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FAST PHYLOGENY RECONSTRUCTION THROUGH LEARNING OF

ANCESTRAL SEQUENCES

RADU MIHAESCU, CAMERON HILL, AND SATISH RAO

Abstract. Given natural limitations on the length DNA sequences, designing phylo-
genetic reconstruction methods which are reliable under limited information is a crucial
endeavor. There have been two approaches to this problem: reconstructing partial but
reliable information about the tree ([18, 7, 5, 13]), and reaching ”deeper” in the tree
through reconstruction of ancestral sequences. In the latter category, [6] settled an
important conjecture of M.Steel, showing that, under the CFN model of evolution, all
trees on n leaves with edge lengths bounded by the Ising model phase transition can
be recovered with high probability from genomes of length O(log n) with a polynomial
time algorithm. Their methods had a running time of O(n10).

Here we enhance our methods from [5] with the learning of ancestral sequences and
provide an algorithm for reconstructing a sub-forest of the tree which is reliable given
available data, without requiring a-priori known bounds on the edge lengths of the
tree. Our methods are based on an intuitive minimum spanning tree approach and
run in O(n3) time. For the case of full reconstruction of trees with edges under the
phase transition, we maintain the same sequence length requirements as [6], despite
the considerably faster running time.
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1. Introduction

Reconstructing the pattern of common ancestry among species is a central problem in
evolutionary biology. This pattern is most commonly represented as a phylogenetic tree:
a rooted tree with leaf-set δ(T ) labeled by the species (or taxa) in X . Furthermore, it is
generally assumed that phylogenies are binary: every speciation event is a divergence of
two species from one common ancestor. Therefore the nodes V (T ) of the tree are either
leaves corresponding to extant species in the set X , or internal nodes of degree three,
corresponding to the ancestral species at each speciation event.

The phylogeny reconstruction problem is to discern the tree that accurately represents
the evolutionary history of the taxa X . It is natural to identify each taxon with its
genetic sequence and exploit molecular level differences between species to recover the
phylogeny. To render the reconstruction problem tractable, it is commonly assumed
that genetic sequences are correctly aligned and that sequences at the leaves are evolved
from a root sequence according to an evolutionary Markov process on the tree: each
edge e in the tree, corresponding to an ancestral ”divergence event”, is equipped with
mutation probability matrix P (e). The sites of the sequences are evolved identically and
independently according to these mutation probabilities.

The amount of disagreement between two sequences will then, depending on the under-
lying model of evolution, provide a scalar distance measure between the two sequences.
As we detail in the next section, under suitable independence assumptions these dis-
tances are additive: the distances between the leaf taxa X will correspond to the graph
distance DT given by edge lengths L on the tree T .

Most phylogeny reconstruction algorithms rely on estimating pairwise distances be-
tween taxa from the available genetic sequences and, in turn, using these estimates to
recover topological information. Intuitively, reconstruction is achieved by piecing to-
gether topologies of smaller sub-trees which have a uniquely defined supertree. For
instance, it is a fundamental result that a binary phylogenetic tree can be correctly re-
covered from its quartets: topologies describing the ancestral relations between subsets
X ′ ⊂ X , |X ′| = 4.

The main difficulty in the reconstruction of full phylogenies lies in the correct iden-
tification of short and deep divergence events [12, 8]. Intuitively, a divergence event is
correctly recovered when the amount of mutation it induces is not drowned by mutation
along the evolutionary paths leading away from it. Like any statistical estimator, the
accuracy of evolutionary distance estimates is increasing in the amount of available data
(length of the genetic sequences), but naturally decays as the variance in the system
grows. In our case, longer biological distances have higher variance and are harder to
estimate correctly. The probability of correctly resolving an ancestral divergence event is
therefore naturally decreasing in the length of the pairwise distances used in its discovery,
and increasing in the length of its corresponding edge.

It has been shown previously that, given upper and lower bounds on the mutation
probabilities along each edge of T , N = logO(1) n sites will suffice to reconstruct T
correctly for almost all topologies T . Intuitively, this approach relies on the fact that
most phylogenies are not very deep: all internal nodes v have enough descendants among
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the observable present species that are a bounded number of edges away, and whose
observed character sequences thus provide enough information to resolve the topological
structure of T around v.

However, for topologies containing very deep nodes (such as in perfectly balanced
trees), the reconstruction requires accurate estimation of distances between taxa that
are ”far-apart”, therefore necessitating longer character sequences. Indeed, [16] shows
that in the case of perfectly balanced binary trees, N = nO(1) is required for accurate
reconstruction.

Recently it has been a growing trend to design algorithms that do not always at-
tempt to recover a full tree ([18],[7], [13] and our own [5]), but only provide topological
information that can be reliably extracted from the data, generally in the form of a
forest of edge-disjoint subtrees of the original tree. This is a very important feature of
reconstruction algorithms, as most real data-sets are not sufficient for recovering a full
topology, and therefore any algorithm designed to return a full tree is bound to also give
possibly incorrect information.

Another possible source of improvement in the area involves the reconstruction of
internal genomes, which therefore provides pairwise distance estimates between inter-
nal nodes, allowing us to reach ”deeper” in the topology and reconstruct from shorter
distances. This method was introduced by Mossel [17] for the CFN model of evolu-
tion. He showed that for any fixed topology on n leaves with edge lengths less than
λ0 = log(2)/4, the so-called ”phase transition of the Ising model on trees”, arbitrarily
deep internal sequences can be recovered with bounded probability of error. This im-
plies that leaf sequences of length O(logn) suffice ro distinguish between all perfectly
balanced phylogenies on n leaves. A simple information-theoretic argument shows that
this bound is tight.

Mossel’s techniques were then used by [6] in the context of phylogeny reconstruction.
Given a lower bound f and an upper bound g < λ0 for the edge lengths of T , [6]
show that the full topology can be recovered from sequences of length O(logn), thereby
settling an important conjecture of M.Steel. Their algorithm has a worst case running
time of O(n10). In [8] it is shown that N must grow at least as fast as O(logn), and
therefore the results of [6] are asymptotically optimal. The results of [6] have been
partially extended by Roch [19] to a general time-reversible model, with worse but still
sub-polynomial sequence length requirements.

Here, we will present a relatively simple algorithm which combines our approach in [5]
with the reconstruction of ancestral sequences as detailed in [17]. The ability to learn
ancestral sequences is central to the success of the methods in [6] and subsequently
our methods, as it allows the reconstruction of the model tree topology T by piecing
together quartet topologies of bounded diameter on its internal nodes. By contrast,
previous algorithms that have only looked at quartets on the leaves of T have achieved
strictly weaker results.

For trees with edges under the phase transition we achieve full topology recontruction
with the same edge length requirements as [6]. Our algorithm relies on an intuitive
minimum spanning tree approach: we progress recursively by growing an edge-disjoint
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sub-forest of T . The algorithm halts when no further progress can be made reliably,
meaning that all edges that could be added are either too short to be resolved accu-
rately, or they violate the phase transition bound, therefore preventing further reliable
reconstruction of ancestral genomes.

Our contributions here are threefold:

• We reduce the worst case running time to O(n3), thus matching that of much
simpler phylogeny reconstruction algorithms, such as Neighbor-Joining.

• In the case when full reconstruction is not possible with the available data, we
return reliable partial information in the form of an edge-disjoint sub-forest of
T .

• We eliminate the need for a-priori knowledge of the edge length bounds f and
g. Rather, we infer an edge length tolerance interval from the length of the
available genetic sequences and reconstruct pieces of the tree with edges within
this interval.

It is worth noting that our edge length tolerance interval can in fact be controlled by
the user. Increasing it can potentially result in a larger output forest, but will trade
off against the expected accuracy of this output. We also note that our method implies
similar results for all group based models of evolution where the character alphabet is
a group G admitting a non-trivial morphism φ : G → Z2. This class of models includes,
among others, the well known Kimura 3ST [15] and Jukes-Cantor models. We elaborate
on this technical point in Appendix B.

2. Background on phylogeny reconstruction

In this work, we concentrate on the Cavender-Farris-Neyman (CFN) 2-state model
of evolution ([3],[10]): our genetic sequences are bit strings of some length N and the
probability of mutation p(e) along an edge e of the tree does not depend on the starting
state. We denote the i’th entry of the sequence corresponding to taxon a ∈ X as χi(a).
The vectors χi(:) are also known as characters of the set X .

For each position i, the character values at the nodes of T mutate independently along
each edge e = (u, v) ∈ E(T ), starting from a uniform distribution at the root node ρ,
according to the symmetric transition matrix

M(e) = exp(L(e)R) =

(

1− p(e) p(e)
p(e) 1− p(e)

)

,

where R is the symmetric rate matrix

(

1 −1
−1 1

)

. Then L(e) = − log(1 − 2p(e))/2,

p(e) = P(χi(u) 6= χi(v)) and the distribution of character states at any node is also
uniform.

