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Layered Working-Set Trees
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Abstract

The working-set bound [Sleator and Tarjan, J. ACM, 1985] roughly states that searching for an element is

fast if the element was accessed recently. Binary search trees, such as splay trees, can achieve this property in

the amortized sense, while data structures that are not binary search trees are known to have this property

in the worst case. We close this gap and present a binary search tree called a layered working-set tree that

guarantees the working-set property in the worst case. The unified bound [Bădoiu et al., TCS, 2007] roughly

states that searching for an element is fast if it is near (in terms of rank distance) to a recently accessed

element. We show how layered working-set trees can be used to achieve the unified bound to within a

small additive term in the amortized sense while maintaining in the worst case an access time that is both

logarithmic and within a small multiplicative factor of the working-set bound.

1 Introduction

Let S be a set of keys from a totally ordered universe and let X be a sequence of elements from S. Typically,

one is required to store elements of S in some data structure D such that accessing the elements of S using
D in the order defined by X is “fast.” Here, “fast” can be defined in many different ways, some focusing on

worst case access times and others on amortized access times. For example, the search times of splay trees

[8] can be stated in terms of the rank difference between the current and previous elements of X; this is the
dynamic finger property [3, 4].

If x is the i-th element of X , we say that x is accessed at time i in X . The working-set number of x at time

i, denoted wi(x), is the number of distinct elements accessed since the last time x was accessed or inserted,
or |D| if x is either not in D or has not been accessed by time i.

The working-set property states the time to access x at time i is O(lgwi(x)).
1 Splay trees were shown

by Sleator and Tarjan [8] to have the working-set property in the amortized sense. One drawback of splay

trees, however, is that most of the access bounds hold only in an amortized sense. While the amortized cost

of a query can be stated in terms of its rank difference between successive queries or the number of distinct
queries since a query was last made, any particular operation could take Θ(n) time. In order to address this

situation, attention has turned to finding data structures that maintain the distribution-sensitive properties

of splay trees but guarantee good performance in the worst case.
The data structure of Bădoiu et al. [2], called the working-set structure, guarantees this property in the

worst case. However, this data structure departs from the binary search tree model and is instead a collection
of binary search trees and queues.

Bădoiu et al. [2] also describe a data structure called the unified structure that achieves the unified

property, which states that searching for x at time i takes time O(miny∈S lg(wi(y) + d(x, y))) where d(x, y)
is the rank difference between x and y. Again, this data structure is not a binary search tree. The skip-splay

algorithm of Derryberry and Sleator [6] fits into the binary search tree model and comes within a small

additive term of the unified bound in an amortized sense.

Our Results. We present a binary search tree that is capable of searching for a query x in worst-case time

O(lgwi(x)) and performs insertions and deletions in worst-case time O(lg n), where n is the number of keys

∗School of Computer Science, Carleton University. {jit,karim,vida,jhowat}@cg.scs.carleton.ca. This research was partially
supported by NSERC and MRI.

1In this paper, lg x is defined to be log
2
(x+ 2).
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Figure 1: The working-set structure of Bădoiu et al. [2]. The pointers between corresponding elements in Tj

and Qj are not shown.

stored by the tree at the time of the access. This fills in the gap between binary search trees that offer these
query times in only an amortized sense and data structures which guarantee these query times in the worst-

case but do not fit in the binary search tree model. We have also shown how to use this binary search tree to

achieve the unified bound to within a small additive term in the amortized sense while maintaining in the
worst case an access time that is both logarithmic and within a small multiplicative factor of the working-set

bound.

Organization. The rest of this paper is organized in the following way. We complete the introduction by
summarizing the way the working-set structure of Bădoiu et al. [2] operates, since this will play a key role

in our binary search tree. In Section 2, we describe our binary search tree and explain the way in which

operations are performed. In Section 3, we show how to combine our results with those of Derryberry and
Sleator [6] on the unified bound to achieve an improved worst-case search cost. We conclude with Section 4

which summarizes our results and explains possible directions for future research.

