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Abstract

The NP-hard general factor problem asks, given a graph and for each vertex a list of integers,
whether the graph has a spanning subgraph where each vertex has a degree that belongs
to its assigned list. The problem remains NP-hard even if the given graph is bipartite with
partition U WV, and each vertex in U is assigned the list {1}; this subproblem appears in
the context of constraint programming as the consistency problem for the extended global
cardinality constraint.

We show that this subproblem is fixed-parameter tractable when parameterized by the
size of the second partite set V. More generally, we show that the general factor problem for
bipartite graphs, parameterized by |V|, is fixed-parameter tractable as long as all vertices
in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of
length at most 2. We establish fixed-parameter tractability by reducing the problem instance
to a bounded number of acyclic instances, each of which can be solved in polynomial time
by dynamic programming.

1 Introduction

To find in a given graph a spanning subgraph (or factor) that satisfies certain degree constraints is
a fundamental task in combinatorics that entails several classical polynomial-time solvable prob-
lems such as PERFECT MATCHING (the factor is 1-regular), ~-FACTOR (the factor is r-regular),
and (a,b)-FACTOR (the degree of each vertex v in the factor lies in a given interval (a,,by)).
Lovész [9) [10] introduced the following NP-hard problem which generalizes all mentioned factor
problems:

GENERAL FACTOR

Instance: A graph G = (V, E) and a mapping K that assigns to each vertex v € V' a
set K (v) C {0,...,d(v)} of integers.

Question: Is there a subset F' C E such that for each vertex v € V' the number of
edges in F incident with v is an element of K (v)?

The problem remains NP-hard even for bipartite graphs G = (UWV, FE) where K (u) = {1} for all
u € U and K (v) = {0,3} for all v € V. Cornuéjols [5] obtained a dichotomy result that classifies
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the complexity of all GENERAL FACTOR problems that are formed by restricting the sets K (v) to
a fixed class C of sets of integers. For each class C the corresponding problem is either polynomial
or NP-complete.

In this paper we study the parameterized complexity of GENERAL FACTOR for bipartite
graphs G = (U WV, E) parameterized by the size of V. Our main results can be summarized as
follows.

The problem GENERAL FACTOR for bipartite graphs G = (U WV, E), parameterized
by the size of V, is

(1) fized-parameter tractable if | K (u)| <1 for all u € U;
(2) W[1]-hard if |K(u)| <2 for allu e U.

We establish result (1) by a novel combination of concepts from polynomial-time algorithmics
(alternating cycles) with concepts from fixed-parameter algorithmics (data reduction and anno-
tation).

Next we briefly discuss an application of our fixed-parameter tractability result. Constraint
Programming (CP) is a general-purpose framework for combinatorial problems that can be solved
by assigning values to variables such that certain restrictions on the combination of values are
satisfied; the restrictions are formulated by a combination of so-called global constraints. For
example the global constraint ALLDIFFERENT enforces that certain variables must all be assigned
to mutually different values. The Catalog of Global Constraints [I] lists hundreds of global
constraints that are used to model various real-world problems. For several global constraints
the consistency problem (i.e., deciding whether there exists an allowed value assignment) is
NP-complete [3]. It is an interesting line of research to study such global constraints under
the framework of parameterized complexity. We think that global constraints are an excellent
platform for deploying efficient fixed-parameter algorithms for real-world applications.

An important global constraint is the extended global cardinality constraint (or EGC
constraint, for short), also known as global_cardinality [1], egcc [3], distribution [4], and
card_var_gce [I4]. Let X be a finite set of variables, each variable z € X given with a finite
set D(x) of possible values. An EGC constraint over X is specified by a mapping that assigns
to each value d € D := |J, .y D(z) a set K(d) of non-negative integers. The constraint is con-
sistent (or satisfiable) if one can assign each variable z € X a value a(z) € D(x) such that
|a=1(d)| € K(d) holds for all values d € D. The consistency problem for EGC constraints can
clearly be expressed as an instance (G, K’) of GENERAL FACTOR where G, the value graph of
the constraint [18], is the bipartite graph (X W D,{zd : d € D(z)}) and K’ is the degree list
assignment defined by K'(z) = {1} for all x € X and K'(d) = K(d) for all d € D (see Fig-
ure[Ilfor an example). Hence our result (1) renders the consistency problem for EGC constraints
fixed-parameter tractable when parameterized by the number |D| of values.