The topology T , together with the edge lengths L define a joint probability distribution
P

′
T,L on the character values at the nodes of T and χi(:) are i.i.d. samples from this

probability distribution. Note that the values of χi(u) are not known for ancestral nodes
u ∈ V (T ) \X . We therefore define PT,L to be the marginal distribution of P′

T,L at the
leaves X . The observed character sequences χi(X) are then i.i.d. samples from PT,L.
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Let Ω be the set of all possible binary topologies on X . The problem of phylogeny re-
construction is then equivalent to finding an algorithm, or estimator, A : {±1}|X|×N −→
Ω, such that the probability that A(χ1, . . . , χN ) = T is maximized. As with most esti-
mation problems, the central question then becomes: how many samples N do we need
in order to achieve accurate reconstruction of the underlying tree?

Note: In the case of the CFN model we can only recover the ”un-rooted” topology
T , but not the location of the earliest specie in T , i.e. its root. This is because CFN is
a reversible model of evolution, meaning that the probability distribution P′

T,L does not
depend on the location of the root ρ, and therefore neither does PT,L. See [20] for more
details on Markov models of evolution.

For two uniform Bernoulli variables u, v, sharing a joint distribution P, let us define
D
P

(u, v) = − log(1 − 2P[u 6= v])/2. Note the similarity to the definition of the edge
lengths under the CFN model. It is easy to check that for three uniform Bernoulli
variables vi, with i ∈ {1, 2, 3}, such that (v1⊥⊥v3|v2), the following holds:

D(v1, v3) = D(v1, v2) +D(v2, v3).

Here (v1⊥⊥v3|v2) means that v1 and v3 are independent conditioned on the value of v2.
In other words, given the Markov property of the CFN model (see [20]), for two nodes
a, b ∈ V (X) joined by a path p, we have the following relationship:

D(χ(a), χ(b)) =
∑

e∈p

L(e).

Here and in the remainder of our paper, D is the distance given by the joint probability
distribution P′

T,L.
This implies that knowing the joint probability distribution of character values at

pairs of leaves will provide us with the distance between the two leaves according to the
edge lengths defined above, which will in turn provide the topology T and the individual
edge lengths L. In practice we will, of course, not know D precisely, but we will be able
to estimate it from the observed character values χi(:), which are i.i.d. samples from the
marginal PT,L. For a, b ∈ X , define

D̂(a, b) = −0.5 log(1− 2

N

∑

i

1[χi(u) 6= χi(v)]) = −0.5 log(
1

N

∑

i

χi(u)χi(v)).

Consider the simplest example of reconstructing a quartet : a binary topology Q on 4
leaves X = {a, b, c, d} (there is only one possible topology on 3 leaves). There are three
possibilities, each corresponding to a pairing of the four taxa. We let Q = (a, b|c, d)
encode the case when the taxa a, b are separated from the taxa c, d by an edge e. In the
case Q is indeed the correct topology on the four taxa, the true pairwise distance matrix
D satisfies the so-called four point condition:

D(a, b) +D(c, d) < D(a, c) +D(b, d) = D(b, c) +D(a, d),

and moreover 2L(e) = D(a, c)+D(b, d)−D(a, b)+D(c, d), where D(a, b) = D(χ(a), χ(b))
for ease of notation.
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Given the approximate distance D̂, the procedure FPM, as in four point method,
gives us a way to resolve the topology of the quartet a, b, c, d, while the procedure ME,
as in middle edge, gives us a way to estimate internal edge lengths. We borrow some of
our notation from [9].

Definition 2.1. Suppose D̂(a, b)+D̂(c, d) < D̂(a, c)+D̂(b, d) ≤ D̂(b, c)+D̂(a, d). Then
let

FPM(D̂; a, b, c, d) = (a, b|c, d) and
ME(D̂; (a, b|c, d)) = (D̂(a, c) + D̂(b, d) + D̂(b, c) + D̂(a, d)− 2D̂(a, b)− 2D̂(c, d))/4.

We observe that as long as |D̂(i, j) − D(i, j)| < ǫ/2 < L(e)/2, for i, j ∈ {a, b, c, d},
then FPM recovers the correct quartet topology, and that |ME(D̂, Q)−L(e)| < ǫ, where
Q = (a, b|c, d).

It is a fundamental fact in phylogenetics that the topology of the entire tree can
be recovered from the topologies of its quartets (see [20] for details). The following
proposition is the first step towards giving lower bounds on the number of samples N
that insure proper reconstruction. Its proof is implied by the proof of Theorem 8 in [9]
and has been proved in several other publications.

Theorem 2.2. [9] Let u, v be uniform binary random variables with P(u 6= v) < y.

Given N samples of u, v and the associated empirical distance D̂, then

P[D̂(u, v) > D(u, v) + ǫ/2] < 1.5 exp

[−(1−
√
1− 2z)2(1− 2y)2N

8

]

,

P[D̂(u, v) < D(u, v)− ǫ/2] < 1.5 exp

[−(1−
√
1− 2z)2(1− 2y)2N

8

]

,

where ǫ = − log(1− 2z)/2.

Theorem 2.2 has the following easy but important corollary: in a nutshell, given a
fixed y and M = − log(1 − 2y)/2, distances larger than M will, with high probability,
be ”estimated” as longer than M − ǫ. The proof comes from the second inequality of
Theorem 2.2 via a standard coupling argument, and is therefore omitted.

Corollary 2.3. Let u, v be uniform binary random variables with P(u 6= v) > y. Given

N samples of u, v and the associated empirical distance D̂, then

P[D̂(u, v) < M − ǫ/2] < 1.5 exp

[−(1−
√
1− 2z)2(1− 2y)2N

8

]

,

where ǫ = − log(1− 2z)/2 and M = − log(1− 2y)/2.

In general, when an estimator D̂ of the quantity D satisfies

|D̂ −D| < ǫ/2 when D < M

D̂ > M − ǫ/2 when D > M
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we say that D̂ is an (M, ǫ/2)-estimator for D. This is a very slight modification of the
concept of (ǫ,M)-distortion from [18].

Suppose g > L(e) > f, ∀e ∈ E(T ), with f, g > 0 fixed. Let f > ǫ = − log(1− 2z) and
M = − log(1−2y)/2. Let A be an algorithm which attempts to recover the full topology
of T by evaluating K = O(nk) empirical distances between pairs of random variables
u, v. Suppose in addition that A recovers the correct topology if ALL the emprical
distances inspected are (M, ǫ/2)-approximations of the true distances. Theorem 2.2 and

Corollary 2.3 guarantee that the empirical distance matrix D̂ satisfies this property,
with high probability, provided the number of samples N is large enough. If we want
to ensure that P[A(D̂) 6= T ] < 1− p for some p > 0, plugging into the above inequality
yields

N ≥ O(e4Mk log n).

This inequality is essential to understanding the need for learning ancestral sequences.
Indeed, given that the topological depth of an internal node can grow as high as O(logn),
any method which is restricted to inspecting pairwise distances between leaves of T will
have to estimate distances as high as M = O(g logn), which yields N = nO(1). By
contrast, learning ancestral sequences gives us a way to resolve the entire topology by
only inspecting K = O(n2) distances between nodes separated by at most a constant
distance. If the edge lengths are under the phase transition, as explained in the following
section, we can guarantee that the additional noise coming from estimating internal
sequences is also bounded by a fixed amount. Thus M = O(1) and thus N = O(logn).

3. Background on learning ancestral characters

In this section we will show how to recover the sequences at the interior nodes of a
phylogenetic tree from the sequences at the leaves of the tree, up to an a priori bounded
error. We do this by means of a recursive majority algorithm. All the results in this
section have appeared in previous publications, such as [17], and are used in an identical
manner in [6]. For this reason we will state them without proof.

Definition 3.1. Given a sequence of ±1 bits x1, . . . xn, we define the majority function

Maj(x1, . . . xn) = sign(x1 + . . .+ xn + .5w),

where w is an unbiased ±1 random variable that is independent of the xi’s.

Definition 3.2 (Definition 4.1 in [17]). Let T = (V,E) be a tree rooted at ρ with leaf-set
δT . For functions l : E → [0,∞] and η : δT → [0,∞], let CFN(l, η) be the CFN model
on T where

• the edge length L(e)is equal to l(e) for all e ∈ E not adjacent to δT
• L(e) = l(e) + η(v) for all edges e = (u, v) with v ∈ δT .

