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Abstract Within a mathematically rigorous model borrowed from statis-
tical learning theory, we analyse the curse of dimensionality for similarity-
based information retrieval in the context of a wide class of popular indexing
schemes. The datasets X are sampled randomly from a domain Ω, equipped
with a distance, ρ, and an underlying probability distribution, µ. The in-
trinsic dimension of the domain, d, is defined in terms of the concentration
of measure phenomenon. For the purposes of asymptotic analysis, we send
d to infinity, and assume that the size of a dataset, n, grows faster than
any polynomial function in d, yet slower than any exponential function in
d. Exact similarity search refers to finding the nearest neighbour in the
dataset X to a query point ω ∈ Ω, where the query points are subject to
the same probability distribution µ as datapoints. Let F denote a class
of all 1-Lipschitz functions on Ω that can be used as decision functions in
constructing a hierarchical metric tree indexing scheme. Suppose the VC
dimension of the class of subsets defined by inequalities f R a, f ∈ F ,

a ∈ R is dO(1). (According to a result of Goldberg and Jerrum, at least for
Ω = Rd this is a not a serious restriction.) Under those assumptions, we ob-
tain lower bounds on the expected average case performance of hierarchical
metric-tree based indexing schemes for exact similarity search in (Ω,X),
which bounds are superpolynomial in d.

Introduction

The curse of dimensionality is a well-known phenomenon across the entire
computer science, negatively affecting, in particular, the performance of
indexing schemes into large datasets for the purpose of similarity-based
information retrieval, cf. e.g. Chapter 9 in [21], as well as [3,28].

http://arxiv.org/abs/0812.0146v1
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Paradoxically, there is still no mathematical proof that the above phe-
nomenon is really in the nature of high-dimensional datasets. While the
concept of intrinsic dimension of a dataset is open to a discussion (see
[18] and references therein), even in cases commonly accepted as “high-
dimensional” (e.g. uniformly distributed data in the Hamming cube {0, 1}d

as d → ∞), the “curse of dimensionality conjecture” for proximity search
remains unproven [11]. Diverse results in this direction [4,2,16,5,22], are
still preliminary.

Here we will verify the conjecture for a particular class of indexing
schemes widely used in similarity search and going back to [24]: metric trees.
So are called hierarchical partitioning indexing schemes equipped with 1-
Lipschitz (non-expanding) decision functions at every node.

We assume that datapoints are drawn from the domain Ω with regard
to an underlying probability measure µ independently of each other. The
domain is a metric space, that is, the similarity measure, ρ, satisfies the
axioms of a metric. The intrinsic dimension of Ω is defined in terms of con-
centration of measure as in [18]. This concept agrees with the usual notion
of dimension in cases such as the Hamming cube {0, 1}d or the Euclidean
ball Bd, and is most relevant. A dataset X ⊆ Ω with n points is modelled
by i.i.d. random variables distributed according to µ. We assume, as in [11],
that the number of datapoints n grows superpolynomially in dimension d yet
subexponentially in d. Using the notation of asymptotic algorithm analysis,
this can be written as n = dω(1) and d = ω(logn).

It is clear that the computational complexity of decision functions used
in constructing a metric tree is a major factor in a scheme performance.
We take this into account in the form of a combinatorial restriction on the
subclass F of all functions on Ω that are allowed to be used as decision
functions, by requiring a well-known parameter of statistical learning theory,
the Vapnik-Chervonenkis dimension of F [25], to be polynomial in d, that
is, VC-dim (F ) = dO(1).

A very general class of functions satisfying this VC dimension bound is
provided by a theorem of Goldberg and Jerrum [9] about function classes
parametrized by elements of Rs whose computation involves arithmetic op-
erations, conditioning on inequalities, and inputs 0 or 1. Apparently, the
decision functions of all indexing schemes used in practice so far in Eu-
clidean (and Hamming cube) domains fall into this class.

