an undirected graph with a weight function w : E → Q+. Our algorithm for computing
small stretch distances runs Steps 1-5 given below for 2 iterations and as the algorithm evolves, distance
estimates computed till then will be stored in an n× n table d. The table d is initialized as: d[u,u] = 0 and
d[u,v] = w(u,v) for all (u,v) ∈ E . Otherwise d[u,v] = ∞.

A basic step that we use in our algorithm is the following: a vertex v performs Dijkstra in a subgraph G ′

that is augmented with all pairs (v,x). That is, (v,x) need not be an edge, however pairs (v,x) with weight
d[v,x] for all x ∈V are added to the edge set of G′, so that the source vertex v can use the distance estimates
that it has acquired already, in order to find better paths to other vertices.

We first construct the sets V ⊇ S1 ⊇ S2 ⊇ S3 using our sampling scheme, and build the graphs Gi =
(V,Ei), where Ei = ∪uballi(u) and also construct the sets bunchi(u), for i = 1,2,3 (see Section 2 for more
details).

The Algorithm STRETCH5/2(G)

– Initialize the table d as described above.
– Each vertex v ∈ S3 performs Dijkstra in the entire graph G and the table d gets updated accordingly.

** Run Steps 1-5 for 2 iterations and return the table d.

1. Each vertex u runs Dijkstra’s single source shortest paths algorithm in the graph G1 = (V,E1) that is
augmented with pairs (u,x) for all x ∈V with weight d[u,x].
(Dijkstra’s algorithm will update the entries in the row corresponding to u in the table d.)
– Each u now updates entries corresponding to the rows of all vertices s, in the table d, where
s ∈ bunch1(u)∪bunch2(u).
(That is, if for some y ∈V we have d[s,u]+d[u,y] < d[s,y] where s ∈ bunch1(u)∪bunch2(u), then
we set d[s,y] = d[s,u]+d[s,y].)

2. Each vertex s1 ∈ S1 runs Dijkstra’s algorithm in the graph G2 = (V,E2) that is augmented with all
pairs (s1,x) with weight d[s1,x].
– Each s1 ∈ S1 updates entries corresponding to the rows of all vertices in S2 in the table d.

3. Each vertex s2 ∈ S2 runs Dijkstra’s algorithm in the graph G3 = (V,E3) augmented with all pairs
(s2,x) with weight d[s2,x].
– Each s2 ∈ S2 updates entries corresponding to the rows of all vertices in S1 in the table d.

4. For every (u,v) store in d[u,v] the minimum of d[u,v],d[u,s]+d[s,v],
where s ∈ ∪3

i=1bunchi(u).
5. Make the table d symmetric: that is, store in d[u,v] the minimum of d[u,v] and d[v,u].

5

Running Time Analysis. The expected size of Si is n1−i/4 for i = 1,2,3 and the expected size of Ei, the set
of edges in Gi, is O(n1+i/4) (by Lemma 2). The expected time taken for all vertices in Si to perform Dijkstra
in the graph Gi+1 is

∑
v∈V

(n−1+E[Xv| v ∈ Si]) ·Pr[v ∈ Si] (1)

where Xv is the random variable denoting the number of all edges present in the set E i+1 excluding those
incident on v. It is easy to show that

E[Xv| v ∈ Si] ≤ E[Y | v ∈ Si] = E[Y] ≤ n1+(i+1)/4 (2)

where Y is the random variable denoting the number of edges in the graph G i+1 −{v}. Note that Y is
independent of whether or not v ∈ Si because v is not present in Gi+1 −{v}. Combining Equations (2) and
(1), the expected time taken for all vertices in Si to perform Dijkstra in the graph Gi+1 is bounded by

∑
v∈V

(

n−1+n1+(i+1)/4
)

·Pr[v ∈ Si] ≤ 2n9/4

since Pr[v ∈ Si] = n1−i/4.
For each i ∈ {1,2,3} the expected size of bunchi(u) for any u ∈V is O(n1/4) (by Lemma 1(i)) and the

time to compute all the sets bunchi(u) is O(mn1/4) (by Lemma 1(ii)). Thus we have shown the following
lemma.

Lemma 2. The expected running time of the algorithm STRETCH5/2(G) is O(n9/4).

3.1 Correctness of the algorithm STRETCH5/2(G)

Lemma 3. For each pair (u,v) ∈ V ×V , we have: δ (u,v) ≤ d[u,v] ≤ 5/2 · δ (u,v), where d is the table
returned by the algorithm STRETCH5/2(G) and δ (u,v) is the distance between u and v in G.

Proof. For every u,v, since d[u,v] is the length of some path in G between u and v, we always have δ (u,v) ≤
d[u,v]. The hard part of the lemma is showing the upper bound on d[u,v]. For any pair of vertices u and v,
let SP(u,v) denote the shortest path between u and v in G. Let us first show the following claim.