Let M̂aj(l, η) = D(χ(ρ),Maj(χ̄(δT ))), where χ̄ are the character values on T given by
CFN(l, η).
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The distance D is the one provided by the joint probability distribution defined by
CFN(l, η), together with the independent coin-flips necessary for breaking ties in the

Maj function. In other words, M̂aj(l, η) = − log(1− 2P[χ(ρ) 6= Maj(χ(δT ))])/2.
The intuition behind the above definition is as follows. Let χ be the character values at

nodes of T , defined according to the CFN model given by edge lengths l on T . Suppose
that the character value χ(u) at each leaf u ∈ δ(T ) is perturbed by an independent noise
source such that the probability of perturbation is (1 − exp(−2η(u)))/2. Let χ̃(u) be
the perturbed character value, so formally:

χ̃(u)⊥⊥χ(v)|χ(u), ∀v ∈ V (T ) and χ̃(u)⊥⊥χ̃(v)|χ(u), ∀v ∈ δ(T ) (1)

P[χ̃(u) 6= χ(u)] = (1− exp(−2η(u)))/2 ⇔ D(χ̃(u), χ(u)) = η(u). (2)

It is then an easy exercise to verify that our definition of χ̄ is equivalent to the one
below:

χ̄(u) =

{

χ(u) for u 6∈ δ(T )

χ̃(u) for u ∈ δ(T ).

For our purposes, the noise at the leaves of the subtree arises from the reconstruction
of the character values by way of recursive majority. Our hope is that we can design a
recursive learning procedure such that the probability of error P[χ′(u) 6= χ(u)] remains
bounded away from .5 as we progress deeper and deeper into T . Theorem 3.3 achieves
this remarkable feat. Our formulation of the theorem is a specialization of Theorem 4.1
in [17] to binary trees and we state it without proof.

Theorem 3.3 (Theorem 4.1 in [17]). Let

a(q) = 21−q⌈q
2
⌉
(

q

⌈ q
2
⌉

)

.

For d ∈ Z>0, λmax > 0 and 0 < α(λmax) < a(2d)e−2dλmax , there exists β(λmax) > 0,
such that the following hold. Let T be a d-level balanced binary tree and consider the
CFN(l, η) model on T , where max l ≤ λmax and max η ≤ ηmax. Then

M̂aj(l, η) ≤ max{ηmax − log(α)/2, β}. (3)

Using Stirling’s approximation formula, it can be shown that a(q) ≈
√

2
π

√
q. For

λmax = λ0 − ǫ with λ0 = log(2)/4 and ǫ > 0 (i.e. under the phase transition), we have

a(2d)e−2dλmax > a(2d)e−2d(λ0−ǫ/2) ≈
√

2

π
eǫd,

thus for d large enough a(2d)e−2dλmax > 1. Setting α = 1 and ηmax = β in Theorem 3.3
we obtain the following corollary:

Corollary 3.4. For 0 < λmax < λ0, there exists d0 > 0 such that: for any d > d0,
there exists β(λmax, d) < ∞, such that for any balanced d-level binary tree T and any

functions l : E(T ) → [0, λmax], η : δT → [0, β], we have M̂aj(l, η) ≤ β.
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To put Corollary 3.4 in words, for trees with edge lengths less than λmax, learning
ancestral character sequences via recursive majority on sub-trees of height d, as detailed
below, gives learned character sequences whose distance to the true sequences is recur-
sively bounded by β. This is the crucial result for the development of our algorithm, as
it implies that recursive reconstruction with reliable, non-decaying accuracy is possible
on trees of any size.

Indeed, let us suppose that l(e) < λmax = λ0 − ǫ for all e ∈ E(T ). Let d > d0 and
β be as in the above corollary. We decompose T recursively into a collection of edge
disjoint rooted trees in the following manner: start from the root ρ and follow all paths
down the tree until each path reaches length d or terminates with a leaf. Cut the tree at
the endpoint of each path and recurse on the subtrees rooted at these endpoints. This
procedure divides T into trees of depth at most d. Let T1, . . . Tk be the collection of trees
in the subdivision of T and let ρi be the root of Ti for all i. See Figure 3(a).

Figure 1. Learning ancestral sequences by bottom-up recursion.

We can now define a recursive learning process. The learned character value χ̃(v) is
set equal to χ(v) for all v ∈ δT . For each subtree Ti such that the value χ̃(v) has been
specified for all v ∈ δTi, we define χ̃(ρi) = Maj(χ̃(δTi)). Now recurse as in Figure 3(b).

Note that some of the subtrees Ti may not be fully balanced as required by Theorem
3.4. Suppose u ∈ δTi and the topological distance between u and ρi is k < d. In this
case we replace u by a balanced binary tree of height d − k with all edges of length 0,
which is equivalent to giving χ(u) weight 2d−k in the Maj(χ̃(δTi)) vote. For clarity of
exposition, we will keep the notation Maj to represent this weighted majority.

Theorem 3.5. Suppose max{l(e) : e ∈ E(T )} = λmax < λ0 − ǫ with ǫ > 0, and let d
and β be as in Corollary 3.4. The procedure described above gives a bottom up learning
process which ensures that D(χ̃(ρ), χ(ρ)) < β.

Proof of Theorem 3.5: Set η(u) = D(χ(u), χ̃(u)) for all u ∈ δT or u = ρi for some
i. We prove the following two conditions by bottom-up induction on the sub-trees Ti:

• χ̃(u)⊥⊥χ(v)|χ(u), ∀v ∈ V (Ti), u ∈ δTi and χ̃(u)⊥⊥χ̃(v)|χ(u), ∀v ∈ δ(T )
• η(ρi) < β.
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First, for all u ∈ δT , χ̃(u) = χ(u), so η(u) = 0. Both hypotheses are thus obeyed triv-
ially for subtrees formed by a single leaf. This provides the base case for our induction.

Now consider a subtree Ti and suppose η(u) < β for all u ∈ δTi. If u ∈ δT , the first
induction hypothesis is obeyed trivially, as χ̃(u) = χ(u). Alternatively, suppose u = ρj .
Let T̄ be the subtree of T rooted at u. Then χ̃(u) is a function of the values χ(δT̄ ) and
moreover the Markov property of the CFN model implies that χ(δT̄ )⊥⊥χ(v)|χ(u), for
all v ∈ V (Ti). Therefore χ̃(u)⊥⊥χ(v)|χ(u). The other statement of the first induction
hypothesis follows similarly.

Finally, Corollary 3.4 implies

η(ρi) = D(χ(ρi), χ̃(ρi)) = D(χ(ρi),Maj(χ̃(δTi))) = M̂aj(l(ETi
), ηδTi

) ≤ β,

so the second induction hypothesis is also obeyed. ✷

4. General outline of the algorithm TREE-MERGE

Let λ0 be the phase transition. Suppose the set of taxa X has cardinality n and
the character sequences identifying the taxa have length N . Given ǫ > 0 we define the
following quantities:

• λmax(ǫ) = λ0 − ǫ
• d(λmax(ǫ)) and β(λmax(ǫ)) are the depth of the trees in the recursive majority
decomposition and the upper bound on the learning noise, as in Corollary 3.4.

• M(ǫ) = 24λ0 + 6β(λmax(ǫ)) + 12ǫ.

Given the length N of available sequences, the number of taxa n, and a user-define
maximum allowed probability of error ξ, we can pick ǫ such that

1.5 exp

[−(1 − e−ǫ)2e−4MN

8

]

<
ξ

16n2
. (4)

By Theorem 2.2 and Corollary 2.3, for any two character values u, v, learned or observed,
drawn from the joint probability distribution P

′
T,L, the empirical distance D̂(u, v) will

be an (M, ǫ/2)-approximation for the true distance D(u, v), with probability at least
1− n−2ξ/8. When an event happens with probability at least 1−O(n−2ξ), we say that
it occurs with high probability. By Lemma 4.2, TREE-MERGE will evaluate no more
than 8n2 empirical distances. By the union bound with probability at least 1 − ξ, the
following condition holds:

Condition 4.1 (⋆). All the empirical distances evaluated by our algorithm are (M, ǫ/2)-
approximations of the corresponding true distances.

Lemma 4.2. Algorithm TREE-MERGE reconstructs at most 3n ancestral sequences
in addition to the n sequences at the leaves, and thus computes at most 8n2 pairwise
distances.

Corollary 4.3. By the union bound applied to equation (4), with probability 1 − ξ all
the empirical distances observed by TREE-MERGE are (M, ǫ/2)-approximations of the
corresponding true distances. Thus condition (⋆) holds with probability 1− ξ.
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Proof of Lemma 4.2: Indeed, there are n − 3 internal nodes in any binary tree
on n leaves. Any internal vertex of any subtree is also a node in the parent tree. Our
algorithm progresses by joining at each step a pair of components of the forest through
the addition of a new edge, creating zero, one or two more nodes of the forest. No nodes
are ever destroyed.

We define a clade of a tree T ′ to denote a subtree of T ′ that is induced by removing
an edge e ∈ E(T ). Each edge e defines two clades and for each clade there is a natural
rooting at the corresponding endpoint of e. For each internal node v of a forest, there
are three clades rooted at v, each one induced by one of the edges adjacent to v. These
clades correspond to the three ”directions” leading away from v.