1.1 Related Work

The parameterized complexity of EGC constraints was first studied by Samer and Szeider [15]
using the treewidth of the value graph as the parameter. For value graphs of bounded degree
it is easy to see that the consistency problem is fixed-parameter tractable for this parameter, as
one can express the restrictions imposed by the sets K (v) in monadic second-order logic, and use
Courcelle’s Theorem. However, for graphs of unbounded degree the problem is W[1]-hard. That
instances of unbounded degree but bounded treewidth are solvable in non-uniform polynomial
time (i.e., the consistency problem is in XP) can be shown by means of an extension of Courcelle’s
Theorem [I6]. A further parameterization of GENERAL FACTOR was considered by Mathieson
and Szeider [I1], taking as the parameter the number of edges that need to be deleted to obtain
the general factor. The problem is W[1]-hard in general but fixed-parameter tractable for graphs
of bounded degree.
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Figure 1: Value graph of an EGC constraint with variables wu,...,z and values a,...,e. For

instance, variable u has the domain D(u) = {a,b}. The constraint is satisfied by the assignment
u=bv=c w=d,z=d, y=e,and z = b which corresponds to the general factor indicated
by bold edges.

The parameterized complexity of other global constraints were studied by Bessiere et al. [2].
Whether global constraints admit polynomial kernels was the subject of recent studies [, [17].

In the context of parameterized complexity it is interesting to mention the results of van Hoeve
et al. [I9] who compare various algorithms for the SEQUENCE constraint (a global constraint that
is important for various scheduling problems). Although the consistency problem is polynomial
for this constraint, it turns out that a fixed-parameter algorithm outperforms the polynomial-time
algorithm on several realistic instances.

1.2 Notation and Preliminaries

Unless otherwise stated, all graphs considered are finite, simple, and undirected. We denote a
graph G with vertex set V' and edge set E by G = (V, E) and write V(G) = V and E(G) = E.
We denote an edge between two vertices u and v by uv or equivalently vu. For a set F' of edges
and a vertex v we write Np(v) = {u : uv € F' } and we write dp(v) for the number of edges in F
that are incident with v. For a graph G we also write Ng(v) = Ng)(v) and dg(v) = dpg)(v),
and we omit the subscripts if the context allows.

A degree list assignment K is a mapping that assigns to each vertex v € V(G) a set K(v) C
{0,...,dg(v)}. A set F C E(G) is a general K-factor of G if dp(v) € K(v) holds for each
v € V(G). Sometimes it is convenient to identify a set FF C E(G) with the spanning subgraph
(V(G), F) of G.

An instance of a parameterized problem L is a pair (I, k) where I is the main part and k
is the parameter; the latter is usually a non-negative integer. L is fized-parameter tractable if
there exist a computable function f and a constant ¢ such that instances (I, k) can be solved in
time O(f(k)n®) where n denotes the size of I. FPT is the class of all fixed-parameter tractable
decision problems.

A parameterized reduction is a many-one reduction where the parameter for one problem maps
into the parameter for the other. More specifically, problem L reduces to problem L’ if there is
a mapping R from instances of L to instances of L’ such that (i) (I, k) is a YES-instance of L if
and only if (I',k") = R(I, k) is a YEs-instance of L', (ii) k&' = g(k) for a computable function g,
and (iii) R can be computed in time O(f(k)n®) where f is a computable function, ¢ is a constant,
and n is the size of I. The parameterized complexity classes W[1] C W[2] C --- C XP are
defined as the closure of certain parameterized problems under parameterized reductions. There
is strong theoretical evidence that parameterized problems that are hard for classes W[i] are not
fixed-parameter tractable.