Claim 1 For any i ∈ {1,2,3}, if all the edges in SP(u,v) are present in Gi+1 = (V,Ei+1) and balli(u) and
balli(v) do not overlap, then d[u,v] ≤ 2δ (u,v).

Proof. It is given that all the edges in SP(u,v) are present in Ei+1. So all the edges in the path2 si(u) u v
obtained by concatenating SP(si(u),u) and SP(u,v) are present in Ei+1 ∪E(si(u)) (by Proposition 1), where
E(si(u)) is the set of edges incident on si(u). Similarly, all the edges in the path si(v) v u are present in
Ei+1∪E(si(v)). Since every vertex x ∈ Si performs Dijkstra in the graph Gi+1 augmented with E(x), we have
d[si(u),v] ≤ δ (si(u),u)+ δ (u,v) and d[si(v),u] ≤ δ (si(v),v)+ δ (u,v). Also, because balli(u) and balli(v)
do not overlap, we have δ (si(u),u)+δ (si(v),v) ≤ δ (u,v). Combining these inequalities, we have

min{δ (u,si(u))+d[si(u),v], δ (v,si(v))+d[si(v),u]} ≤ 2δ (u,v).

Step 4 in our algorithm ensures that: d[u,v] ≤ min{δ (u,si(u)) + d[si(u),v],δ (v,si(v)) + d[si(v),u]}. Thus
d[u,v] ≤ 2δ (u,v). ut

2 Note that we use the symbols x y and x → y for illustrative purposes, the paths and edges here are undirected.

6

Claim 1 leads to the following corollary since E4 = E , the edge set of G, and E obviously contains all the
edges in SP(u,v).
Corollary 1 If ball3(u) and ball3(v) do not overlap, then d[u,v] ≤ 2δ (u,v).
Now let us consider the case when ball1(u) and ball1(v) overlap.

Claim 2 If ball1(u) and ball1(v) overlap, then d[u,v] = δ (u,v).

Proof. We are given that ball1(u) and ball1(v) overlap. So δ (u,v) < δ (u,s1(u))+ δ (v,s1(v)) and we can
partition the shortest path between u and v as: SP(u,v) = u a → b v, where all the vertices in u a
belong to ball1(u) and all the vertices in b v belong to ball1(v). Since the graph G1 has the edge set
∪xball1(x), the only edge in SP(u,v) that might possibly be missing in the graph G1 is the edge (a,b) (refer
Fig. 2). In the first iteration of the ** loop, in Step 1 (refer Algorithm STRETCH5/2(G)), the vertex b would

PSfrag replacements

u v
a bSP(u,v)

s1(u)

s1(v)

Fig. 2. ball1(u) and ball1(v) overlap.

perform Dijkstra in G1 augmented with the edge (a,b). Since the path a u is present in G1, in this step,
the vertex b would learn of its distance to u, i.e., d[b,u] = δ (u,b). Since the table d is made symmetric in
Step 5, d[u,b] = δ (u,b) at the end of the first iteration of the ** loop.

In the second iteration of the ** loop, u would augment the “edge” (u,b) with weight d[u,b] = δ (u,b)
to G1 and since all the edges in b v are present in G1, we have the path u → b v in the augmented G1.
Thus u determines d[u,v] = δ (u,v). This proves the statement of Claim 2. ut

We shall assume henceforth that ball3(u) and ball3(v) overlap and ball1(u) and ball1(v) do not overlap
(refer Corollary 1 and Claim 2). That leaves us with two further cases, as to whether ball2(u) and ball2(v)
overlap or not. We shall call them Case 1 and Case 2.

Case 1: ball2(u) and ball2(v) do not overlap.
If all the edges in SP(u,v) are present in G3 = (V,E3), then it follows from Claim 1 that d[u,v]≤ 2δ (u,v).
So let us assume that some of the edges of SP(u,v) are not present in G3 = (V,E3).
The graph G3 has the edge set E3 = ∪xball3(x). Since ball3(u) and ball3(v) overlap, the only way that
some of the edges in SP(u,v) are not present in E3 is that exactly one edge in SP(u,v) is missing from
E3. This edge is between the last vertex a (from the side of u) in SP(u,v) that is in ball3(u) and the
first vertex b in SP(u,v) that is in ball3(v) (refer Fig. 3). Every other vertex and its successor in SP(u,v)
would either both be in ball3(u) or both be in ball3(v) and such edges have to be present in G3.
By Step 4 we know that d[u,v] is at most the minimum of δ (u,s3)+ δ (s3,v) distances, where s3 ∈ S3.
Hence we have the following bound on d[u,v].

d[u,v] ≤ δ (u,s3(a))+δ (s3(a),v) (3)
≤ δ (u,v)+2δ (a,s3(a)) (4)
≤ δ (u,v)+2w(a,b). (5)

7

PSfrag replacements

u va b
SP(u,v)

s3(u)

s3(v)

Fig. 3. ball3(u) and ball3(v) overlap but the edge (a,b) is not present in G3.