Inspection of the algorithm TREE-MERGE shows that an internal sequence corre-
sponding to a node/direction pair is learned by TREE-MERGE when the corresponding
clade becomes ”proper” (see Section 6 for definition). Once a sequence is learned, it
gets stored and is never modified, regardless of new growth in the corresponding clade.
Each internal node of the tree will have exactly three learned sequences, each being
constructed exactly once. Thus TREE-MERGE inspects at most n+3(n−2) sequences
and at most 8n2 sequence pairs. ✷

We will prove that under condition (⋆), TREE-MERGE will recover a topologically
correct forest of edge-disjoint subtrees of the model tree T . If, in addition, the conditions
of Theorem 4.5 hold, then TREE-MERGE will recover the entire tree. In the subsequent
treatment we will generally assume that condition (⋆) holds, unless otherwise stated.

The algorithm TREE-MERGE progresses, as the name suggests, by gradually build-
ing a sub-forest F of T , such that the following three invariants are obeyed:

I1: For any component Ti ∈ F and any edge e ∈ E(Ti), the path corresponding to e
in T has length at least 2ǫ.

I2: For any component Ti ∈ F , all edges of Ti except at most one have corresponding
paths in T of length at most λ0 − ǫ, and all edges have corresponding paths of
length at most 2λ0 − 4ǫ.

I3: Any two connected components Ti, Tj ∈ F are edge disjoint as subgraphs of T .

Invariant I1 is needed in order to ensure that reconstructed ancestral divergence events
are long enough to be reliable. I2 guarantees that ancestral sequences can be learned
reliably from subtrees with edges under the phase transition. Finally I3 is a technical
requirement of the algorithm. It allows us to reliably resolve topological information
despite conditional dependencies between learned ancestral sequences.
In order to ensure that I1 and I2 hold however, we need a reliable way to estimate
edge lengths. As observed in Section 2, (⋆) guarantees that edge lengths which can be
estimated as middle paths of quartets with diameter less than M will have an estimation
error less than ǫ. In Lemma 6.2 we show formally that TREE-MERGE will in fact
estimate all edge lengths within ǫ error.
Given this fact, we can now enforce I1 and I2 by requiring instead that the following
two conditions hold:
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Algorithm F = TREE-MERGE(X,χ)
INPUT: n binary sequences χ of length N corresponding to taxa X .
OUTPUT: An unrooted forest F detailing partial information on the evolutionary
relationships of the taxa X .

(1) set F = X , i.e. F contains trees formed by single nodes.
(2) insert all leaf taxa distances in NodeDistList.
(3) insert all tree distances less than M/3− ǫ in TreeDistQueue.
(4) while |F | > 1

(a) if TreeDistQueue = ∅, return F
(b) (T1, T2) = pop(TreeDistQueue). Let (E1, E2) = TreeConnection(T1, T2)
(c) if |E1| > 1 or |E2| > 1 continue

(d) Let Q = (a, b : c, d), where E1 = {(a, b)}, E2 = {(c, d)}. Set Tnew =
T1 ∪ T2 ∪Q and compute the edge lengths of the quartet Q.

(e) if Tnew violates condition C1, continue
(f) if Tnew violates condition C2 continue

(g) if ∃Tk s.t. TreeDistance(T1, T2) + 3ǫ > TreeDistance(T1, Tk) +
TreeDistance(Tk, T2), continue

(h) else

(i) F = F \ {T1, T2} ∪ {Tnew}.
(ii) compute learned characters for all new roots of proper clades of Tnew.
(iii) insert all distances involving new learned characters in NodeDistList.
(iv) UpdateTreeDistQueue(T1, T2, Tnew)

(5) return F

Figure 2. Algorithm TREE-MERGE.

C1: Each edge in F has estimated distance at least 3ǫ.
C2: For each Ti ∈ F , the edges of Ti have estimated length at most λ0 − 2ǫ, with the

exception of at most one edge, whose estimated length is less than 2λ0 − 5ǫ. We
call such an edge a long edge.

Philosophically, our approach is very similarly to the classical minimum spanning tree
algorithms. At each step of the algorithm we will join two connected components Ti, Tj

such that the new component does not violate C1 and C2, and the estimated length of
the path linking Ti and Tj is the shortest among all candidate pairs. This by itself does
not guarantee I3. However, condition (⋆) and step 4.(g) of TREE-MERGE achieve this
purpose, as will be shown in formally in Section 6.

We can now state the three main results of this paper. We postpone the formal proofs
until Section 6. All of our results assume that N ,ξ and ǫ are such that (4) holds, which
in turn guarantees that condition (⋆) holds with probability at least 1− ξ.

Theorem 4.4. If (⋆) holds, algorithm TREE-MERGE returns a topologically correct
sub-forest F of T satisfying invariants I1, I2, I3.
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Algorithm UpdateTreeDistQueue(T1, T2, Q)
INPUT: Subtrees T1 and T2 to be joined and old TreeDistQueue data-structure con-
taining distances between ”communicating” pairs of trees in F .
OUTPUT: Updated TreeDistQueue data structure.
for k 6= i, j

(1) Let E1 = {(a, b)} and E2 = {(c, d)}, where Q = (a, b : c, d).
(2) if (T1, Tk) or (T2, Tk) were ever in TreeDistQueue

• For i = 1, 2, let (E ′
i, Ek) = TreeConnection(Ti, Tk) if (Ti, Tk) ∈

TreeDistQueue, or E ′
i = E(Ti) otherwise.

• If Ek has not been set, let Ek = E(Tk).
• if E ′

1 6= E1 set Enew = E ′
1.

• elseif E ′
2 6= E2 set Enew = E ′

2.
• else Set Enew = E(Q)
• (Enew, Ek) = TreeConnection(Tnew, Tk, Enew, Ek).

(3) elseif D̃(ũ, t̃) < M/3− ǫ or D̃(ṽ, t̃) < M/3− ǫ for some t ∈ V (Tk), then
• (Enew, Ek) = TreeConnection(Tnew, Tk, E(Tnew), E(Tk)).

(4) if a connection was found above
• d = TreeDistance(Tnew, Tk, Enew, Ek).
• TreeDistQueue = remove(TreeDistQueue, (Ti, Tk), (Ti, Tk)),
TreeDistQueue = insert(TreeDistQueue, (Tnew, Tk)).

end

Figure 3. Subroutine UpdateTreeDistQueue updates the connections
between trees in the forest F , after two components are merged.

Theorem 4.5. Let T satisfy 6ǫ ≤ L(e) ≤ λ0−3ǫ, ∀e ∈ E(T ). Then given N independent
samples χ1, . . . , χN from the character distribution PT,L, T will be fully and correctly
recovered by TREE-MERGE with probability at least 1− ξ.

Theorem 4.6. TREE-MERGE always terminates in O(Nn2+n3) time, where the pro-
portionality constant is a decreasing function of ξ and ǫ.

Theorem 4.5 and equation (4) provide us with specific edge-length bounds for trees
that can be reconstructed with probability at most ξ from sequences of lengthN . Indeed,
for any N and ξ, there is a lower bound ǫN,ξ such that any ǫ > ǫN,ξ satisfies inequality
(4), which insures (⋆) will hold.

This is an important feature of TREE-MERGE, as it allows us to recover an edge-
length reliability interval from the available sequence lengths. In contrast, previous
research has focused on recovering the necessary sequence lengths for full reconstruction,
assuming that lower and upper bounds on edge lengths were known. As these bounds
cannot be known a-priori, this is hardly useful, especially for algorithms which do not
provide partial information in case full reconstruction is not feasible. We note however
that under this paradigm, our methods still achieve the assymptotically best known
sequence length requirements.
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Corollary 4.7. For trees T satisfying 6ǫ ≤ L(e) ≤ λ0 − 3ǫ for some fixed ǫ, equation
(4) and Theorem 4.5 show that N = Oǫ,ξ(log(n)) sites suffice for TREE-MERGE to
reconstruct T with probability at least 1− ξ.

We finally note that the constant factor in our running time bounds depends on the
desired maximum probability of failure ξ, and on ǫ. If one is to consider these parameters
as fixed, then the running time is indeed simply O(n3+n2N). A higher ǫ value implies a
faster running time and shorter sequence length requirements, but trades off against the
size of the reconstructed forest. Similarly, a higher value for ξ implies shorter sequence
length requirements, but trades off against the accuracy of the reconstructed forest.
The specific dependencies between these parameters however are very complicated and
beyond the scope of this paper.

5. A conditional independence toolkit

In this section we present four lemmas which are the main workhorses of our algo-
rithms. All the results presented here hold in general for trees with arbitrary edge
lengths, as they are qualitative statements which do not depend on the accuracy of
the learned character values. This section, together with the proof of Lemma 5.4 in
Appendix A, provide a stand-alone toolkit of useful new results in this area.

To simplify notation, here and in the remainder of the paper, for a node v ∈ V (T ) we
will use v to also denote the character value χ(v), as the distinction will be clear from
context. Let an induced subtree T ′ of T be a subtree such that δ(T ′) ⊂ δ(T ). For an
induced subtree T ′ rooted at ρ, we will denote by ρ̃(T ′) the character value χ′(ρ) that is
”learned” from χ(δT ′) by recursive majority on T ′, as described in the previous section.
We also denote by V (T ) ∩ T ′ the vertices of T that are either in V (T ′) or lie on the
paths of T corresponding to the edges of T ′. Finally, for two nodes u, v ∈ V (T ) we let
P (u, v) be the path connecting u and v in T .