1.1 The Working-Set Structure

We now describe the working-set structure of Bădoiu et al. [2]. The structure maintains a dynamic set under
the operations INSERT, DELETE and SEARCH. Denote by Si ⊆ S the set of keys stored in the data structure at

time i.
The structure is composed of t = O(lg lg |Si|) balanced binary search trees T1, T2, . . . , Tt and the same

number of doubly linked lists Q1, Q2, . . . , Qt. For any 1 ≤ j ≤ t, the contents of Tj and Qj are identical, and

pointers (in both directions) are maintained between their common elements. Every element in the set Si is

contained in exactly one tree and in its corresponding list. For j < t, the size of Tj and Qj is 22
j

, whereas

the size of Tt and Qt is |Si| −
∑t−1

j=1 2
2j ≤ 22

t

. Figure 1 shows a schematic of the structure.

The working-set structure achieves its stated query time of O(lgwi(x)) by ensuring that an element x
with working-set number wi(x) is stored in a tree Tj with j ≤ ⌈lg lgwi(x)⌉. Every list Qj orders the elements

of Tj by the time of their last access, starting with the youngest (most recently accessed) and ending with

the oldest (least recently accessed).
Operations in the working-set structure are facilitated by an operation called a shift. A shift is performed

between two trees Tj and Tk. Assume j < k, since the other case is symmetric. To perform a shift, we begin
at Tj . We look in Qj to determine the oldest element and remove it from Qj and delete it from Tj . We then

insert it into Tj+1 and Qj+1 (as the youngest element) and repeat the process by shifting from j + 1 to k.

This process continues until we attempt to shift from one tree to itself. Observe that a shift causes the size of
Tj to decrease by one and the size of Tk to increase by one. All of the trees between Tj and Tk will end up

with the same size, but the elements contained in them change, since the oldest element from the previous

tree is always added as the youngest element of the next tree.
We are now ready to describe how to make queries in the working-set structure. To search for an element

x, we search sequentially in T1, T2, . . . until we find x or search all of the trees and fail to find x. If x /∈ Tj for
any j, then we will search every tree at a total cost of O(lg |Si|) and then report that x is not in the structure.

Otherwise, assume x ∈ Tj . We delete x from Tj and Qj and insert it in T1 and place it at the front of Q1.
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We now have that the size of T1 and Q1 has increased by one and the size of Tj and Qj has decreased by

one. We therefore perform a shift from 1 to j to restore the sizes of the trees and lists. The time required
for a search is dominated by the search time in Tj. Observe that if x ∈ Tj and j > 1, then it must have

been removed as the oldest element from Qj−1, at which point at least 22
j−1

distinct queries had been made.

Therefore, wi(x) ≥ 22
j−1

and so the search time is O
(

lg 22
j
)

= O
(

lg 22
j−1

)

= O(lgwi(x)).

Insertions are performed by inserting the element into T1 and Q1 (as the youngest element). Again, this

causes T1 and Q1 to be too large. Since no other tree has space for one more element, we must shift to the

last tree Tt. Thus, a shift from 1 to t is performed at total cost O(lg |Si|). Note that it is possible that a new

tree may need to be created if the size of Tt grows past 22
t

. Deletions are performed by first searching for

the element to be deleted. Once found, say in Tj , it is removed from Tj and Qj. To restore these sizes, we

perform a shift from t to j at total cost O(lg |Si|). If the last tree becomes empty, it can be removed.

2 The Binary Search Tree

In this section, we describe a binary search tree that has the working-set property in the worst case.

2.1 Model

Recall the binary search tree model of Wilber [10]. Each node of the tree stores the key associated with it and
has a pointer to its left and right children and its parent. The keys stored in the tree are from a totally ordered

universe and are stored such that at any node, all of the keys in the left subtree are less than that stored in

the node and all of the keys in the right subtree are greater than that stored at the node. Furthermore, each
node may keep a constant2 amount of additional information called fields, but no additional pointers may be

stored.

To perform an access to a key, we are given a pointer initialized to the root of the tree. An access consists
of moving this pointer from a node to one of its adjacent nodes (through the parent pointer or one of the

children pointers) until the pointer reaches the desired key. Along the way, we are allowed to update the
fields and pointers in any nodes that the pointer reached. The access cost is the number of nodes reached by

the pointer.

2.2 Tree Decomposition

Our binary search tree will adapt the working-set structure described in the previous section to the binary

search tree model. Let T denote the binary search tree as a whole. At a high level, our binary search tree
layers the trees T1, T2, . . . , Tt of the working-set structure together to form T , and then augments nodes with

enough information to recover which is the oldest in each tree at any given time.