Inequality (5) follows from Inequality (4) because the edge (a,b) is missing from ball3(a). Next, we
shall show that we also have the following inequalities.

d[u,v] ≤ δ (u,v)+2δ (u,a)+2δ (u,s2(u)) and (6)
d[u,v] ≤ δ (u,v)+2δ (v,b)+2δ (v,s2(v)). (7)

Adding Inequalities (5), (6), and (7), we get the following inequality:

3d[u,v] ≤ 5δ (u,v)+2δ (u,s2(u))+2δ (v,s2(v))
≤ 7δ (u,v)

since δ (u,s2(u))+δ (v,s2(v)) ≤ δ (u,v) because ball2(u) and ball2(v) do not overlap (by the definition
of Case 1). Thus we have d[u,v] ≤ 7/3 ·δ (u,v).
So all that is left here is to prove Inequalities (6) and (7). If s2(u) /∈ bunch2(a), then we have δ (a,s3(a))≤
δ (a,s2(u)) ≤ δ (a,u)+δ (u,s2(u)). Substituting this in Inequality (4), we get Inequality (6).
If s2(u) ∈ bunch2(a), then in the second iteration of the ** loop, in Step 1, the vertex a updates the
entry d[s2(u),b] to at most d[s2(u),a]+w(a,b) since s2(u) ∈ bunch2(a). We already have d[s2(u),a] ≤
δ (s2(u),u)+δ (u,a) since the path s2(u) u a is in the augmented G3. Thus after Step 1 in the second
iteration of the ** loop, we have d[s2(u),b] ≤ δ (s2(u),a)+w(a,b). In Step 3, s2(u) performs Dijkstra in
G3 augmented with the “edge” (s2(u),b) with weight at most d[s2(u),b]. Since all the edges of SP(b,v)
are in G3, we have d[s2(u),v] ≤ δ (s2(u),u) + δ (u,v). Since d[u,v] ≤ δ (u,s2(u)) + d[s2(u),v], we get
d[u,v] ≤ 2δ (u,s2(u))+δ (u,v). This implies Inequality (6). The proof of Inequality (7) is analogous to
the proof of Inequality (6). This finishes Case 1.

Case 2: ball2(u) and ball2(v) overlap.
This case is further split into 2 cases: CASE(I), where all the edges in SP(u,v) are present in G3 =
(V,E3) but not in G2 = (V,E2) and CASE (II), where some of the edges in SP(u,v) are not present in
G3 = (V,E3). We present the entire proof of Case 2 in the Appendix.

This finishes the proof of Lemma 3. ut

Lemma 3 and Lemma 2 yield Theorem 1, stated in Section 1. Note that in the proof of Lemma 3, we
show a stretch of at most 7/3 in all cases, except in CASE(II) of Case 2, where we show a stretch of 5/2.

4 All-pairs stretch (2+ ε) distances

Let ε > 0 be any given parameter. In this section we present our algorithm STRETCH2+ε(G) which takes
as input an undirected graph G = (V,E) with a weight function w : E → Q+ and computes an n× n table
d that stores all-pairs stretch (2 + ε) distances. In algorithm STRETCH2+ε(G) we augment the algorithm

8

STRETCH5/2 of the previous section with some more computation so that in the new algorithm we get a
stretch of at most 2 + ε . Note that we can assume that all edge weights are positive3 . Let us now scale the
edge weights, if necessary, so that the smallest edge weight is 1 and let W be the largest edge weight.

The Algorithm STRETCH2+ε(G)

1. Call algorithm STRETCH5/2(G). An n×n table d is returned.
2. Build the sequence of matrices M1,M2, . . . ,Mk, where k = dlog1+ε/2(5/2 ·nW)e. Each Mi is a 0-1 matrix

of dimension n×|S1| which is defined as: for each u ∈V and x ∈ S1

Mi[u,x] = 1 iff (1+ ε/2)i−1 ≤ d[u,x] ≤ (1+ ε/2)i.

The value d[u,x] is looked-up from the table d returned by the STRETCH5/2(G) algorithm in Step 1.
3. For each (i, j) ∈ {1, . . . ,k}×{1, . . . ,k} do:

– compute the n × n “Boolean product witness matrix” Wi j corresponding to the Boolean product
matrix MiMT

j . That is, for each (u,v) ∈V ×V :

Wi j[u,v] =

{

s for some s such that Mi[u,s] = 1 and M j[s,v] = 1
0 if there is no such s.

That is, if MiMT
j [u,v] = 1, then the entry Wi j[u,v] = s is a witness for MiMT

j [u,v] being 1.
4. For each pair (u,v) ∈V ×V do:

– for each (i, j) ∈ {1, . . . ,k}×{1, . . . ,k} do:
If Wi j(u,v) 6= 0 (call it x) and d[u,x]+d[x,v] < d[u,v] then set d[u,v] = d[u,x]+d[x,v].