We let D denote the distance between uniform Bernoulli random variables defined in
the Introduction, where the underlying joint probability distribution is the one given by
the CFN model on T , P′

T,L and the random coin tosses involved in the recursive majority
learning of ancestral characters.
The following two lemmas are present and used almost identically in [6]:

Lemma 5.1. Let T1, T2 be edge-disjoint subtrees of T rooted at ρ1 and ρ2, such that
δT1, δT2 ⊂ δT . Let v1 ∈ V (T ) ∩ T1 and v2 ∈ V (T ) ∩ T2 be the endpoints of the path
P (v1, v2) joining T1 to T2 along the edges of T . Then

(ρ̃1(T1)⊥⊥v|x) and (ρ̃1(T1)⊥⊥ρ̃2(T2)|x),
for any v ∈ V (T ) ∩ T2 and x ∈ P (v1, v2). See Figure 4(a).

Proof of Lemma 5.1: The nodes of T1 are separated from those of T2 by x. By the
Markov property of the CFN model, (δT1⊥⊥v|x). Since ρ̃1(T1) is a deterministic function
of δT1 and independent coin flips (tie-breakers in the recursive majority), we conclude
(ρ̃(T1)⊥⊥v|x). The proof of the second statement is almost identical and is omitted. ✷
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Figure 4. Illustration of conditional independence statements in
(a) Lemma 5.1 and (b) Lemma 5.2.

Lemma 5.2 gives us a way to reliably estimate lengths of internal paths of T , and the
subsequent easy corollary shows that if errors in the empirical distances are less than
ǫ/2, then the path length estimates are correct to within ǫ.

Lemma 5.2. Let a0, b0, c0, d0 ∈ V (T ) inducing topology Q = (a0, b0|c0, d0) on T , and let
l be the length of the middle path of Q. Let Ta, Tb, Tc, Td be induced subtrees of T rooted
at a, b, c, d respectively, containing a0, b0, c0 and d0 respectively, such that Q, Ta, Tb, Tc, Td

are pairwise edge disjoint. Then

FPM(D; ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)) = Q,

ME(D; ã(Ta), b̃(Tb)|c̃(Tc), d̃(Td)) = l.

Corollary 5.3. If |D̂(x, y) − D(x, y)| < ǫ/2, ∀x, y ∈ {ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)} and
l > ǫ, then

FPM(D̂; ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)) = Q,

|ME(D̂; ã(Ta), b̃(Tb)|c̃(Tc), d̃(Td))− l| < ǫ.

Proof of Lemma 5.2: By repeated application of Lemma 5.1 we obtain

D(x̃(Tx), ỹ(Ty)) = D(x0, y0) +D(x0, x̃(Tx)) +D(y0, ỹ(Ty)),

for all x, y ∈ {a, b, c, d}. Plugging the above equality into the definition of FPM and
ME yields the desired result. ✷

The next Lemma provides a restriction of the triangle inequality for characters and
learned characters under the CFN model. As mentioned in the Introduction, the main
difficulty with using learned character sequences at internal nodes is that these char-
acter sequences depend non-trivially on the leaves of T . This destroys the conditional
independence relations which turn our distance measures into additive metrics and hin-
ders the identification of speciation events from pairwise distance information. Lemma
5.5 shows a case where the conditional dependence relations induced by using learned



16 RADU MIHAESCU, CAMERON HILL, AND SATISH RAO

character sequences will act in our favor through a version of the triangle inequality:
Lemma 5.4.

Lemma 5.4. Let T ′ be an induced subtree of T rooted at ρ and let v ∈ (V (T )∩T ′)\δ(T ′).
Then

D(ρ̃(T ′), v) < D(ρ, v) +D(ρ, ρ̃(T ′)). (5)

Proof of Lemma 5.4: See Appendix A. ✷

Lemma 5.4 provides the foundation for the next result, our main workhorse in the
progressive construction of the topology of T .

Lemma 5.5. Let T ′ and Td be edge disjoint induced subtrees of T . Let o be an internal
node of T ′ and let a, b, c be its neighbors in T ′. Let Ta, Tb, Tc be the clades of T ′ rooted
at a, b, c respectively which do not contain o. Suppose that the shortest path from Td to
o does not pass through b or c. Then

FPM(D; ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)) = (d̃, ã|c̃, b̃).

Figure 5. Properly connecting induced subtrees by inferring quartets on
learned character values.

Proof of Lemma 5.5: Our assumptions imply, by repeated application of Lemma
5.1:

D(x, y) = D(x, x̃) +D(x, y) + d(y, ỹ) for all x, y ∈ {a, b, c} (6)

Let d′ be the node of T where the path from Td to o intersects Ta ∪ P (o, a). There are
two cases: either d′ is on the path from o to a, or d′ ∈ Ta ∩ V (T ). See Figure 5.

Case 1: d′ is on the path from o to a. Lemma 5.1 yields:

D(ã, d̃) = D(a, ã) +D(a, d′) +D(d′, d̃)

D(b̃, d̃) = D(b, b̃) +D(b, o) +D(o, d′) +D(d′, d̃′)

D(c̃, d̃) = D(c, c̃) +D(c, o) +D(o, d′) +D(d′, d̃′)
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Combining the above with (6) gives

D(ã, b̃) +D(c̃, d̃) = D(ã, c̃) +D(b̃, d̃) = D(b̃, c̃) +D(ã, d̃) + 2D(o, d′).

Case 2: d′ ∈ Ta. Lemma 5.1 yields:

D(ã, d̃) = D(d′, ã) +D(d′, d̃)

D(b̃, d̃) = D(b, b̃) +D(b, o) +D(o, a) +D(a, d′) +D(d′, d̃′)

D(c̃, d̃) = D(c, c̃) +D(c, o) +D(o, a) +D(a, d′) +D(d′, d̃′)

But by Lemma 5.4, D(d′, ã) < D(d′, a) +D(a, ã′), and therefore

D(ã, b̃) +D(c̃, d̃) = D(ã, c̃) +D(b̃, d̃) ≥ D(b̃, c̃) +D(ã, d̃) + 2D(o, a).

In both cases the statement of the lemma follows by the definition of FPM. ✷

Corollary 5.6. Given the hypotheses of Lemma 5.5, suppose ME(D; a, b|c, d) = l > ǫ,

and |D̂(x, y)−D(x, y)| < ǫ/2, ∀x, y ∈ {ã, b̃, c̃, d̃}, then
FPM(D̂; ã(Ta), b̃(Tb), c̃(Tc), d̃(Td)) = (d̃, ã|c̃, b̃)
ME(D̂; ã0(Ta), b̃0(Tb)|c̃0(Tc), d̃0(Td)) > l − ǫ.

In essence, the above corollary states that, when the (⋆) condition is obeyed, FPM
estimates topological information correctly.

6. Implementation details

This section provides all the implementation details for algorithm TREE-MERGE.
We let M, ǫ, ξ be as determined in Section 4. For the remainder of the paper we will
assume, unless otherwise stated that condition (⋆) holds. As mentioned previously, we
maintain an edge-disjoint sub-forest F of T , such that, with high probability, the in-
variants I1, I2 and I3 are satisfied. Under (⋆), we are able to maintain I1 and I2 by
enforcing C1 and C2.

These invariants are crucial for our ability to ensure that topological information can
be reliably estimated from learned sequences (I1 and I3), and that learning of ancestral
sequences can be performed reliably (I2), by learning via recursive majority on ”proper”
clades, which are guaranteed to have edge lengths under the phase transition:

Definition 6.1. Given a subtree T ′ ∈ F , a clade T ′′ of T ′ is called proper if all the
edges of T ′′ have estimated lengths shorter than λ0 − 2ǫ.

Let v be the root of clade T ′′. By (⋆) and Lemma 6.2, any proper clade has true edge
lengths less than λ0 − ǫ, which guarantees that the learned character sequence ṽ(T ′′) is
at distance at most β from the true sequence at v. Given an internal node v of some
sub-tree T ′ ∈ F , there are three clades of T ′ rooted at v. Given any edge e ∈ E(T ′),
we let T ′(v, e) denote the unique clade of T ′ which is rooted at v and does not contain
edge e. Letting eb be the long edge described by condition C2, we see that for each node
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Algorithm d = EdgeLength(e, T ′).
INPUT: Edge e of a subtree T ′ ∈ F .
OUTPUT: Estimated length of e.

(1) Let a, b, c, d ∈ V (T ′) be the four neighboring nodes of e in T ′: e is the middle
edge of the quartet Q = (a, b|cd).