Consider a labelling of T where each node x ∈ T has a label from {1, 2, . . . , t} such that no node has an
ancestor with a label greater than its own label. This labelling partitions the nodes of T . We say that the

nodes with label j ∈ {1, 2, . . . , t} form a layer Lj. A layer Lj will play the same role as Tj in the working-set

structure. Like Tj , Lj contains exactly 22
j

elements for j < t, and Lt contains the remaining elements.
Unlike Tj, Lj is typically a collection of subtrees of T . We refer to a subtree of a layer Lj as a layer-subtree.

Figure 2 shows this decomposition. Every node x ∈ T stores as a field the value j such that x ∈ Lj which we

denote by layer[x]. We also record the total number of layers t and the size of Lt at the root as fields of each
node.

Each layer-subtree T ′

j ∈ Lj is maintained independently as a tree that guarantees that each node of T ′

j

has depth in T ′

j at most O
(

lg |T ′

j |
)

= O(lg |Lj |). This can be done using, e.g., a red-black tree [1, 7]. By
“independently”, we mean that balance criteria are applied only to the elements within one layer-subtree.

Our first observation concerns the depth of a node in a given layer.

Lemma 1. The depth of a node x ∈ Lj is O
(

2j
)

.

2By standard convention, O(lg |Si|) bits are considered to be “constant.”
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Figure 2: The decomposition of the tree T into layers. Here, the layer-subtrees of Lj are denoted
Lj,1, Lj,2, . . .. Observe that layer Lj can be connected to any layer Lk with k > j. In this case, all of

the elements of the layer-subtree L4,1 are less than the elements in L1,1, and so the layer-subtree L4,1 must
be connected to a leaf of L1,1.

Proof. In the worst case, we must traverse a layer-subtree of each of L1, L2, . . . , Lj−1 to reach Lj and then

locate x in Lj . Each layer Lk has size 22
k

and thus each layer-subtree we pass through has size at most 22
k

.

Since each layer-subtree guarantees depth logarithmic in the size of the layer-subtree and thus the layer, the

total depth is
∑j

k=1 O
(

2k
)

= O
(

2j
)

.

The main obstacle in creating our tree comes from the fact that the core operations are performed on
subtrees rather than trees, as is the case for the working-set structure. Consequently, standard red-black tree

operations can not be used for the operations spanning more than one layer as described in Section 2.4. We

break the operations into those restricted to one layer, those spanning two neighbouring layers, and finally
those performed on the tree as a whole. These operations are described in the following sections.

Another difficulty arises from the having to implement the queues of the working-set structure in the
binary search tree model. The queues are needed in order to determine the oldest element in a layer at any

given time.

We encode the linked lists in our tree as follows. Each node x ∈ Lj stores the key of the node inserted into
Lj directly before and after it. This information is stored in the fields older[x] and younger[x], respectively.

We also store a key value in the field nextlayer[x]. If x is the oldest element in layer Lj, then no element was

inserted before it and so we set older[x] = nil. In this case, we use nextlayer[x] to store the key of the oldest
element in layer Lj+1. Similarly, if x is the youngest element in layer Lj , then no element was inserted after

it and so we set younger[x] = nil and use nextlayer[x] to store the key of the youngest element in layer Lj+1.
If x is neither the youngest nor the oldest element in Lj, then we have nextlayer[x] = nil.

Before we describe how operations are performed on this binary search tree, we must make a brief note

on storage. By the above description, each node x stores three pointers (parent and children) and a key, as
per the usual binary search tree model. The root also maintains the number of trees t and the size of Lt.

In addition, we must store balance information (one bit for red-black trees) and three additional key values

(exactly one of which is nil): older[x], younger[x] and nextlayer[x]. If keys are assumed to be of size O(lg n),
then it is clear our binary search tree fits the model of Section 2.1. Note that we are storing key values, not

pointers. Given a key value stored at a node, we do not have a pointer to it, so we must instead search for it
by traversing to the root and performing a standard search in a binary search tree. If keys have size ω(lg n),
it is true that we use more than O(lg n) additional space per node. However, since any node would then

store a key of size ω(lgn), we are only increasing the size of a node by a constant factor.