5. Return the table d.

The algorithm for computing the matrix Wi j (from [11]) is given in the Appendix. It can be shown (see
[11] for the details) that this algorithm for computing Wi j has expected running time Õ(C(n)), where C(n)
is the time taken to multiply an n×nβ matrix with an nβ ×n matrix.

4.1 The running time of algorithm STRETCH2+ε(G)

In the algorithm STRETCH2+ε(G) the step whose time complexity is the most difficult to analyze is Step 3.
We know that the complexity of computing the witness matrix Wi j for each pair (i, j) is Õ(C(n)), where
C(n) is the time taken to multiply an n× nβ matrix with an nβ × n matrix. Here we will use the following
result.

Proposition 3 (Huang and Pan ([10] Section 8.2)). Multiplying an n× nβ matrix with an nβ × n matrix
for 0.294 ≤ β ≤ 1 takes time O(nα), where α = 2(1−β)+(β−0.294)ω

0.706 , and ω < 2.376 is the best exponent of
multiplying two n×n matrices.

We want |S1| to be always around O(nβ) for some small β now. Then we can use the above proposition to
bound the running time of Step 3. Hence we will use the deterministic construction of S1 given in Remark 1
(in Section 2) which guarantees that |S1| is O(n3/4 logn), which is at most n0.76 for sufficiently large n.

3 If there are edges with weight zero, then contract each such edge - this will reduce the number of vertices and it is simple to see
that we can easily extend the all-pairs small stretch distances table for the reduced graph to the all-pairs small stretch distances
table for the entire graph.

9

Substituting β = 0.76 in Proposition 3 yields C(n) is O(n2.248). So computing Wi j takes expected Õ(n2.248)
time. The entire running time of Step 3 is Õ(k2 · n2.248), where k = O(lognW/ε), W is the largest edge
weight. It is reasonable to assume that all edge weights are polynomial in n, since we always assumed that
arithmetic on these values takes unit time. Then the running time of this step then is Õ(n2.248/ε2), which
is O(n9/4) if ε is a constant. The call to STRETCH5/2(G) takes expected O(n9/4 log n) time now since
|Si| is O(n1−i/4 log n), for i = 1,2,3. Thus the expected running time of the algorithm STRETCH2+ε(G) is
Õ(n2.2.48 logW/ε2)+O(n9/4 log n) which is O(n9/4 logn) when edge weights are polynomial in n and ε > 0
is a constant.

4.2 Correctness of the algorithm STRETCH2+ε(G)

The following lemma shows the correctness of our algorithm.

Lemma 4. For every u,v ∈V , the estimate d[u,v] computed by the algorithm STRETCH2+ε(G) satisfies:
δ (u,v) ≤ d[u,v] ≤ (2+ ε)δ (u,v).

Proof. Since d[u,v] is always the length of some path in G between u and v, we have δ (u,v) ≤ d[u,v]. Now
we show the harder part, that is, the upper bound claimed on d[u,v]. Recall from Claim 2 that if ball1(u)
and ball1(v) overlap, then d[u,v] = δ (u,v). So let us assume henceforth that ball1(u) and ball1(v) do not
overlap. We will show the following claim.

Claim 3 If ball1(u) and ball1(v) do not overlap, then some vertex s ∈ S1 satisfies d[s,u]+d[s,v] ≤ 2δ (u,v).

The above claim immediately shows a stretch of 2 + ε of the distance estimate d computed. If s = u
or s = v (which might happen if u or v is in S1) then the above claim implies that d[u,v] ≤ 2δ (u,v) which
is a stretch of just 2 of the distance estimate computed. Hence let us assume that s is neither u nor v. So
1 ≤ δ (s,u) ≤ nW which implies that 1 ≤ d[s,u] ≤ 5/2nW . Since k has been chosen such that (1+ ε/2)k ≤
5/2nW , it follows that there exist i, j where 1 ≤ i, j ≤ k such that (1 + ε/2)i−1 ≤ d[s,u] ≤ (1 + ε/2)i and
(1 + ε/2) j−1 ≤ d[s,v] ≤ (1 + ε/2) j . Thus Boolean product witness matrix for MiMT

j would compute the
above witness s ∈ S1 or some other s′ ∈ S1 which has to satisfy (1 + ε/2)i−1 ≤ d[s′,u] < (1 + ε/2)i and
(1+ ε/2) j−1 ≤ d[s′,v] < (1+ ε/2) j . This implies that

d[u,s′]+d[s′,v] ≤ (1+ ε/2)(d[u,s]+d[s,v])
≤ (2+ ε)δ (u,v).