Under above assumptions, we prove a superpolynomial in d lower bound
on the expected average performance of all possible metric trees. We believe
that a lower bound that strong has never been derived before within a
mathematically rigorous model and in the present generality.

1 General framework for similarity search

We follow a formalism of [10] as adapted for similarity search [16,19]. A
workload is a triple W = (Ω,X,Q), where Ω is the domain, whose elements
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can occur as datapoints and as query points, X ⊆ Ω is a finite subset
(dataset, or instance), and Q ⊆ 2Ω is a family of queries. Answering a query
Q ∈ Q means listing all datapoints x ∈ X ∩Q.

A (dis)similarity measure onΩ is a function of two arguments ρ:Ω×Ω →
R, which we assume to be a metric, as in [30]. A range similarity query
centred at ω ∈ Ω is a ball of radius ε around the query point:

Q = Bε(ω) = {x ∈ Ω: ρ(ω, x) < ε}.

Equipped with such balls as queries, the triple W = (Ω, ρ,X) forms a range
similarity workload.

ε

Ω

Fig. 1 A range query.

We will assume ρ to be a metric, as in [30], though sometimes one needs
to consider more general similarity measures, cf. [8,19].

The k-nearest neighbours (k-NN) query centred at ω ∈ Ω, where k ∈ N,
is normally being reduced to a range query of a suitable search radius.

A workload is inner if X = Ω and outer if |X | ≪ |Ω|. There is an
essential difference between the two types of workloads, and most workloads
of practical interest are outer workloads, that is, a typical query point will
come from outside the dataset, cf. [19].

2 Hierarchical tree index structures

An access method is an algorithm that correctly answers every range query.
Principal examples of access methods are indexing schemes. A hierarchical
tree-based indexing scheme includes a sequence of refining partitions of the
domain labelled with a finite rooted tree. For simplicity, we will assume all
trees to be binary. This assumption is not really restrictive.

Such a structure will occupy a storage space O(n).
To process a range query Bε(ω), we traverse the tree recursively to the

leaf level. Once a leaf B is reached, its contents (i.e., all datapoints x ∈
X ∩ B) are accessed, and the condition x ∈ Bε(ω) verified for each one of
them.

Of main interest is what happens at each internal node C. Let us identify
C with the corresponding element C ⊆ Ω of the partition, and suppose that
A and B are child nodes of C, so that C = A ∪ B. A branch descending
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Fig. 2 A refining sequence of partitions of Ω.

from B can be pruned provided Bε(ω) ∩ B = ∅, because then datapoints
contained in B are of no further interest. Equivalently, this is the case where
it can be certified that ω is not contained in the ε-neighbourhood of B,

ω /∈ Bε = {x ∈ Ω: d(x,B) < ε}.

(Cf. Fig. 3, l.h.s.) Similarly, if ω /∈ Aε, then the sub-tree descending from
A can be pruned. However, if the open ball Bε(ω) meets both A and B or,
equivalently, ω belongs to the intersection of ε-neighbourhoods of A and B,
pruning is impossible and the search branches out. (Cf. Fig. 3, r.h.s.)

B

ω

A B

A ε ε

ε

A

ω

B

A B

ε ε

ε

Fig. 3 Pruning is possible (l.h.s.), and impossible (r.h.s.).

In order to “certify” that Bǫ(ω) ∩ B = ∅, one employs the technique of
decision functions. Recall that a function f :Ω → R is a 1-Lipschitz function
if

∀x, y ∈ Ω, |f(x)− f(y)| ≤ d(x, y).

Assign to every internal mode C a 1-Lipschitz function f = fC so that
fC ↾ B ≤ 0 and fC ↾ A ≥ 0. It is easily seen that fC ↾ Bε < ε, and so the

fact that fC(ω) ≥ ε serves as a certificate for Bε(ω) ∩B = ∅ , assuring

that a sub-tree descending from B can be pruned. Similarly, if fC(ω) ≤ −ε,
the sub-tree descending from A can be pruned.