2.3 Intra-Layer Operations

The operations we perform within a single layer are essentially the same as those we perform on any bal-
anced binary search tree. We need notions of restoring balance after insertions and deletions and of splitting
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and joining. As mentioned before, we are not necessarily restricting ourselves to using any particular imple-

mentation of layer-subtrees. Instead, we will state the intra-layer operations and the required time bounds,
and then show how red-black trees [1, 7] can be used to fulfill this role. Other binary search trees that meet

the requirements of each operation could also be used. Layer-subtrees must also ensure that their operations

do not leave the layer-subtree; this can be done by checking the layer number of a node before visiting it.
Intra-layer operations rearrange layer-subtrees in some way. Observe that layer-subtrees hanging off a

given node are maintained even after rearranging the layer-subtree, since the roots of such layer-subtrees
can be viewed as the results of unsuccessful searches. Therefore, when describing these operations, we need

not concern ourselves with explicitly maintaining layer-subtrees below the current one.

In our binary tree T , for each node x in a layer-subtree T ′

j of Lj , we define the following operations.
They are straightforward, but mentioned here for completeness and as a basis for the operations performed

between layers.

INSERT-FIXUP(x) This operation is responsible for ensuring that each node of T ′

j has depth O
(

lg |T ′

j |
)

after
the node x has been inserted into the layer-subtree. For red-black trees, this operation is precisely the RB-

INSERT-FIXUP operation presented by Cormen et al. [5, Section 13.3]. Although the version presented there
does not handle colouring x, it is straightforward to modify it to do so.

DELETE-FIXUP(x) This operation is responsible for ensuring that each node of T ′

j has depth O
(

lg |T ′

j |
)

after

a deletion in the layer-subtree. The exact node x given to the operation is implementation dependent. For
red-black trees, this operation is precisely the RB-DELETE-FIXUP operation presented by Cormen et al. [5,

Section 13.4]. In this case, the node x is the child of the node spliced out by the deletion algorithm; we will

elaborate on this when describing the layer operations in Section 2.4.

SPLIT(x) This operation will cause the node x ∈ T ′

j to be moved to the root of T ′

j . The rest of the layer-

subtree will be split between the left and right side of x such that each side is independently balanced and

thus guarantee depth O
(

lg |T ′

j |
)

of their respective nodes; this may mean that the layer-subtree is no longer
balanced as a whole. For red-black trees, this operation is described by Tarjan [9, Chapter 4], except we do

not destroy the original trees, but rather stop when x is the root of the layer-subtree.

JOIN(x) This operation is the inverse of SPLIT(x): given a node x ∈ T ′

j, we will restructure T ′

j to consist of
x at the root of the T ′

j and the remaining elements in subtrees rooted at the children of x such that all nodes

in the layer-subtree have depth O
(

lg |T ′

j |
)

. For red-black trees, this operation is described by Cormen et al.

[5, Problem 13-2].

Lemma 2. The operations INSERT-FIXUP(x), DELETE-FIXUP(x), SPLIT(x) and JOIN(x) on a node x ∈ Lj can

be implemented to take worst-case time O
(

2j
)

when red-black trees are used as layer-subtrees.

Proof. Immediate from the operations given by Cormen et al. [5] and Tarjan [9].

2.4 Inter-Layer Operations

The operations performed on layers correspond to the queue and shift operations of the working-set struc-

ture. The four operations performed on layers are YOUNGESTINLAYER(Lj) and OLDESTINLAYER(Lj) for a
layer Lj and MOVEUP(x) and MOVEDOWN(x) for a node x.

As we did with the intra-layer operations, we will describe the requirements of the operations indepen-

dently of the actual layer-subtree implementation. In fact, only the operation MOVEDOWN(x) will require
knowledge of the implementation of the layer-subtrees; the remaining operations simply make use of the

operations defined in Section 2.3.
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YOUNGESTINLAYER(Lj) This operation returns the key of the youngest node in layer Lj. We first examine

all elements in L1 (of which there are O(1)). Once we find the element that is the youngest (by looking for
the element for which younger[x] = nil), say x1, we go back to the root and search for nextlayer[x1], which will

bring us to the youngest element in L2, say x2. We then go back to the root and search for nextlayer[x2], and

so on. This repeats until we find the youngest element in Lj, as desired. The process for OLDESTINLAYER(Lj)
is the same, except our initial search in L1 is for the oldest element, i.e., the element for which older[x] = nil.