Step 4 ensures that d[u,v] ≤ d[u,s′]+d[s′,v] which shows a stretch of at most 2+ ε of the distance estimate
computed. So all this is left now is to prove Claim 3.

Proof of Claim 3.

We shall call a vertex s ∈ S1 that satisfies d[u,s] + d[s,v] ≤ 2δ (u,v) our witness. We consider 3 cases
here and show that a witness exists in each case.

Case 1: ball3(u) and ball3(v) do not overlap.
This case is very simple. We have δ (u,s3(u))+δ (v,s3(v))≤ δ (u,v). It is easy to check that if δ (u,s3(u))≤

δ (v,s3(v)), then s3(u) is our required witness, else s3(v) is our required witness.

Case 2: ball2(u) and ball2(v) overlap.
If all the edges of the shortest path SP(u,v) are present in in the graph G2 (whose edge set is E2 =

∪xball2(x)), then d[s1(u),v] = δ (s1(u),v) and d[s1(v),u] = δ (s1(v),u). Since ball1(u) and ball1(v) do not

10

overlap, we also have δ (u,s1(u))+ δ (v,s1(v)) ≤ δ (u,v). It is easy to see that if δ (u,s1(u)) ≤ δ (v,s1(v)),
then s1(u) the required witness, else it is s1(v).

So let us now assume that some of the edges in SP(u,v) are not present in G2. Let δ (u,s1(u)) ≤
δ (v,s1(v)). We can decompose SP(u,v) as u a → b v where a ∈ ball2(u) and b ∈ ball2(v). Observe
that the only edge in SP(u,v) that can be missing from ∪xball2(x) is edge (a,b) (refer Fig. 4). So we have
δ (s1(a),a) ≤ w(a,b) since δ (s2(a),a) ≤ w(a,b) and we anyway know that δ (s1(a),a) ≤ δ (s2(a),a).

If u ∈ ball1(a), then b while doing Dijkstra in the graph G1 augmented with b’s edges finds the path
b → a u to u and this causes d[s1(u),b] ≤ δ (s1(u),u)+δ (u,b). So it is easy to see that s1(u) is again our
required witness. So let us assume that u 6∈ ball1(a), as in Fig. 4.

����

PSfrag replacements

u va b

s1(a)

SP(u,v)

s2(u)

s2(v)

Fig. 4. ball2(u) and ball2(v) overlap.

Then s1(a) is the required witness because:

– d[s1(a),u] ≤ δ (s1(a),a)+δ (a,u) ≤ w(a,b)+δ (a,u) = δ (u,b) ≤ δ (u,v).
– d[s1(a),v] ≤ δ (s1(a),b)+δ (b,v) ≤ δ (s1(a),a)+w(a,b)+δ (b,v) ≤ δ (u,a)+w(a,b)+δ (b,v), which

is δ (u,v) (in the above inequality we used δ (s1(a),a) ≤ δ (a,u) since u 6∈ ball1(a)).

Note that d[s1(a),u] ≤ δ (s1(a),a)+δ (a,u) because the a u shortest path is present in the graph G2;
also d[s1(a),b] ≤ δ (s1(a),a)+ w(a,b) and so when s1(a) does Dijkstra in G2, it has the “edge” (s1(a),b)
with weight d[s1(a),b] and the b v shortest path is anyway present in G2. Thus d[s1(a),u] ≤ δ (u,v) and
d[s1(a),v] ≤ δ (u,v).

Case 3: ball2(u) and ball2(v) do not overlap but ball3(u) and ball3(v) overlap.
Let us assume that δ (u,s2(u)) ≤ δ (v,s2(v)). Let the shortest path SP(u,v) be u a → b v where the

edge (a,b) is missing from ∪xball3(x) (otherwise, s2(u) is our witness). We have three cases again.

(i) u 6∈ ball2(a): then we have δ (s2(a),a) ≤ δ (a,u). This leads to s2(a) being our required witness as
follows: d[s2(a),u] ≤ δ (s2(a),a)+δ (a,u) ≤ δ (u,b) ≤ δ (u,v) and d[s2(a),v] ≤ δ (s2(a),a)+δ (a,v) ≤
δ (u,a)+δ (a,v) = δ (u,v).

(ii) u ∈ ball2(a) and s2(u) ∈ bunch3(a): then d[s2(u),b] ≤ d(s2(u),a) + w(a,b) since a updates the entry
d[s2(u),b] because s2(u)∈ bunch3(a) (in the second iteration of Step 1 of the algorithm STRETCH5/2(G))
and it is easy to check that this leads to s2(u) being our required witness.

(iii) u ∈ ball2(a) and s2(u) /∈ bunch3(a): We split this further into two cases.