Note that decision functions should have sufficiently low computational
complexity in order for the indexing scheme to be efficient.
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x

f

B 0

f(x)

ε

y

Fig. 4 Graph of a decision function f = fC .

A hierarchical indexing structure employing 1-Lipschitz decision func-
tions at every node is known as a metric tree.

3 Metric trees

Here is a formal definition. A metric tree for a metric similarity workload
(Ω, ρ,X) consists of

– a finite binary rooted tree T ,
– a collection of (possibly partially defined) real-valued 1-Lipschitz func-

tions ft:Bt → R for every inner node t (decision functions), where
Bt ⊆ Ω,

– a collection of bins Bt ⊆ Ω for every leaf node t, containing pointers to
elements X ∩Bt,

so that

– Broot(T ) = Ω,
– for every internal node t and child nodes t−, t+, one has Bt ⊆ Bt− ∪Bt+ ,
– ft ↾ Bt− ≤ 0, ft ↾ Bt+ ≥ 0.

When processing a range query Bǫ(ω),

– t− is accessed ⇐⇒ ft(ω) < ε, and
– t+ is accessed ⇐⇒ ft(ω) > −ε.

Here is the search algorithm in pseudocode.

Algorithm 1

on input (ω, ε) do
set A0 = {root(T )}
for each i = 0, 1, . . . , depth(T )− 1 do

if Ai 6= ∅
then for each t ∈ Ai do

if t is an internal node
then do

if ft(ω) < ε
then Ai+1 ← Ai+1 ∪ {t−}
if ft(ω) > −ε
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then Ai+1 ← Ai+1 ∪ {t+}
else for each x ∈ Bt do

if x ∈ Bε(ω)
then A← A ∪ {x}

return A
⊓⊔

Under our assumptions on the metric tree, Algorithm 1 correctly answers
every range similarity query for the workload (Ω, ρ,X) and thus is an access
method.

For more, see [19], while the survey [5] presents a different perspective.
Each of the books [20,21,30] is an excellent reference to indexing structures
in metric spaces.

4 Curse of dimensionality

Every similarity query can be answered in time O(n) through a simple linear
scan of the dataset X . In practice, a linear scan often outperforms the best
known indexing schemes for high-dimensional workloads, though of course
there are exceptions, cf. e.g. a relatively efficient scheme developed in [23]
for searching large databases of short protein fragments.

As a consequence, the research emphasis in recent years has shifted
towards approximate similarity search:

– given ǫ > 0 and ω ∈ Ω, return a point that is [with high probability] at
a distance < (1 + ǫ)dNN (ω) from ω.

This has led to many spectacular achievements, based on deep results
of geometric functional analysis (see e.g. survey [11] and Chapter 7 in [26]).
At the same time, research in exact similarity search, especially concerning
deterministic algorithms, has slowed down. One of the stumbling blocks is
the inability to prove at a mathematically rigorous level that the curse of
dimensionality is indeed in the nature of high-dimensional datasets. The
following problem remains open.

Conjecture 1 (The curse of dimensionality conjecture, cf. [11]) Let X ⊆
{0, 1}d be a dataset with n points, where the Hamming cube {0, 1}d is
equipped with the Hamming (ℓ1) distance:

d(x, y) = ♯{i:xi 6= yi}.

Suppose d = no(1), but d = ω(logn). (That is, the number of points inX has
intermediate growth with regard to the dimension d: it is superpolynomial in
d, yet subexponential.) Then any data structure for exact nearest neighbour
search in X , with dO(1) query time, must use nω(1) space.

Ideally, the conjecture should be proved within the cell probe model [15],
which is a very general model of computation. The best lower bounds within
this model currently known are on the order of Ω(d/ logn) [2].



Lower Bounds for Metric Trees 7

5 Concentration of measure

As in [7], we assume the existence of an unknown probability measure µ on
Ω, such that both datapoints X and query points ω are being sampled with
regard to µ.