MOVEUP(x) This operation will move x from its current layer Lj to the next higher layer Lj−1. To accom-
plish this, we first split x to the root of its layer-subtree using SPLIT(x). We remove x from Lj by setting

layer[x] = j − 1. We now must restore balance properties. Observe that, by the definition of split, both of the

layer-subtrees rooted at the children of x are balanced. Therefore, we only need to ensure the balance prop-
erties Lj−1. Since we have just inserted x into the layer Lj−1, this can be done by performing the intra-layer

operation INSERT-FIXUP(x). Finally, we must remove x from the implicit queue structure of Lj and place it

in the implicit queue structure of Lj−1.
To do this, we look at both older[x] and younger[x]. If they are both non-nil, then we go to the root and

perform searches for older[x] and younger[x], setting younger[older[x]] = younger[x] and older[younger[x]] =
older[x]. Otherwise, if only younger[x] is nil, then we conclude that x is the youngest in its former layer. After

removing it from that layer, older[x] will be the new youngest element in that layer, so we go to the root

search for older[x] and set younger[older[x]] = nil. Since older[x] is the youngest element in that layer, we also
copy nextlayer[x] into nextlayer[older[x]]. We must also update the key stored by the youngest element in the

next higher layer. In order to do this, we run YOUNGESTINLAYER(Lj−1) to find this element, say y, and set

nextlayer[y] = older[x]. The case for when only older[x] is nil is symmetric: the new oldest element in the
layer is younger[x], so we update older[younger[x]] = nil, we copy nextlayer[x] into nextlayer[younger[x]], and

update the pointer to the oldest element in this layer that is stored in Lj−1 in the same was as we did for the
youngest.

We now must insert x into the implicit queue structure of layer Lj−1. To do this, we search for the

youngest node in Lj−1, say y. We then set older[x] = y, younger[x] = nil and younger[y] = x. We then go to
the next layer Lj−2 and update its pointer to the youngest element in this layer the same way we did before.

MOVEDOWN(x) This operation will move x from its current layer Lj to the next lower layer Lj+1. We

describe how to perform this operation for red-black trees; other implementations of the layer-subtrees will
need to define different implementations but must respect the stated worst-case time bound of O

(

2j
)

. Let p
denote the predecessor of x in Lj . If x does not have a predecessor in Lj, set p = x. Similarly, let s denote

the successor of x in Lj , and if x does not have a successor in Lj, set s = x. Our first goal is to move x such
that it becomes a leaf of its layer-subtree. If x is not already a leaf in Lj , then x has at least one child in its

layer-subtree. To make it a leaf of it layer-subtree, we splice out the node s by making the parent of s point
to the right child of s instead of s itself. Note that this is well-defined since s has no left child in Lj as it is

the smallest element greater than x. We then move s to the location of x. Finally, we make x a child of p and

make the new children of x the old children of p and s. Figure 3 explains this process.
Observe that we now have that x is a leaf of its layer-subtree. The layer-subtree is configured exactly as

if we had deleted x using the deletion operation described by Cormen et al. [5, Section 13.4]. Therefore,

we can perform DELETE-FIXUP(s′), where s′ is the (only) child of s, to restore the balance properties of the
nodes of the layer-subtree. Thus, s′ is exactly the child of the node spliced out by the deletion (s), as required

by the operation of Cormen et al. [5, Section 13.4].
To complete the movement to the next layer, we change the layer number of x and execute JOIN(x) to

create a single balanced layer-subtree from x and its children.3 We then update the implicit queue structure

as we did before. Observe that once x has been removed from its original layer-subtree, layer-subtree balance
has been restored because no node on that path was changed.

Lemma 3. The operations YOUNGESTINLAYER(Lj) and OLDESTINLAYER(Lj), MOVEUP(x) and MOVEDOWN(x)
for a layer Lj or a node x ∈ Lj each take worst-case time O

(

2j
)

.