For more background on parameterized complexity we refer to other sources [6, [7, 12].



2 Fixed-Parameter Tractability

This section is devoted to the proof of our fixed-parameter tractability result. Let BIPARTITE
GENERAL FACTOR WITH SINGLETONS denote the problem GENERAL FACTOR restricted to in-
stances (G, K) where G = (UWV, E) is bipartite and |K (u)| < 1 for all u € U. We will show the
following:

Theorem 1. BIPARTITE GENERAL FACTOR WITH SINGLETONS parameterized by the size of V
1s fived parameter tractable.

Let (G, K) be an instance of BIPARTITE GENERAL FACTOR WITH SINGLETONS with G =
(UWV,E)and V = {v1,...,u}. Clearly we may assume that K (v) ¢ {0,{0}} forallv e U V:
if K(v) = then G has no general K-factor, and if K(v) = {0} then we can delete v from G.
Thus, in particular for each v € U we have K (u) € {{1},...,{k}}.

2.1 General Factors of Edge-Weighted Graphs

Key to our algorithm for BIPARTITE GENERAL FACTOR WITH SINGLETONS is the transformation
to a more general “annotated” problem on edge-weighted graphs that allows a more succinct
representation.

Let G be a graph. A (positive integral) edge-weighting p of G is a mapping that assigns to
each edge e € E(G) a non-negative integer p(e). We refer to a pair (G, p) as an edge-weighted
graph. For a vertex v of G we define d,(v) as the sum of p(e) over all edges incident with v (or
0 if v has no incident edges). As usual, dg(v) denotes the number of edges incident with v, the
degree of v. Let K be a degree list assignment of G. We define a general K-factor of an edge-
weighted graph (G, p) by using p(e) as the “capacity” of an edge e. More precisely, we say that
an edge-weighting ¢ is a general K-factor of the edge-weighted graph (G, p) if (i) ¢(e) < p(e)
holds for all edges e of G and (ii) dy(v) € K(v) for all v € V(G). Evidently this definition
generalizes the above definition of general K-factors for unweighted graphs (by considering an
unweighted graph as an edge-weighted graph where each edge has weight 1, and a set F' of edges
as an edge-weighting that assigns each edge in F' the weight 1, and all other edges the weight 0).
By GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS we refer to the obvious generalization of
the decision problem GENERAL FACTOR to edge-weighted graphs.

In the following we will present several reduction rules that take as input an instance
I = (G,p,K) of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS and produce as output
an instance I’ = (G’ p’, K') of the same problem (or rejects I as a no-instance). We say that a
reduction rule is sound if it always holds that either both I and I’ are no-instances or both are
yes-instances (or in case of rejection, I is indeed a no-instance). A reduction rule is polynomial
if we can decide in polynomial time whether it applies to I and we can compute I’ in polynomial
time if the rule applies.

2.2 Contractions of Modules

Let (G, p, K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS. For an
integer ¢ > 1 we call a subset M C V(G) a c-module if

1. M is nonempty and independent;
2. K(v) ={c} for allv € M;
3. all vertices in M have exactly the same neighbors;

4. p(e) =1 holds for all edges e € E(G) with one end in M.



Reduction Rule 1. Let M be a c-module of (G,p, K). Obtain a new instance (G',p', K’) by
replacing M with a new vertex ups that is adjacent with the same vertices as the vertices in M.
Set p'(e) = |M]| for all edges e incident with upr and p'(e') = p(e’) for all other edges e’. Set
K'(up) = {c|M|} and K'(v) = K(v) for all other vertices.

Lemma 1. Reduction Rule[lis sound and polynomial.

Proof. Let ¢ be a general K-factor of (G,p). We define ¢'(uyw) = >, o5 p(vw) for edges
upw that are incident with ups and ¢'(e) = ¢(e) for all other edges. Observe that ¢’ (uprw) <
|M| = p'(uprw) and dyr(unr) = D, cpp do(v) = ¢|M| € K'(upr), hence ¢ is a general K'-factor
of (G', ).