On the one hand, this assumption is open to debate: for instance, in a
typical university library most books (75 % or more) are never borrowed
a single time, so it is reasonable to assume that the distribution of queries
in a large dataset will be skewed equally heavily away from data distri-
bution. On the other hand, there is no obvious alternative way of making
an apriori assumption about the query distribution, and in some situations
the assumption makes sense indeed, e.g. in the context of a large biologi-
cal database where a newly-discovered protein fragment has to be matched
against every previously known sequence.

The triple (Ω, ρ, µ) is known in a mathematical context as a metric
space with measure. This concept opens the way to systematically using the
phenomenon of concentration of measure on high-dimensional structures,
also known as the “Geometric Law of Large Numbers.” This phenomenon
arguably plays an important part in explaining away the course of dimen-
sionality and can be informally summarized as follows:

for a typical “high-dimensional” structure Ω, if A is a subset contain-
ing at least half of all points, then the measure of the ε-neighbourhood
Aε of A is overwhelmingly close to 1 already for small ε > 0.

Here is a rigorous way for dealing with the phenomenon. Define the
concentration function αΩ of a metric space with measure Ω by

αΩ(ε) =

{

1
2 , if ε = 0,
1−min

{

µ♯ (Aǫ) :A ⊆ Ω, µ♯(A) ≥
1
2

}

, if ε > 0.

The value of αΩ(ε) gives un upper bound on the measure of the com-
plement to the ε-neighbourhood Aε of every subset A of measure ≥ 1/2, cf.
Fig. 5.

)

Aε

ε

A

at least half of
all points

bounds 
from above

containsΑ Ω

α(Ω,ε)
µ(Ω

Ω \ A ε
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Fig. 5 To the concept of concentration
function αΩ(ǫ).
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Concentration function versus Chernoff’s bound, n = 101

Concentration function
Chernoff bound

Fig. 6 Concentration function of
{0, 1}101 vs gaussian bound.
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For example, let Ω = {0, 1}d be the Hamming cube equipped with the
normalized Hamming distance

d(x, y) =
1

d
♯ {i:xi 6= yi}

and the uniform (normalized counting) measure

µ♯(A) =
♯A

2d
.

Then the concentration function of Ω satisfies a gaussian upper estimate
(Chernoff bound):

α{0,1}n(ε) ≤ e−2ε2n.

For an example in dimension d = 101, see Fig. 6.
Similar bounds hold for Euclidean spheres Sn, cubes In, and many other

structures of both continuous and discrete mathematics, equipped with suit-
ably normalized distances and canonical probability measures. The concen-
tration phenomenon can be expressed by saying that for “typical” high-
dimensional metric spaces with measure, Ω, the concentration function
αΩ(ε) drops off sharply as dimΩ →∞ [14,12].

6 Workload assumptions

We are ready to make standing assumptions on the workload for the rest of
the article.

Let (Ω, ρ, µ) be a domain equipped with a metric ρ and a probability
measure µ. We assume that the expected distance between two points of Ω
is normalized so as to become asymptotically constant:

E ρ(x, y) = Θ(1). (1)

We further assume that Ω has “concentration dimension d” in the sense
that the concentration function αΩ is gaussian with exponent Θ(d);

αΩ(ε) = exp
(

−Θ(ε2d)
)

. (2)

(This approach to intrinsic dimension is developed in [17,18].)
A dataset X ⊆ Ω contains n points, where the rate of growth of n and

d is as follows:

n = dω(1), (3)

d = ω(logn). (4)

In other words, the rate of growth of n as d→∞ is faster than any polyno-
mial function Cdk, C > 0, k ∈ N, but slower than any exponential function

ecd, c > 0. (An example of this rate of growth is the function n = 2
√
d.) Such
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assumptions are natural for the purposes of asymptotic analysis of search
algorithms, cf. the survey paper [11].