3Note that if these children have larger layer numbers than the new layer number for x, nothing is performed and x becomes the
lone element in its (new) layer-subtree; this follows from the fact that JOIN(x) only joins nodes that are in the same layer.
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Figure 3: The first part of the MOVEDOWN(x) operation. On the left is the initial layer-subtree and the
on the right is the layer-subtree after the nodes have been moved and layers changed but before the

DELETE-FIXUP(s′). The dotted lines to nodes and subtrees indicate layer boundaries and the dotted line
over the old node s indicates a splice.

Proof. The operations YOUNGESTINLAYER(Lj) and OLDESTINLAYER(Lj) find the youngest (respectively old-
est) element in layers L1, L2, . . . , Lj. Given the youngest (respectively oldest) element in layer Lk, we can

determine the youngest (respectively oldest) element in layer Lk+1 in constant time since such an element

maintains the key of the youngest (respectively oldest) element in the next layer. We then need to traverse
from the root to that element. By Lemma 1, the total time is

∑j
k=1 O

(

2k
)

= O
(

2j
)

.

The MOVEUP(x) and MOVEDOWN(x) operations, where x ∈ Lj , consist of searching for x, performing a
constant number of intra-layer operations and then making series of queries for the youngest elements in

several layers and updating the queue structures. The search can be done is O
(

2j
)

time by Lemma 1 and the

intra-layer operations each take O
(

2j
)

time by Lemma 2 for a total of BigOh2j. Finally, the queries for the

youngest elements and the cost of updating the queues is dominated by the cost of the query in the deepest
layer since each layer is twice the size of the previous one. Since x ∈ Lj, this cost is O

(

2j
)

by the above

argument. The total cost of MOVEUP(x) and MOVEDOWN(x) is thus O
(

2j
)

.

2.5 Tree Operations

We are now ready to describe how to perform the operations SEARCH(x), INSERT(x) and DELETE(x) on the

tree as a whole. Such operations are independent of the layer-subtree implementation given the inter-layer
and intra-layer operations defined in the previous sections.

SEARCH(x) To perform a search for x, we begin by performing the usual method of searching in a binary

search tree. Once we have found x ∈ Lj , we execute MOVEUP(x) a total of j−1 times to bring x into L1. We
then restore the sizes of the layers as was done in the working-set structure. We run OLDESTINLAYER(L1) to

find the oldest element y1 in layer L1 and then run MOVEDOWN(y1). We then perform the same operation in

L2 by running OLDESTINLAYER(L2) to find the oldest element y2 in layer L2, then run MOVEDOWN(y2). This

process of moving elements down layer-by-layer continues until we reach a layer Lk such that |Lk| < 22
k

.4

Note that efficiency can be improved by remembering the oldest elements of previous layers instead of

finding the oldest element in each of L1, . . . , Lj when running OLDESTINLAYER(Lj). Such an improvement
does not alter the asymptotic running time, however.

INSERT(x) To insert x into the tree, we first examine the index t and size |Lt| of the deepest layer, which

we have stored at the root. If |Lt| = 22
t

, then we increment t and set |Lt| = 1. Otherwise, if |Lt| < 22
t

,

we simply increment |Lt|. We now insert x into the tree (ignoring layers for now) using the usual algorithm
where x is placed in the tree as a leaf. We set layer[x] = t+ 1 (i.e., a temporary layer larger than any other)

4Note that for an ordinary search, we have k = j. However, thinking of the algorithm this way gives us a clean way to describe
insertions.
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and update the implicit queue structure for Lt (and the youngest and oldest elements of Lt−1) as we did

before. Finally, we run SEARCH(x) to bring x to L1. Note that since SEARCH(x) stops moving down elements
once the first non-full layer is reached, we do not place another element in layer t+1. Thus, this layer is now

empty and we update the youngest and oldest elements in layer t to indicate that there is no layer below.

DELETE(x) To delete x from the tree, we look at the total number t of layers in the tree that is stored at the

root. We then locate x ∈ Tj and perform MOVEDOWN(x) a total of t − j + 1 times. This will cause x to be

moved to a new (temporary) layer that is guaranteed to have no other nodes in it. Therefore, x must be a
leaf of the tree, and we can simply remove it by setting the corresponding child pointer of its parent to nil.

As was the case for insertion, this temporary layer is now empty and so we update the youngest and oldest
elements in layer t to indicate that there is no layer below. We then perform t− j +1 MOVEUP(y) operations

for the youngest element y of each layer from t to j to restore the sizes of the layers. At this point, it could be

the case that |Lt| = 0. If this happens, we decrement the number of layers t which is stored at the root, and
update the youngest and oldest elements in the new deepest layer to indicate that there is no layer below.