Conversely, let ¢’ be a general K'-factor of (G',p’). Let M = {uy,...,us} and let N =
{v1,...,v:} be the set of neighbors of up,.

We define an edge-weighting ¢ of G. For 0 <i <tlet S; = > . _, ¢’ (upvy); thus So = 0 and
St =cs. For1 <i<tand1l<j<s weset

o(vin) = 1 ifj=8;_1+1 (mod s) for some 1 <1 < ¢ (uprv;);
B 0 otherwise.

For e € E(G) N E(G") we set p(e) = ¢'(e). Since ¢’ (uprv;) < s for 1 <4 < ¢ this definition is
correct. To see that ¢ is a general K-factor of G we note that dy(v;) = dy/(v;) for all 1 < <t,
and dy,(u;) = dy (unr)/s = ¢ € K(uy) forall 1 < j <s.

As it is obvious that the rule is polynomial, the lemma follows. O

2.3 Acyclic General Factors

Let ¢ be a general K-factor of an edge-weighted graph (G, p). We say that an edge e € E(G) is
full in @ if p(e) = p(e) and @(e) > 0, an edge e € E(G) is empty in ¢ if p(e) = 0.

The skeleton of ¢ is the spanning subgraph G, of G with E(G,) = {e € E(G) : 0 < ¢(e) <
p(e) }; ie., E(G,) consists of all edges that are neither full nor empty. The full skeleton of ¢
is the spanning subgraph G of G with E(G}) = {e € E(G) : 0 < p(e) < p(e) }; ie., E(GY)
consists of all edges that are not empty. We say that ¢ is acyclic if its skeleton G, contains no
cycles (i.e., is a forest), ¢ is fully acyclic if its full skeleton G} contains no cycles.

Lemma 2. If a bipartite edge-weighted graph (G, p) has a general K-factor, then it also has an
acyclic general K -factor.

Proof. Let G = (UWV, E) where U = {u1,...,up} and V = {v1,...,v;}. For an edge-weighting
v of G and a pair v;, u; with v;u; ¢ E(G) we define p(v;u;) = 0. With each edge-weighting ¢ of
G we associate a vector A(p) defined as follows:

A(‘P) = (‘P(’Ulul)v <P(’Ulu2)7 R <P(’Ulup)a
</7(’02u1)7 <P(’02u2)7 ) w(’UQU;D)a

p(vkur), (vkuz), . . s p(vkup))-

Let ¢ be a general K-factor of G such that A(yp) is lexicographically maximal among all vectors
of general K-factors of G. (A vector (ay,...,ay) is lexicographically larger than (by,...,by) if
for some 4, a; > b; and a; = b; for all j < i.) We are going to show that ¢ is acyclic.

We will use the following idea. Suppose the skeleton G, contains a cycle. Then we alternately
increase and decrease the weights of the edges on the cycle by one. Since the graph is bipartite,
the cycle is of even length, and so every vertex on the cycle is incident with an edge of increased
weight and an edge with decreased weight. Thus the weighted degree of each vertex remains the



same. By changing the weights of the edges on the cycle we obtain a new general K-factor whose
associated vector is lexicographically larger than the vector associated with ¢, a contradiction to
the choice of ¢.

Suppose to the contrary that the skeleton G, contains a cycle C' = vj, u;, ... v;,u;,v;, . With-
out loss of generality, we may assume that jo = min{ji,...,j:}. Moreover we may assume that
i1 < io since otherwise we can consider the reverse of C' instead.

We define a new general K-factor ¢’ of (G, p) by setting ¢’ (vju;_,) = ¢(vjui_,) + 1 and
o' (v, ui,) = p(vju,) — 1 for 1 <1 <t (computing indices modulo t), and ¢'(e) = ¢(e) for all
other edges. That ¢’ is indeed a general K-factor follows from the following observations:

(i) dy (w) € K(w) holds for all w € UV since dy (w) = dy(w) € K(w);

(i) For each e € E(C) we have ¢'(e) < ¢(e) +1 < p(e) since e € E(C) C E(G,,) and therefore
e is not full in (.