Datapoints are modelled by a sequence of i.i.d. random variables dis-
tributed according to the measure µ:

X1, X2, . . . , Xn ∼ µ.

The instances of datapoints will be denoted with corresponding lower case
letters x1, x2, . . . , xn.

Finally, the query centres ω ∈ Ω have the same distribution µ:

ω ∼ µ.

7 Query radius and branching

As a well-known concequence of concentration, in high-dimensional domains
the distance to the nearest neighbour is close to the average distance be-
tween two points (cf. e.g. [3] for a particular case). Denote εNN (ω) the
distance from ω ∈ Ω to the nearest point in X . The function εNN is 1-
Lipschitz, and so it concentrates near its median value. From here, one
deduces in a standard way:

Lemma 1 Under our assumptions on the domain Ω and a random sample
X, with confidence approaching 1 one has for all δ

µ {ω: |εNN(ω)− E ρ(x, y)| > δ} < exp(−O(δ2d)).

⊓⊔

What happens at an internal node C when a metric tree is being tra-
versed? Let αC denote the concentration function of C equipped with the
metric induced from Ω and a probability measure µC which is the normal-
ized restriction of the measure µ from Ω:

for A ⊆ C, µC(A) =
µ(A)

µ(C)
.

Suppose for the moment that our tree is perfectly balanced, in the sense
that µC(A) = µC(B) = 1

2 . Then the size of the ε-neighbourhood of A is
at least 1 − αC(ε), and the same is true of the ε-neighbourhood of B. One
concludes: for all query points ω ∈ C except a set of measure ≤ 2αC(ε), the
search algorithm 1 branches out at the node C. (Cf. Fig. 7.)

Lemma 2 Let C be a subset of a metric space with measure (Ω, ρ, µ). De-
note αC the concentration function of C with regard to the induced metric
ρ ↾ C and the induced probability measure µ/µ(C). Then for all ε > 0

αC(ε) ≤
αΩ(ε/2)

µ(C)
.
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A

A B

< α (C, ε)< α (C, ε)
C

ω

Bε ε

ε

Fig. 7 Search algorithm branches out for most query points ω at a node C if the
value αC(ε) is small.

Proof Let ε > 0 be any, and let δ < αC(ε). Then there are subsets D,E ⊆ C
at a distance ≥ ε from each other, satisfying µ(D) ≥ µ(C)/2 and µ(E) ≥
δµ(C), in particular the measure of either set is at least δµ(C). Since the
ε/2-neighbourhoods of D and E in Ω cannot meet by the triangle inequality,
the complement, F , to at least one of them, taken in Ω, has the property
µ(F ) ≥ 1/2, while µ(Fε/2) ≤ 1− δµ(C), because Fε/2 does not meet one of
the two original sets, D or E. We conclude: αΩ(ε/2) ≥ δµ(C), and taking
suprema over all δ < αC(ε),

αΩ(ε/2) ≥ αC(ε)µ(C),

that is, αC(ε) ≤ αΩ(ε/2)/µ(C), as required. ⊓⊔
Since the size of the indexing scheme is O(n), a typical size of a set C

will be on the order Ω
(

n−1
)

, while αΩ(ε) will go to zero as o
(

n−1
)

.

8 A “naive” average O(n) lower bound

As a first approximation to our analysis, we present a (flawed) heuristic
argument, allowing linear in n asymptotic lower bounds on the search per-
formance of a metric tree. As we will see, in order to become a rigorous
proof, it still lacks an important component.

Let a workload (Ω, ρ,X) be indexed with a balanced metric tree of
depth O(log n), having O(n) bins of roughly equal size in the sense of the
probability measure µ underlying the datapoint distribution.