Theorem 4. Searching for x at time i takes worst-case time O(lgwi(x)) and insertion and deletion each take

worst-case time O(lg n).

Proof. A search consists of a regular search in a binary search tree followed by several layer operations.
Suppose x ∈ Lj at time i. By Lemma 1, we can find x in time O

(

2j
)

. We then perform MOVEUP(x) in time

O
(

2j
)

by Lemma 3. We then run OLDESTINLAYER and MOVEDOWN operations for every layer from 1 to j.

By Lemma 3, this has total cost
∑j

k=1 O
(

2k
)

= O
(

2j
)

. The total time is therefore O
(

2j
)

. Observe that, by

the same analysis as that of the working-set structure of Bădoiu et al. [2], we have that wi(x) ≥ 22
j−1

, and

so O
(

2j
)

= O(lgwi(x)).

An insertion consists of traversing through all layers. By Lemma 1, this takes time
∑t

k=1 O
(

2k
)

= O(2t) =

O
(

2lg lgn
)

= O(lgn). We then perform a search at cost O(lg n) by the above argument, since the element
searched for is in the deepest layer. The total cost is thus O(lgn).

A deletion consists of traversing the tree to find x ∈ Lj and then performing MOVEDOWN and MOVEUP

at most once per layer. The traversal takes time O
(

2j
)

by Lemma 1 and the MOVEDOWN and MOVEUP

operations each cost O
(

2k
)

for Lk by Lemma 3. The total cost is thus O
(

2j
)

+
∑t

k=1 O
(

2k
)

= O(2t) =

O
(

2lg lgn
)

= O(lg n).

3 Skip-Splay and the Unified Bound

In this section, we show how to use layered working-set trees in the skip-splay structure of Derryberry and

Sleator [6] in order to achieve the unified bound to within a small multiplicative factor. The unified bound
[2] requires that the time to search an element x at time i is

UB(x) = O

(

min
y∈Si

lg(wi(y) + d(x, y))

)

where wi(y) is the working-set number of y at time i (as in Section 1) and d(x, y) is defined as the
rank distance between x and y. This property implies the working-set and the dynamic finger properties.

Informally, the unified bound states that an access is fast if the current access is close in term of rank distance

to some element that has been accessed recently. Bădoiu et al. [2] introduced a data structure achieving the
unified bound in the amortized sense. This structure does not fit into the binary search tree model, but the

splay tree [8], which does fit into this model, is conjectured to achieve the unified bound [2]
Recently, Derryberry and Sleator [6] developed the first binary search tree that guarantees an access

time close to the unified bound. Their algorithm, called skip-splay, performs an access to the element x in

O(UB(x) + lg lg n) amortized time. Insertions and deletions are not supported. In the remainder of this
section, we briefly describe skip-splay and then show how to modify it using the layered working-set tree

presented in Section 2 in order to achieve a new bound in the binary search tree model.

The skip-splay algorithm works in the following way. Assume for simplicity that the tree T stores the set

{1, 2, . . . , n} where n = 22
k−1

− 1 for some integer k ≥ 0 and that T is initially perfectly balanced. Nodes of
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height 2i (where the leaves of T have height 1) for i ∈ {0, 1, . . . , k − 1} are marked as the root of a subtree.

Such nodes partition T into a set of splay trees called auxiliary trees. Each auxiliary tree is maintained as an
independent splay tree. Observe that the i-th auxiliary tree encountered on a path from the root to a leaf in

T has size 2lg2
n/2i = n1/2i . Define aux[x] to be the auxiliary tree containing the node x.

To access an element x, we perform a standard binary search in T to locate x. We then perform a series

of splay operations on some of the auxiliary trees of T . We begin by splaying x to the root of aux[x] using the
usual splay algorithm. If x is now the root of T , the operation is complete. Otherwise, we skip to the new

parent of x, say y, and splay y to the root of aux[y]. This process is repeated until we reach the root of T .

By using layered working-set trees as auxiliary trees in place of splay trees, we can get the following
result.

Theorem 5. There exists a binary search tree that performs an access to the element xi in O(lgn) worst-case

time and in O(UB(xi) + lg lg n) amortized time.