(2) if some edges of T ′(a, e) have not been estimated and/or T ′(a, e) is not proper,
let a′ be the closest descendant of a in T ′(a, e) such that T ′(a′, e) is proper. Set
a = a′.

(3) repeat the above process for b, c, d

(4) if the diameter of Q̃ = (ã(T ′(a, e)), b̃(T ′(b, e))|c̃(T ′(c, e)), d̃(T ′(d, e))) is higher
than M − ǫ return FAIL

(5) return d = ME(D̂; Q̃).

Figure 6. Procedure EdgeLength computes the lengths of new edges
which may be added to F by joining two of its component trees.

v ∈ V (T ′), T ′(v, eb) will be proper. Thus D(v, ṽ(T ′(v, eb))) < β: under invariant I2, we
can reliably learn the ancestral sequences of all nodes in F . Thus at any point in the
algorithm, the sequence at any vertex of F can be learned from some proper clade of F ,
rooted at that vertex.

Lemma 6.2. Suppose the forest F reconstructed by TREE-MERGE at some interme-
diate step is topologically correct, contains edge-disjoint trees, its edge lengths have been
computed to within ǫ error, obeys conditions C1 and C2 (and hence obeys I1 and I2),
and all distances between pairs of trees appearing in TreeDistQueue have also been esti-
mated to within ǫ error. Then, under condition (⋆), the estimated edge lengths computed
at step 4(d) of TREE-MERGE are also correct within ǫ.

Proof of Lemma 6.2: We use the notation of the TREE-MERGE pseudocode. Since
T1 and T2 are candidates for being joined, the estimated length of the middle path (u, v)
of Q, which was computed at a previous iteration of TreeConnection, is at most 2λ0−5ǫ,
and is correct up to ǫ by our hypothesis. Similarly, (a, b) and (c, d) are edges of F and
obey I1. Thus all edges of Q are less than 2λ0 − 4ǫ.

Since the length of (u, v) has been estimated, we only need to estimate edges (a, u),
(b, u), (c, v) and (d, v). It is an easy exercise to prove that the two neighbors of a either
root a proper clade in T1 which does not contain a, or have a neighbor who roots such
a clade. This follows by C2. It follows that the edge (a, u) can be estimated from a
quartet of diameter at most 6λ0 + 2β. Thus the procedure EdgeLength will estimate it
within ǫ. We proceed by symmetry for the other edges. ✷

We next give the details of the TreeConnection and TreeDistance subroutines, which
find the topologically correct way to connect two sub-trees T1, T2. TreeConnection re-
quires seed nodes ui ∈ V (Ti), i ∈ {1, 2}, rooting proper clades T ′

1 of T1 and T ′
2 of T2
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such that D̂(ũ1(T
′
1), ũ1(T

′
1)) < M/3 − ǫ. The algorithm proceeds by moving along T1

and T2 in the direction indicated by quartet tests around the current candidate node.
Lemma 6.3 shows that TreeConnection will find the correct link between T1 and T2,
given ”sufficiently close” seed nodes.

Lemma 6.3. Suppose Condition (⋆) holds. Let T1 and T2 be subtrees of T satisfying
invariants I1 and I2, and let P = (v1, v2) be the path joining them in T , with vi ∈
V (T ) ∩ ei, and ei ∈ E(Ti), i = 1, 2. Let E1 ⊂ E(T1) and E2 ⊂ E(T2), such that the
following hold:

• e1 ∈ E1 and e2 ∈ E2

• there exist proper clades T ′
1 and T ′

2 of T1 and T2, rooted at u1 ∈ V (E1) and
u2 ∈ V (E2) respectively, such that D(ũ1(T

′
1), ũ2(T

′
2)) < M/3.

Then e1 ∈ C1 and e2 ∈ C2, where(C1, C2) = TreeConnection(T1, T2, E1, E2). Note that
Ci either contains a single edge or three adjacent edges of Ti. If all the edges of T ′

have length at least 2ǫ, then C1 = {e1} and C2 = {e2}. Furthermore, if |Ci| = 3, then
D(vi, ci) < 2ǫ, where ci is the center node of Ci.

Proof of Lemma 6.3: By Lemma 5.1,

D(ũ1(T
′
1), ũ2(T

′
2)) = D(ũ1(T

′
1), v1) +D(v1, ũ2(T

′
2)).

Therefore D(v1, ũ2(T
′
2)) < M/3. Now suppose e1 = (v′1, v

′′
1). This edge defines two

clades in T1, at least one of which is proper; we may assume w.l.o.g. that v′1 roots a
proper clade. Let u′

1, u
′′
1 be the descendants of v′1 in said clade, and let T ′

1, T
′
2 be the

corresponding sub-clades. Then

D(ũ′′
1(T

′′
1 ), ũ2(T

′
2)) = D(ũ′′

1(T
′′
1 ), u

′′
1) +D(u′′

1, v1) +D(v1, ũ2(T
′
2)) < β + 4λ0 +

M

3
<

M

2
,

thus u1 = v′1, u
′
1, u

′′
1 will satisfy the conditions of step 1 in subroutine TreeConnection.

In turn, let u1, u
′
1, u

′′
1 satisfy the conditions of step 1 in subroutine TreeConnection.

Then at least one of u′
1, u

′′
1 is not on the path P (v1, u1). We may assume u′

1 6∈ P (v1, u1);
then u1 ∈ P (v1, u

′
1) and thus

M/2 + ǫ > D̂(ũ′
1(T

′
1), ũ2(T

′
2)) = D(ũ′

1(T
′
1), u1) +D(u1, ũ2(T

′
2)).

Thus M/2 + ǫ > D(u1, ũ2(T
′
2)) = D(u1, v1) +D(v1, ũ2(T

′
2)).

Letting a, b, c be as described in TreeConnection, Lemmas 5.1 and 5.4 imply that

D(ã(T1), ũ2(T
′
2)), D(b̃(T1), ũ2(T

′
2)), D(c̃(T1), ũ2(T

′
2)) < M/2 + ǫ+ 3λ0 + β < M − 2λ0.

Suppose w.l.o.g. that (a, b|c, u2) is the true quartet topology induced by T . Suppose
the middle edge of (a, b|c, u2), namely (u1, v1), is shorter than ǫ. Since T1 obeys invariant
(1), this implies that v1 is indeed a neighbor of u1 in T ′. Furthermore,

ME(D; (ã(Ta), c̃(Tc)|b̃(Tb), ũ2(T
′
2))) < 0 ⇒ ME(D̂; (ã(Ta), c̃(Tc)|b̃(Tb), ũ2(T

′
2))) < ǫ.

Similarly ME(D̂; (b̃(Tb), c̃(Tc)|ã(Ta), ũ2(T
′
2))) < ǫ. So in case TreeConnection picks the

wrong direction, it will immediately exit correctly at step 2.f.
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Algorithm (E1, E2) = TreeConnection(T1, T2, E1, E2)
INPUT: Subtrees T1, T2 ∈ F and candidate sets E1 ⊂ E(T1), E2 ⊂ E(T2) containing
the endpoints of the path joining T1 and T2.
OUTPUT: Refined candidate sets E1 ∈ E(T1), E2 ∈ E(T2).

(1) Let u1 ∈ V (E1) and u2 ∈ V (E2), and T ′
2 be a proper clade of T2 rooted at u2.

Let T ′
1, T

′′
1 be edge disjoint proper subtrees of T1 rooted at neighbors of u1 in

T1, u
′
1 and u′′

1. Suppose D̂(ũ′
1(T

′
1), ũ2(T

′
2)) < M/2 + ǫ, and D̂(ũ′′

1(T
′′
1 ), ũ2(T

′
2)) <

M/2 + ǫ. If no such u1, u2 exist, then return ∅.
(2) while |E1| > 1

(a) Let a, b, c be the neighbors of u1.
(b) Let Ta, Tb, Tc be edge disjoint clades of T1 rooted at a, b, c respectively.
(c) if Ta is not proper

• Let a′ be the descendant of a in Ta which roots a maximal sub-clade
of Ta which is proper (does not contain the long edge of Ta. Set
a = a′, Ta = Ta′ .

(d) Do the same as above for b, c.

(e) Let Q = FPM(D̂; ã(Ta), b̃(Tb), c̃(Tc), ũ2(T
′
2)), with Q = (ũ2, x|y, z),

{x, y, z} = {a, b, c}.
(f) If ME(D̂;Q) < ǫ, set E1 to the set of edges incident to u1 and go to step

(3).
(g) Set E1 = E1 ∩ (E(Tx) ∪ {(u1, x)}.
(h) Set u1 = x.

(3) Repeat the same process to restrict E2 ⊂ E(T2).

Figure 7. Subroutine TreeConnection(T1, T2, E1, E2) finds the edges
of T1, T2 containing the endpoints of their connecting path P .
TreeConnection will output a single edge per tree, or, in case P connects
too close to an existing node, the edges adjacent to that node.