(iii) For each e € E(C') we have 0 < p(e) — 1 < ¢'(e) since e € E(C) C E(G,) and therefore e
is not empty in ¢.

Furthermore, we observe that ¢'(vj,u;) > @(vj,u; ), but all entries in the vector A(y¢')
before p(v;,u;, ) remain the same as in A(¢). Hence A(¢') is lexicographically larger than A(yp),
a contradiction to our assumption that A(yp) is lexicographically maximal. This proves that G,
is indeed acyclic. O

Let I = (G,p,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS and
X C E(G). For a vertex v of G let dx(v) be the sum of p(e) over all edges e € X that are
incident with v. Let I — X denote the instance (G, pX, KX) obtained from I by deleting X,
decreasing the capacities p of all edges not in X by one, and updating the degree list assignment
assuming the edges in X are full. More precisely, we set

GX = G-X,
pX(e) = max(p(e) —1,0) forall e € BE(GY),
K¥(w) = {c—dx(w):ce K(v), c—dx(v) >0} forallveV(GY).

Lemma 3. Let I = (G,p,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED
GrapHS, X C E(G), and I — X = (GX,pX,KX). Then the following two statements are
equivalent.

1. (G, p) has an acyclic general K -factor ¢ such that X is precisely the set of full edges of .
2. (GX, pX) has a fully acyclic general KX -factor.

Proof. Let ¢ be an acyclic general K-factor of (G, p) such that X is precisely the set of full edges
of ¢. Thus, the skeleton G, contains no cycles. The restriction ¢’ of  to G¥X is clearly a general
KX factor of (GX, pX). Moreover, since (G ):;, = G, it follows that ¢’ is fully acyclic.

Conversely, let ¢’ be a fully acyclic general KX-factor of (GX,p*). Let ¢ be the edge-
weighting of (G, p) defined by

ple) = ¢'(e) for e € E(G¥X), and
wle) = ple) for e € X.

Clearly ¢ is a general K-factor of (G, p) where all edges in X are full. Since the capacities of
edges in GX were decreased by one, no edge of G outside X can be full with respect to . Hence
X is precisely the set of full edges of . As above, we have (GX):, = G, and so ¢ is acyclic. [



Lemma 4. Let (G, p) be a bipartite edge-weighted graph and K a degree list assignment such
that for each edge uv of G we have K(u) = {p(uv)} or K(v) = {p(uv)}. If (G, p) has a general
K -factor, then it also has a fully acyclic general K -factor.

Proof. Assume that (G, p) has a general K-factor. By Lemma 2l (G, p) has an acyclic general
K-factor . Let X be the set of full edges of . Let I — X = (GX, p*X, KX) and ¢ the restriction
of ¢ to GX. By the proof of Lemma [B] ¢X is a general KX-factor of (GX,pX) which is fully
acyclic. For each edge uv € X we have KX (u) = {0} or KX(v) = {0}, hence at least one of the
ends of any uv € X is of degree 1 in the full skeleton G;’f. Since G;’f can be obtained by adding
the edges in X to the forest Gy, it follows that also G; is a forest, i.e., ¢ is fully acyclic. O

2.4 Eliminating Vertices of Low Degree

Reduction Rule 2. Assume that G has a vertex v of degree 0. If 0 ¢ K(v), then reject the
instance; if 0 € K(v) then delete v from G and let G' = G —v, p’ = p, and K’ the restrictions of
K to V(G@).

Reduction Rule 3. Assume G has a vertex v of degree 1. Let u be the neighbor of v. We let
G' =G —wv, p the restriction of p to E(G'), and we put

K'(u)={cy —cy:cy € K(u), ¢, € K(v), ¢, <min(p(uv),c,) }
and K'(w) = K(w) for all w € V(G') \ {u}.
The proof of the following lemma is obvious.
Lemma 5. Reduction Rules[2 and[3 are sound and polynomial.

Proposition 1. GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS can be solved in polynomial
time for edge-weighted forests.