Proof. As suggested by Derryberry and Sleator [6], instead of using splay trees to maintain the auxiliary trees,
we could use any data structure that satisfies the working-set property. Thus, by maintaining the auxiliary

trees as layered working-set, we straightforwardly guarantee an amortized time of O(UB(xi) + lg lgn) to

search for an element xi. Note that the splay in the auxiliary tree corresponds to the SEARCH(x) operation
in our structure.

Now we show that this modified version of the skip-splay has the additional property that the worst case
search time is O(lg n). A search consists of traversing a maximum of k auxiliary trees where the size of the

i-th encountered auxiliary tree is n1/2i . In the worst case, the amount of work performed in an auxiliary tree

A is O(lg |A|). Since the auxiliary trees are maintained independently from each other, the total worst-case

search cost in the tree T is O
(

∑k
i=1 lg n/2

i
)

= O(lgn).

By doubling the access to an element, we also obtain the following result.

Theorem 6. The binary search tree described in Theorem 5 performs an access to the element xi in worst-case

time O(lg lgn lgwi(xi)).

Proof. Doubling the access to an element increases by at most twice its worst-case access time. Thus, the

asymptotic performance of the structure still holds for both the worst-case access time and amortized access

time.
In order to reach an element in the tree, we have to traverse several auxiliary trees. Let A1, A2, . . . , Ak

be the ordered sequence of trees traversed during an access to the element xi (note that k ≤ lg lgn). The
number of accesses performed independently in each of those trees is bounded above by wi(xi).

For j = 1, 2, . . . , k − 1, define di(Aj , Aj+1) to be the distance between the root node of Aj and the root

node of Aj+1 in the structure at time i. More generally, define di(Aj , y) as the distance between the root
node of Aj and the element y where y is a descendent of the root of Aj . Let p(Aj) (and s(Aj)) be the greatest

(smallest) element of Aj−1 that is smaller (greater) than any element in Aj . Thus the cost of accessing xi is
∑k−1

j=1 di(Aj , Aj+1) + di(Ak, xi).
By the definition of a search tree we know that the parent of the root node of Aj is either p(Aj) or s(Aj).

Thus

di(Aj , Aj+1) = max{di(Aj , p(Aj+1)), di(Aj , s(Aj+1))}+ 1. (1)

When we access xi twice, we independently access both p(Aj) and s(Aj) in each traversed auxiliary tree

Aj . By Theorem 4, we have

di(Aj , p(Aj+1))
di(Aj , s(Aj+1))

}

= O(lgwi(xi))) for j = 1, 2, . . . , k − 1.

And we also have di(Ak, xi) = O(lgwi(xi)). Hence, by applying equation (1), the result follows.

Note that this last property is not satisfied by the original unified structure [2]. Theorems 5 and 6 thus
show

Corollary 7. There exists a binary search tree that performs an access to the element xi in worst-case time

O(min{lgn, (lg lg n) lgwi(xi)}) and in O(UB(xi) + lg lgn) amortized time.
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4 Conclusion and Open Problems

We have given the first binary search tree that guarantees the working-set property in the worst-case. We

have also shown how to combine this binary search tree with the skip-splay algorithm of Derryberry and

Sleator [6] to achieve the unified bound to within a small additive term in the amortized sense while main-
taining in the worst case an access time that is both logarithmic and within a small multiplicative factor of

the working-set bound. Several directions remain for future research.

For layered working-set trees, it seems that by forcing the working-set property to hold in the worst case,
we sacrifice good performance on some other access sequences. Is it the case that a binary search tree that

has the working-set property in the worst case cannot achieve other properties of splay trees? For example,

what kind of scanning bound can we achieve if we require the working-set property in the worst case? It
would also be interesting to bound the number of rotations performed per access. Can we guarantee at most

O(lg lgwi(xi)) rotations to access xi? Red-black trees guarantee O(1) rotations per update, for instance.
For the results on the unified bound, the most obvious improvement would be to remove the lg lg n term

from the amortized access cost, as posed by Derryberry and Sleator [6]. Another improvement would be to

remove the lg lg n factor from the worst-case access cost.

Acknowledgements. We thank Jonathan Derryberry and Daniel Sleator for sending us a preliminary ver-
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