Alternatively, if D(u1, v1) > ǫ, TreeConnection will pick the correct ”direction”, by
Lemma 5.5 and Corollary 5.6. Furthermore, if the middle edge is longer than 2ǫ, its
estimated length will be also larger than ǫ, and thus the algorithm will proceed to the
next iteration of the while loop. This implies the last statement of our lemma. Also,
if v1 does not lie on the path P (u1, c), then D(u1, v1) > D(u1, c) > 2ǫ, and thus the
algorithm will proceed to the next iteration of the while loop.

To complete the argument, either: v1 ∈ P (u1, c) or c ∈ P (v1, u1). In the first case

D(c, ũ2(T
′
2)) < D(u1, ũ2(T

′
2)) + 2λ0 < M/2 + ǫ+ 2λ0,

and the procedure will terminate at the next iteration of the while loop. In the latter
case,

D(c, ũ2(T
′
2)) < D(u1, ũ2(T

′
2)) < M/2 + ǫ,
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Subroutine d = TreeDistance(T1, T2, E1, E2)
INPUT: Subtrees T1, T2 ∈ F and candidate sets E1 ⊂ E(T1), E2 ⊂ E(T2) containing
the endpoints of the path P joining T1 and T2. OUTPUT: Estimated length of P .

(1) if |E1| = |E2| = 1
• Let Q = (a, b|c, d) with E1 = {(a, b)}, E2 = {(c, d)}. Let e be the middle
edge of Q.

• Let T ′ be the tree given by joining T1 and T2 according to Q.
• return EdgeLength(e, T ′).

(2) else

• Let E1 = {(v, v1), (v, v2), (v, v3)}.
• return min{TreeDistance(T1(v, (v, vi)), T2, {(j, k)}, E2), {i, j, k} =
{1, 2, 3}}

Figure 8. Subroutine TreeDistance(T1, T2, E1, E2 estimates the length of
the path connecting T1, T2, based on the set of possible connection edges
E1, E2, output by TreeConnection(T1, T2).

and we can proceed by induction on |E1| to show that at every step TreeConnection
picks the correct direction or exits correctly. ✷

Lemma 6.4. Assume all the hypotheses and notation of Lemma 6.3 hold. Let (C1, C2) =
TreeConnection(T1, T2, E1, E2). Then |TreeDistance(T1, T2, C1, C2)− L(P )| < ǫ.

Proof of Lemma 6.4: All the quartets inspected by TreeDistance where previ-
ously inspected by TreeConnection as well. The proof of Lemma 6.3 shows that the true
diameters of all said quartets are less than M − ǫ. Thus (⋆) and Corollary 5.6 imply
that all path lengths returned by EdgeLength will be ǫ-approximations of the true path
lengths. Furthermore, it is an easy exercise to see that TreeDistance returns L(P ) in

the event that D̂ = D. The conclusion follows trivially. ✷

7. Correctness, stopping criteria and running time analysis

In this section we prove the three main theorems of the paper, which were stated in
Section 4.
Theorem 4.4: If (⋆) holds, algorithm TREE-MERGE returns a topologically correct
sub-forest F of T satisfying invariants I1, I2, I3.
Proof of Theorem 4.4: We proceed inductively to show that invariants I1,I2,I3 are
always obeyed by TREE-MERGE, and additionally that:

C1’: edge lengths computed by EdgeLength are correct within ǫ.
C2’: all connections computed by TreeConnection are correct,
C3’: tree distances contained or previously contained in TreeDistQueue are correct

within ǫ.
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All of the above hold trivially under (⋆) in the case of F = X , which is our base case.
By Lemma 6.2, C1′ will hold inductively. Then steps 4.c, 4.e and 4.f, together with
Lemma 6.3, show that C1 and C2 are never violated. In turn, C1,C2 and C1′ imply
that invariants I1, I2 hold for the next iteration of the algorithm.

Lemma 6.3 shows that the TreeConnection sub-routine returns a topologically correct
way of connecting to components of F , as long as I1 and I2 hold and the candidate
edge sets E1 and E2 contain the endpoints of the correct linking path. It is an easy
argument to show that if the previously computed connections were correct, then step
UpdateTreeDistQueue calls TreeConnection with appropriate sets of candidate edges.
This establishes condition C2′. Lemma 6.4 together with condition C2′ thus imply
condition C3′.

To complete the proof of the theorem, it remains to show that invariant I3 is obeyed,
namely the components of F are disjoint in T . Suppose by contradiction that T1, T2

are the first pair of subtrees that are joined such that the path P linking them overlaps
subtree T3 ∈ F . Suppose l is the true length and l′ the estimated length of the path
P , computed by TreeDistance(T1, T2). Let the distance between T1 and T3 be l1, the
distance between T2 and T3 be l2, and let l′1 and l′2 be the corresponding estimated
distances. Since T1, T2 were joined, 3ǫ < l′ < 2λ0 − 5ǫ. Therefore l < l′ + ǫ < 2λ0 − 4ǫ.
Then l1 + l2 < l < 2λ0, which implies that the two estimated distances, l′1 and l′2, were
computed at a previous step of TREE-MERGE. Then

l′1 + l′2 − 2ǫ < l1 + l2 < l < l′ + ǫ ⇒ l′1 + l′2 < l′ + 3ǫ,

which contradicts step 4.d of TREE-MERGE. ✷

Theorem 4.5: Let T satisfy 6ǫ ≤ L(e) ≤ λ0 − 3ǫ, ∀e ∈ E(T ). Then given N
independent samples χ1, . . . , χN from the character distribution PT,L, T will be fully and
correctly recovered by TREE-MERGE with probability at least 1− ξ.
Proof of Theorem 4.5: As before, (⋆) holds with probability 1 − ξ. Theorem 4.4

shows that the output of the algorithm is topologically correct. It remains to prove
that, under the additional hypotheses of the present theorem, TREE-MERGE will not
terminate before the full topology is resolved.

Let us suppose that TREE-MERGE outputs a forest F with more than one compo-
nent. Let TF be the tree given by collapsing every connected component of F into a
single node. All edges of TF correspond to single edges of T . Since all edges in T are
longer than 6ǫ, Lemma 6.3 shows that TreeConnection will always output well-defined
connections (i.e. candidate edge sets of cardinality 1), and moreover all internal edge es-
timates will be longer than 5ǫ. Thus condition C1 is never violated and TREE-MERGE
will never reject a candidate pair at steps 4.c. or 4.e.

Let T1 and T2 form a cherry of TF . Suppose the common neighbor of T1 and T2 in
TF does not correspond to another component of F . The length of the path P joining
T1 and T2 will be less than 2λ0 − 6ǫ and therefore the pair T1, T2 was inserted into
TreeDistQueue. Letting Tnew be the tree formed by joining T1 and T2, we see that all
edges in Tnew other than the one corresponding to P , correspond to single edges of T ,
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Figure 9. The connectivity graph induced by T on F , with configura-
tions of pairs of subtrees which can be joined by TREE-MERGE.

and have lengths between 6ǫ and λ0 − 3ǫ. Thus Tnew will satisfy condition C2 under
(⋆), and will not get rejected at step 4.f. of TREE-MERGE.

Alternatively, suppose the common neighbor of T1 and T2 in TF corresponds to T3 ∈ F .
Then T3 contains at most one ”long” edge, by C2. Thus the tree obtained by joining
T3 to T1 will also contain at most one long edge, as all edges of the new tree which are
not also edges of T3 correspond to single edges of T , and thus are ”short”. Thus, again,
the pair T1, T3 will not be rejected at step 4.f.

The only remaining possibility is that the candidate pair T1, T2 gets rejected at step
4.g.. From our selection of the candidate pair, we can see that the joined tree Tnew is
in fact edge disjoint from all other trees in F . Let Tk be the tree causing the rejection
at step 4.d.. We let l, l1, l2 be the lengths of the paths joining T1, T2, T1, Tk and T2, Tk,
and l′, l′1, l

′
2 be the corresponding estimated tree distances. Since Tnew and Tk are edge

disjoint and all edges of T have length at least 6ǫ, it is a simple argument to show that
l1 + l2 > l + 6ǫ, and thus l′1 + l′2 < l′ + 3ǫ cannot occur under (⋆). ✷

Theorem 4.6: TREE-MERGE always terminates in O(Nn2 + n3) time, where the
proportionality constant is a decreasing function of ξ and ǫ.
Proof of Theorem 4.6: Steps 1-3 of TREE-MERGE trivially take O(n2N +n2 log(n))
time. Every iteration of Step 4, the main loop of the algorithm, either reduces the size
of the forest F by one, or determines that a pair of trees in F cannot be merged. Each
time the forest gets modified, a single new tree is produced. Since the forest is modified
at most n− 1 times, throughout the life of the algorithm there are at most n2 tree pairs
being inserted/popped from TreeDistQueue. Thus there are at most O(n2) iterations of
step 4. In particular, the total time spent in steps 4.a-d is O(n2 log(n)).
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In order to verify C1 and C2 on Tnew, one only needs to compute a fixed number of
edge lengths in addition to the ones already in the forest, so again, steps 4.e-f take O(n2)
time. The verification at step 4.g takes linear time per iteration, so at most O(n3) time.