For at least half of all query points, the distance εNN to the nearest
neighbour in X is at least as large as εM , the median NN distance. Let ω
be such a query centre. For every element C of level t partition of Ω, one
has, using Lemmas 2 and 1 and the assumption in Eq. (2),

αC(εM ) ≤
αΩ(εM/2)

µ(C)−1
= Θ(2t)e−Θ(1)ε2

M
d = e−Θ(d),
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where the constants do not depend on a particular internal node C. An
argument in Section 7 implies that branching at every internal node occurs
for all ω except a set of measure

≤ ♯(nodes)× 2 sup
C

αC(ε) = O(n2)e−Θ(d) = o(1),

because d = ω(logn) and so eΘ(d) is superpolynomial in n. Thus, the ex-
pected average performance of an indexing scheme as above is linear in
n.

The problem with arguments of this kind (seen from time to time in
data engineering papers) is this. We have replaced the value of the empirical
measure,

µn(C) =
|C|

n
,

with µ(C), implicitely assuming that the two are close to each other:

µn(C) ≈ µ(C).

But the scheme is being chosen after seeing an instance X , and it is reason-
able to assume that the choice of indexing partitions will take advantage of
large random clusters always present in uniformly distributed data. (Fig. 8
illustrates this point in dimension d = 2.) Thus, some elements of indexing
partitions, while having large measure µ, may contains few datapoints, and
vice versa.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 8 1000 points randomly and uniformly distributed in the square [0, 1]2.

An equivalent consideration is that we only know the concentration func-
tion of the domain Ω, but not of a randomly chosen dataset X . It seems
the research problem of estimating the concentration function of a random
sample has not been systematically treated.

In order to be able to estimate the empirical measure in terms of the
underlying distribution, one needs to invoke an approach of statistical learn-
ing.
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9 Vapnik–Chervonenkis theory

Let A be a family of subsets of a set Ω (a concept class). One says that
a subset B ⊆ Ω is shattered by A (cf. Fig. 9) if for each C ⊆ B there is
A ∈ A such that

A ∩B = C.

A

Ω

B

C

Fig. 9 A set B is shattered by the class A .

The Vapnik–Chervonenkis dimension VC-dim (A ) of a class A is the
largest cardinality of a set B ⊆ Ω shattered by A .

Estimating the VC dimension is often non-trivial, and here are some
examples.

1. The VC dimension of the class of all Euclidean balls in R
d is d+ 1.

2. The class of all parallelepipeds in Rd has VC dimension 2d+ 2.
3. The VC dimension of the class of all ℓ1-balls in the Hamming cube
{0, 1}d is bounded from above by d+ ⌊log2 d⌋.
(As every ball is determined by its centre and radius, the total number
of pairwise different balls in {0, 1}d is d2d. Now one uses an obvious
observation: the VC dimension of a finite concept class A is bounded
above by log2 |A |.)

Here is a deeper and very general observation.

Theorem 2 (Goldberg and Jerrum [9]) Consider the parametrized class

F = {x 7→ f(θ, x): θ ∈ R
s}

for some {0, 1}-valued function f . Suppose that, for each input x ∈ Rn,
there is an algorithm that computes f(θ, x), and this computation takes no
more than t operations of the following types:

– the arithmetic operations +,−,× and / on real numbers,
– jumps conditioned on >, ≥, <, ≤, =, and 6= comparisons of real num-
bers, and

– output 0 or 1.

Then VC-dim (F ) ≤ 4s(t+ 2). ⊓⊔

Now, a typical result of statistical learning theory (see [1,25,27] for
more).
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Theorem 3 Let A ⊆ 2Ω be a concept class of finite VC dimension, d. Then
for all ǫ, δ > 0 and every probability measure µ on Ω, if n datapoints in X
are drawn randomly and independently acoording to µ, then with confidence
1− δ

∀A ∈ A ,

∣

∣

∣

∣

µ(A) −
|X ∩A|

n

∣

∣

∣

∣

< ǫ,

provided n is large enough:

n ≥
128

ǫ2

(

d log

(

2e2

ǫ
log

2e

ǫ

)

+ log
8

δ

)

.

For statistical learning theory, we refer to [1,25,27], or a set of lecture
notes [13].