Case (a): The vertex b /∈ ball2(v).
We will show that s3(a) is our witness here. We have

d[s3(a),u]+d[s3(a),v] ≤ δ (s3(a),a)+δ (a,u)+δ (s3(a),a)+δ (a,v). (8)

11

We also have δ (s3(a),a) ≤ δ (a,s2(u)) (since s2(u) /∈ bunch3(a)) and δ (s3(a),a) ≤ w(a,b) (since the
edge (a,b) is not present in ball3(a)). Substituting these bounds in Inequality (8) yields

d[s3(a),u]+d[s3(a),v] ≤ δ (u,v)+δ (a,u)+δ (u,s2(u))+w(a,b).

The right hand side is at most δ (u,v)+δ (u,b)+δ (v,s2(v)) by clubbing δ (a,u) with w(a,b) and bound-
ing δ (u,s2(u)) by δ (v,s2(v)). Now δ (v,s2(v)) is at most δ (b,v) since b /∈ ball2(v). Thus we have the
desired bound of 2δ (u,v) on the right hand side.

Case (b): The vertex b ∈ ball2(v).
Then by our earlier analysis we know that if u /∈ ball1(a) then s1(a) is our witness and if u ∈ ball1(a),
then s1(u) is our witness because we have in this case: d[s1(u),v] ≤ δ (s1(u),u)+δ (u,v) (since d[u,b] =
δ (u,b) here) and so d[s1(u),u] + d[s1(u),v] ≤ 2δ (s1(u),u) + δ (u,v). We can bound 2δ (s1(u),u) ≤
2δ (s2(u),u) ≤ δ (u,v). ut
This finishes the proof of Claim 3 and thus Lemma 4. It follows from Lemma 4 that the stretch of

distances computed by our algorithm STRETCH2+ε(G) is at most 2+ ε . The bound on the running time of
this algorithm was already shown in Section 4.1. Thus we have shown Theorem 2 stated in Section 1.

Conclusions
In this paper we gave a combinatorial algorithm with expected running time O(n9/4) to compute all-pairs
stretch 5/2 distances in a weighted undirected graph on n vertices. We then improved this algorithm, with
the help of a subroutine for witnessing a Boolean product matrix, to compute all-pairs stretch 2+ε distances.
These are the first algorithms to compute all-pairs stretch 3− ε distances for some constant ε > 0 in o(n7/3)
time. An open question is to further improve the running times of the algorithms given here.

References
1. Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter and shortest paths(without

matrix multiplication). SIAM Journal on Computing, 28:1167–1181, 1999.
2. Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time construction of sparse neighborhod

covers. SIAM Journal on Computing, 28:263–277, 1998.
3. S. Baswana, V. Goyal, and S. Sen. All-pairs nearly 2-approximate shortest paths in O(n2 polylog n) time. In 22nd Annual

Symposium on Theoretical Aspect of Computer Science, pages 666–679, 2005.
4. S. Baswana and T. Kavitha. Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In 47th IEEE

Symposium on Foundations of Computer Science, pages 591 – 602, 2006.
5. Timothy Chan. All-pairs shortest paths with real edge weights in O(n3/ log n) time. In Proceedings of Workshop on Algorithms

and Data Structures, volume 3608, pages 318–324, 2005.
6. Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing, 28:210–236,

1998.
7. Edith Cohen and Uri Zwick. All-pairs small stretch paths. Journal of Algorithms, 38:335–353, 2001.
8. Dorit Dor, Shay Halperin, and Uri Zwick. All pairs almost shortest paths. Siam Journal on Computing, 29:1740–1759, 2000.
9. Michael Elkin. Computing almost shortest paths. ACM Transactions on Algorithms (TALG), 1:282–323, 2005.

10. Xiaohan Huang and Victor Y. Pan. Fast rectangunlar matrix multiplication and applications. Journal of Complexity, 14:257
–299, 1998.

11. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, New York, 1995.
12. Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science, 312:47–74,

2004.
13. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of Association of Computing Machinery, 52:1–24,

2005.
14. Uri Zwick. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of Association of

Computing Machinery, 49:289–317, 2002.

12

Appendix

Proof of Proposition 1

Consider the shortest path u(= v0),v1, · · · ,v j(= v) between u and v. Since δ (u,Si) > δ (u,v), it follows that

δ (u,Si) > δ (u,vk) ∀k ≤ j. (9)

All we need to show here is that all the edges of the shortest path are present in E i. We shall prove this
assertion by contradiction. Let (vk,vk+1) be the first edge (from the side of u) on the path which is absent.
Since this edge is not present in Ei , it follows from the definition of Ei that there is some vertex s ∈ Si such
that δ (vk,s) < w(vk,vk+1). This fact, when combined with Equation (9), gives us

δ (u,Si) > δ (u,vk+1)

= δ (u,vk)+w(vk,vk+1) { since u vk → vk+1 v is the shortest path}
> δ (u,vk)+δ (vk,s) ≥ δ (u,s).