Proof. Let I = (G, p, K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS
such that G is a forest. If V(G) # 0, G has a vertex of degree < 1, and hence Reduction Rule
orBlapplies, and we obtain in polynomial time an equivalent instance with one vertex less which
is again a forest (or we reject the instance). By at most |V(G)| applications of the rules we either
reject the instance (I is a no-instance) or we eliminate all the vertices (I is a yes-instance). Thus
the result follows by repeated application of Lemma O

2.5 The Algorithm

It remains to put together the above results to show that BIPARTITE GENERAL FACTOR WITH
SINGLETONS parameterized by the size of V is fixed-parameter tractable.

Let (G, K) with V(G) = UWV be the given instance of the problem. As explained above we
can consider (G, K) as an instance I = (G, p, K) of GENERAL FACTOR FOR EDGE-WEIGHTED
GRAPHS letting p(e) =1 for all e € E(G). Let |V| = k.

1. We partition U into maximal sets Uy, ..., U, such that each U; is a c-module for some
1<e<k.

2. We apply Reduction Rule [Il with respect to the modules Uy, ..., U, and obtain an instance
Int = (G, par, Kr) of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS where Gy =
(Unp WV, Eyy) is a bipartite graph with p 4+ k vertices.

3. We guess a set X C Ej of edges and consider the instance I3, = Iy — X = (G2, pay, K35)-



4. We guess a spanning forest T of G=; and consider the instance IM = (T, oM, K(T)) where
p(T) is the restriction of par to T and K™ = K. We check if (T, p(T)) has a general
K(T)_factor using Proposition [ (i.e., applying the Reduction Rules 2] and [).

If (T, p‘™)) has general K(T)-factor, then we stop and output YES.

5. If none of the guesses for X and T produces the answer YES, we stop and output NO.

Theorem 2. Given a bipartite graph G = (UWV, E), k = |V|, n = |E|, and a degree list
assignment K with |K (u)| <1 for all u € U, we can decide whether G has a general K -factor in
time 282" K (| 4 1)k2"+k 00

Thus, BIPARTITE GENERAL FACTOR WITH SINGLETONS parameterized by the size of V is
fized-parameter tractable.

Proof. We show that the above algorithm decides correctly and in the claimed time bound
whether G has a general K-factor.
Consider the following sequence of statements.

1) (G, p) has a general K-factor.

2) (G, par) has a general Kjys-factor.

(1)

(2)

(3) (G, par) has an acyclic general K y-factor.

(4) There is some X C E(Gy) such that (G5, p3;) has a fully acyclic general K p-factor.
(5)

5) There is some X C F(Gjs) and some spanning forest 7' of G3; such that T has a general
KX -factor.

By previous results all five statements are equivalent. In particular, (1) < (2) follows by LemmalIl
(2) & (3) follows by Lemmal2] and (3) < (4) follows by Lemma[3l The equivalence (4) < (5) is
obvious. The correctness of the algorithm thus follows from Proposition [ it remains to bound
its running time.

We may assume that U contains no isolated vertices as such vertices can be ignored with-
out changing the problem. Each U; is defined by some degree constraint ¢ € {1,...,k} and a
nonempty subset of V, hence p < k(2¥ —1). Since G s has at most k22* edges, there are at most
gk?2* possible choices for X. In a spanning forest T', each vertex has at most one parent. Each
vertex in U has k + 1 alternatives for its parent (including not having one), and each vertex in
V has at most k2* alternatives for its parent (including not having one). Thus, each G, has at

most O((k + 1)k2k (k2%)*) possible spanning forests 7'. It follows that we apply Proposition [ at
most O(2F 2" (k + 1)k2" (k2k)k) = O(2F°2"+F (k + 1)*2" k) times. O

Corollary 1. Given a bipartite graph G = (UWV,E), k = |V|, n = |E|, and a degree list
assignment K with K(u) = {1} for all w € U, we can decide in time 2k (k + 1)’“216"’]C -nOM
whether G has a general K -factor.