Here is one of many existing analogues of the concept of VC dimension
for classes of functions. Let F be a class of (possibly partially defined) real-
valued functions on Ω. Denote by FR the class of all subsets of Ω of the

form

{ω ∈ dom f : f(ω) ≥ a} or {ω ∈ dom f : f(ω) ≤ a}, f ∈ F , a ∈ R. (5)

The Vapnik pseudodimension of F is the VC dimension of the concept
class FR.

For example, if F is the class of all distance functions to points of Rd,
the Vapnik pseudodimension of F is 2(d+1). It is usually easy to estimate
pseudodimention of function classes where decision functions of metric trees
of various types come from.

10 Examples of indexing schemes

10.1 vp-tree

The vp-tree [29] uses decision functions of the form

ft(ω) = (1/2)(ρ(xt+ , ω)− ρ(xt− , ω)),

where t± are two children of t and xt± are the vantage points for the node
t.

10.2 M -tree

The M-tree [6] employs decision functions

ft(ω) = ρ(xt, ω)− sup
τ∈Bt

ρ(xt, τ),

where Bt is a block corresponding to the node t, xt is a datapoint chosen
for each node t, and suprema on the r.h.s. are precomputed and stored.

For both schemes, if the domain Ω = Rd, then the Vapnik pseudodi-
mension of the class of all possible decision functions is d + 1. A similar
conclusion holds for the Hamming cube.
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11 Rigorous lower bounds

In this Section we prove the following theorem under general assumptions
of Section 6.

Theorem 4 Let the domain Ω equipped with a metric ρ and probability
measure µ have concentration dimension Θ(d) (cf. Eq. (2)) and expected
distance between two points Ed(x, y) = 1. Let F be a class of all 1-Lipschitz
functions on the domain Ω that can be used as decision functions for metric
tree indexing schemes of a given type. Suppose the Vapnik pseudodimention
p of F is polynomial in d:

p = dO(1).

Let X be an i.i.d. random sample of Ω according to µ, having n points, where
d = no(1) and d = ω(logn). Then, with confidence asymptotically approach-
ing 1, an optimal metric tree indexing scheme for the similarity workload
(Ω, ρ,X) has expected average performance dω(1). In other words, the av-
erage search time for a nearest neighbour is superpolynomial in dimension
d.

The following is an immediate consequence of Lemma 4.2 in [16].

Lemma 3 (“Bin Access Lemma”) Let ε > 0 and m ≥ 4 be such that
αΩ(ε) ≤ m−1, and let γ be a collection of subsets A ⊆ Ω of measure µ(A) ≤
m−1 each, satisfying µ(∪γ) ≥ 1/2. Then the 2ε-neighbourhood of every point

ω ∈ Ω, apart from a set of measure at most 1
2m

− 1
2 , meets at least 1

2m
1
2

elements of γ.

Here is the next step in the proof.

Lemma 4 Denote B the class of all subsets B ⊆ Ω appearing as bins of
metric trees of depth ≤ h built using certification functions from a class F

of Vapnik pseudodimension ≤ p. Then

VC-dim (B) ≤ 2hp log(hp) = O(hp).

Proof Every such set B is an intersection of a family of ≤ h sets of the form
(5). Now one uses Th. 4.5 in [27]: if A is a concept class of VC dimension
≤ p, then the VC dimension of the class of all sets obtained as intersections
of ≤ h sets from F is bounded by 2hp log(hp). ⊓⊔

Let us prove Theorem 4. Without loss in generality, suppose that for
any value 0 < c < 1 such as e.g. c = 1/4, for all points ω except in a set of
measure ≤ c the depth of the search tree is polynomial in d, uniformly in
ω, for otherwise there is nothing to prove.

Using Eq. (1) and Lemma 1, pick any ε′ > 0 such that, for sufficiently
high values of d, for most points ω the value of εNN (ω) exceeds ε′. Let
0 < β < 1/2. Again without losing generality, we can assume that the
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measure of the set of query centres ω whose ε′-neighbourhood meets at
least one bin with ≥ n1/2−β points is ≤ 1/4.