Since s ∈ Si, this contradicts the very definition of δ (u,Si). Hence all the edges on the shortest path between
u and v are present in Ei. This proves the first part of the lemma.

If u(= v0),v1,v2, · · · ,v`,si(u) is the shortest path between u and si(u), it follows from the first part of the
lemma that every edge of this path, excluding the last edge, must be present in E i. Thus the whole path is
present in Ei ∪E(si(u)) since E(si(u)) includes the last edge of the above path. This proves the second part
of the lemma. ut

Proof of Proposition 2

For any v ∈V , the expected size of balli(v) is the expected number of edges in Ei that are incident on v. Let
the symbol Ei(v) denote the set of edges in Ei that are incident on v. Let us calculate the expected size of
Ei(v) for any v ∈V . If the vertex v belongs to the set Si, then Ei(v) = /0.

Let us now estimate Ei(v) when v /∈ Si. Consider the sequence 〈v1,v2, . . .〉 of neighbors of v arranged in
non-decreasing order of the edge weights w(v,vk). If an edge (v,vk) belongs to Ei, then none of the vertices
v1, . . . ,vk is present in Si. Since each vertex is selected in Si independently with probability q,

Pr[(v,vk) ∈ Ei] ≤ (1−q)k.

Using linearity of expectation, if v /∈ Si, then the expected number of edges in Ei(v) is at most ∑k(1−q)k =
O(1/q). Hence the expected number of edges in Ei is O(n/q). ut

Proof of Lemma 3 (Case 2)

Case 2: ball2(u) and ball2(v) overlap.
Let us first look at some easy cases. We know that ball1(u) and ball1(v) do not overlap. Hence δ (s1(u),u)+

δ (s1(v),v)≤ δ (u,v). Assume without loss of generality that δ (s1(u),u) ≤ δ (s1(v),v). Then the first inequal-
ity implies that 2δ (s1(u),u) ≤ δ (u,v).

Since ball2(u) and ball2(v) overlap, SP(u,v), the shortest path between u and v, can be decomposed as
u a → b v where (a,b) is an edge in SP(u,v) such that a ∈ ball2(u) and b ∈ ball2(v) (refer Fig. 5).

If the vertex a in SP(u,v) belongs to ball1(u) or u ∈ ball1(a), then we have d[u,b] = δ (u,b) at the end
of the first iteration of the ** loop (the same analysis as given in the proof of Claim 2 shows this). In the

13

PSfrag replacements

u v
a bSP(u,v)

s2(u)

s2(v)

Fig. 5. ball2(u) and ball2(v) overlap.

second iteration of the ** loop, in Step 1 of the algorithm STRETCH5/2(G) (Section 3), u would update
d[s1(u),b] ≤ d[s1(u),u]+d[u,b] since s1(u) ∈ bunch1(u). So d[s1(u),b] is at most δ (u,s1(u))+δ (u,b). The
vertex s1(u) performs Dijkstra in the second iteration of the ** loop in Step 2 of this algorithm, with the
“edge” (s1(u),b) with weight at most d[s1(u),b]. This yields

d[u,v] ≤ δ (u,v)+2δ (u,s1(u)) (10)
≤ 2δ (u,v). (11)

Inequality (11) uses our assumption that 2δ (s1(u),u) ≤ δ (u,v). Similarly, if the vertex s1(u) ∈ bunch1(a),
then again we have d[s1(u),b] ≤ δ (s1(u),u) + δ (s1(u),b) because a updates d[s1(u),b] in Step 1 since
s1(u) ∈ bunch1(a). This again leads to Inequalities (10) and (11) above, which show a stretch 2 for the
distance d[u,v] computed. Hence let us assume from now that a /∈ ball1(u)), u /∈ ball1(a) and s1(u) /∈
bunch1(a).

Also, if all the edges in SP(u,v) are present in G2 = (V,E2), then since ball1(u) and ball1(v) do not
overlap, Claim 1 applies here and so we get d[u,v] ≤ 2δ (u,v). Thus we shall assume that some of the edges
in SP(u,v) are not present in G2 = (V,E2). This leaves us with two cases.

CASE(I): All the edges in SP(u,v) are present in G3 but some of these edges are not present in G2.
Since all the edges in SP(u,v) are present in G3 = (V,E3) and vertices in S2 perform Dijkstra in G3, we

have

d[u,v] ≤ δ (u,v)+2δ (u,s2(u)) (12)
d[u,v] ≤ δ (u,v)+2δ (v,s2(v)). (13)

We would like to obtain upper bounds, first on δ (u,s2(u)) and then on δ (v,s2(v)). Recall that s1(a) /∈
bunch1(u). So δ (u,s2(u)) ≤ δ (u,s1(a))≤ δ (u,a)+δ (a,s1(a)). Substituting this upper bound on δ (u,s2(u))
in Inequality (12), we get

d[u,v] ≤ δ (u,v)+2δ (u,a)+2δ (a,s1(a)) (14)
≤ δ (u,v)+4δ (u,a) [since u /∈ ball1(a), we have δ (a,s1(a)) ≤ δ (a,u)] (15)

