Skip to main content
Log in

Well Quasi Orders in Subclasses of Bounded Treewidth Graphs and Their Algorithmic Applications

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that three subclasses of bounded treewidth graphs are well quasi ordered by refinements of the minor order. Specifically, we prove that graphs with bounded vertex cover are well quasi ordered by the induced subgraph order, graphs with bounded feedback vertex set are well quasi ordered by the topological-minor order, and graphs with bounded circumference are well quasi ordered by the induced minor order. Our results give algorithms for recognizing any graph family in these classes which is closed under the corresponding minor order refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Lena Schlipf & Jens M. Schmidt

References

  1. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 641–650 (2008)

    Google Scholar 

  2. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized algorithms for minor containment. In: Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 322–333 (2010)

    Google Scholar 

  3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey. BIT Numer. Math. 25(1), 2–23 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breu, H., Kirkpatrick, G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corneil, D.G., Keil, J.M.: A dynamic programming approach to the dominating set problem on k-trees. SIAM J. Algebr. Discrete Methods 8(4), 535–543 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4), 427–435 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proc. of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 590–601 (2005)

    Google Scholar 

  10. Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theory 16(5), 489–502 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  12. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)

    MathSciNet  Google Scholar 

  13. Fellows, M.R.: Towards fully multivariate algorithmics: some new results and directions in parameter ecology. In: Proc. of the 20th International Workshop On Combinatorial Algorithms (IWOCA), pp. 2–10 (2009)

    Chapter  Google Scholar 

  14. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209, 143–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM J. Discrete Math. 5(1), 117–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Proc. of the 19th International Symposium on Algorithms and Computation (ISAAC), pp. 294–305 (2008)

    Google Scholar 

  18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  19. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 503–510 (2010)

    Google Scholar 

  20. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. III 2(7), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited: upper and lower bounds for a refined parameter. In: Proc. of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 177–188 (2011)

    Google Scholar 

  23. Kloks, T., Tan, R.B.: Bandwidth and topological bandwidth of graphs with few P 4’s. Discrete Appl. Math. 115(1–3), 117–133 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. J. Comb. Theory, Ser. B 52(1), 53–66 (1991)

    Article  MATH  Google Scholar 

  25. Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory, Ser. B 52(1), 67–78 (1991)

    Article  MATH  Google Scholar 

  26. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 81–92

  27. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95, 210–225 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. In: Proc. of the 18th Annual European Symposium on Algorithms (ESA), pp. 549–560 (2010)

    Google Scholar 

  29. Mader, W.: Wohlquasigeordnete Klassen Endlicher Graphen. J. Comb. Theory, Ser. B 12, 105–122 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Makedon, F., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. In: Proc. of the 8th Colloquium on Trees in Algebra and Programming (CAAP), pp. 317–331 (1983)

    Google Scholar 

  31. Matoušek, J., Nešetřil, J., Thomas, R.D.: On polynomial time decidability of induced-minor-closed classes. Comment. Math. Univ. Carol. 29(4), 703–710 (1988)

    MATH  Google Scholar 

  32. Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96–115 (1927)

    MATH  Google Scholar 

  33. Miller, Z.: A linear algorithm for topological bandwidth in degree-three trees. SIAM J. Comput. 17(5), 1018–1035 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58, 209–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Math. Proc. Camb. Philos. Soc. 59(4), 833–835 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  36. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), pp. 17–32 (2010)

  37. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)

    Book  MATH  Google Scholar 

  38. Pach, J., Tóth, G.: Recognizing string graphs is decidable. Discrete Comput. Geom. 28(4), 593–606 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete Math. 244(1–3), 375–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(1), 325–357 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Robertson, N., Seymour, P.D.: Graph minors. XXIII. Nash-William’s immersion conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schaefer, M., Stefankovic, D.: Decidability of string graphs. J. Comput. Syst. Sci. 68(2), 319–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schaefer, M., Sedgwick, E., Stefankovic, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Thomas, R.D.: Graphs without K 4 and well-quasi-ordering. J. Comb. Theory, Ser. B 38, 240–247 (1985)

    Article  MATH  Google Scholar 

  46. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebr. Discrete Methods 3, 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Hermelin.

Additional information

Research supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellows, M.R., Hermelin, D. & Rosamond, F.A. Well Quasi Orders in Subclasses of Bounded Treewidth Graphs and Their Algorithmic Applications. Algorithmica 64, 3–18 (2012). https://doi.org/10.1007/s00453-011-9545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9545-y

Keywords

Navigation