Combining the two assumptions together, we deduce that for at least
half of all query centres ω the ε′-ball around ω only meets bins with fewer
than n1/2−β points. By Theorem 3 and Lemma 4, the value of measure µ for
each of these bins is ≤ 2n1/2−β if n is sufficiently large. Lemma 3, applied
with m = 2n1/2−β and ε = ε′/2, implies that for all ω from a set of measure
1− o(1) the ε′-neighbourhood of ω meets at least O(n1/4−β/2) = dω(1) bins.
Since accessing each bin requires at least one operation (let even to check
that a bin is empty), the theorem is proved. ⊓⊔

Combining our Theorem 4 with Theorem 2 of Goldberg and Jerrum
shows that for all practical purposes the worst-case average performance of
metric trees is superpolynomial in dimension of the domain.

Theorem 5 Let the domain Ω = Rd be equipped with a probability measure
µd in such a way that (Rd, µd) form a normal Lévy family and the µd-
expected value of the Euclidean distance is Θ(1). Let Fd denote a class of
functions f(θ, x) on Rd parametrized with θ taking values in a space Rpoly (d)

and such that computing each value f(θ, x) takes dO(1) operations of the
type described in Thm. 2. Let X be an i.i.d. random sample of Rd according
to µd, having n points, where d = no(1) and d = ω(logn). Then, with
confidence asymptotically approaching 1, an optimal metric tree indexing
scheme for the similarity workload (Ω, ρ,X) whose decision functions belong
to the parametrized class F has expected average performance dω(1). ⊓⊔

Two remarks are in order to explain the strength of the above result.
(1) Measures µd satisfying the above assumption include, for instance,

the normal gaussian distribution N (0, 1), the uniform measures on the unit
ball, on the unit sphere, etc.

(2) A polynomial upper bound on the size of the parameter θ for F is
dictated by the obvious restriction that reading off a parameter of super-
polynomial length leads to a superpolynomial lower bound on the length of
computation.

Conclusion

In this paper, we have obtained superpolynomial lower bounds on the perfor-
mance of a wide class of indexing schemes for similarity-based information
retrieval in datasets of high intrinsic dimension. The results were obtained
both in great generality and within mathematically exacting standards of
statistical learning. In particular, we have stressed the importance of using
statistical learning methods (Vapnik-Chernonenkis theory) in order to jus-
tify heuristic arguments often used in data engineering for the purpose of
algorithm analysis.

The significance of superpolynomial lower bounds on the performance
of various indexing schemes is not that they rule out using the schemes in
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quesion, but rather provide a better insight on how they function. Indeed,
most data practitioners seem to believe that the intrinsic dimension of real-
life datasets does not exceed as few as perhaps seven or ten dimensions. A
deeper understanding of underlying geometry of workloads and its interplay
with compleixty is called for in order to learn to detect and use this low
dimensionality efficiently, and asymptotic analysis of algorithm performance
in an artificial setting of very high dimensions is contributing towards this
goal.

We believe that a glimpse into the underlying geometric and probabilistic
nature of the curse of dimensionality offered by this article can be useful for
the challenges faced by data engineering.

References

1. M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foun-
dations. Cambridge University Press, Cambridge, 1999.

2. O. Barkol and Y. Rabani. Tighter lower bounds for nearest neighbor
search and related problems in the cell probe model. In: Proc. 32nd ACM
Symp. on the Theory of Computing, 2000, pp. 388–396.

3. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful?, in: Proc. 7-th Intern. Conf. on Database Theory
(ICDT-99), Jerusalem, pp. 217–235, 1999.

4. A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high-
dimensional nearest neighbor search and related problems, in: Proc. 31st
Annual ACS Sympos. Theory Comput., 312–321, 1999.
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