Recall that SP(u,v), the shortest path between u and v in G can be decomposed as u a → b v, where
a ∈ ball2(u) and b ∈ ball2(v). Since all the edges of SP(u,v) are not present in E2, it means that the edge
(a,b) is not present in ball2(x) for any x ∈ V . Since the edge (a,b) is not present in ∪xball2(x), it follows
that δ (v,a) ≥ δ (v,S2) = δ (v,s2(v)). Substituting this in Inequality (13) we get

d[u,v] ≤ δ (u,v)+2δ (v,a). (16)

Combining Inequalities (16) and (15), we get

d[u,v] ≤ δ (u,v)+min[4δ (u,a),2δ (v,a)]. (17)

14

Note that δ (u,a) + δ (a,v) = δ (u,v). Thus min(2δ (u,a),δ (a,v)) = min(2δ (u,a),δ (u,v) − δ (u,a)) is at
most 2/3 ·δ (u,v). Thus Inequality (17) always yields d[u,v] ≤ 7/3 ·δ (u,v). This finishes CASE(I).

CASE (II): Some of the edges in SP(u,v) are not present in G3 = (V,E3).
This means that the edge (a,b) (refer Fig. 5) is missing from E3. All the edges in the portions u a and

b v in SP(u,v) are present in E2 since ball2(u) and ball2(v) overlap (Fig. 5). Thus the vertices s1(u) and
s1(v) can see all the edges in SP(u,v) except the edge (a,b). Since vertices in S2 update entries in the table
d in the rows corresponding to vertices in S1 in Step 3, we have d[s1(u),b] ≤ d[s1(u),s2(u)]+ d[s2(u),b],
which is at most δ (s1(u),u)+δ (u,a)+2δ (a,s2(a))+w(a,b). In the second iteration of the ** loop, s1(u)
performs Dijkstra in G2 with an “edge” (s1(u),b) with weight at most d[s1(u),b]. Thus we get

d[s1(u),v] ≤ δ (s1(u),u)+δ (u,v)+2δ (a,s2(a)). (18)

Since s1(u) /∈ bunch1(a), we have δ (a,s2(a))≤ δ (a,s1(u))≤ δ (a,u)+δ (u,s1(u)). We also have δ (u,s1(u))≤
δ (u,a) since a /∈ ball1(u)). Using these two inequalities in Inequality (18) and using the fact that d[u,v] ≤
δ (u,s1(u))+d[s1(u),v] gives us:

d[u,v] ≤ δ (u,v)+6δ (u,a). (19)

We also have another upper bound on d[u,v]. The fact that the edge (a,b) is not present in ball3(a) leads to
Inequalities (3)-(5). Combining Inequality (19) and Inequality (5), we have

d[u,v] ≤ δ (u,v)+min[6δ (u,a),2w(a,b)]. (20)

Since δ (u,a) + w(a,b) ≤ δ (u,v), we have min[6δ (u,a),2δ (u,v) − 2δ (u,a)] ≤ 3δ (u,v)/2. Thus Inequal-
ity (20) shows that d[u,v] ≤ 5δ (u,v)/2 in this case. This finishes Case 2 in the proof of Lemma 3. ut

Algorithm for computing Boolean Product Witness Matrix
Here we describe an algorithm from [11] to compute a witness matrix Wi j corresponding to the Boolean
product of two 0-1 matrices Mi and MT

j , of dimensions n× nβ and nβ × n, respectively. We will need the
following notation in the algorithm: for any 0-1 vector R of length nβ , let R(Mi) be the n×nβ matrix whose
the (k, `)-th entry is ` · R[`]Mi[k, `]. Further, let R(MT

j) be the nβ × n matrix whose the (`,k)-th entry is
R[`]MT

j [`,k].
Input: Two 0-1 matrices Mi and MT

j
Output: Witness matrix Wi j for the Boolean product matrix MiMT

j

1. Let Wi j = −MiMT
j

2. for t = 0, . . . ,bβ log nc do
(a) r = 2t

(b) repeat d3.77log ne times
– choose random R ⊆ {1,2, . . . ,nβ } with |R| = r. Encode R as a 0-1 incidence vector of length nβ .
– compute R(Mi) and R(MT

j).
– Z = R(Mi) ·R(MT

j).
– for all (k, `) ∈ [n]× [n] do

if Wi j[k, `] < 0 and Z[k, `] is a witness then Wi j[k, `] = Z[k, `].
3. for all (k, `) ∈ [n]× [n] do

if Wi j [k, `] < 0 then find a witness by brute force and set Wi j[k, `] to that witness.

The above algorithm is a Las Vegas algorithm for computing a Boolean product witness matrix.

15