Step 4.h is equivalent to a modification of the forest, so it only occurs at most n− 1
times. Learning the sequences of new proper clades can be done in a bottom-up fashion,
such that each new root can be computed through a single recursive majority step. Thus
step 4.h.(ii) takes time proportional to the number of new learned sequences, and its
contribution to the total running time is O(nN). Similarly step 4h.(iii) will contribute
at most O(n2N + n2 log(n)).

Now suppose that |V (Tnew)| = t and |F | = s. The subroutine TreeConnection
runs in time at most linear in the sizes of its input subtrees. Thus one iteration of
UpdateTreeDistQueue will spend O(st+ (n− t)) time for building the new tree connec-
tions, andO(s log(n)) time in the insertion and deletion of tree pairs from TreeDistQueue.
Summing over all iterations, the total time spent in UpdateTreeDistQueue is O(n3). ✷

8. Final remarks

A simple amortized argument shows that step 4.h, as detailed here, only takes O(n2(N+
log(n))) time. We do not include this argument for the sake of brevity. Thus the verifi-
cation of step 4.g is the true running-time bottleneck of the algorithm. In practice, this
verification should be rendered somewhat redundant by the fact that at every step we
join the pair of trees which are closest, but sadly this is not sufficient for a formal proof
of correctness.

Our methods here are general enough to specify a all-purpose phylogeny reconstruction
algorithm. The bounds we require on edge lengths can in fact be relaxed at the cost of
longer sequence lengths. If one is able to estimate the lengths of the already-constructed
edges, then one can also estimate the expected disagreement between the real and learned
sequences at internal nodes. Similarly, with given sequence lengths one can infer a
”robust” area of the space given by M and ǫ: for every estimated distance we can infer
an ǫ that is larger than the estimation error with high probability. If the phylogeny can
be progressively disambiguated from the available distances, given their expected errors,
then we have achieved our purpose.

Indeed, these ideas are at the base of the methods in [19]. The availability of Mos-
sel’s techniques for inferring ancestral sequences simply give us a very powerful tool for
”reaching deeper” into the phylogenetic tree and improving on classical distance methods
without departing too much from their simplicity.
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Appendix A. The triangle inequality for the CFN model

The main purpose of this Appendix is to provide a proof of Lemma 5.4:

Lemma 5.4. Let T ′ be an induced subtree of T rooted at ρ and let v ∈ (V (T )∩T ′)\δ(T ′).
Then

D(ρ̃(T ′), v) < D(ρ, v) +D(ρ, ρ̃(T ′)).

with ρ̃(T ′) a ”learned” character value, where the learning occurs by any bottom-up
recursive majority algorithm on T ′, as outlined in Section 3.

Figure 10. Tree configuration for the proof of Lemma 5.4.

We begin by introducing an alternative representation of the CFN model under a
percolation framework. This intuitive view lies at the root of the theoretical results
regarding information flow on trees in [16] and [17].

Let p(e) < 0.5 be the probabilities of mutation along edges e ∈ E(V ) for a CFN model
on T . Let α(e) be independent random variables such that

α(e) =

{

1 with probability 1− 2p(e)

0 with probability 2p(e).

Suppose each edge e in T carries a survival probability θ(e) = 1 − 2p(e), such that
the edge e is deleted if α(e) = 0. After removing the destroyed edges, each surviving
connected component C receives a single character value χ(C), by tossing an independent
unbiased coin. We write u ↔ v for the event that the two nodes u, v are in the same
connected component and Cv for the component containing v.

It is easy to see that the joint probability distribution on character values at V (T )
produced under this alternative model, PT,θ, is the same as the one induced by the orig-
inal CFN model: PT,L, where L(e) = − log(1− 2p(e))/2 = − log(θ(e))/2. As before, D
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is the distance between uniform binary random variables defined in Section 2.

Proof or Lemma 5.4: Let ρ̃ denote ρ̃(T ′) for brevity. The lemma is equivalent to
E[vρ̃] ≥ E[ρv]E[ρρ̃]. It is an easy exercise to show that, in turn, this is equivalent to
P[ρ = ρ̃|ρ = v] ≥ P[ρ = ρ̃|ρ 6= v]. By symmetry, we may assume for the rest of the proof
that ρ = 1, so χ(Cρ) = 1, and our task reduces to showing that

P[ρ̃ = 1|ρ = v = 1] ≥ P[ρ̃ = 1|ρ = 1 6= v].

Let E(P ) = {e1, . . . , es} denote the edges of the path P = P (ρ, v), and let V (P ) =
{v1, . . . , vs = v} be the nodes of P , other than ρ. Then 1(ρ ↔ v) = 1(α(E(P )) ≡ 1).
We proceed by way of a standard coupling argument.

Suppose α(E(T )) is such that such that ρ 6↔ v. Given a set of values χ0 for the
characters χ(C), C 6= Cv, C 6= Cρ,

P[χ(Cv) = 1, χ(C 6=v,ρ) = χ0|α] = P[χ(Cv) = −1, χ(C 6=v,ρ) = χ0|α].
Now ρ̃ is a recursive majority function in the character values at δT ′, and is therefore
coordinate-wise increasing in the values of those characters. Moreover χ(δT ′) in the
event 1[χ(Cv) = 1, χ(Cρ) = 1, χ(C 6=v,ρ) = χ0] is coordinate-wise larger than χ(δT ′) in
the event 1[χ(Cv) = −1, χ(Cρ) = 1, χ(C 6=v,ρ) = χ0], while the probabilities of the two
events, conditioned on the values α, are the same. Summing over all values χ0 and all
values α such that ρ 6↔ v,

P[ρ̃ = 1|ρ 6↔ v, v = 1] ≥ P[ρ̃ = 1|ρ 6↔ v, v = −1] = P[ρ̃ = 1|v = −1]. (7)

For any x ∈ {±1}s and any b ∈ {±1}t with t = |E(T )| − s, an identical argument to
the one above shows that

P[ρ̃ = 1|α(E(T )\E(P )) = b, χ(V (P )) ≡ 1] ≥ P[ρ̃ = 1|α(E(T )\E(P )) = b, χ(V (P )) = x].

We observe that 1[ρ ↔ v] = 1[α(E(P )) ≡ 1] implies 1[χ(V (P )) ≡ 1] and that α(E(T ) \
E(P )) and α(E(P )) are independent, thus α(E(T )\E(P )) and χ(V (P )) are independent.
Therefore

P[ρ̃ = 1|α(E(T ) \ E(P )) = b, v ↔ ρ] ≥ P[ρ̃ = 1|α(E(T ) \ E(P )) = b, χ(V (P )) = x], ∀x
⇒ P[ρ̃ = 1|v ↔ ρ] ≥ P[ρ̃ = 1|χ(V (P )) = x], ∀x
⇒ P[ρ̃ = 1|v ↔ ρ] ≥ P[ρ̃ = 1|α(E(P )) = a, v = 1], ∀a ∈ {±1}s, a 6≡ 1

⇒ P[ρ̃ = 1|v ↔ ρ] ≥ P[ρ̃ = 1|v 6↔ ρ, v = 1].

The first implication follows from summation over all values of b. The second comes from
summation over all values of x such that xs = v = 1 and x is compatible with α(E(P )) =
a. The third implication follows from summing over all values a ∈ {±1}s, a 6≡ 1.

The last inequality, together with (7), implies

P[ρ̃ = 1|v = 1] ≥ P[ρ̃ = 1|v 6↔ ρ, v = 1] ≥ P[ρ̃ = 1|v 6↔ ρ, v = −1] = P[ρ̃ = 1|v = −1].

✷
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Appendix B. Applicability to other molecular models of evolution

Our method implies similar results for all group based models of evolution, where
character alphabet is a group G admitting a non-trivial morphism φ : G → Z2. In a
group-based model of evolution, the probability of transformation of the character χ
from state a to state b along any edge e of the tree only depends on a−1b. In other
words, for an edge e = (u, v) ∈ E(T ),

P(χ(v) = b|χ(u) = a) = pe(a
−1b.

By the definition of a morphism,

φ(a) 6= φ(b) ⇔ φ(a−1b) = −1.

Thus

P[φ(χ(u)) 6= φ(χ(v))|χ(u) = a] = P[φ(χ(u)) 6= φ(χ(v))|φ(χ(u)) = φ(a)]

=
∑

g∈φ−1(−1)

p(g),

which does not depend on a and implicitly does not depend on φ(a).
We can then reduce any such model to the binary one by identifying a state g ∈ G

to φ(g) ∈ Z2 and applying our analysis mutatis mutandis. The most notable example
of group based model of evolution satisfying our requirements is the Kimura 3ST model
[15], which is realized by the group Z2 × Z2 [20]. We also note that Kimura 3ST is a
generalization of the well known Jukes-Cantor model.
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