Proof. We use a simplified version of the above algorithm. In view of Lemma [ we do not need
to guess a set X of full edges in order to be able to restrict our scope to fully acyclic general
K-factors. Thus we may skip step 3 of the algorithm and save a factor of 2°2" ip) the running
time. o



3 W]l]-Hardness

This section is devoted to establishing the W[1]-hardness result. Let BIPARTITE GENERAL FAC-
TOR WITH PAIRS denote the problem GENERAL FACTOR restricted to instances (G, K) where
G = (UWV,E) is bipartite and K (u) € {{0,7} : 1 <7 <|V|} holds for all u € U. We will show
the following:

Theorem 3. BIPARTITE GENERAL FACTOR WITH PAIRS parameterized by the size of V is
WI1]-hard.

We give a parameterized reduction from the following problem (also called MULTICOLORED
CLIQUE) which is known to be W[1]-complete [I3] for parameter k.

PARTITIONED CLIQUE

Instance: A k-partite graph G = (V1 W... WV, E) where |V;| =n for all 1 <i <k.

Parameter: The integer k.

Question: Is there a k-clique (a complete subgraph on k vertices) in G?
For this reduction we need to ensure that exactly one vertex v; is selected from each partite set
Vi, 1 <14 <k, and that v; and v; are adjacent for all 1 <14 < j < k. For the first requirement we
shall use the following gadget construction.

Given a set A of non-negative integers with M = max(A) and a number r > 0, we construct

a complete bipartite graph G4, = (U' W V', E’) with U’ = {uy,...,up}, V' = {vo,v1,..., 0},
and a degree list assignment K, setting K (u;) = {0,741} for 1 <i < M and K(vg) = A. We do

not impose any degree restrictions on the vertices v1, ..., v,, hence we put K(v;) = {0,..., M}
for 1 < j < r. We call the graph G4, together with the degree list assignment K a selection
gadget, and we refer to the vertices v, ..., v, as the outputs of the gadget.

Lemma 6. If a set F' of edges forms a general K-factor of a selection gadget G4, then all
outputs are incident to the same number o of edges in F, and a € A. Conwversely, for each a € A

there exists a general K-factor F' of G4, such that each output is incident with ezactly o edges
of F.

Proof. Suppose that F is a general K-factorof G4, = (U'WV', E). Let U" = {u; : dp(u;) = r+1,
1<i< M} and dp(vg) = a € A. Clearly |U”| = a. Hence dr(v;) = |[U”| = « holds for all
I<j<r.

Conversely, let @« € A. Then F = {u;v; : 1 <i<a, 0<j <r} forms a general K-factor of
Ga,r with dp(v;) = « for all outputs v;. O

Let A be a set of non-negative integers, N = max(A4) +1, A’ ={Na:a € A} and r,+' > 0 two
numbers. We take two vertex-disjoint selection gadgets G 4,41 and G4/ 41 and identify one
output v of the first with one output v’ of the second gadget. Let us call this identified vertex q.
We define K(¢) = {a+ Na:a € A}. We call this new gadget a double selection gadget G4y,
We consider the outputs of Ga,+1 and Gar 41 except v and v’ as the outputs of G4, ... We
call the r outputs that originate from G 4,11 the lower outputs, and the ' outputs that originate
from Ga/ 41 the upper outputs of G, . If U WV denotes the vertex set of G4 ./, then
[VI=r+7r"+3.

Lemma 7. If a set F' of edges is a general K -factor of a double selection gadget then all lower
outputs are incident to the same number o of edges in F, all upper outputs are incident to the
same number B of edges in F, and we have o € A and B = aN. Conversely, for each o € A
there is a general K-factor F' such that all lower outputs are incident to v edges in F, and all
upper outputs are incident to alN edges in F.



Proof. Let G4, be a double selection gadget constructed from two selection gadgets G4 41
and Gar 41, and let F' be a general factor of Ga, .. Let o = |[Np(q) N V(Ga,r41)| and
B8 =|Np(q) NV (G4r41)|. Clearly a+ 8 = dr(q) € K(q). By Lemmalflwe have a € A, 8 € A’,
dr(v) = « for all lower outputs v and dp(v') = g for all upper outputs v’, thus the first part
of the lemma is shown. The second part follows easily by using the second part of Lemma
twice. O

Next we describe the parameterized reduction from PARTITIONED CLIQUE to BIPARTITE GEN-
ERAL FACTOR WITH PAIRS that uses the double selection gadgets. Let G = (V1 W... W Vy, E)
be an instance of PARTITIONED CLIQUE, and assume n = |V;| for 1 < i < k. We write
V; = {vi,...,vi}. For every 1 < i < k, we take a copy H; of the double selection gadget
Gary where A={1,....,n},r=14i—1and v =k —i. For each pair 1 <i < j < k we identify
an upper output of H; and a lower output of H;. We denote the identified vertex as h; ;. We can
choose the identified pairs in such a way that finally each output is identified with exactly one
other output. Let H = (Ug W Vy, Ey) be the bipartite graph constructed in this way. We define
a degree list assignment K where each identified vertex h; ;, 1 < i < j < k, gets assigned the
list {Na+(: vévé € E(G), a,p € {1,...,n}}, and all other vertices inherit the list assigned
to them in the definition of a double selection gadget. Thus (H, K) is an instance of GENERAL
FACTOR that satisfies the properties as stated in Theorem Bl (in fact, for all u € Uy we have
K(u) € {{0,7} : 2 <r < k+1}). Furthermore, we have |[Vy| = (g) + 3k as Vp contains (g)
identified vertices and each H;, 1 < i < k, contributes 3 more vertices to V. Therefore the
new parameter k' = |Vpy| of the BIPARTITE GENERAL FACTOR WITH PAIRS instance is indeed a
function of the old parameter k of the PARTITIONED CLIQUE instance. Furthermore, it is easy to
check that |Ug| = k- 2n(n + 2) and clearly (H, K) can be obtained from G in polynomial time.
It remains to show that the reduction is correct:

Lemma 8. H has a general K -factor if and only if G has a k-clique.

Proof. Let F be a general K-factor of H. For 1 < i < k let F; = FNE(H;) and observe that Fj is
a general factor of H;. Thus, by the first part of Lemma [ there is some a; € A = {1,...,n} such
that dg, (v) = a; for each lower output v of H; and dp, (v') = Na; for each upper output v" of H;.
Let 1 <14 < j < k and consider the identified vertex h; ;. We have dp(h; ;) = Na; + a;. Since
K(hi;) ={Na+8: vgv% € E(G)}, it follows that v, v} € E(G). Hence C = {v}, :1<i<k}
induces a clique in G.

Conversely, assume that C' C V(@) induces a k-clique in G. Since G is k-partite, C' contains
exactly one vertex v; from each set V;, 1 < ¢ < k. By the second part of Lemma [7 each
H;, 1 < i < k, has a general factor F; such that dp,(v) = x; for each lower output v and
dp,(v") = Nuz; for each upper output v’. Let F = Ule F;. Since for each pair 1 <i < j < k we
have v,,v,; € E(G), it follows that dr(h; ;) = x; + Nx; € K(h; ), hence F is indeed a general
K-factor of H. O

With Lemma [l we have shown that our reduction is correct, thus Theorem [l is established.

4 Conclusion

We have studied the parameterized complexity of general factor problems for bipartite graphs
G = (UWV, E) where the size of the sets K (u) for u € U is bounded by a small constant and
where |V is the parameter. There are various further variants of general factor problems whose
parameterized complexities would be interesting to explore, for example, one could consider |U|
instead of |V as the parameter. A further possibility is to restrict K (v) for all vertices v of
one or both partite sets to a fixed class C of sets of integers, similar to Cornuejols’s dichotomy
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result [5]. It would be interesting to reveal fixed-parameter tractable general factor problems
that are W[1]-hard without the restriction of K (v) to a fixed class C and NP-hard without the
parameterization.
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